D-397

UNIVERZITET U NOVOM SADU PRIRODNO MATEMATIČKI FAKULTET INSTITUT ZA FIZIKU

y	但我自己打	3501	. 1	Ϋ́,		1.	
IPNP	одно	-MAT	Eh	WA	Th-	ikm	all a star

ПРИМЉЕНО:	3 0 MAJ 2000
ОРГАНИЗ ЈЕД	БРОЈ
0603	9/111

Tanja Ćurčić

STRUKTURALNA I MOLEKULARNO-MEHANIČKA ISTRAŽIVANJA NEKIH NOVIH D-SEKO ESTRONSKIH DERIVATA

~Diplomski rad~

Novi Sad, 2000.

Ovaj diplomski rad urađen je na Institutu za fiziku Prirodno-matematičkog fakulteta u Novom Sadu, u saradnji sa institutom za hemiju na istom fakultetu.

Temu rada predložio mi je, i njegovu izradu pratio dr. Dušan Lazar. Njegova dragocena pomoć u svakom trenutku, njegovi saveti i prijateljstvo su mi omogućili da rad uspešno bude okončan. Jedno veliko "Hvala" nije dovoljno da bih mu u potpunosti mogla izreći svoje dužno poštovanje, zadovoljstvo i zahvalnost.

Mr. Suzani Jovanović-Šanta se zahvaljujem na pruženim informacijama i pomoći pri radu.

Ing. Josipu Fleisu se zahvaljujem na tehničkoj obradi i strpljenju prilikom izrade diplomskog rada.

Svojim prijateljima ne treba da se posebno zahvaljujem, oni svi vrlo dobro znaju koliko i kakvu ulogu imaju u mom životu.

Osnovnu i najvažniju podršku, pruža mi moja porodica. Hvala mojim roditeljima, koj su ovaj kraj toliko priželjkivali.

Konačno, najveđu zahvalnost dugujem mojoj maloj Bojani i suprugu Siniši, za svu ljubav, pažnju i podršku, za sva odricanja i za sve što mi u životu znače.

Tanja Ćurčić

SADRŽAJ

1.	UVOD		3
2.	FUNKCI	JA STEROIDA	4
3.	STEROII	DNA NOMENKLATURA	6
4.	FUNKCI	JA STEROIDA	9
5.	MEĐUZA	VISNOST STRUKTURA – AKTIVNOST	15
6.	MOLEKU	JLARNO-MEHANIČKI PRORAČUN	18
7.	EKSPER	IMENTALNI PODACI	20
	7.1 NS4	(4): 3-hidoksi-17-hloro-16,17-sekoestra-1,3,5(10)-	
	trie	n-16-nitril	22
	7.1.1	Dobijanje jedinjenja	22
	7.1.2	Kristalografski podaci	22
	7.1.3	Struktura – difrakcija x-zraka	24
	7.1.4	Struktura – molekularno-mehanički proračun	31
	7.1.5	Konformaciona analiza	33
	7.1.6	Međuzavisnost struktura-aktivnost	35
	7.2 NS 5(5	5): 3-benzoloksi-17-bromo-16,17-sekoestra-1,3,5(1	0)-
	trien	-16-nitril	37
	7.2.1	Dobijanje jedinjenja	37
	7.2.2	Kristalografski podaci	38
	7.2.3	Struktura – difrakcija x-zraka	39
	7.2.4	Struktura – molekularno-mehanički proračun	43

	7.2.5	Konformaciona analiza	44
	7.2.6	Međuzavisnost struktura-aktivnost	45
	7.3 NS6	(6): 3-hidroksi-17-hidroksi-16,17-sekoestra-1,3,5(1	LO)-
	trier	1-16-nitril	46
	7.3.1	Dobijanje jedinjenja	46
	7.3.2	Kristalografski podaci	47
	7.3.3	Struktura – difrakcija x-zraka	48
	7.3.4	Struktura – molekularno-mehanički proračun	52
	7.3.5	Konformaciona analiza	53
	7.3.6	Međuzavisnost struktura-aktivnost	53
	7.4 NS7(2): 3-hidroksi-17-toziloksi-16,17-sekoestra-1,3,5(1	0)-
	trien	-16-nitril	54
	7.4.1	Dobijanje jedinjenja	54
	7.4.2	Kristalografski podaci	55
	7.4.3	Struktura – difrakcija x-zraka	56
	7.4.4	Međuzavisnost struktura-aktivnost	63
8.	ZAKLJUČ	AK	64
9.	LITERAT	URA	67

1. UVOD

Ljudski organizam je kompleksna tvorevina. U njemu se putem različitih signalnih molekula odvija veliki broj međusobno povezanih i međuzavisnih reakcija. U zdravom organizmu sve te biohemijske reakcije su međusobno usklađene, što omogućuje normalno funkcionisanje organizma.

Signalni molekuli su strukturno veoma raznovrsna jedinjenja. To mogu biti: hormoni, ribonukleinske kiseline (u daljem tekstu: mRNK), različiti proteini (faktori rasta: EGF, IGF-1) i mnogi drugi. Poseban značaj imaju steroidni hormoni. Dobrom raspodelom ovih hormona po tkivima u organizmu i usklađenošću sa ostalim molekulima sa kojima su u korelaciji, stvara se osnova za ispoljavanje njihove biološke aktivnosti. Narušavanjem nekog od ovih faktora dolazi do manjih ili većih poremećaja u organizmu.

Neki od tih poremećaja mogu se lečiti unošenjem sintetskih molekula, koji na neki način utiču na mehanizam prenosa signala u organizmu, kao takav postupak primenjuje se pri lečenju ginekoloških kancera (poremećaj u koncentraciji ili delovanju estrogenih hormona).

Za novosintetizovani molekul, vrlo je važno prvo izvršiti veliki broj bioloških testova, kao i detaljno ispitati novosintetizovani molekul pre kliničke upotrebe.

Obzirom na značaj pronalaženja mogućnosti lečenja široko rasprostranjenih hormon-zavisnih tumora, cilj ovog rada je bio sinteza novih jedinjenja i ispitivanje njihovog biološkog značaja.

U radu su korišteni podaci i generalije vezane za novosintetizovane molekule, urađene na Prirodno-matematičkom fakultetu u Novom Sadu, na Institutu za hemiju. To je upravo, sinteza novih D-sekoestronkih derivata sa benzil-etarskom ili hidroksilnom grupom, čija je struktura i čistoća dokazana na osnovu spektroskopskih podataka i podataka mikroanalize.

2. FUNKCIJA STEROIDA

Steroidi su grupa steroidnih jedinjenja, tj. grupa prirodnih organskih jedinjenja i njihovi sintetički derivati koji imaju karakteristični skelet. Taj skelet čine tri šestočlana i jedan petočlani prsten (Slika2.1).

Slika 2.1. - Osnovna struktura steroida sa standardnom numeracijom atoma i označavanjem prstenova

Podela steroida je izvršena na sledeći način:

- a) polni hormoni važni za razvoj i održavanje primarnih i sekundarnih seksualnih karakteristika;
- b) nadbubrežni kortikoidni hormoni važni za metabolizam ugljenih hidrata i održavanje ravnoteže soli i vode;
- c) žučne kiseline koje se nalaze u žuči životinja (koriste se i za hemijsku sintezu anti-inflamatornih agenasa);
- d) steroidi konstituenti membrana ćelija; i
- e) kardiotonici koji se koriste u lečenju kongestivnih srčanih oboljenja.

Steroidi inače imaju vrlo važnu ulogu u odgovaru organizma na emocionalne i fizičke stresove i bolesti.

Rezultati terapijske primene visokih doza određenih steroida i njihovih analoga u obolelih od raka ukazuje na njihovu značajnu ulogu u nastanku i lečenju ove bolesti. Estrogena, androgena i kortikoidna terapija raka dojke kod žena, primena androgena i veštačkih estrogena u lečenju raka mlečnih žlezda kod mučkaraca, kao i kortikoidna terapija limfoma i leukemije predstavljaju nekoliko primera najčešće primenjivanih hormonskih terapija maligniteta.

3. STEROIDNA NOMENKLATURA

Nomenklatura steroida je izvedena na osnovu strukturnih i funkcionalnih karakteristika ovih jedinjenja. Kako je strukturna klasifikacija sledila razvoj trivijalne nomenklature, jer se spoznalo da su funkcionalne promene uvek praćene odgovarajućim strukturalnim promenama, danas se paralelno koriste dva klasifikaciona sistema, prikazano tabelarno Tabelom 3.1.

Mada su mnoga od trivijalnih naziva izvedena na osnovu molekulske funkcije ili tkiva odakle potiču još uvek su u upotrebi, nomenklatura zasnovana na strukturnim karakteristikama je neophodna za racionalnu komparativnu analizu steroida. Steroidna nomenklatura je potpuno sistematizovana IUPAC-ovim konvencijama, tako da je moguće svakom steroidu dati ime koje jednoznačno određuje njegov sastav, konstituciju i konfiguraciju.

KLASIFIKACIJA STEROIDA			
Strukturala	Funkcionala		
Estrani	Estrogeni		
Androstrani	Androgeni		
Pregnani	Progestini		
	Glikokortikoidi		
	Mineralokortikoidi		
Holani	Žučne kiseline		
Holestani	Steroli		

Tabela 3.1. - Pregled klasifikacionih sistema steroida

Osnovni tetraciklični ugljovodonik bez metilnih grupa na C10 i C13 i bez bočnog lanca na C17 naziva se *gonan* (Slika 3.1.).

Za tetraciklične ugljovodonike sa metilnim grupama i na C10 i C13 (Slika 3.1.) upotrebljavaju se nazivi navedeni u Tabeli 3.2.

Nezasićenost i supstituenti u nazivima steroida označavaju se na način uobičajen u organskoj hemiji. Primer molekula iz serije estrogena (Slika 3.2) ilustruje jednostavan slučaj.

a)

b)

c)

Slika 3.1. - Osnovni nazivi steroidnih jedinjenja a) Gonan; b) Estran; c) imena su data u tabeli 3.2

R	Naziv steroida
н	Androstan
С ₂ Н ₅	Pregnan
CH (CH ₃) CH ₂ CH ₂ CH ₃	Holan
CH (CH ₃) CH ₂ CH ₂ CH (CH ₃) ₂	Holestan
CH (CH ₃) CH ₂ CH ₂ CH (CH ₃) CH (CH ₃) ₂	Ergostan
CH (CH ₂) CH ₃ CH ₃ CH (C ₂ H ₅) CH (CH ₃) ₂	Stigmastan

Tabela 3.2.	- Nazivi	steroida
-------------	----------	----------

Slika 3.2. - 1,3,5 (10) - estratrien - 17 - On

Strana steroidnog molekula prema kojoj su usmerene C10 i C18 metilne grupe naziva se β -, a druga, koja se uzima za donju stranu, a-strana. Osnovna karakteristika β -strane je da je ona hidrofobna, za razliku od a-strane, koja je hodrofilna.

Prema pravilima nomenklature steroida za stepenasto proširenje i smanjenje sistema prstenova upotrebljavaju se termini *homo* i *nor*, respektivno. Izraz *seko* se upotrebljava za reduktivno cepanje sistema prstenova, a izraz *abeo* za formalne migracije veze.

Ovo su bila samo neka od osnovnih pravila pristupa nomenklature steroida.

4. FUNKCIJA STEROIDA

Ginekološki kanceri, prvenstveno kancer dojke i materice, najčešći su uzroci smrtnosti od tumora kod žena u zapadnim zemljama. Na našim prostorima ove vrste kancera, takođe su vrlo česte. Sirova stopa incidencije (broj obolelih u 100 000 osoba ispitivane populacije) za kancer dojke C50, za celu žensku populaciju u Vojvodini u periodu 1985-1996. godine iznosi 69.6, dok je stepen mortaliteta za istu ispitivanu populaciju u istom periodu 37.02. Terapije koje se danas primenjuju imaju ograničene potencijale u procesu lečenja, isključivo zbog progresivne prirode bolesti, i napredovanja većine tumora u agresivni fenotip, sa povećanom otpornošću na citotoksične komponente i na kontrole hormona. Boljim poznavanjem biološkog mehanizma regulacije proliferacije ćelija i napredovanja kancera moglo bi doprineti pronalaženju novih terapeutika sa povećanom efikasnošću.

Vezivanje estrogena za receptor stimuliše povećanu ekspresiju nekih gena, uključujući gene za određene faktore rasta i njihove receptore, što rezultuje stimulacijom sinteze odgovarajuđih mRNK na DNK i proliferacijom ćelija, kao i povećanom produkcijom proteina, kao npr. aktivatora plazminogena i kolageneze, što vodi povećanju mogućnosti metastaziranju kancera.

Sprečavanjem ili kontrolisanjem vezivanja estrogenog hormona za receptor trebalo bi onemogućiti ili smanjiti proliferaciju tumornih ćelija. Što znači, trebalo bi delovati odgovarajućim agensom na neki od procesa u složenom mehanizmu prenosa impulsa estrogenih hormona putem estrogenih receptora. Takvi agensi nazivaju se *antiestrogeni*. To su hormonski agensi, koji, delujući preko estrogenih receptora, utiču na transkripciju gena.

Antiestrogeni (u daljem tekstu: AE) se veoma razlikuju po strukturi i po načinu delovanja. Neki AE deluju tako da, kada se vežu u kompleks sa receptorom, taj kompleks nije sposoban da aktivno stimuliše ekspresiju gena i sintezu mRNK u DNK. Kompleks estrogeni receptor (u daljem tekstu: ER) i AE

Tanja Ćurčić : Strukturalna i molekularno-mehanička istraživanja nekih novih D-seko estronskih derivata

utiče na povećanje produkcije nekih inhibitora faktora rasta, uključujući smanjenje rasta kancera dojke i njegovo metastaziranje.

Novija istraživanja su pokazala da neki AE utiču na smanjenje produkcije faktora rasta. Promenom konformacije receptora usled delovanja nekih AE može doći do inhibicije nekih od gena kontrolisanih faktorima rasta. AE mogu uticati i na ekspresiju proteina, koji izaziva supresiju tumora. AE se u farmakologiji definišu kao agensi koji smanjujuilli poništavaju trofični efekat prirodnih estrogena. Prvi sisntetizovani AE bili su nesteroidni molekuli, većinom trifenil-etilena.

Tamoksifen

Slika 4.1. - Molekulske strukture nekih nesteroidnih antiestrogena

Najveću praktičnu primenu, zahvaljujući minimalnim sporednim efektima, postigao je tamoksifen, koji se već dve decenije koristi u terapiji kancera dojke.

Terapeutske osobine trans-tamoksifena su primarno rezultat konkurencije pri vezivanju za estrogeni receptor njegovog glavnog metabolita, 4-monohidroksi tamoksifena, kome je hidroksilna grupa dodata ugljeniku 4 a´ prstena. Mada

kristalna struktura 4-monohidroksi trans-tamoksifena još nije određena, kristalne strukture trans i cis izomera tamoksifena i devet drugih derivata omogućuju da se odredi verovatna konformacija aktivnog metabolita.

Slika 4.2 – Verovatna konformacija 4-hidroksi-tamoksifena (crni kružići) upoređena sa konformacijom estrogena (beli kružići)

Logično je predpostaviti da u slučaju 4-hidroksi-tamoksifena hidroksilizirani a´-fenilni prsten imitira estradiolski A prsten u interakciji sa receptorom. Dalje se logično zaključuje, da će se fenilni prsten 4-hidroksi trans tamoksifena vezati za receptor u zavisnosti od orijentacije, tako da odsutnost supstitucije koja može da ostvari vodoničnu vezu, može biti odgovorna za neaktivnost ili antagonizam jedinjenja. Tamoksifen pored jakog antagonizma ima i slabo izraženo estrogeno dejstvo. Ovo se može verovatno, objasniti mogućnošću "izbora" orijentacije pr čemu će seu jednoj ispoljavati antiestrogena, a u drugoj slaba estrogena aktivnost.

Nova generacija AE su steroidni antiestrogeni, od kojih neki spadaju u potpune AE, potpuno bez estrogenog delovanja.

Zbog velikog značaja koji bi AE mogli imati u lečenju estrogen-zavisnih tumora, danas se u svetu radi na kreiranju i sintezi novih, potpunih AE, koji bi se u terapiji kancera mogli koristiti bez značajnih sporednih efekata.

Slika 4.3. - Molekulske formule nekih steroidnih antiestrogena

Antiestrogeni se, zbog strukturne sličnosti sa estrogenima, najčešće vezuju za hormon-vezujuće mesto ne estrogenom receporu, pri čemu dolazi do kompeticije sa estradiolom za isto vezno mesto. Međutim, usled strukturnih osobenosti antiestrogena, prilikom vezivanja u kompleks sa receptorom ne dolazi do identičnih konformacionih promena, karakterističnih za kompleks ER-EH, već do nekih drugih. Vezivanje hormona vodi građenju određene konformacije receptora. Estrogeni, pošto utiču na sintezu proteina, samim tim i na rast i razvoj tumornih ćelija, deluju i na druge molekule, sa kojima su u međusobnoj zavisnosti. Takvi molekuli su progesteronski receptori.

Ako tkivo ili ćelije nisu bili izloženi dejstvu odgovarajućeg hormona, receptori ostaju u neaktivnoj formi. Njihov transformacija u aktivni oblik, koja je praćena promenom određenih fizičko-hemijskih osobina, indukuje se vezivanjenem hormona. Ovaj procs najčešće se opisuje kao aktivacija receptora. Pod aktivacijom podrazumevamo proces koji dovodi do stvaranja biološki aktivnog

receptor-hormonskog kompleksa. Aktivacija je određena funkcionalna posledica transformacije receptora.

Slika 4.4. – Građenje različitih konformacija receptora prilikom vezivanja agonista (estradiol E₂), parcijalnog agonista (Bisfenol) i parcijalnog agonista (4-hidroksi-tamoksifen OH-TAM)

Funkcija i aktivnost steroida određene su njegovim sastavom, građom, konfiguracijom i konformacijom. Tu se podrazumeva broj i vrsta atoma koji izgrađuju molekul i predstavljaju hemijsku formulu. Zatim, geometrijska raspodela tj. razmeštaj atoma u prostoru. Uticaj građe na funkciju steroida može da se ilustruje strukturnim izomerima (to su jedinjenja sa istom molekulskom formulom, ali razne strukture, odnosno različit način vezivanja atoma u molekulu) koji imaju različite funkcije. Najbolji primer za prikazivanje zavisnosti funkcije od konfiguracije se može prikazati na primeru muškog polnog hormona testosterona 17a-hydroxy-4-adrosten-3-one i njegovog neaktivnog konfigura-cionog izomera koji se razlikuje samo u stereometriji oko atoma ugljenika C17.

Slika 4.5. – Konfiguraciona razlika pri atomu (C17) u aktivnom testosteronu (puna linija) i neaktivnom epitestosteronu (isprekidana linija)

5. MEĐUZAVISNOST STRUKTURA - AKTIVNOST

Aktivnost staroidnih i nesteroidnih estrogena su prvi pokušali objasniti Keasling i Schuler na osnovu sličnosti molekula i rastojanja između hidroksil-nih grupa kod potentnih steroidnih i nesteroidnih estrogena. Osnovu estrogene aktivnosti čine dve hidroksilne grupe 3- i 17-OH kod estradiola i fenilnih OH grupa kod DES smeštene na krajevima ravnog hidrofobičnog molekula.

Slika 5.1 – Strukturne formule, numeracija atoma i obeležavanja prstenova za: a) estradiol; b) 8α-D-homoestradiol; c) 11-keto-9β-estron; d) dietilstilbestrol (DES) e) indenestrol A (IA); f) Z pseudo dietilstilbestrol (ZPD); g) E pseudo dietilstilbestrol (EPPS <

Slika 5.2 – Strukturne formule, numeracija atoma i obeležavanja prstenova za: a) mirestrol; b) trans-zeralenon; c) tetrahidronaftol; d) p-1-metilbutil-fenol

D-prsten može da kontroliše aktivnost estrogena na dva moguća načina:

- indukuje ili stabilizuje potrebno konformaciono stanje u receptoru;
- učestvuje u neposrednoj interakciji sa hromatinom.

Na osnovu sličnosti u obliku steroidnih struktura i karcinogena, kao i hipoteze o direktnom kontaktu između receptor-hormonskog kompleksa i DNK može da se pretpostavi: jedan kraj određenih karcinogena može imitirati steroidni A prsten i tako se vezati za receptore. Tako aktivirani receptor ulazi u jedro noseći karcinogen od određenog ili određenih mesta na DNK uključenih u proces hormonske regulacije rasta ćelija. Ako drugi kraj karcinogena, analogan steroidnom D prstenu, ima supstituente koji grade kovalentnu vezu sa DNK, izazvaće se mutacijana ovim mestima.

Slika 5.3 - Uz objašnjenje kontrole aktivnosti estrogena od strane D-prstena:

a) pri vezivanju za receptor, tesnu vezu ostvaruje samo steroidni A prsten. b) Supstituenti na steroidnom D-prstenu indukuju ili stabilizuju potrebno konformaciono stanje u receptoru. c) Steroidni D-prsten dolazi u kontakt sa DNK bazom. Ovaj događaj je bitan ili za prepoznavanje DNK sekvenci i/ili aktivaciju transkripcije

6. MOLEKULARNO-MEHANIČKI PRORAČUN

Rentgeno-strukturnom analizom određene strukture ispitivanih jedinjenja podvrgnute su i energijskoj minimizaciji i drugim energijskokonnformacionim proračunima. Korišten je komercijalni program PCMODEL 4.0 Serena software institucije iz Bloomingtona, namenjen radu na personalnim računarima.

PCMODEL je program za molekularno modeliranje i koristi se za proučavanje organskih i neorganskih molekula na osnovama tzv. molekularne mehanike.

Metode energijsko-konformacionih proracuna, koji se koriste za proučavanje osobina molekula. kao što su energija, geometrija, elektronska gustina, vibracione frekvencije i druge termodinamičke funkcije mogu teorijski da se određe, za to postoje tri pristupa.

- Kvantnomehanički pristup je rešavanje Schrödingerove jednačine za dati elektronski sistem. U opštem slučaju, ovo se čini za različite predpostavljene ili nekom metodom određene položaje atomskih jezgara i tada se nalazi minimum ukupne energije molekula kao funkcija rastojanja između jezgara.
- Drugu grupu metoda čine tzv. semiempirijske metode.
- Teorijski pristup, koji se u osnovi bitno razlikuje od prethodno pomenutih je empirijska metoda poznata kao molekularna mehanika. Pod molekularnom mehanikom se podrazumeva široko korišten računski metod razvijen za određivanjetačnih struktura i energija molekula. Ova metoda je prirodna posledica ranijih ideja o vezama atoma u molekulima i van der Waalsovih sila između nevezanih atoma. Osnovna ideja je ta da veze imaju "prirodne" dužine i da će molekuli prilagoditi svoju geometriju tako što će u jednostavnim slučajevima poprimiti ove vrednosti.

Tanja Ćurčić : Strukturalna i molekularno-mehanička istraživanja nekih novih D-seko estronskih derivata

Tek pojavom kompjutera pedesetih godina i njihovim naglim razvojem iza toga je za ovakav prilaz određivanju i razumevanju strukture molekula nagloporaslo interesovanje do te mere da se danas može reći da je molekularna mehanika postala jedna od standardnih metoda u strukturnoj hemiji.

Izraz proračuni polja sila, spektroskopisti često koriste izraz polje sila pod čime se podrazumeva sličan skup jednačina postavljenih da se reprodukuju i predvide vibracioni spektri.

Polje sila koje se koristi u PCMODEL programu naziva se MMX i izvedeno je iz MM2 (QCPE-395) polja sila iz 1977. godine od Allingera i Yuka.

Kao što je već rečeno, moelkularna mehanika predstavlja empirijsku metodu. Razvijena je fitovanjem jednačina i parametara na eksperimentalne rezultate. U molekularno-mehaničke proračune ulazi veliki broj funkcija i parametara koji za svaki molekul moraju biti poznati, odnosno određeni proučavanjem drugih molekula iste klase. Ovo nemeće određeno ograničenje u primeni metode u smislu da proučavani molekul mora pripadati klasi molekula na kojoj su parametri i određeni.

Tko, ako se neke od funkcija ekstrapoliraju iz oblasti u kojoj su one određene, tada se dovodi u pitanje pouzdanost proračuna. Ali, u praksi se obično koriste male ekstrapolacije uz cenu da izračunate veličine mogu biti manje pouzdane i tačne od očekivanja.

Zbog prisne veze između strukture i energije molekularno-mehanički proračuni uvek daju i jedno i drugo. Da bi se mašla struktura, neophodno je odrediti gde se javljaju minimumi energije molekula. Ako se nađu strukture i njihove relativne energije, odnosno konformacije i konformacione energije, najveći deo informacija od interesa je dobijen. Međutim, proračune je moguće dovesti do najvišeg nivoa u kome se mogu dobiti suptilnije informacije. Ako se zna ravnotežni položaj svakog atoma kao i potencijalna površina u blizini atoma, tada se mogu dobiti tj. izračunati vibracioni nivoi unutar potencijalne jame u blizini energetskih minimuma, odnosno vibracione frekvencije i njihove energije. Ovo daje frekvenciju koje se mogu očekivati u vibracionim spektrima, a koristeći Boltzmanovu raspodelu i populaciju različitih osnovnih i viših pobuđenih stanja. Dobijeni rezultati za jedinjenja proučavanjih u okviru ovog rada opravdali su primenu molekularno-mehaničkih proračuna.

7. EKSPERIMENTALNI PODACI

U ovom delu izneti su rentgenostrukturalni podaci, rezultati molekularno-mehaničkog proračuna i konformacione analize u svetlu rezultata testova na biološku aktivnost četiri steroidna jedinjenja estrogenog tipa.

Kristalografska istraživanja daju najpouzdanije i najtačnije podatke o molekulskim strukturama. Ove strukture poseduju konformacije globalnog ili lokalnog energijskog minimuma (razlikuju se međusobno nekoliko kJ), u zavisnosti od toga da li se sile pakovanja, odnosno intermolekularne sile mogu zanemariti u odnosu na intramolekularne sile ili ne.

Kako biološki važne supstance svoju aktivnost ispoljavaju u živom organizmu u rastvoru kao relativno slobodni molekuli oslobođeni od intermolekularnih sila, o njihovim dinamičkim osobinama dobićemo najbolju sliku ako kristalografske podatke kombinujemo sa fizikohemijskim podacima o strukurama u rastvoru i rezultatima molekularno-mehaničkih proračuna. Ali, ako se tu još kombinuju i biohemijski podaci, postiže se još bolje razumevanje molekularnih mehanizama biosinteze biološki aktivnih sups-tanci, njihovog metabolizma, membranskog transporta, vezivanja za bioreceptor interakcije sa nukleusom.

Kristalografski podaci ispitivanih jedinjenja su određeni su stan-dardnim metodama rentgeno-strukturalne analize. Strukture ispitivanih jedinjenja dobijene su i utačnjene programskim paketom SHELX, autora Sheldrick G.M.

Biološka, odnosno estrogena i antiestrogena aktivnost oderđena je uterotrofnom metodom, koja se zasniva na merenju promene mase uterusa. Ovarijektomisane ženke pacova tretiraju se ispitivanom supstancom i nakon žrtvovanja meri se masa uterusa. Uklanjanje stabilne metil-etarske zaštite zahteva energične reakcione uslove, praćeno građenjem sporednih proizvoda.

Tanja Ćurčić : Strukturalna i molekularno-mehanička istraživanja nekih novih D-seko estronskih derivata

Kako je cilj proučavanje interakcije D-seko-estronskih derivata sa estrogenim receptorima, prva etapa je dobijanje D-seko-estronskih derivata sa slobodnom fenolnom funkcijom.

Ovde su proučavana četiri jedinjenja koja su u program uneti pod nazivom NS4(4), NS5(5), NS6(6) i NS7(2).

7.1 NS4(4): 3-HIDOKSI-17-HLORO-16,17-SEKOESTRA-1,3,5(10)-TRIEN-16-NITRIL

Bruto hemijska formula jedinjenja je C₁₈H₂₂NOCl.

Struktura molekula 3-hidroksi-17-hloro-16,17-sekoestra-1,3,5(10)-16nitrila prikazana je na Slici 7.1

Slika 7.1 - Strukturna formula molekula NS4(4)

7.1.1 Dobijanje jedinjenja

Supstitucija hidroksilne grupe sekocijanoalkohola hloridom izvedena je delovanjem ugljen-tetrahlorida i trifenil-fosfina u apsolutnom piridinu na sekocijanoalkohol u toku 2,5 sata na 60°C pri čemi je nastao 3-hidroksi-17-hloro-16,17-sekoestra-1,3,5(10)-16-nitril koji je, nakon prečišćavanja dobije u prinosu od 53,6%. (tt 148,5-149,5°C)

7.1.2 Kristalografski podaci

Kristalnu strukturu molekula NS4(4) karakterišu sledeći podaci:

Kristalografski sistem:MonoklinskiProstorna grupa: $P2_1$ Simetrijske operacije: $x, y, z \quad \overline{x}, \frac{1}{2} + y, \overline{z}$

	a [Å]	12,239(1)
	b [Å]	8,947(1)
Parametri rešetke	c [Å]	14,635(1)
	a [°]	90,00
	β [º]	97,88(0)
	γ [°]	90,00
Zapremina elementarne ćelije	V[ų]	1594,5(3)
Broj molekula po elementarnoj ćeliji	Z	4
Relativna molekulska masa	Mr	607,66
Gustina (calc.)	D[mg·m ⁻³]	1,266
Maseni apsorbcioni koeficijent	µ[cm-1]	2,36
Faktor dobrote	R	0,0314

Grafičko predstavljanje kristalne strukture urađeno je pomoću programa ORTEP-3 za Windows (Johnson).

7.1.3 Struktura – difrakcija x-zraka

Tabela 7.1 sadrži koordinate položaja ne-vodonikovih atoma i vrednosti izotropnog temperaturnog parametra.

abela 7.1 – Frakcionalne koordinate ne-vodonikovih atoma i vrednosti izotropnog/ekvivalentnog temperatur	nog
faktora sa vrednostima greške u zagradama	Ŭ

Atom	x/a	y/b	z/c	U/Uekv [Å ²]	
CLIA	9282(0)	4512(1)	1011(0)	73(0)	
OIA	1432(1)	8481(2)	1576(1)	55(0)	
NIA	8473(2)	11108(3)	2041(2)	99(1)	
CIA	3735(1)	6867(2)	621(1)	47(0)	
C2A	2675(1)	7240(2)	749(1)	50(0)	
C3A	2502(1)	8134(2)	1483(1)	42(0)	
C4A	3389(1)	8641(2)	2079(1)	39(0)	
C5A	4466(1)	8264(2)	1959(1)	36(0)	
C6A	5405(1)	8842(2)	2640(1)	46(0)	
C7A	6482(1)	8035(2)	2588(1)	42(0)	
C8A	6695(1)	7904(2)	1582(1)	33(0)	
C9A	5806(1)	6888(2)	1066(1)	35(0)	
C10A	4651(1)	7369(2)	1212(1)	36(0)	
C11A	5975(1)	6772(2)	53(1)	47(0)	
C12A	7118(1)	6159(2)	-28(1)	49(0)	
C13A	8054(1)	7088(2)	481(1)	40(0)	
C14A	7853(1)	7307(2)	1498(1)	37(0)	
C15A	8761(1)	8241(2)	2067(1)	54(0)	
C16A	8596(1)	9858(3)	2040(2)	67(1)	
C17A	9146(2)	6276(2)	415(1)	55(0)	
C18A	8150(2)	8580(3)	-18(2)	62(0)	
CL1B	942(0)	3503(1)	5413(0)	66(0)	
O1B	8671(1)	3906(2)	3243(1)	65(0)	
N1B	1207(2)	924 (3)	2724 (2)	123(1)	
C1B	6424(1)	4958 (2)	4490(1)	39(0)	
C2B	7472(1)	4802(2)	4259(1)	44(0)	
C3B	7617(1)	4124 (2)	3441(1)	43(0)	
C4B	6717 (1)	3659(2)	2840(1)	40(0)	
C5B	5654(1)	3830 (2)	3064(1)	34(0)	
C6B	4701(1)	3326(2)	2373(1)	41 (0)	

Atom	x/a	y/b	z/c	U/Uekv [Ų]
C7B	3677(1)	2985(2)	2820(1)	39(0)
C8B	3415(1)	4309(2)	3416(1)	34(0)
C9B	4354(1)	4509(2)	4218(1)	32(0)
C10B	5491(1)	4468 (2)	3909(1)	33(0)
C11B	4133(1)	5875(2)	4787(1)	40(0)
C12B	3027(1)	5747 (2)	5143(1)	40(0)
C13B	2050(1)	5501(2)	4381 (1)	36(0)
C14B	2312(1)	4132 (2)	3800(1)	35(0)
C15B	1353(1)	3771 (3)	3031(1)	59(0)
C16B	1253(1)	2180(3)	2846(2)	84(1)
C17B	1002(1)	5270(2)	4832 (1)	47(0)
C18B	1819(2)	6914 (2)	3798(1)	55(0)

Tabela 7.1 (nastavak) – Frakcionalne koordinate ne-vodonikovih atoma i vrednosti izotropnog/ekvivalentnog temperaturnog faktora sa vrednostima greške u zagradama

U Tabeli 7.2 su date vrednosti izotropnog i/ili anizotropnog temperaturskog faktora za ne-vodonikove atome.

Atom	U11/U	U22	U33	U12	III3 II23
	[Å ²]	[Å ²]	[Å ²]	[Å ²]	$[Å^2]$ $[Å^2]$
	70/ 0)			[·•]	
	72(0)	83(0)	67(0)	40(0)	15(0) 6(0)
UIA N1 D	30(1)	61(1)	75(1)	-2(1)	7(1)-13(1)
	62(1)	/2(1)	165(2)	-15(1)	26(1)-45(1)
	40(I)	45(1)	55(1)	-4(1)	0(1)-12(1)
C2A C2A	37(1)	45(1)	65(1)	-4(1)	-1(1)-12(1)
CAN	31(1)	40(1)	56(1)	-2(1)	8(1) 6(1)
C4A C5A	3/(1)	38(1)	43(1)	-2(1)	10(1) - 2(1)
CGA	33(1)	36(1)	38(1)	-3(1)	5(1) 3(1)
	30(L)	60 (1)	42(1)	-2(1)	7(1) -14(1)
C PA	33(1)	58(1)	34(1)	-1(1)	2(1) - 5(1)
COA	3I(1)	34(1)	34(1)	0(1)	5(1) 0(1)
C107	33(1)	33(1)	3/(1)	$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$	4(1) 0(1)
CIUA	34(1)	55(1)	40(1)	-2(1)	3(1) 0(1)
$C12\Lambda$	43(1) 51(1)	59(1) 50(1)	37(1)	$\angle (\perp)$	3(1) -10(1)
C12A	30(1)	39(1)	38(1)	5(1)	11(1) - 10(1)
CIAA	33(1)	44(1) 41(1)	40(1)	4(1) 2(1)	$\begin{array}{c} 13(1) \\ 1(1) \\ 0(1) \end{array}$
C15A	32(1)	41(1) 71(1)	50(I) 50(I)	3(1)	$\begin{array}{ccc} 6(1) & \mathbf{U}(1) \\ 7(1) & 1\mathbf{C}(1) \end{array}$
C16A	32(1) 35(1)	71(1) 71(1)	30(1)	-1(1)	1(1) -16(1)
C17A	48(1)	59(1)	50(2)	-13(1)	13(1) - 34(1)
C18A	40(1) 69(1)	60(1)	50(1)	9(1)	1/(1) - 3(1)
CLIB	63(0)	76(0)	61(0)	-15(0)	29(1) 14(1) 20(0) 14(0)
01B	29(1)	96(1)	71(1)	-2(1)	20(0) 14(0) 13(1) $-9(1)$
N1B	52(1)	118(2)	199(3)	-24(1)	21(1) - 100(2)
C1B	34 (1)	42(1)	41 (1)	-3(1)	2(1) -3(1)
C2B	31(1)	47(1)	51(1)	-6(1)	-1(1) $4(1)$
C3B	29(1)	48(1)	54(1)	0(1)	9(1) $9(1)$
C4B	36(1)	44(1)	42 (1)	2(1)	10(1) $6(1)$
C5B	30(1)	35(1)	36(1)	$\frac{1}{1}(1)$	5(1) $4(1)$
C6B	35(1)	52(1)	36(1)	3(1)	4(1) - 6(1)
C7B	29(1)	49(1)	39(1)	-1(1)	2(1) - 14(1)
C8B	29(1)	39(1)	33(1)	3(1)	2(1) - 2(1)
C9B	29(1)	33(1)	33(1)	-1(1)	2(1) - 2(1)
C10B	31(1)	33(1)	36(1)	-1(1)	4(1) $2(1)$
C11B	39(1)	39(1)	44(1)	-5(1)	8(1) -11(1)
C12B	41(1)	42(1)	38(1)	0(1)	9(1) -8(1)
C13B	36(1)	36(1)	38(1)	5(1)	9(1) 1(1)
C14B	27(1)	40(1)	37(1)	2(1)	2(1) - 4(1)
C15B	28(1)	85(1)	60(1)	8(1)	-3(1)-25(1)
C16B	28(1)	112(2)	112(2)	-11(1)	7(1)-65(2)
C17B	40(1)	56(1)	48(1)	3(1)	12(1) -2(1)
C18B	56(1)	48(1)	62(1)	17(1)	14(1) 11(1)

Tabela 7.2 – Vrednosti izotropnog/anizotropnog temperaturnog faktora ne-vodonikovih atoma i sa vrednostima greške u zagradama

Tabela 7.3 sadrži vrednosti rastojanja između pojedinih ne-vodonikovih atoma.

Atom	Atom	dist [Å]	Atom	Atom	dist [Å]
CL1A C1A C2A C4A C5A C7A C8A C9A C12A C12A C13A C14A CL1B C1B C2B C4B	C17A C2A C3A C5A C10A C8A C14A C14A C14A C14A C17A C15A C17B C2B C3B C5B	1.800(2) 1.382(2) 1.379(2) 1.400(2) 1.399(2) 1.535(2) 1.541(2) 1.528(2) 1.528(2) 1.541(3) 1.544(2) 1.801(2) 1.383(2) 1.375(2) 1.399(2)	01A C1A C3A C5A C6A C8A C9A C11A C13A C13A C13A C15A O1B C1B C3B C5B	C3A C10A C4A C6A C7A C9A C10A C12A C14A C14A C18A C16A C3B C10B C4B C6B	1.376(2) 1.397(2) 1.377(2) 1.509(2) 1.519(2) 1.526(2) 1.528(2) 1.554(2) 1.554(2) 1.534(3) 1.461(3) 1.380(2) 1.380(2) 1.508(2)
C5B C7B C8B C9B C12B C13B C14B	C10B C8B C14B C11B C13B C13B C15B	1.401(2) 1.531(2) 1.545(2) 1.524(2) 1.539(2) 1.540(2) 1.548(2)	C6B C8B C9B C11B C13B C13B C15B	C7B C9B C10B C12B C14B C18B C16B	1.527(2) 1.540(2) 1.527(2) 1.526(2) 1.550(2) 1.530(2) 1.451(4)

Tabela 7.3 - Vrednosti rastojanja između ne-vodonikovih atoma sa vrednostima greške u zagradama

Molekul NS4(4) je prikazan na Slici 7.2.

Slika 7.2 - Molekul NS4(4)

Vrednosti uglova između veza ne-vodonikovih atoma sadrži Tabela 7.4.

Atom	Atom	Atom	ugao	Atom	Atom	Atom	ugao
			[°]			7 HOIII	[°]
C2A	C1A	C10A	122.2(1)	C1A	C2A	СЗА	119.6(1)
01A	C3A	C2A	117.3(1)	01A	C3A	C4A	123.2(1)
C2A	C3A	C4A	119.4(1)	C3A	C4A	C5A	121.4(1)
C4A	C5A	C6A	119.0(1)	C4A	C5A	C10A	119.6(1)
C6A	C5A	C10A	121.4(1)	C5A	C6A	C7A	113.4(1)
C6A	C7A	C8A	110.4(1)	C7A	C8A	C9A	108.2(1)
C7A	C8A	C14A	112.6(1)	C9A	C8A	C14A	111.0(1)
C8A	C9A	C10A	112.1(1)	C8A	C9A	C11A	109.6(1)
C10A	C9A	C11A	114.1(1)	C1A	C10A	C5A	117.7(1)
C1A	C10A	C9A	120.6(1)	C5A	C10A	C9A	121.7(1)
C9A	C11A	C12A	110.4(1)	C11A	C12A	C13A	114.0(1)
C12A	C13A	C14A	109.1(1)	C12A	C13A	C17A	108.5(1)
C12A	C13A	C18A	110.1(1)	C14A	C13A	C17A	111.9(1)
C14A	C13A	C18A	112.3(1)	C17A	C13A	C18A	104.8(2)
C8A	C14A	C13A	113.0(1)	C8A	C14A	C15A	112.1(1)
C13A	C14A	C15A	112.8(1)	C14A	C15A	C16A	115.7(1)
CL1A	C17A	C13A	114.0(1)	C2B	C1B	C10B	122.2(1)
C1B	C2B	C3B	119.6(1)	01B	C3B	C2B	118.9(1)
01B	C3B	C4B	121.2(1)	C2B	C3B	C4B	120.0(1)
C3B	C4B	C5B	120.7(1)	C4B	C5B	C6B	118.4(1)
C4B	C5B	C10B	120.2(1)	C6B	C5B	C10B	121.5(1)
C5B	C6B	C7B	112.5(1)	C6B	C7B	C8B	109.9(1)
C7B	C8B	C9B	109.3(1)	C7B	C8B	C14B	113.0(1)
C9B	C8B	C14B	109.8(1)	C8B	C9B	C10B	113.1(1)
C8B	C9B	C11B	109.8(1)	C10B	C9B	C11B	114.8(1)
C1B	C10B	C5B	117.3(1)	C1B	C10B	C9B	121.3(1)
C5B	C10B	C9B	121.2(1)	C9B	C11B	C12B	111.1(1)
C11B	C12B	C13B	114.0(1)	C12B	C13B	C14B	108.1(1)
C12B	C13B	C17B	108.9(1)	C12B	C13B	C18B	110.7(1)
C14B	C13B	C17B	112.2(1)	C14B	C13B	C18B	112.6(1)
C17B	C13B	C18B	104.3(1)	C8B	C14B	C13B	112.2(1)
C8B	C14B	C15B	112.1(1)	C13B	C14B	C15B	111.7(1)
C14B	C15B	C16B	112.1(2)	CL1B	C17B	C13B	114.3(1)

Tabela 7.4 – Veličina ugla između ne-vodonikovih atoma sa vrednostima greške u zagradama

Analiza kristalnih molekula pokazuje da se simetrijski neekvivalentni molekuli A i B razlikuju u orijentaciji 16-nitrilne grupe. Rezultati energijske analize molekula dati su pod tačkom 7.1.4.

U pogledu biološke aktivnosti, interesantno je napomenuti da je atom Cl i u jednom i u drugom molekulu a-orijentisan.

Kristalnu strukturu izgrađuju molekuli povezani međumolekularnim silama. Dominantnu ulogu imaju vodonične veze koje povezuju atome kiseonika i azota iz istih simetrijski neekvivalentnih molekula. Zbog toga, ovi molekuli grade dimer. Iz slike kristalnog pakovanja (Slika 7.3) vidi se da molekuli A i B (dimeri) grade y osi paralelne nizove duž zavrtanjske ose 2_1 .

Slika 7.3 prikazuje pakovanje molekula NS4(4) duž X-ose.

Slika 7.3 – Pakovanje molekula NS4(4) duž X-ose

R.Br.	X – HY [sim1]	Х - Н	НҮ	ХҮ	ugao H veze [º]			
1.	01A H10A N1B	0,77(2)	2,04(2)	2,794(3)	164(2)			
2	O1B H10B N1A	0,80(3)	2,36(3)	3,50(3)	147(3)			
* sim.1 = $x, l + y, z$ za vezu 1.								

Tabela 7.5 – Parametri vodoničnih veza sa vrednostima greške u zagradama

* sim.1 = x,-1+y,z za vezu 2.

7.1.4 Struktura - molekularno-mehanički proračun

Geometrija molekula određena rentgeno-strukturnom analizom je uzeta za inicijalni model u molekularno-mahaničkim proračunima. Dobijeni rezultati pokazuju da je geometrija B i C prstenova molekula u kristalnom stanju i slobodnog molekula određena mmx proračunima veoma slična.

Slika 7.4 i 7.5 prikazuju superpoziciju molekula A i B pre i posle molekularno-mehaičkog proračuna.

Slika 7.4 – Slika molekula A NS4(4): Crvena linija: kristalna struktura Crna linija: posle molekularno-mehaničkog proračuna

Tanja Ćurčić : Strukturalna i molekularno-mehanička istraživanja nekih novih D-seko estronskih derivata

Slika 7.5 – Slika molekula B NS4(4)): Crvena linija: kristalna struktura Crna linija: posle molekularno-mehaničkog proračuna

Molekularno-mehanički proračuna pokazuje da je ukupna energija molekula B veća od ukupne energije molekula A za 6,9kJ. Aproksimacija krutog rotatora otkriva da je ovome uzrok orijentacija 16-nitrilne grupe. Ako se ova grupa zarotira za 230°, što odgovara energetskom minimumu na 230° na slici 7.6 i ponovo minimizira molekul B, energije molekula A i B se gotovo izjednačavaju. S druge strane, molekuli postaju simetrijski ekvivalentni (Slika 7.7).

Slika 7.7 – Molekuli A i B NS4(4) nakon utačnjavanja : Crvena linija: kristalna struktura Crna linija: posle molekularno-mehaničkog proračuna

7.1.5 Konformaciona analiza

Parametri nabiranja koji definišu konformaciju, B prstena pre i posle energetskih proračuna dati su u tabelama. Na osnovu brojnih vrednosti vrednosti ovih parametara se određuje konformacija korištenjem dvodimenzionalne projekcije Hendricksonove sfere (Slika 7.8).

Posmatramo dva molekula, molekul A i molekul B. Konformacija B prstena u kristalu molekula A je polustoličasta (H) sa određenim stepenom deformacija.

Slika 7.8 – Dvodimenzionalna polarna projekcija Hendricksonove sfere

Parametri nabiranja navedeni su u tabeli 7.6.

Prsten	φ	[°]	θ [°]		
	mol. A	mol. B	mol. A	mol. B	
В	155,2(3)	145,9(3)	48,7(2)	44,5(2)	
С	70,0(3)	7,7	4,4(2)	3,7	

Tabela 7.6 – Vrednosti parametara nabiranja za molekul A i molekul B u kristalnom stanju sa vrednostima greške u zagradama

Vrednosti faktora nabiranja za molekul A i molekul B nakon minimizacije energije su dati u Tabeli 7.7

		0.			
	φ	[°]	θ [°]		
Prsten	mol. A	mol. B	mol. A	mol. B	
В	150,1	143,9	51	51,2	
С	65,1	45,3	3,8	6,8	

Tabela 7.7 – Vrednosti parametara nabiranja za molekul A i molekul B nakon minimizacije energije sa vrednostima greške u zagradama

C prsten ima stoličastu konformaciju ${}^{1}C_{4}$. Posle minimizacije energije, njegova konformacija ostaje idealna (Tabela 7.7).

Za molekul B javlja se blaga deformacija u kristalnom stanju.

Posle minimizacije energije ova deformacija ostaje.

7.1.6 Međuzavisnost struktura-aktivnost

Rezultati biološkog testa, dati Tabelom 7.8 pokazuju vrlo visoku antiestrogenu aktivnost i vrlo malu vrednost estrogene aktivnosti.

Estrogen i antiestrogen konkurišu u vezivanju za receptor. Stoga je opšte prihvaćeno da antiestrogen većinu svojih efekata ispoljava preko specifičnog estrogenog receptora.

U pogledu uloge antiestrogenog mesta u biološkoj aktivnosti antiestrogena pretpostavlja se da oni prenose antagonističke efekte lekova, dok agonistički efekti ispoljavajuposredstvom estrogenog receptora.

Ispoljenost agonističkog i antagonističkog efekta u procentima se izračunava na sledeći način:

Agonistički efekat [%] = $\frac{C-A}{B-A} \times 100$; Antagonistički efekat [%] = $\frac{B-D}{B-A} \times 100$,

gde su:

- A srednja masa uterusa kod životinja kontrolne (netretirane) grupe u mg/100g telesne mase;
- B srednja masa uterusa kod životinja tretiranih estradiolom u mg/100g telesne mase;
- C srednja masa uterusa kod životinja tretiranih ispitivanom supstancom u mg/100g telesne mase;
- D srednja masa uterusa kod životinja tretiranih ispitivanom supstancom i estradiolom u mg/100g telesne mase.

	% estrogene	% antiestrogene	
Jedinjenje	aktivnosti	aktivnosti	
NS4(4)	1,71	32,95	

Tabela 7.8 - Rezultati biološkog testa jedinjenja

7.2 NS5(5): 3-BENZOLOKSI-17-BROMO-16,17-SEKOESTRA-1,3,5(10)-TRIEN-16-NITRIL

Bruto hemijska formula jedinjenja je C₂₈H₂₈NOBr.

Struktura molekula 3-benzoloksi-17-bromo-16,17-sekoestra-1,3,5(10)trien-16-nitrila prikazana je na Slici 7.9

Slika 7.9 - Strukturna formula molekula NS5(5)

7.2.1 Dobijanje jedinjenja

Sinteza 17-bromo derivata izvedena je tako što je sekocijanoalkohol delovanjem ugljen tetrahlorida i trifenil-fosfina u apsolutnom piridinu u toku 2,5 sata na 60 °C preveden u 3-benziloksi-17-bromo-16,17-sekoestra-1,3,5(10)-trien-16-nitril. Prečišćen proizvod je dobijen u prinosu od 84%. (tt 157-157,5°C)

7.2.2 Kristalografski podaci

Kristalnu strukturu molekula NS5(5) karakterišu sledeći podaci:

Kristalografski sistem:		Monoklinski
Prostorna grupa:		P21
Simetrijske operacije:		$x, y, z \overline{x}, \frac{1}{2} + y, \overline{z}$
	a [Å]	7,672(1)
	b [Å]	14,762(1)
Parametri rešetke	c [Å]	10,123(1)
	a [º]	90,00(0)
	β [º]	108,20(1)
	γ [°]	90,00(0)
Zapremina elementarne ćelije	V[ų]	1089,2(1)
Broj molekula po elementarnoj ćeliji	Z	2
Relativna molekulska masa	Mr	438,41
Gustina (calc.)	D[mg·m ⁻³]	1,337
Maseni apsorbcioni koeficijent	µ[cm ⁻¹]	18,81
Faktor dobrote	R	0,0352

7.2.3 Struktura – difrakcija x-zraka

Tabela 7.9 sadrži koordinate položaja ne-vodonikovih atoma i vrednosti izotropnog temperaturnog parametra.

Tabela 7.9 – Frakcionalne koordinate ne-vodonikovih atoma i vrednosti izotropnog/ekvivalentnog temperaturnog
faktora sa vrednostima greške u zagradama

Atom	x/a	y/b	z/c	U/Uekv [Å ²]	
BR	7533(0)	4733(0)	-3125(0)	91(0)	
0	175(3)	2187(1)	3519(2)	57(0)	
N	6284 (4)	6666(2)	1899(3)	72 (1)	
C1	1211 (3)	2853(2)	415(3)	45(0)	
C2	334 (4)	2505(2)	1296(3)	48(1)	
C3	1170(3)	2527(2)	2719(3)	45(0)	
C4	2896(4)	2901(2)	3243 (3)	46(0)	
C5	3807(3)	3254 (2)	2345(2)	42(0)	
C6	5684(4)	3657(3)	2986(3)	60(1)	
C7	6597(4)	4001(2)	1967(3)	50(1)	
C8	5228(3)	4391 (2)	647 (2)	38(0)	
С9	3915(3)	3634 (2)	-72(2)	39(0)	
C10	2958(3)	3239(1)	911 (2)	39(0)	
C11	2580(4)	3942(2)	-1462(3)	52(1)	
C12	3591(4)	4361 (2)	-2379(3)	52(1)	
C13	4813(3)	5163(2)	-1705(3)	44(0)	
C14	6182(3)	4835(2)	-325(2)	41(0)	
C15	7572(4)	5567(2)	435(3)	52(1)	
C16	6869(4)	6194(2)	1255(3)	54(1)	
C17	5753(5)	5537(2)	-2713(3)	59(1)	
C18	3617(5)	5956(2)	-1510(4)	63(1)	
C19	1055(5)	2116(3)	4982(3)	66(1)	
C20	-310(4)	1700(2)	5591(3)	53(1)	
C21	-448(4)	767(2)	5653(3)	65(1)	
C22	-1659(5)	382(3)	6250(3)	79(1)	
C23	-2733(6)	919(4)	6779(4)	93(1)	
C24	-2603(5)	1851(4)	6724(4)	89(1)	
C25	-1389(4)	2230(3)	6133(3)	70(1)	

U Tabeli 7.10 su date vrednosti izotropnog i/ili anizotropnog temperaturskog faktora za ne-vodonikove atome.

Atom	U11/U [Å ²]	U22 [Ų]	U33 [Å ²]	U12 [Å ²]	U13 [Å ²]	U23 [Å ²]
BR	100(0)	115(0)	80(0)	8(0)	59(0)	4(0)
0	55(1)	78(1)	40(1)	-13(1)	18(1)	7(1)
N	95(2)	60(2)	61(2)	-16(1)	23(1)	-11(1)
C1	43(1)	51(1)	39(1)	-5(1)	12(1)	-2(1)
C2	43(1)	56(2)	43(1)	-10(1)	12(1)	-3(1)
C3	48(1)	45(1)	44(1)	-1(1)	16(1)	4(1)
C4	49(1)	50(1)	37(1)	-6(1)	12(1)	4(1)
C5	47(1)	40(1)	39(1)	-2(1)	13(1)	3(1)
C6	52(2)	75(2)	44(1)	-18(1)	3(1)	13(1)
C7	42(1)	57(2)	47(1)	-4(1)	8(1)	11 (1)
C8	38(1)	39(1)	37(1)	0(1)	11(1)	0(1)
C9	43(1)	38(1)	37(1)	-2(1)	13(1)	0(1)
C10	43(1)	33(1)	40(1)	-2(1)	12(1)	-2(1)
C11	50(2)	58(2)	41(1)	-12(1)	3(1)	4(1)
C12	55(2)	59(2)	38(1)	-6(1)	9(1)	5(1)
C13	49(1)	43(1)	41(1)	-3(1)	14(1)	4(1)
C14	44(1)	37(1)	42(1)	1(1)	15(1)	2(1)
C15	52(2)	54(2)	50(2)	-15(1)	17(1)	4(1)
C16	63(2)	48(2)	48(1)	-18(1)	12(1)	2(1)
C17	70(2)	59(2)	46(2)	-7(2)	16(1)	11(1)
C18	66(2)	55(2)	66(2)	19(2)	16(2)	13(1)
C19	66(2)	88(2)	42(1)	-20(2)	13(1)	8(2)
C20	53(2)	72(2)	32(1)	-11(1)	11(1)	2(1)
C21	71(2)	70(2)	52(2)	-10(2)	18(1)	-1(1)
C22	92(2)	80(2)	59(2)	-27(2)	16(2)	11(2)
C23	89(3)	137(4)	61(2)	-31(3)	36(2)	11(2)
C24	85(3)	123(4)	69(2)	2(2)	40(2)	-7(2)
C25	70(2)	80(2)	63(2)	-1(2)	24(2)	3(2)

Tabela 7.10 – Vrednosti izotropnog/anizotropnog temperaturnog faktora ne-vodonikovih atoma i sa vrednostima greške u zagradama

Tabela 7.11 sadrži vrednosti rastojanja između pojedinih ne-vodonikovih atoma.

Atom	Atom	dist [Å]	Atom	Atom	dist [Å]
0	C3	1.370(4)	0	C19	1.427(3)
C1	C2	1.374(5)	C1	C10	1.398(3)
C2	C3	1.382(4)	C3	C4	1.379(4)
C4	C5	1.408(4)	C5	C6	1.505(4)
C5	C10	1.393(3)	C6	C7	1.505(5)
C7	C8	1.531(3)	C8	C9	1.528(4)
C8	C14	1.544(4)	C9	C10	1.525(3)
C9	C11	1.528(3)	C11	C12	1.515(5)
C12	C13	1.532(4)	C13	C14	1.540(3)
C13	C17	1.525(5)	C13	C18	1.538(5)
C14	C15	1.544(4)	C15	C16	1.455(5)
C19	C20	1.502(5)	C20	C21	1.384(4)
C20	C25	1.372(5)	C21	C22	1.379(5)
C22	C23	1.367(7)	C23	C24	1.382(8)
C24	C25	1.373(6)			

Tabela 7.11 – Vrednosti rastojanja između ne-vodonikovih atoma sa vrednostima greške u zagradama

Vrednosti uglova između veza ne-vodonikovih atoma sadrži Tabela 7.12.

Atom	Atom	Atom	ugao [°]	Atom	Atom	Atom	ugao [°]
C3	0	C19	118.0(2)	C2	C1	C10	121.9(3)
CI	CZ	C3	120.4(3)	0	C3	C2	116.4(2)
0	C3	C4	124.4(3)	C2	C3	C4	119.2(3)
03	C4	C5	120.7(3)	C4	C5	C6	118.0(2)
C4	C5	C10	120.1(2)	C6	C5	C10	121.9(2)
C5	C6	C7	115.2(3)	C6	C7	C8	112.7(3)
C7	C8	C9	108.1(2)	C7	C8	C14	112.5(2)
C9	C8	C14	112.3(2)	C8	C9	C10	110.4(2)
C8	C9	C11	111.9(2)	C10	C9	C11	113.2(2)
C1	C10	C5	117.7(2)	C1	C10	C9	121.6(2)
C5	C10	C9	120.7(2)	C9	C11	C12	111.2(2)
C11	C12	C13	113.7(2)	C12	C13	C14	108.1(2)
C12	C13	C17	109.5(2)	C12	C13	C18	109.8(2)
C14	C13	C17	112.9(2)	C14	C13	C18	112.8(2)
C17	C13	C18	103.7(2)	C8	C14	C13	112.8(2)
C8	C14	C15	111.8(2)	C13	C14	C15	113.7(2)
C14	C15	C16	114.1(2)	0	C19	C20	106.9(3)
C19	C20	C21	119.9(3)	C19	C20	C25	121.1(3)
C21	C20	C25	119.0(3)	C20	C21	C22	120.1(3)
C21	C22	C23	120.2(4)	C22	C23	C24	120.1(4)
C23	C24	C25	119.4(4)	C20	C25	C24	121.2(3)

Tabela 7.12 – Veličina ugla između ne-vodonikovih atoma sa vrednostima greške u zagradama

Molekul je prikazan na Slici 7.10.

Slika 7.10 - Molekul NS5(5)

Kristalnu strukturu izgrađuju molekuli povezani međumolekularnim silama. Kristalno pakovanje molekula duž X-ose NS5(5) prikazuje Slika 7.11.

Slika 7.11 - Kristalno pakovanje molekula NS5(5) duž X-ose

U pogledu biološke aktivnosti treba naglasiti da je atom Br u a položaju.

7.2.4 Struktura - molekularno-mehanički proračun

Polazeći od kristalnih koordinata, molekul ispitivanog jedinjenja je podvrgnut molekularno-mehaničkim proračunima. Slika molekula NS5(5) prikazana je na slici 7.12

Slika 7.12 – Molekul NS5(5) nakon utačnjavnja : Crvena linija: kristalna struktura Crna linija: posle molekularno-mehaničkog proračuna

7.2.5 Konformaciona analiza

Prema parametrima nabiranja, B prsten u kristalnom stanju ima kovertastu konfiguraciju E4. Vrednosti parametara nabiranja molekula u kristalnom stanju date su u tabeli 7.13 za prsten B: E4 (kovertasta konformacija) i prsten C: ${}^{1}C_{4}$ (stoličasta konformacija).

Tabela 7.13 – Vrednosti parametara nabiranja za molekul A i molekul B u kristalnom stanju sa vrednostima greške u zagradama

Prsten	φ[°]	θ[°]
В	176,2(5)	53,0(4)
С	215(5)	3,9(3)

Vrednosti faktora nabiranja nakon minimizacije energije su dati u Tabeli 7.14 za prsten B:

i za prsten C: 1C4.

Tabela 7.14 – Vrednosti parametara nabiranja za molekul A i molekul B nakon minimizacije energije sa vrednostima greške u zagradama

Prsten	φ[°]	θ[°]
В	155	51,2
С	94,9	3,8

Za molekul B javlja se blaga deformacija u kristalnom stanju.

7.2.6 Međuzavisnost struktura-aktivnost

Na osnovu izvršenog biološkog testa, na onovu tabele 7.15, ovo jedinjenje pokazuje veći stepen agonizma i zanemariva od estrogena aktivnost.

% estrogene	% antiestrogene
aktivnosti	aktivnosti
0,80	32,025

Tabela 7.15 – Rezultati biološkog testa jedinjenja

Obzirom da jedinjenje ne poseduje β orijentisan 17-supstituent kao u slučaju tamoksifena, relativno visoka estrogena aktivnost se može objasniti pomoću kompeticije pri vezivanju za estrogeni receptor.

7.3 NS6(6): 3-HIDROKSI-17-HIDROKSI-16,17-SEKOESTRA-1,3,5(10)-TRIEN-16-NITRIL

Bruto hemijska formula jedinjenja je C₁₈H₂₃NO₂·H₂O.

Struktura molekula 3-benzoloksi-17-bromo-16,17-sekoestra-1,3,5(10)trien-16-nitrila prikazana je na Slici 7.13

Slika 7.13 - Strukturna formula molekula NS6(6)

7.3.1 Dobijanje jedinjenja

Redukcija sekocijanaldehida izvedena je natrijum-boroaldehi-dom u metanolu na sobnoj temepraturi u toku 30 minuta. Prečišćeni 3-hidroksi-17hidroksi-16,17-sekoestra-1,3,5(10)-trien-16-nitril dobijen je u prinosu od 96%. (tt 135-136°C)

7.3.2 Kristalografski podaci

Kristalnu strukturu molekula NS6(6) karakterišu sledeći podaci:

Kristalografski sistem:		Monoklinski
Prostorna grupa:		P212121
Simetrijske operacije:		<i>x</i> , <i>y</i> , <i>z</i>
		$\frac{1}{2} - x, \frac{y}{2}, \frac{1}{2} + z$
		$\frac{-1}{x}, \frac{1}{2} + y, \frac{1}{2} - z$
		$\frac{1}{2}+x,\frac{1}{2}-y,\overline{z}$
	a [Å]	8,058(1)
	b [Å]	9,355(1)
Parametri rešetke	c [Å]	21,129(1)
	a [º]	90,00(0)
	β [°]	90,00(0)
	γ [°]	90,00(0)
Zapremina elementarne ćelije	V[ų]	1592,6(2)
Broj molekula po elementarnoj ćeliji	Ζ	4
Relativna molekulska masa	M_r	303,40
Gustina (calc.)	D[mg·m ⁻³]	1,265
Maseni apsorbcioni koeficijent	µ[cm-1]	0,80
Faktor dobrote	R	0,0349

7.3.3 Struktura – difrakcija x-zraka

Tabela 7.16 sadrži koordinate položaja ne-vodonikovih atoma i vrednosti izotropnog temperaturnog parametra.

Tabela 7.16 - Frakcionalne koordinate ne-vodonikovih atoma i vrednosti izotropnog/ekvivalentnog temperaturnog	Tabela 7.1	1
faktora sa vrednostima greške u zagradama		

Atom	x/a	y/b	z/c	U/Uekv [Å ²]
 	di madini minananan mananti arra .			LJ
01	1198(2)	8453(1)	1543(0)	45(0)
02	5974 (2)	-1563(1)	371(1)	48(0)
N	6802(2)	5631 (2)	2743(1)	57(0)
C1	3698(2)	6209(1)	1593(1)	30(0)
C2	2007(2)	6051(2)	1936(1)	34(0)
C3	839(2)	5205(2)	1494(1)	41(0)
C4	1522(2)	3753 (2)	1289(1)	41(0)
C5	3226(2)	3899(1)	974(1)	31(0)
C6	3984 (2)	2458(1)	798(1)	30(0)
C7	2998(2)	1306(2)	610(1)	37(0)
C8	3660(2)	-19(2)	464(1)	39(0)
С9	5359(2)	-226(2)	503(1)	35(0)
C10	6371(2)	904(2)	677(1)	34(0)
C11	5706(2)	2236(2)	822(1)	30(0)
C12	6894(2)	3417(2)	1012(1)	34(0)
C13	6080(2)	4875(1)	1039(1)	34(0)
C14	4428 (2)	4759(1)	1393(1)	28(0)
C15	4975(2)	7114(2)	1964(1)	37(0)
C16	5988(2)	6285(2)	2412(1)	41(0)
C17	2143(2)	5303(2)	2580(1)	45(0)
C18	1211(2)	7514(2)	2073(1)	41(0)
01W	744(2)	3367(2)	4535(1)	58(0)

U Tabeli 7.17 su date vrednosti izotropnog i/ili anizotropnog temperaturskog faktora za ne-vodonikove atome.

Atom	U11/U	U22	U33	U12	U13	U23
	[A ⁻]	[A ⁻]	[A ⁻]	[A ²]	[A ²]	[A ²]
01	49(1)	34(1)	53(1)	6(1)	-11(1)	-3(1)
02	44(1)	32(1)	69(1)	4(1)	-5(1)	-15(1)
N	61(1)	50(1)	60(1)	5(1)	-23(1)	-7(1)
C1	29(1)	26(1)	34(1)	1(1)	-2(1)	0(1)
C2	30(1)	31(1)	40(1)	2(1)	2(1)	-2(1)
C3	26(1)	39(1)	58(1)	3(1)	-1(1)	-7(1)
C4	25(1)	35(1)	64(1)	-1(1)	-1(1)	-11(1)
C5	26(1)	30(1)	36(1)	0(1)	-4(1)	-2(1)
C6	30(1)	31(1)	30(1)	2(1)	-3(1)	-3(1)
C7	27(1)	41 (1)	44(1)	0(1)	-6(1)	-8(1)
C8	39(1)	33(1)	44(1)	-7(1)	-7(1)	-8(1)
C9	38(1)	31(1)	36(1)	2(1)	0(1)	-5(1)
C10	27(1)	35(1)	39(1)	2(1)	-2(1)	-4(1)
C11	30(1)	32 (1)	29(1)	-1(1)	0(1)	-2(1)
C12	26(1)	35(1)	40(1)	-1(1)	-1(1)	-4(1)
C13	28(1)	32(1)	41 (1)	-4(1)	3(1)	-2(1)
C14	25(1)	26(1)	32(1)	-2(1)	-2(1)	-1(1)
C15	35(1)	28(1)	49(1)	1(1)	-5(1)	-6(1)
C16	40(1)	36(1)	46(1)	-2(1)	-8(1)	-12(1)
C17	46(1)	42 (1)	48(1)	1(1)	9(1)	-2(1)
C18	37(1)	37(1)	48(1)	5(1)	$\Delta(1)$	-6(1)
01W	48(1)	64(1)	62(1)	-20(1)	-11(1)	20(1)
	10(1)		52(1)	20(1)	** (~~(I)

Tabela 7.17 – Vrednosti izotropnog/anizotropnog temperaturnog faktora ne-vodonikovih atoma i sa vrednostima greške u zagradama

Tabela 7.18 sadrži vrednosti rastojanja između pojedinih ne-vodonikovih atoma.

Atom	Atom	dist [Å]	Atom	Atom	dist [Å]
01 C1 C2 C3 C5 C6 C7 C9 C11 C13	C18 C2 C15 C17 C4 C6 C7 C8 C10 C12 C14	1.423(2) 1.550(2) 1.546(2) 1.534(3) 1.528(3) 1.526(2) 1.397(2) 1.384(3) 1.385(3) 1.516(3) 1.531(2)	02 C1 C2 C4 C5 C6 C8 C10 C12 C15	C9 C14 C3 C18 C5 C14 C11 C9 C11 C13 C16	1.374(2) 1.538(2) 1.544(3) 1.539(3) 1.532(2) 1.539(2) 1.404(2) 1.385(2) 1.391(3) 1.514(2) 1.471(3)

Tabela 7.18 – Vrednosti rastojanja između ne-vodonikovih atoma sa vrednostima greške u zagradama

Vrednosti uglova između veza ne-vodonikovih atoma sadrži Tabela 7.19.

Atom	Atom	Atom	ugao [°]	Atom	Atom	Atom	ugao [°]
C2	C1	C14	112.4(1)	C2	C1	C15	113.6(1)
C14	C1	C15	111.6(1)	C1	C2	C3	107.6(1)
C1	C2	C17	113.3(1)	C1	C2	C18	111.7(1)
C3	C2	C17	110.3(2)	C3	C2	C18	108.4(2)
C17	C2	C18	105.6(1)	C2	C3	C4	114.1(2)
C3	C4	C5	111.5(1)	C4	C5	C6	112.7(1)
C4	C5	C14	111.1(1)	C6	C5	C14	110.5(1)
C5	C6	C7	121.6(1)	C5	C6	C11	121.2(1)
C7	C6	C11	117.3(2)	C6	C7	C8	122.4(2)
C7	C8	C9	119.5(2)	02	С9	C8	118.1(2)
02	C9	C10	122.4(2)	C8	С9	C10	119.4(2)
C9	C10	C11	121.0(2)	C6	C11	C10	120.4(2)
C6	C11	C12	121.7(2)	C10	C11	C12	117.9(2)
C11	C12	C13	113.1(2)	C12	C13	C14	109.3(1)
C1	C14	C5	112.2(1)	C1	C14	C13	113.9(1)
C5	C14	C13	107.7(1)	C1	C15	C16	114.0(2)
01	C18	C2	113.8(1)				

Tabela 7.19 - Veličina ugla između ne-vodonikovih atoma sa vrednostima greške u zagradama

Molekul je prikazan na Slici 7.14.

Slika 7.14 - Molekul NS6(6)

Kristalno pakovanje molekula NS6(6) duž X-ose je prikazano na slici 7.15.

Slika 7.15 - Kristalno pakovanje molekula NS6(6) duž X-ose

Analiziranjem vodoničnih veza posmatranog modela može se zaključiti da obe vodonične veze grade CIK-CAK mrežu vodoničnih veza.

R.Br.	X – HY [sim1]	Х - Н	НҮ	ХҮ	ugao H veze [º]
1.	O1 H1 N	0,83(2)	2,24(2)	3,004(2)	154(2)
2.	O2 H2 O1	0,86(3)	1,79(3)	2,653(2)	179(3)
	* sim.1 = 1	$-x,\frac{1}{2}+y,$	$\frac{1}{2} - z$ za v	ezu 1.	
	* sim.1 = 1	$-x, -\frac{1}{2}+y$	$z, \frac{1}{2}-z$ za vo	ezu 2.	

Tabela 7.20 - Parametri vodoničnih veza sa vrednostima greške u zagradama

7.3.4 Struktura-molekularno-mehanički proračun

Polazeći od kristalnih koordinata, molekul ispitivanog jedinje-nja je podvrgnut molekularno-mehaničkim proračunima. Slika 7.16 prikazuje sliku molekula nakon utačnjavanja.

Slika 7.16 – Molekul NS6(6) nakon utačnjavanja utačnjavnja : Crvena linija: kristalna struktura Crna linija: posle molekularno-mehaničkog proračuna

7.3.5 Konformaciona analiza

Prema parametrima nabiranja, B prsten u kristalnom stanju ima kovertastu konfiguraciju E4. Vrednosti parametara nabiranja molekula u kristalnom stanju date su u tabeli 7.21 za prsten B: E4 (kovertasta konformacija) i presten C: ${}^{1}C_{4}$ (stoličasta konformacija).

Prsten	φ [°]	θ[°]
В	176,2(5)	53,0(4)
C	215(5)	3,9(3)

Tabela 7.21 – Vrednosti parametara nabiranja za molekul A i molekul B u kristalnom stanju sa vrednostima greške u zagradama

Vrednosti faktora nabiranja nakon minimizacije energije su dati u Tabeli 7.22 za prsten B:

³H₄ → E₄

i za prsten C: 1C4.

Tabela 7.22 – Vrednosti parametara nabiranja za molekul A i molekul B nakon minimizacije energije sa vrednostima greške u zagradama

Prsten	φ[°]	θ[°]
В	155	51,2
С	94,9	3,8

Za molekul B javlja se blaga deformacija u kristalnom stanju.

7.3.6 Međuzavisnost struktura-aktivnost

Prema rezultatima izvršenog biološkog testa (Tabela 7.23), ovo jedinjenje pokazuje malu estrogenu i povećanu antiestrogenu aktivnost. Kao i kod prethodnih jedinjenja, antiestrogena aktivnost bi se mogla objasniti kompeticijom ovog molekula u vezivanju za estrogeni receptor.

Tabela 7.23 - Rezultati biološkog testa	jedinjenja
---	------------

% estrogene	% antiestrogene
aktivnosti	aktivnosti
-2,06	21,07

7.4 NS(7)2: 3-HIDROKSI-17-TOZILOKSI-16,17-SEKOESTRO-1,3,5(10)-TRIEN-16-NITRIL

Bruto hemijska formula jedinjenja je C₂₅H₂₉NSO₄.

Struktura molekula 3-hidroksi-17-toziloksi-16,17-sekoestra-1,3,5(10)trien-16-nitrila prikazana je na Slici 7.17.

Slika 7.17 – Strukturna formula molekula NS7(2) Slika 7.17 – Molekul NS7(2)

7.4.1 Dobijanje jedinjenja

Do direktne supstitucije OH grupe sekocijanalkohola fluoridom nije došlo pri delovanju tetrobutil-amonijum fluorid-trihidrata u etil-metil-ketonu, pa je stoga OH grupa jedinjenja prevedena u toziloksi funkciju, jer je ona bolje odlazeća grupa grupa od hidroksilne. Tozilovanje je izvršeno delovanjem tozil-hlorida u toku 50 sati na sobnoj zemperaturi, pri čemu je, nakon prečišćavanja 3-hidroksi-17-toziloksi-16,17-sekoestra-1,3,5(10)-trien-16-nitril dobijen u prinosu od 84% u vidu amorfne mase.

7.4.2 Kristalografski podaci

Kristalnu strukturu molekula NS7(2) karakterišu sledeći podaci:

Kristalografski sistem:		Monoklinski
Prostorna grupa:		P21
Simetrijske operacije:		$x, y, z \overline{x}, \frac{1}{2} + y, \overline{z}$
	a [Å]	10,1937(8)
	b [Å]	7,7656(6)
Parametri rešetke	c [Å]	30,158(2)
	a [º]	90,00
	β [°]	99,343(7)
	γ [°]	90,00
Zapremina elementarne ćelije	V[ų]	2355,9
Broj molekula po elementarnoj ćeliji	Z	4
Relativna molekulska masa	Mr	438,41

7.4.3 Struktura – difrakcija x-zraka

Tabela 7.24 sadrži koordinate položaja ne-vodonikovih atoma i vrednosti izotropnog temperaturnog parametra.

	Atom	x/a	y/b	z/c	
		·······	· · · · · · · · ·		
	01W	9426	6292	5314	
	S1A	0606	3080	1345	
	01A	0755	6448	-0225	
	02A	9136	2450	1290	
	O3A	0897	4281	1707	
	04A	0795	3608	0908	
	N1A	7433	5974	2103	
	C1A	3138	9835	0281	
	C2A	1954	9119	0030	
	C3A	1934	7233	0014	
	C4A	2915	6269	0207	
	C5A	4048	6969	0449	
	C6A	5211	5851	0649	
	C7A	6535	6802	0795	
	C8A	6264	8390	1063	
	C9A	5364	9676	0747	
	C10A	4203	8820	0492	
	C11A	5034	1219	1024	
	C12A	6376	2106	1240	
	C13A	7313	0936	1540	
	C14A	7574	9283	1271	
	C15A	8558	7965	1576	
	C16A	7942	6878	1864	
	C17A	8610	1963	1697	
	C18A	6740	0566	1979	
	C19A	1524	1205	1490	
	C20A	1404	9822	1189	
	C21A	2074	8327	1317	
(C22A	2948	8202	1730	
	C23A	3027	9575	1997	
	C24A	2393	1092	1898	
	C25A	3670	6529	1848	

Tabela 7.24 – Frakcionalne koordinate ne-vodonikovih atoma i vrednosti izotropnog/ekvivalentnog temperaturnog faktora sa vrednostima greške u zagradama

Atom	x/a	y/b	z/c	engang - 2000 di dara kalangka
	9574	1590	3347	· · ·
01B	1419	8199	5111	
02B	8226	2114	3478	
03B	0282	0725	3746	
04B	9397	0701	2921	
N1B	5664	8764	2895	
C1B	3207	4792	4606	
C2B	2258	5551	4835	
C3B	2286	7351	4877	
C4B	3261	8310	4715	
C5B	4151	7538	4470	
C6B	5116	8663	4280	
С7В	6314	7670	4140	
C8B	5698	6179	3840	
C9B	5136	4828	4164	
C10B	4144	5719	4414	
C11B	4476	3343	3874	
C12B	5538	2516	3639	
C13B	6130	3704	3327	
C14B	6755	5254	3593	
C15B	7426	6620	3326	
C16B	6460	7825	3074	
C17B	7205	2734	3118	
C18B	5071	4183	2914	
C19B	0329	3555	3278	
C20B	0613	4166	2848	
C21B	1174	5616	2812	
C22B	1586	6699	3176	
C23B	1294	6197	3599	
C24B	0702	4657	3632	
C25B	2238	8395	3100	

Tabela 7.24 (nastavak) – Frakcionalne koordinate ne-vodonikovih atoma i vrednosti izotropnog/ekvivalentnog temperaturnog faktora sa vrednostima greške u zagradama

Molekul sa oznakama atoma i prstenovima je prikazan na Slici 7.18.

Slika 7.18 - Molekul NS7(2)

Slika 7.19 – Kristalno pakovanje molekula NS7(2) duž Y-ose.

Na slikama je prikazana superpozicija kristalne i minimizirane strukture kod molekula A i B. Ona nije utačnjena, jer se nije moglo sakupiti dovoljan broj refleksa, zbog raspadanja supstance tokom snimanja. Snimanje je prekinuto kada su intenziteti referentnih refleksa opali na 50% početne vrednosti.

Tako dobijena kristalna struktura bila je dovoljna za molekularnu mehaniku, kao polazni model. Naime, razlika u energijski minimiziranim i polaznim molekulima su male, što se može videti na primeru molekula A.

Slika 7.20 – Superpozicija polaznog i energijski minimiziranog molekula A: crvene linije – polazni molekul, crne linije – energijski minimizirani molekul

U pogledu značaje antiestrogene aktivnosti od posebnog značaja je bila analiza 17-toziloksi supstituenta obzirom na njegovu sličnost sa tamoksifenskim voluminoznim amino supstituisanim prstenom, kome se pripisuje antiestrogensko dejstvo ovog jedinjenja.

U kristalnom stanju je u ovom molekulu ovaj supstituent a orijentisan. U aproksimaciji krutog rotatore, pokazano je da ove orijentacije ne odgovaraju apsolutnim energetskim minimumima (molekul A prikazuje slika 7.21, a molekul B slika 7.22). Kod molekula oba molekula ovaj supstituent je zarotiran za 90° i ponovljeni molekularno-mehanički proračun je dao niže energije (molekul A: sa 240,2kJ na 234,6kJ; za molekul B sa 237,7kJ na 235,0kJ; slika 7.23 i slika 7.24).

Slika 7.21 - Aproksimacija krutog rotatora za molekul A: rotacija oko O-S veze

Slika 7.22 - Aproksimacija krutog rotatora za molekul B: rotacija oko O-S veze

Na slici 7.25 je data superpozicija minimiziranih (kristalnih) molekula. Slika 7.26 prikazuje superpoziciju molekula A i B sa zarotiranim 17-toziloksi supstituentom. Kako ova rotacija 17-toziloksi supstituenta ne prelazi u β orijentaciju (šta više, dolazi u normalan položaj u ravan molekula na a-stranu), čime bi podražavao voluminozni amino supstituisani fenilni prsten tamoksifena, antiestrogeno dejstvo i u ovom slučaju se može objasniti kompeticijom u vezivanju za receptor.

Međutim, ako se načini smela pretpostavka da se ceo molekul po dužini zarotira za 180° i tako fenilni A prsten veže za estrogeni receptor, može se očekivati ispoljavanje antiestrogene aktivnosti mehanizmom svojstvenim za tamoksifen.

Slika 7.25 - Superpozicija rotiranih molekula 1 i 2

Obzirom da utačnjena struktura odgovara minimumu energije, iz ovoga se može zaključiti da polazni model odslikava realni izgled iste u kristalu.

Tanja Ćurčić : Strukturalna i molekularno-mehanička istraživanja nekih novih D-seko estronskih derivata

Slika 7.26 – Superpozicija utačnjenih molekula 1 i 2

7.4.4 Međuzavisnost struktura-aktivnost

Tabela 7.25. prikazuje rezultate biološkog testa ovog jedinjenja.

% estrogene	% antiestrogene	
aktivnosti	aktivnosti	
-3,45	23,37	

Tabela 7.25 – Rezultati biološkog testa	novosintetizovanih jedinjenja

8. ZAKLJUČAK

Cilj ovog diplomskog rada je bio da se metodama rentgeno-strukturne analize prvo odrede kristalne strukture četiri jedinjenja:

- 1. 3-hidroksi-17-hloro-16,17-sekoestra-1,3,5(10)-16-nitrila;
- 2. 3-benzoloksi-17-bromo-16,17-sekoestra-1,3,5(10)-trien-16-nitrila;
- 3. 3-benzoloksi-17-bromo-16,17-sekoestra-1,3,5(10)-trien-16-nitrila; i
- 4. 3-hidroksi-17-toziloksi-16,17-sekoestra-1,3,5(10)-trien-16-nitrila.

Kristalne strukture molekula su uzete kao inicijalni modeli za molekularnomehaničke proračune u kojima su minimizirane energije molekula. Kada su na ovaj način dobijene najverovatnije konformacije koje poseduju molekuli u rastvoru prilikom ispoljavanja biološke aktivnosti u organizmu, u svetlu rezultata biološkog testa na uterotropnu aktivnost, molekularno-mehaničkim metodama su analizirani strukturni detalji koji bi mogli biti od primarnog značaja za aktivnost ispitivanih jedinjenja.

Prema rezultatima ispitivanja biološke aktivnosti, sva jedinjenja imaju relativno visok stepen antiestrogene aktivnosti.

<u> </u>	% estrogene	% antiestrogene
Jedinjenje	aktivnosti	aktivnosti
NS4(4)	1,71	32,95
NS5(5)	0,80	32,025
NS6(6)	-2,06	21,07
NS7(2)	-3,45	23,37

Tabela 7.26 - Rezultati biološkog testa novosintetizovanih jedinjenja

Slika 7.27 grafički prikazuje rezultate biološkog testa novih jedinjenja.

Slika 7.27 – Rezultati biološkog testa izraženost estrogene i antiestrogene aktivnosti pojedinih novosintetizovanih jedinjenja

Kako ni jedno jedinjenje u poziciji 17, osim jedinjenja NS7(2) (gde je izneta smela pretpostavka o vezi strukturna-biološka aktivnost) ne poseduje tamoksifenu svojstveni voluminozni 17-supstituent, jedino kompeticijom u vezivanju za estrogen receptor je moguće objasniti antiestrogenu aktivnost ovih jedinjenja.

Dakle, molekul AE se delom koji je po strukturi sličan molekulu estrogenog hormona vezuje za estrogeni receptor, čime kompetituje u vezivanju za estrogeni receptor. Na taj način on može da zaustavi mehanizam delovanja estrogenog hormona, usled blokiranja speifičnih receptora ili da izazove konformacionu promenu, analogno delovanju samog hormona, te da aktivira receptor i da se u vidu kompleksa AE-ER translocira u jedro. Takav kompleks najčešće ne može da se veže u hromatin, te se u tom stepenu prekida mehanizam delovanja sistema estrogeni hormon-estrogeni receptor. Ako se, pak, veže, on može biti supresor ili represor odgovarajućeg gena, ili ni jedno od toga.

9. LITERATURA

- [1] Mr. Dušan Lazar: Doktorska disertacija
 Univerzitet u Novom Sadu, Prirodnomatematički fakultet, Novi Sad, 1993.
- [2] Suzana Jovanović-Šanta: Magistarski rad Univerzitet u Novom Sadu, Prirodnomatematički fakultet, Novi Sad, 1999.
- [3] Dr. Tullio Pilati: Delle Relazioni tra struttura e ReattivitiED Chimica, Milano, Italy
- [4] J.C.A.Boeyens: Y. Cryst. Mol. Structure 1978., Vol.8
- [5] Ivan Vickovic: CRYSTAL STRUCTURE UTILITY Sveučilište u Zagrebu, Zagreb, 1988.
- [6] Ljiljana Krnajski Belovljev: Diplomski rad Univerzitet u Novom Sadu, Prirodnomatematički fakultet, Novi Sad, 1987.