

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA FIZIKU

УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕ:

A CONTRACTOR OF A CONTRACTOR O	
ПРИМЉЕНО:	- 8 CEII 2003
ОРГАНИЗ.ЈЕД.	БРОЈ
0603	9/380

Svetlana Grković

Promene u simetriji kristalne rešetke u spinelnim čvrstim rastvorima tipa $Li_{0.5}Fe_{2.5-x}La_xO_4$

- diplomski rad -

Novi Sad, 2003.

Sadržaj

1. Uvod	1
2. Strukturne i magnetne osobine spinela	2
2.1. Geometrija i kristalohemija spinelne strukture	2
2.1.1. Katjonska raspodela u spinelima	5
2.1.2. Predviđanje katjonske raspodele u spinelima	8
2.2. Ferimagnetizam oksida sa strukturom spinela	9
2.2.1. Magnetne interakcije u spinelima	9
3. Struktura i osobine ispitivanog jedinjenja	.11
3.1. Osobine litijum ferita	11
3.2. Jedinjenja litijum ferita sa primesama	.13
3.3. Difrakciona merenja	14
3.3.1. Difraktogrami ispitivanih uzoraka	14
3.3.2. Analiza difraktograma	18
4. Baze podataka i pretraživanje <i>ICSD</i> i <i>PDF</i> baza podataka	21
4.1. O korišćenim bazama podataka	21
4.2. Pretraživanje baza podataka	22
4.2.1. Pretraživanje <i>ICSD</i> baze podataka	22
4.2.1.1. Programi za obradu podataka iz baze	24
4.2.2. Pretraživanje <i>PDF</i> baze podataka	27
4.3. O PowderCell-u	30
5. Rezultati pretraživanja baza podataka	31
6. Zaključak	39
Literatura	41
	40

1. Uvod

Istraživanje strukture čvrstih rastvora $Li_{0.5}Fe_{2.5-x}La_xO_4$ vezano je za snimanje difraktograma praha za uzorke različitog sastava. U ovom radu istraživali smo uticaj ubacivanja lantana u kristalnu strukturu litijum ferita. S obzirom da se radi o spinelnoj strukturi osnovnog jedinjenja, ubacivanje anjona La^{3+} , dovodi do strukturnih promena u smislu narušavanja simetrije kristalne rešetke.

Značaj ovakvog istraživanja je u promeni fizičkih osobina novostvorenih čvrstih rastvora, i to pre svega magnetnih osobina, ali i mehaničkih i termičkih osobina. Mnogobrojna ranija istraživanja na jedinjenjima spinelnog tipa su pokazala povezanost promene strukture i fizičkih osobina. Cilj ovog rada je bio da analiziramo promenu simetrije kristalne rešetke koja je direktno vezana za promenu raspodela katjona u specijalnim položajima katjona u spinelnoj strukturi. Ovakvo istraživanje je neophodno da bi se pristupilo rešavanju, odnosno konačnom utačnjavanju kristalne strukture. Rešavanje i utačnjavanje kristalne strukture (*Ritveldova metoda*) vrši se programom *FullProf* koji koristi rezultate snimljenih intenziteta difrakcionih linija za praškaste uzorke.

U ovom radu su dati snimljeni difraktogrami praha za $Li_{0.5}Fe_{2.5-x}La_xO_4$, gde je *x=0*; 0.05; 0.1, koji su analizirani i upoređivani sa literaturnim podacima korišćenjem postojećih baza podataka **PDF** i **ICSD**.

2. Strukturne i magnetne osobine spinela

Jedinjenja koja kristališu u spinelnom tipu strukture intenzivno su istraživana u prošlosti. Spineli su poznati još od 1915. godine, od kada su rešene strukture magnetita (Fe_3O_4) i minerala spinela ($MgAI_2O_4$) po kome je i dobila ime velika klasa izostrukturnih jedinjenja.

2.1. Geometrija i kristalohemija spinelne strukture

U kristalnoj rešeci spinelne strukture (kubični sistem, prostorna grupa *Fd-3m*) katjoni su raspoređeni u specijalnim 8a i 16d položajima, a anjoni u specijalnim 32e položajima:

8(a) (000; ${}^{1}/_{4} {}^{1}/_{4}$); 16(d) (${}^{5}/_{8} {}^{5}/_{8}$; ${}^{5}/_{8} {}^{7}/_{8} {}^{7}/_{8}$; ${}^{7}/_{8} {}^{7}/_{8}$; ${}^{7}/_{8} {}^{7}/_{8} {}^{7}/_{8}$; 32(e) (uuu; u-u; ${}^{1}/_{4}$ -u ${}^{1}/_{4}$ -u; ${}^{1}/_{4}$ -u; ${}^{1}/_{4}$ -u; ${}^{1}/_{4}$ -u; ${}^{1}/_{4}$ -u; ${}^{1}/_{4}$ -u; ${}^{1}/_{4}$ +u; ${}^{1}/_{4}$

Osnovna formula jedinjenja sa spinelnom strukturom je AB_2X_4 , a broj molekula u jediničnoj ćeliji je osam. Spinelna struktura se može opisati kao gusto kubično pakovanje anjona u kojem katjoni zauzimaju oktaedarske i tetraedarske šupljine. Jedinična ćelija prikazana na slici 2.1., sadrži 32 anjona koji formiraju 64 tetraedarske i 32 oktaedarske šupljine, od kojih je katjonima popunjeno 8 tetraedarskih i 16 oktaedarskih. Tetraedarski katjonski položaji su označeni sa A, a oktaedarski sa B, kao što je prikazano na slici 2.1. Jedinična ćelija, dimenzije *a*, može se predstaviti sa dve različite grupe oktanata sa ivicama $\frac{1}{2}a$. Isti oktanti imaju zajedničku ivicu, a različiti su spojeni zajedničkom stranom, (slika 2.1.).

Za idealnu spinelnu strukturu parametar kiseonika *u* ima vrednost $\frac{3}{8}$. Kao posledica većih broja A položaja i manjeg broja B položaja, joni kiseonika se pomeraju od idealnih položaja u pravcu [1 1 1] od najbližih tetraedarskih jona, tako da je $u > \frac{3}{8}$. Svaki anjon je u spinelnoj strukturi okružen sa jednim A i tri B katjona. Katjoni u A položaju okruženi su sa $4O^{2-}$ jona na rastojanju od ≈ 1.9 Å,

Slika 2.1.: Jedinična ćelija spinelne strukture

dok su katjoni u B položajima okruženi sa $6O^{2-}$ jona koji su udaljeni oko 2.1Å. Za male devijacije od idealne rešetke, dužine katjon-anjon veza su: $d(A - X) = a(u - \frac{1}{4})\sqrt{3}$ i $d(B - X) = a(\frac{5}{8} - u)$. Ugao *ABX* je oko 125°, a ugao *BXB* oko 90°.

Većina spinela su oksidni, $X = O^{2-}$. Takođe, poznati su spineli sa anjonima: F^{-3} , Cl^{-4} , $S^{-2,-6}$, $Te^{-2,-6}$, Se^{-2} . S druge strane, svi katjoni radijusa od 0.4Å do ≈ 1 Å izgrađuju spinelnu strukturu i većina od njih može zauzeti oba katjonska položaja.

Od petovalentnih katjona u spinelima su nađeni: V^{5+} , Sb^{5+} i Nb^{5+} . Spineli koji sadrže velike katjone (Ca^{2+} , Ba^{2+}) su nestabilni i mogu preći u druge strukture (npr. heksagonalne). Relativno velika stabilnost oksidnih spinela je povezana sa jonskim karakterom veze. Spineli sa anjonima koji poseduju manju elektronegativnost (*S*, *Se*, *Te*) su kovalentniji, nestabilniji i njihov broj je manji u odnosu na oksidne. Zavisno od oksidacionih stanja katjona, mogući su sledeći tipovi binarnih spinela: $A^{2+}B_2^{3+}O_4^{2-}$, $A^{4+}B_2^{2+}O_4^{2-}$, $A^{6+}B_2^{1+}O_4^{2-}$. Drugi tipovi se mogu dobiti formalnom zamenom, npr. $A^{2+} \rightarrow \frac{1}{2}(A^{1/4} + B^{13+})$

Izvestan broj jedinjenja ima strukturu koja može biti opisana pomoću tetragonalne ili ortorombične distorzije spinelne strukture. Poreklo ovih distorzija je dvostruko:

- a) Jahn-Teller-ov efekat i
- b) formiranje superstruktura.

Veliki broj oksidnih spinela - ferita, $MeFe_2O_4$ (Me=Mn, Fe, Co, Ni, Cu, Zn, Cd, Mg ili odgovarajuće kombinacije), su važni u tehnologiji. Magnetne osobine ferita su intenzivno istraživane u prošlosti. Značajno polje istraživanja jedinjenja sa strukturom spinela bile su strukturne osobine, posebno katjonska raspodela. Eksperimentalna i teorijska ispitivanja su pokazala da postoje razni faktori koji određuju katjonsku raspodelu. Ovo je jedno od najznačajnijih pitanja vezano za spinele (jer je u vezi sa fizičkim osobinama).

2.1.1. Katjonska raspodela u spinelima

Katjonska raspodela u jedinjenjima sa spinelnom strukturom odnosi se na raspodelu katjona u tetraedarskim (A) i oktaedarskim (B) položajima. Spinel, $A^{2+}B_2^{3+}O_4^{2-}$, je sa normalnom katjonskom raspodelom ukoliko svi A joni zauzimaju tetraedarske, a svi B joni oktaedarske položaje (normalni spineli). Drugi tip raspodele u spinelima nazvan je inverzna: jedna polovina katjona B je u tetraedarskim položajima, druga polovina je raspoređena zajedno sa katjonima A u oktaedarskim položajima (inverzni spineli). Mnogo je primera u kojima je raspodela između normalne i inverzne (mešoviti spineli). Na osnovu navedenog, hemijska formula spinela može se zapisati u obliku $A_{\delta}B_{I-\delta} \left[A_{I-\delta}B_{I-\delta}\right]O_{4}$, gde su katjoni u oktaedarskim položajima u zagradi. δ je parametar kojim se opisuje stepen inverzije. Ukoliko je $\delta = 1$ raspodela je normalna, $\delta = 0$ za inverznu raspodelu, dok je za slučajnu raspodelu $\delta = \frac{1}{3}$. Pored navedenih diskretnih vrednosti, postoji kontinuum vrednosti parametra δ , $0 < \delta < 1\left(\delta \neq \frac{1}{3}\right)$, pa se katjonska raspodela često označava preko procenta od inverzne ili normalne. Primeri za normalnu raspodelu su: ZnCr2O4, MgAl2O4, za inverznu: FeFe2O4, NiMn2O4, i za slučajnu: NiAl2O4. Raspodela u MgFe2O4 je delimično inverzna, $\delta = 0.89$.

U nekim spinelima postoji dugodometno uređenje u okviru jedne podrešetke i u tom slučaju se govori o superstrukturama. Navešćemo primere superstruktura:

- a) Dve vrste katjona su pravilno raspoređene u oktaedarskim položajima. Ovo dugodometno uređenje dovodi do promene prostorne grupe i promene strukture iz kubične u ortorombičnu (primer je *Fe₃O₄* koji ispod 120K prelazi u ortorombičnu strukturu). Uređenje je 1:1 jer je isti broj različitih katjona raspoređen u B položajima,
- b) 1:3 uređenje: dve vrste katjona (jednih ima tri puta više) su pravilno raspoređene u oktaedarskim položajima. Primer je $Fe[Li_{0.5}Fe_{1.5}]O_4$,
- c) 1:1 uređenje: u tetraedarskom položaju; primer je $Li_{0.5}Fe_{0.5}[Cr_2]O_4$.

Bitniji faktori koji utiču na raspodelu u spinelima su: elektrostatički-energijski, preferencije katjona za pojedina mesta (kristalno polje i kovalentnost) i anjonska polarizacija.

Elektrostatički - energijski faktori koji utiču na katjonsku raspodelu

U principu, ravnotežna katjonska raspodela u spinelima mogla bi biti nađena minimiziacijom totalne energije rešetke, s obzirom da energijski članovi zavise od parametra rešetke *a*, parametra kiseonika *u* i katjonske raspodele. Kvantitativna relacija između energijskih članova i pomenute tri varijable nije moguća. Jedini energijski član koji može biti tako izračunat je Kulonova energija naelektrisanih jona (Madelungova energija):

$$V_{C} = -A_{M} \frac{e^{2}}{a}$$
(2.1)

U relaciji (2.1) A_M je Madelungova konstanta, a *e* naelektrisanje elektrona. Konstanta A_M zavisi od parametra kiseonika i raspodele naelektrisanja između A i B položaja (q_A i q_B). Madelungova konstanta je izračunata na sledeći način:

$$A_{M} = A_{M}(q_{A}, u) =$$

$$= 139.8 + 1186 \Delta_{u} - 6483 \Delta_{u}^{2} - (10.82 + 412.2 \Delta_{u} - 1903 \Delta_{u}^{2})q_{A} + 2.609 q_{A}^{2}$$
(2.2)

U prethodnoj relaciji $\Delta_u = u - 0.375$. Zavisnost A_M od q_A za različiti parametar kiseonika u je prikazana na slici 2.2.

Prema formuli (2.1)porastom A_M stabilnost spinela raste. Zaključak koji proizilazi sa slike 2.2. je da stabilnost normalnih struktura raste sa porastom parametra U, u najvećim spinelima sa dvovalentnim katjonima (Mn, Cd) i obrnuto za spinele sa četvorovalentnim najmanjim katjonima (Si, Ge). Očekuje se navedeni spineli budu da normalni, što se i potvrđuje eksperimentalnim rezultatima.

Kulonova energija je

Slika 2.2.: Zavisnost Madelungove konstante A_M spinelne strukture od srednjeg naelektrisanja položaja A, q_A za različite vrednosti parametra kiseonika u

najvažnija za raspodelu katjona izmedju A i B položaja. U nekim slučajevima i drugi energijski članovi postaju važni. Međutim, uključivanje svih energija u određivanje raspodele dovodi do ozbiljnih teorijskih poteškoća. Drugi član koji se razmatra je Bornova energija. Za izračunavanje ove energije se polazi od

geometrijskih razmatranja. Treći energijski član koji treba uzeti u obzir je energija uređenja različitih katjona u jednoj podrešetki. Pokazano je da ovaj član uvek postoji jer u svim slučajevima postoji kratkodometno uređenje, bez obzira što superstrukture nisu uočene. Na osnovu energijskih članova mogu se dati neki zaključci o katjonskoj raspodeli. Međutim, često su energije slične za različite (moguće) raspodele, pa se tada razmatraju drugi faktori značajni za raspodelu.

Anjonska polarizacija

Polarizaciona energija se pojavljuje kao posledica deformacije sfernih elektronskih oblaka jona kiseonika u lokalnom kristalnom polju. Anjonska polarizacija zavisi od valentnosti katjona u A i B položajima, i značajna je ukoliko je razlika naelektrisanja katjona veća. Ukoliko je polarizacija velika dolazi do jačeg vezivanja katjona i anjona, što uslovljava dodatnu stabilizaciju. Anjonska polarizacija je značajnija kod neoksidnih spinela.

2.1.2. Predviđanje katjonske raspodele u spinelima

Poznavanje faktora koji su značajni za katjonsku raspodelu omogućuje njeno predviđanje. Pomenuti faktori su različite važnosti, ali svi moraju biti uključeni u razmatranje. Obzirom da jedni druge mogu kompenzovati, razmatranje samo nekih može dovesti do pogrešnog zaključka. Kod spinela koji sadrže katjone koji nemaju izraženu preferenciju ni za tetraedearske ni za oktaedarske položaje, kao i spinela kod kojih raspodela zavisi od uslova pripreme uzorka, teško je unapred govoriti o raspodeli. Takođe, eksperimentalni rezultati nisu u saglasnosti sa teorijskim predviđanjima u slučajevima nekih spinela koji sadrže katjone viših

valentnosti (ako spinel sadrži najmanje jedan trovalentan i jedan četvorovalentan katjon). Katjonska raspodela se određuje iz difrakcije X-zraka i neutrona, merenjem magnetne susceptibilnosti, iz merenja perturbovanih anjonskih korelacija (*PAC*), refleksionih spektara, *EPR* merenja i merenjem spontane magnetizacije.

2.2. Ferimagnetizam oksida sa strukturom spinela

Spinelna struktura je klasičan primer strukture u kojoj je moguće ferimagnetno uređenje. Na spinelima je prvi put i pokazano ferimagnetno uređenje. Poreklo ferimagnetizma u spinelima leži u postojanju neekvivalentnih katjonskih kristalografskih položaja, A i B. Podrešetke A i B su neekvivalentne, i ako obe sadrže magnetne jone moguće je ferimagnetno uređenje.

2.2.1. Magnetne interakcije u spinelima

Katjoni u spinelima su međusobno odvojeni anjonima, tako da su rastojanja između katjona veća nego u metalima, pa se smatra da je dominantan tip interakcije superizmena. Poznato je da ovaj tip interakcije zavisi od geometrije, tj.ugla katjon-anjon-katjon i dužina katjon-katjon veza. Neke superizmenske interakcije u spinelima su prikazane na slici 2.3.

. .9

Slika 2.3.: Glavne superizmenske interakcije u spinelima

Jače su interakcije gde su oba katjona u kontaktu sa anjonom (interakcije tipa nn). Tip magnetnog uređenja zavisiće od odnosa interakcija unutar i između podrešetki, A-A, B-B i A-B.

Veze značajne za superizmenu u spinelnoj strukturi su: A-O-B sa uglom od oko 125° i B-O-B sa uglom od 90°. Druge katjon-anjon-katjon veze su manje značajne. Kako direktna interakcija zavisi od preklapanja t_{2g} orbitala susednih katjona, moguća je direktna B-B interakcija zbog malog međusobnog rastojanja (oko 2.9Å).

Interakcija A-A (nnn tip) je slaba i nema uticaja na tip magnetnog uređenja u slučaju da se nalazi dovoljan broj magnetnih katjona u B položaju. Prema tome, superizmenska interakcija A-B i superizmenska i/ili direktna B-B interakcija su dominantne interakcije u spinelima. Pretpostavlja se da je B-B interakcija mala u odnosu na A-B. Ponekad bikvadratna izmena i anizotropna izmena postaju značajne i moraju se uzeti u razmatranje.

3. Struktura i osobine ispitivanog jedinjenja

3.1. Osobine litijum ferita

Litijum fero spinel, poznatiji kao litijum ferit $LiFe_5O_8$ kristališe u uređenu formu $P4_332$ ili neuređenu formu Fd - 3m i ima katjonski raspored uređen kao tip 1:3 na oktaedarskim položajima (Li^+ u 4b i Fe^{3+} u 12d poziciji). Tetraedralni (8c) položaji popunjeni su jonima Fe^{3+} . Joni kiseonika su postavljeni u položaje 8c i 24e. Uređeno-neuređeni prelazi spinela $LiFe_5O_8$ počinju na temperaturama T=735-750°C. On je, u osnovi magnetit koji sadrži izvesnu količinu litijuma kao zamenu za $\frac{1}{4}$ gvožđa u njegovim oktaedarskim položajima. S obzirom da ima relativno nizak dielektrični gubitak mikrotalasa, visoku magnetnu zasićenost, ako i dobre temperaturne karakteristike za temperature više od Kirijeve temperature, litijum ferit je postao materijal koji se sve više koristi. Primenu je našao pri izradi mikrotalasnih uređaja, transformatora, kalemova, uređaja za čuvanje podataka, filterima šuma.

U termalnim reakcijama sa čvrstim supstancama prah litijum ferita se može dobiti korišćenjem $\alpha - Fe_2O_3$ i Li_2CO_3 ili nekog drugog jedinjenja Li^{3+} kao polaznih sirovina. Kako je difuzioni proces između sastojaka glavni mehanizam u ovoj sintezi, veoma je važno obratiti pažnju na detalje kao što su homogeno

mešanje i kontrolisanje uslova termalne reakcije. Prvo nastaje *LiFeO*₂ sledećom reakcijom:

$$Li_2CO_{\mathcal{I}(s)} + (\alpha - Fe_2O_{\mathcal{I}(s)}) \rightarrow 2LiFeO_{\mathcal{I}(s)} + CO_{\mathcal{I}(s)},$$

a potom sledi reakcija:

$$LiFeO_{2(s)} + 2(\alpha - Fe_2O_{3(s)}) \rightarrow LiFe_5O_{3(s)}.$$

Za izvršenje reakcije neophodno je kaljenje duži vremenski period na temperaturi iznad 800°C. Prah dobijen na taj način je krupan. Za dobijanje finijeg praha mora se povisiti temperatura iznad 1100°C što prouzrokuje nepravilnosti u strukturi ferita. Da bi se izbegle nepravilnosti u strukturi ferita razmatrane su mnoge nestandardne metode da bi se dobio fini prah litijum ferita na nižim temperaturama. Neke od ovih metoda su hladno sušenje, nastanak ferita u hidro termalnim sistemima i drugi.

Za dobijanje litijum ferita može se koristiti i $\gamma - Fe_2O_3$ čija se sturktura takođe može opisati kao spinelska. Uočeno je postojanje praznina na oktaedarskim položajima tog jedinjenja, pa se pretpostavlja da joni Li^{3+} prodifunduju u strukturu $\gamma - Fe_2O_3$ direktno tokom reakcije sinteze litijum ferita. Ovo se odvija na temperaturama iznad 600°C. Metastabilan mineral $\gamma - Fe_2O_3$ na višim temperaturama prelazi u stabilan $\alpha - Fe_2O_3$, što dodatno otežava odvijanje reakcija sinteze.

3.2. Jedinjenja litijum ferita sa primesama

U toku rada, pored čistog litijum ferita, analizirani su i uzorci litijum ferita sa dodatkom 5%, odnosno 10%, lantana. Uzorak litijum ferita sa dodatkom 5% lantana ima formulu u sledećem obliku $Li_{0.5}Fe_{2.45}La_{0.05}O_4$, dok uzorak sa 10% lantana ima formulu $Li_{0.5}Fe_{2.40}La_{0.10}O_4$.

U ranijm istraživanjima pri dodavanju Mg došlo se do sledećih rezultata. U mešovitom $Li_x Mg_{1-2x} Fe_{2+x} O_4$ uzorku, koji se kristalizuje u prostornoj grupi $P4_3 32$, Li^+ , Fe^{3+} i Mg^{2+} mogu zauzeti tetraedralni 8*c* i oba oktaedralna 4*b* i 12*d* položaja.

 $Li_{0.5}Fe_{2.5}O_4$ ima kompletno uređenu spinelsku strukturu tipa 1:3 sa Li^+ na 4b i Fe^{3+} na 12d u oktaedralnim položajima. Parcijalna substitucija Li^+ i Fe^{3+} sa Mg^{2+} u ternarnom spinelu uzorka prouzrokuje katjonsku preraspodelu gde Li^+ i Fe^{3+} popunjavaju oba oktaedarska položaja. Veći deo Li^+ zauzima oktaedralni 4b položaj (najčešće), ali se neki od ovih jona nalaze i na 12d položajima. Sa većom zamenom Li^+ i Fe^{3+} sa Mg^{2+} u jedinjenjima tipa $Li_x Mg_{1-2x} Fe_{2+x} O_4$, katjonsko uređenje litijum ferita nestaje i uzorak sa x = 0.35 postaje jedan neuređen spinel i prostorna grupa se menja u Fd - 3m. U neuređenim spinelima katjoni su raspoređeni na slučajan način u oktaedralnim 16b položajima.

3.3. Difrakciona merenja

Difrakcijom X-zraka ispitivani su praškasti uzorci čvrstih rastvora tipa $Li_{0.5}Fe_{2.5-x}La_xO_4$. Voluminozni $Li_{0.5}Fe_{2.5}O_4$ dobijen je klasičnim keramičkim postupkom na 650°C u atmosferi kiseonika polazeći od Li_2CO_3 i Fe_2O_3 . Nanočestični uzorci $Li_{0.5}Fe_{2.5-x}La_xO_4$ su sintetisani termalnom dekompozicijom odgovarajućih acetil acetata $[Fe(AA)_3]$, $[Li(AA)_3]$ i $[La(AA)_3]$ na 500°C u atmosferi azota. Postupak pripreme litijum ferita ima uticaj na strukturne osobine materijala koji u ovom radu neće biti detaljnije objašnjeno. Ovde će biti analizirani difraktogrami voluminoznih $Li_{0.5}Fe_{2.5}O_4$ za čije snimanje je korišćen difraktometar PHILIPS PW 1830 (CuK_{α}) sa ugaonim opsegom 2θ od $10 - 120^\circ$ sa korakom od 0.02° i ekspozicijom od 5 sekundi.

3.3.1. Difraktogrami ispitivanih uzoraka

Difraktogrami su načinjeni za uzorke čistog litijum ferita $Li_{0.5}Fe_{2.5}O_4$ (slika 3.1.), litijum ferita sa dodatkom 5% lantana $Li_{0.5}Fe_{2.45}La_{0.05}O_4$ (slika 3.2.) i litijum ferita sa dodatkom 10% lantana $Li_{0.5}Fe_{2.40}La_{0.10}O_4$ (slika 3.3.).

..

Slika 3.2.: Difraktogram jedinjenja Li_{0.5} Fe_{2.45} La_{0.05} O₄

Slika 3.3.: Difraktogram jedinjenja Li_{0.5} Fe_{2.40}La_{0.10}O₄

3.3.2. Analiza difraktograma

Podaci očitani sa difraktograma prikazani su u tabeli 3.1. Očitani podaci su intenzitet difrakcione linije *I* i ugao 2θ , gde je θ *Bragov* ugao.

U zaglavlju tabele date su hemijske formule ispitivanih uzoraka, parametri jedinične ćelije kristalne rešetke *a* i temperatura na kojoj je izvršeno snimanje difraktograma.

U tabeli su, za svaki ispitivani uzorak, pored očitane vrednosti ugla 2θ sa difraktograma, dati i međuravanska rastojanja *d*, Milerovi indeksi *h k l* i relativni intenziteti difrakcionih linija *I*. Međuravansko rastojanje *d* se računa po uslovu konstruktivne interferencije reflektovanog zračenja (*Bragovog* zakona) po sledećoj formuli:

$$2d\sin\theta=n\lambda\,,$$

pri čemu je poznato da je talasna dužina λ jednaka talasnoj dužini bakarne K_{α} spektralne linije, koja ima vrednost *1.5418* Å. Ovako izračunata vrednost međuravanskog rastojanja *d* data je u *angstremima* (Å).

Za različite tipove difraktometara intenziteti difrakcionih linija se mogu veoma mnogo razlikovati, pa se za prevazilaženje ovog problema umesto apsolutnih vrednosti intenziteta difrakcionih linija uvode relativni intenziteti difrakcionih linija. Apsolutni intenziteti difrakcionih linija se očitavaju sa difraktograma, dok se relativni intenziteti difrakcionih linija određuju na sledeći način. Najjačoj difrakcionoj liniji se dodeli vrednost relativnog intenziteta I = 100 i intenziteti svih drugih difrakcionih linija se svedu na procenat te vrednosti

LI	i _{0.5} Fe _{2.5} C) ₄		Li _{o.}	₅ Fe _{2.45} L	a _{0.05} 0	4	Li _{0.5} Fe _{2.40} La _{0.10} O ₄			
(á	a = 8.36	3Å)		(a	= <i>8.355</i>	Â)		$(a = 8.344 \text{\AA})$			
T	= 298K	•		<i>T</i> =	= <i>298</i> Ķ			T = 298K			
20	d(A)	Ι	hkl	20	d(A)	Ι	hkl	2ө	d(A)	Ι	hkl
15.294	5.7932	6	110								
18.235	4.8649	6	111	18.233	4.8649	9	111	18.529	4.7883	12	111
	-							21.471	4.1386	10	200
23.529	3.7809	7	120	23.529	3.7809	8	120				
25.882	3.4423	5	211					26.765	3.3308	20	112
30.000	2.9785	38	220	30.000	2.9785	40	220	30.588	2.9226	41	220
31.765	2.8170	7	122 300					31.765	2.8170	14	122 300
34,118	2.6279	6	310								
35.588	2.5226	100	311	35.294	2.5429	100	311	35.588	2.5226	100	311
36.765	2.4445	17	222	36.471	2.4636	7	311	37.059	2.4258	18	222
42.941	2.1061	45	400	42.941	2.1062	39	400	42.941	2.1062	63	400
43.529	2.0790	51	400								
								51.177	1.7849	8	
53.529	1.7119	11	422	53.529	1.7119	10	422	53.529	1.7119	12	422
57.059	1.6141	18	333 511	57.059	1.6141	28	333 511	57.353	1.6065	27	333 511
62.941	1.4766	49	440	62.647	1.4829	47	440	62.941	1.4767	57	440
71.176	1.3247	5	620	70.882	1.3294	5					
74.118	1.2792	12	541	74.118	1.2792	10	541	74.706	1.2706	13	533
78.235	1.2219	4	631	78.235	1.2219	4	631				
79.412	1.2067	4	444					79.412	1.2067	9	444
87.353	1.1163	4	642	87.059	1.1193	5		87.059	1.1193	7	542
				89.706	1.0930	10	730				
90.000	1.0902	9	730					90.588	1.0847	11	731
94.706	1.0481	7		94.412	1.0506	5		95.294	1.0432	7	800
105.588	0.9679	7	831	105.294	0.9698	7	831	105.882	0.9660	9	831
111.471	0.9328	4	840		<u> </u>			110.000	0.9411	9	752

(intenziteti svih difrakcionih linija se podele sa intenzitetom najjače difrakcione linije i pomnože sa 100).

Tabela 3.1.: Očitani i izračunati podaci sa difraktograma

Milerovi indeksi (indeksi refleksija) *h k l m*ogu označavati jednu ravan ili skup paralelnih ravni na kojima se vrši refleksija.

Kvadratna formula za kubični sistem je:

$$\sin^2\theta = \frac{\lambda^2}{4a_0^2} \left(h^2 + k^2 + l^2\right)$$

i omogućava nam određivanje indeksa refleksije.

Indeksi *h k* / su celi brojevi, a samim tim je i zbir $h^2 + k^2 + l^2$ ceo broj. Odnos $\frac{\lambda^2}{4a_0^2}$ predstavlja konstantu koja se dobija iz formule:

$$\frac{\sin^2\theta}{\left(h^2+k^2+l^2\right)}=\frac{\lambda^2}{4a_0^2}.$$

Eksperimentalno se meri θ , izračunava se sin² θ i dobijeni rezultat se podeli sa nekim celim brojem koji predstavlja zbir kvadrata tri, takođe cela broja. Polazeći od najnižih indeksa i najmanjih uglova tražimo da rezultat bude uvek isti ceo broj. Ako ne postoji takav ceo broj tada smo pogrešili i postupak se mora ponoviti sa nekim drugim, većim celim brojem. Postupak ponavljamo sve dok, za sve vrednosti sin² θ , ne nađemo neki ceo broj za koji važi prethodno rečeno.

Posle izvršenog indeksiranja difrakcionih maksimuma moguće je na osnovu kvadratne formule odrediti novu vrednost za parametar elementarne ćelije. Ona se donekle razlikuje u ispitivanim uzorcima zbog ubacivanja jona *La*. Ova razlika se javlja zbog zaokruživanja zbira $h^2 + k^2 + l^2$ na ceo broj i može ukazati na zavisnost dimenzije elementarne ćelije kristala od hemijskog sastava.

4. Baze podataka i pretraživanje *ICSD* i *PDF* baza podataka

4.1. O korišćenim bazama podataka

Kvalitativna fazna analiza metodom rendgenske difrakcije praha je poređenje difraktograma nepoznatog materijala sa difraktogramima poznatih monofaznih uzoraka. Difraktogrami poznatih uzoraka su smešteni u baze podataka. U ovom diplomskom radu korišćene su dve baze podataka, i to:

- ICSD Inorganic Crystal Structure Database (u kojoj su opisi struktura neorganskih, prirodnih i sintetičkih, jedinjenja i koja, između ostalog, sadrži hemijsku formulu, naziv jedinjenja, parametre ćelije, prostornu grupu, literaturne podatke,...).
- PDF Powder Diffraction File (u kojoj su podaci o jedinjenju prikazani u obliku tabela koje sadrže međuravanska rastojanja *d*, relativne intenzitete difrakcionih linija *I*, hemijsku formulu jedinjenja, naziv jedinjenja, identifikacioni broj PDF datoteke i literaturne podatke. Tabele mogu da sadrže i dodatne informacije, kao što su Milerovi indeksi *h k l* za sve linije, parametri jedinične ćelije, fizičke konstante, eksperimentalne detalje i druge komentare);

4.2. Pretraživanje baza podataka

4.2.1. Pretraživanje *ICSD* baze podataka

ICSD bazu podataka pretraživali smo programom *FindIt*, verzija 1.0.0 iz jula 2002. godine sa **62383** obrađenih jedinjenja.

Nakon pokretanja programa *FindIt* otvara se prozor na kome se nalazi *periodni sistem elemenata*. U ovom prozoru biraju se elementi koji se nalaze u jedinjenju čije parametre tražimo (slika 4.1.).

Sear	ch II	SD														7-1270 (1996)		egas se com	×
Chemistr	w C	irysta	Data	Re	duce	d Ce	زS 1	mme	try I	Refer	ence								
		Ç.,													I		<u>i</u>		
	Li	8e											B	9	٤.,	0		-AND Eleme	nt Count
	Na	Mg											Ai	Si	di Xa	1,11			to
	K	Ca	Sc	Ti	V	G	Mn	Fe	Co	Ni	Cu	Zn	6a	Ge	As	5			- 1
	AP	Sr	Y	Zı	Nb	Mo	Tc	Ru	Rh	Pđ	Ag	63	In	Sn	Sb	Te	2.	Elemen	Subscript
	C.s	Ba		Hf	Ta	W	Re	0:	lr	Pt	Au	Hg	TI	РЪ	Bi	Po	At E		to
	Fr	Ra		Rf	Ha														to to
			•	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	E	Te	Yblu		Add
				Ac	Th	Pa	U	Np	Pu	A	Ca	Bis	Œ	E:	Fm	Md	No Le		Clr
_					L	<u> </u>	L											<< Period	dic Table
⊡Type: ⊡C"N	omal			Excit	stive.	AND	- All t	hese	elem	ent "n	nust"	pe bi	esen	t (and	inoth	ing e	\$8) 		······
€ Ex C Ex	C Normal EXCLUSIVE - LIAND 0 AND Fe																		
<u>B</u>	eset		Çle	ar Pa	ge	(Che	mistry	Sele	ction)									<u>S</u> earch
						L							_						

Slika 4.1.: Zadavanje uslova za pretraživanje baze

U delu prozora sa slike 4.1. na kojem piše *TYPE* se postavljaju uslovi koje jedinjenje treba da ispuni da bi bilo izdvojeno iz baze. Može se izabrati jedna od tri ponuđene opcije:

- Normal,
- Exclusive AND i
- Exclusive OR.

Pri izboru opcije *Normal* korisnik bira elemente koji bi trebalo da se nalaze u jedinjenju i korišćenjem logičkih operatora definiše uslove za pretraživanje baze.

Opcija *Exclusive AND* (koju smo mi koristili) između odabranih elemenata postavlja logički operator *AND* čime definiše uslove pretraživanja, tj. postavlja uslov da u jedinjenju moraju biti svi navedeni elementi.

Opcija *Exclusive OR* između odabranih elemenata postavlja logički operator *OR* čime definiše uslove pretraživanja, tj. postavlja uslov da samo navedeni elementi mogu, a ne moraju biti zastupljeni u izdvojenim jedinjenjima (i nijedni drugi).

Nakon definisanja uslova izbora jedinjenja iz baze podataka, klikom na taster na kome piše *Search* počinje pretraživanje baze. Kad je pretraživanje završeno, rezultati pretraživanja su prikazani kao na slici 4.2.

Svako jedinjenje koje zadovoljava postavljene uslove je prikazano na listi, a prikazani su i osnovni podaci o tim jedinjenjima. Selekcijom jedinjenja dobijaju se svi podaci o jedinjenju koje **ICSD** baza sadrži. Na slici 4.2. selektovano je jedinjenje koje u ovoj bazi ima kôd 27900, a to je jedinjenje $Li_{0.5}Fe_{2.5}O_4$.

CSD 1							
10/3	/ Items	21-26	Num (Checked 1	CLUSIVE LIAND D AND Fe))		-
All Page: Cl	roye ≮⊺otal	Hits: 26	•	+			-1
CCode	Year	Space Group	Z	Sum Formula	Unit Cell	Reduced Cell	1
75525	1994	P4332	4	Fe5 Li1 08	8.3185 8.3185 8.3185 90 90 90 575.62	8.318 8.318 8.318 90 90 90 57	5.6
87120	1998	P4332	4	Fe4.91 Li0.99 0	8.3296 8.3296 8.3296 90 90 90 577.93	8.329 8.329 8.329 90 90 90 57	7.9
67829	1993	FD3-MZ	1	Fe21.34 Li9.28	8.4325 8.4325 8.4325 90 90 90 599.61	5.962 5.962 5.962 60 60 60 14	9.9
67830	1993	FD3-MZ	1	Fe21.33 Li9.07	8.4328 8.4328 8.4328 90 90 90 599.67	5.962 5.962 5.962 60 60 60 14	9.9
27900	1950	FD3-MS	8	Fe25L0.504	8.39 8.39 8.39 90 90 90 590.59	5.932 5.932 5.932 60 60 60 14	7.6
84971	1997	P4332	8	Fe2.5 Li0.5 04	8.33003 8.33003 8.33003 90 90 90 5	8.33 8.33 8.33 90 90 90 578.01	í]'
88145	1999	P4332	8	Fe2.1645 Li0.36	8.31437 8.31437 8.31437 90 90 90 5	8.314 8.314 8.314 90 90 90 57	4.7
31149	1943	141/AMDS	2	Fe2 Li2 04	4.049 4.049 8.742 90 90 90 143.32	4.049 4.049 5.225 112 795 117	27!
67619	1992	FD3-MZ	2	Fe2 Li0.87 03	8.4318 8.4318 8.4318 90 90 90 599.46	5.962 5.962 5.962 60 60 60 14	9.8
78713	1995	FD3-MS	16	Fe1.37 Li0.63 O2	8.3811 8.3811 8.3811 90 90 90 588.71	5.926 5.926 5.926 60 60 60 14	7.1
30718	1984	PBCA	8	Fe1 Li5 04	9.218 9.213 9.159 90 90 90 777.83	9.159 9.213 9.218 90 89.999 8	9.9 - [
4							٠ſ
Zdata for	tc	SD #27900					มีอ
Coll Code	27	900				-	
Rec Date	i 19	80/01/01					
Mod Date	19	84/10/30					-
Chem Name	i L1	thium Iron(III)	Oxide *			
Structure	:CL L.L. Fe	.5 194.5 UN	4				
ANX	A3	X4	•				
D(calc)	4.	66					
1						, C	-1
لنا						Ľ	
92002 be Tachie	tormations	spentrum Karloruhe, an-	d the U.S	Secretary of Commerce on T	nebalf of the United States. All rights reserved.		

Slika 4.2.: Izdvojena jedinjenja iz **ICSD** baze i njihovi osnovni podaci

4.2.1.1. Programi za obradu podataka iz baze

Prikaz podataka o izabranim jedinjenjima moguće je u dva programa. To su: *Visualizer* i *Distance Calculator*. Pokretanje ovih programa vrši njihovim jednostavnim pozivanjem iz menija *Applications* nakon čega se izabere odgovarajući program.

Program *Distance Calculator* proračunava rastojanja i uglove između atoma unutar kristalne rešetke, a program *Visualizer* nudi četiri vrste prikaza podataka iz baze o izabranom jedinjenju. Te četiri vrste prikaza omogućavaju bolju preglednost dobijenih parametara jedinjenja čiju smo vizualizaciju pokrenuli. Ti prikazi su:

- HTML View tekstualno prikazuje osnovne informacije o izabranom kristalu (naziv jedinjenja i hemijsku formulu), parametre ćelije, simetriju kristala i još neke parametre
- Ball-and-Stick View –ovaj prikaz je default prikaz pri pokretanju programa Visualizer. Prikazuje strukturu jedinične ćelije kristalne rešetke izabranog kristala pomoću atoma, ivica ćelija i veza između njih ("žičani" model). U ovom prikazu moguće je rotirati ćeliju kristalne rešetke i uočiti raspored atoma i veza u njoj, posmatrati rešetku iz pravca osa X, Y i Z, a moguće je i zumiranje pozicije nekog atoma.
- VRML View pruža potpuniju trodimenzionalnu sliku strukture jedinične ćelije kristalne rešetke izabranog kristala i kompletira šemaski prikaz koji daje Ball-and-Stick View. Za pokretanje ovog prikaza potrebno je instalirati odgovarajući VRML (Virtual Reality Modeling Language) plug in.
- Powder View prikazuje difraktogram izabranog kristala.

Powder View

Ovaj prikaz smo tokom rada najviše koristili, pa ćemo njegove osobine detaljnije opisati. U meniju *Powder* ovog prikaza, odabiranjem opcije *Properties* moguće je zadavanje intervala za ugao 2θ kao i zadavanje oblika i širine pika. U ovom meniju možemo odabrati i opciju *Radiation* koja nam omogućava da biramo vrstu zračenja, i to X-zračenje ili neutronsko zračenje. Za X-zračenje ponuđene su i različite vrste anoda (*Ag, Co, Cu, Cr, Fe, Mo, Ni*). Postoji i mogućnost izbora same talasne dužine zračenja. *Toolbar* ovog prikaza sadrži i komande za

zumiranje difraktograma (*Zoom In* i *Zoom Out*), a moguće je i pomeranje difraktograma duž ose 2θ sa *Scrool Left* i *Scroll Right*. Takođe je moguće i uključivanje i isključivanje mreže radi bolje preglednosti difraktograma.

Klikom na ikonicu na kojoj je napisano XY prikazuje se deo prozora u kom je moguće, u svakom trenutku, očitavati vrednosti sledećih parametara: -ugla 2θ , intenziteta *I* i međuravanskog rastojanja *d*. Difraktogram je moguće i snimiti i izbeći ponavljanje pretraživanja baze za isto jedinjenje. Ovaj prikaz se vidi na slici 4.3.

Slika 4.3.: Difraktogam izabranog kristala

4.2.2. Pretraživanje PDF baze podataka

PDF bazu podataka pretraživali smo pomoću programa **PCPDFWIN**, verzija 1.2., iz septembra 1996. godine sa **63557** obrađenih jedinjenja.

Nakon startovanja programa otvara se prozor na kome se nalazi meni u kom je moguće postaviti parametre pretraživanja. U meniju *File* se vrši izbor parametara za pretraživanje i moguće je izabrati neku od sledećih opcija: pretraživanje cele baze, pretraživanje po izabranoj talasnoj dužini X-zračenja koja je upotrebljena pri ispitivanju uzoraka, pretraživanje samo među organskim jedinjenjima, pretraživanje samo među neorganskim jedinjenjima. Pored ovih opcija moguće je i direktno izabrati jedinjenje preko njegovog jedinstvenog broja *ID* u bazi. Ovo je moguće uraditi klikom na meni *PDFNumber* čime se odmah dobijaju karakteristike jedinjenja.

Izborom menija *Search* otvara se novi prozor u kome se zadaju kriterijumi pretraživanja baze. Ovaj prozor je prikazan na slici 4.4.

0		
Search Flee? Logical Uperators: Subfield	Enterine Manage (100%), Material Sector Sector States (2006), 2005	51.5167
AND Inclu Eleme &Li & Fe & O	19	
AND INCL. LICHTS, BEI BI C BO		
	59 	

Slika 4.4.: Kriterijumi za pretraživanje **PDF** baze

U ovom prozoru nalazi se i deo u kome su ispisani prethodno zadati kriterijumi i broj jedinjenja u bazi koja ih zadovoljavaju.

Pri pretraživanju ove baze odabirali smo kriterijume na sledeći način.

U meniju *Elements* smo kao prvi kriterijum naveli broj elemenata u jedinjenju za koje tražimo podatke. Nakon toga smo izabirali elemente u padajućoj listi *Select Elements*, izborom opcije *Inclusive* koja između odabranih elemenata postavlja logički operator *AND* koja postavlja uslov da u jedinjenju moraju biti svi navedeni elementi. Pri izboru ove opcije menija *Select Elements* otvara se prozor na kome se nalazi *periodni sistem elemenata* i u kome se biraju elementi koji se nalaze u traženom jedinjenju. Klikom na taster *Go* zatvara se *periodni sistem elemenata* i u prozoru u kome se nalaze kriterijumi za pretraživanje se pojavljuje onaj koji smo upravo postavili, kao što se vidi na slici 4.4.

Nakon zadavanja svih kriterijuma pretraživanja, klikom na meni *Search Result*, dobija se prozor na kome se nalazi lista jedinjenja koja ih zadovoljavaju. Na ovoj listi se odmah mogu videti osnovni podaci o jedinjenjima. To su: *ID* – jedinstveni broj jedinjenja u *PDF* bazi, naziv jedinjenja, hemijska formula i tri vrednosti međuravanskog rastojanja sa najvećim relativnim intenzitetom difrakcionih linija. Na slici 4.5. prikazana je jedna ovakva lista sa kriterijumima koji su zadati na slici 4.4. Na slici 4.5. je selektovano jedinjenje sa jedinstvenim brojem jedinjenja *38-0259.* Svi podaci o ovom jedinjenju se mogu pregledati u programu ili se mogu direktno poslati na štampanje. Pregledanje podataka u programu se vrši, nakon selekcije jedinjenja, klikom na taster *OK*, kada se dobija novi prozor u kome se nalaze detaljni podaci iz baze za dato jedinjenje (Slika 4.6.).

U zaglavlju prozora, pored jedinstvenog broja jedinjenja, data je talasna dužina X-zračenja koja je upotrebljena pri ispitivanju uzoraka izvađenog iz baze. U prozoru su tabelarno prikazani vrednosti međuravanskog rastojanja d (datog u Å), relativni intenziteti difrakcionih linija i Milerovi indeksi h k l.

Display Matched Item Number:	1 to 19	Print's	Cancel
D Chemical Name		Chemical Formula	3 Strongest Lines
41-0971 Lithium Iron Oxide 41-0174 Lithium Iron Oxide 41-0174 Lithium Iron Oxide 40-0943 Lithium Iron Oxide 39-0239 Lithium Iron Oxide 37-1432 Lithium Iron Oxide 42-0024 Lithium Iron Oxide 42-0023 Lithium Iron Oxide 42-0023 Lithium Iron Oxide 17-0938 Lithium Iron Oxide 17-0938 Lithium Iron Oxide 17-0938 Lithium Iron Oxide 17-0131 Lithium Iron Oxide 17-0117 Lithium Iron Oxide 17-0114 Lithium Iron Oxide 13-0207 Spinel, Lithium Iron Oxide 13-0207 Spinel, Lithium Iron Oxide 13-0207 Spinel, Lithium Iron Oxide		Li2 Fe3 O5 Li Fe O2 Li2 Fe2.4 O4.6 Li5 Fe5 O8 Li2 Fe3 O4 Li5 Fe O4 Li5 Fe O4 Li5 Fe O4 Li5 Fe O4 Li5 Fe O4 Li5 Fe O4 Li Fe O2 Li Fe O2 Li Fe O2 Li Fe5 O8 Li Fe5 O8 Li Fe5 O8 Li Fe5 O8 Li Fe5 O8 Li Fe5 O2 Li Fe5 O2	$\begin{array}{c} 2.09 & 1.48 & 2.41 \\ 4.85 & 2.09 & 2.52 \\ 4.87 & 2.09 & 2.52 \\ 2.10 & 1.48 & 2.42 \\ \hline 2.51 & 1.47 & 2.95 \\ 2.12 & 1.50 & 2.44 \\ 3.76 & 2.65 & 4.10 \\ 4.62 & 3.79 & 2.67 \\ 3.77 & 2.65 & 4.12 \\ 2.50 & 1.47 & 1.60 \\ 2.07 & 1.47 & 2.39 \\ 2.03 & 3.67 & 2.18 \\ 2.04 & 2.14 & 1.48 \\ 2.57 & 1.63 & 3.02 \\ 2.51 & 1.47 & 2.95 \\ 2.53 & 1.45 & 2.96 \\ 2.51 & 2.95 & 1.47 \\ 2.07 & 1.47 & 2.39 \\ 2.07 & 1.47 & 2.39 \\ 2.07 & 1.47 & 2.39 \\ 2.07 & 1.47 & 2.39 \\ 2.07 & 1.47 & 2.39 \\ 2.07 & 1.47 & 2.39 \\ 2.07 & 1.47 & 2.39 \\ 2.07 & 1.47 & 2.39 \\ 2.07 & 1.47 & 2.39 \\ 2.07 & 1.47 & 2.39 \\ 2.07 & 1.47 & 2.39 \\ 2.07 & 1.47 & 2.39 \\ 2.07 & 1.47 & 2.39 \\ 2.07 & 1.47 & 2.39 \\ 2.07 & 1.47 & 2.39 \\ 2.07 & 1.48 & 0.93 \\ \end{array}$

Slika 4.5.: Izdvojena jedinjenja iz **PDF** baze i njihovi osnovni podaci

Pored ove tabele u podacima se mogu pronaći i hemijska formula jedinjenja, naziv jedinjenja i literatura u kojoj je jedinjenje opisano. Od fizičkih osobina u prozoru su navedene: *molekulska težina jedinjenja, zapremina, prostorna grupa, ćelijski parametri* i druge osobine.

Izgled prozora sa svim navedenim podacima prikazan je na slici 4.6.

2	
38-0259 Quality: *	a+Li Fe5 08
CAS Number:	Lithium Iron Oxide
Molecular Weight: 414.17 Volume[CD]: 578.22 Dx: 4.758 Dm:	Ref: de Picciolto, L., National Institute for Materials Research, Pretoria, South Africa, Private = Communication, (1986)
5.G.: P4112132 (212) Cell Parameters: a θ.331 b c α β y	dA inthkilda inthkilda inthki
SS/FDM: F30=30(0.022, 46) I/Loor: Rad: CuKa Lambda: 1.5418 Filter: Graph d-sp: diffractometer	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Slika 4.6.: Prikaz izdvojenog jedinjenja iz **PDF** baze

Jedna od osnovnih mana programa *PCPDFWIN* je što nema ugrađenu podršku za vizuelizaciju podataka dobijenih pretraživanjem *PDF* baze.

4.3. O PowderCell-u

U toku rada susreli smo se sa programom za vizuelizaciju *PowderCell*. Zbog toga što u ispitivanju jedinjenja analiziranih u ovom radu nismo mnogo koristili ovaj program, navešćemo samo neke njegove karakteristike. Program *PowderCell* je inače pogodan za ispitivanje veze između kristalne strukture i difraktograma praha jedinjenja koja se nalaze u *ICSD* bazi. *PowderCell* može istovremeno grafički da prikaže strukturu kristalne rešetke i difraktogram za dato jedinjenje. Za grafički prikaz strukture kristalne rešetke i difraktograma datog jedinjenja, u ovom programu, neophodno je poznavanje sledećih parametara: broj prostorne grupe i konstante rešetke, dok je za svaki element koji ulazi u sastav ispitivanog jedinjenja, pored atomskog broja *Z* i jonizacionog stanja , potrebno znati i njihov *Wyck*-ov položaj i relativne atomske koordinate. Ove podatke nam u potpunosti daje jedino *ICSD* baza.

Na modelu kristalne rešetke moguće je za svaki atom odrediti rastojanja i uglove između atoma. Pored ovog moguće je rotirati samu kristalnu rešetku po *X*, *Y*, *Z* osama za odabrani ugao.

Sa difraktograma posmatranog jedinjenja, za svaki pik je moguće očitavanje vrednosti ugla 2θ , međuravanskog rastojanja d i intenziteta difrakcionih linija *I*. Korisniku je ostavljena mogućnost odabiranja talasne dužine upotrebljenog X-zračenja. Za svaki difraktogram data je tabela u kojoj se nalaze podaci za sve pikove. To su sledeći podaci: Milerovi indeksi h k l, ugao 2θ , međuravansko rastojanje d i relativni intenzitet difrakcionih linija *I*.

5. Rezultati pretraživanja baza podataka

Rezultati pretraživanja baza su dati tabelarno. Zbog preglednosti, podaci su grupisani u više tabela. U svakoj tabeli je prva kolona rezervisana za osnovno ispitivano jedinjenje $Li_{a5}Fe_{25}O_4$.

U zaglavljima tabelama nalaze se jedinstveni identifikacioni brojevi navedenih jedinjenja koji ih identifikuju u *PDF* i *ICSD* bazi, respektivno. Za svako jedinjenje iz *PDF* baze u tabeli je navedeno: hemijska formula jedinjenja, parametar kristalne rešetke *a* (dat je u *angstremima*), temperatura na kojoj je izvršeno snimanje difraktograma (data u *kelvinima*) i, ako u bazi postoji taj podatak, prostorna grupa kojoj jedinjenje pripada. U tabelama sa podacima o jedinjenjima iz *PDF* baze nalaze se četiri kolone sa sledećim podacima: ugao 2θ , međuravansko rastojanje *d* (dato u *angstremima*), relativni intenziteti difrakcionih linija *I* i Milerovi indeksi *h k I*. Ovo su skoro svi podaci koji se nalaze u *PDF* bazi o datom jedinjenju.

Za svako jedinjenje iz **ICSD** baze u tabeli je navedeno: hemijska formula jedinjenja, parametar kristalne rešetke *a* (dat je u *angstremima*), prostorna grupa kojoj jedinjenje pripada i, ako u bazi postoji taj podatak, temperatura na kojoj je izvršeno snimanje difraktograma (data u *kelvinima*). U tabelama sa podacima iz **ICSD** baze su navedeni: ugao 2θ , međuravansko rastojanje *d* (dato u angstremima), relativni intenziteti difrakcionih linija **I**. Detaljnije informacije o jedinjenjima upotrebljenim u istraživanjima koje su izlistane iz **ICSD** baze date su u prilogu A.

				13-0207					17-0115		17-0117				
1 :	F - (`		L	iFe₅O ₈	[7]		α–LiFe₅O ₈ [8]				δ– LiFe₅O ₈ [9]			
	0.5Fe2.5L	J ₄		(a	1=8.334	Å)		(a=8.337 Å)				(a=8.501 Å)			
(a	=8.327	A)		1-	T=298	<,		T=298 K				T=1553 K			
	T=298 K				Spinel	•		P4,,2132 (212)				F			
2.0	۲Å۱ h	1	hkl	2.0	d [Å]	1	hkl	2.0	المًا h	<u> </u>	hkl	2.8	d ΙΔ1 b		bkl
15 294	5 7932	6	110		<u> </u>	•		15 420	5 8900	12	110		a pa		
18 235	4 8649	6	111			L		18 562	4 7800	4	111			<u> </u>	
23.529	3 7809	7	120					23.791	3.7400	20	210			<u> </u>	
25.882	3 4423	5	211					26.211	3.4000	14	211				
30,000	2.9785	38	220	30.351	2.9450	50	220	30.351	2.9400	45	220	29.579	3.0200	40	220
		-	122						0.7000						
31.765	2.8170	7	300					32.331	2.7690	4	221				
34.118	2.6279	6	310					34.064	2.6320	4	310				
35.588	2.5226	100	311	35.744	35.744 2.5120 100 311				2.5140	100	311	34.982	2.5650	100	311
36.765	2.4445	17	222					37.152	2.4200	2	222				
								38.973	2.3110	4	320				
42.941	2.1061	45	400									42.585	2.1230	40	400
43.529	2.0790	51	400	43.422	2.0840	30	400	43.422	2.0840	45	400				
53.529	1.7119	11	422	53,935	1.7000	16	422	53.832	1.7030	14	422	52.762	1.7350	30	422
								56.190	1.6370	4	510	56.340	1.6330	60	511
57.059	1.6141	18	333 511	57.886	1.5930	30	511	57.413	1.6050	45	511				
								60.820	1.5230	4	521				
			1			1						61.854	1.5000	40	440
62.941	1.4766	49	440	63.117	1.4730	50	440	63.069	1.4740	60	440				
71.176	1.3247	5	620					71.594	1.3180	14	620				
74.118	1.2792	12	541					74.543	1.2730	20	533				
78.235	1.2219	4	631												
79.412	1.2067	4	444					79.628	1.2040	14	444				
								85.566	1.1350	4	721				
87.353	1.1163	4	642					87.483	1.1150	18	642	88.279	1.1070	10	731
90.000	1.0902	9	730					90.662	1.0840	6	731				
												92.976	1.0630	10	800
94.706	1.0481	7					95.558	1.0410	6	800			ļ		
105.588	0.9679	7	831											ļ	ļ
111.471	0.9328	4	840											<u> </u>	

Tabela 5.1.: Difrakcioni podaci iz **PDF** baze

					17-0117	7			17-0114			38-0259			
				δ-	- LiFe ₅ O ₈	[9]		β-	LiFe ₅ O ₈ [α – LiFe ₅ O ₈ [11]				
L	I0.5 Pe 2.5 U	4		(a=8.501	Å)		, (a	=8.333 /	. .		6	a=8.331	Å)	
(a	=8.327 A	()			T=1553	ĸ		(T=298 K	-,		, i	T=298 K	(
	T=298 K				F			F	d3m (227	n		P4	2132 (2	· ·12)	
2.0	d (Å)	1	hkl	2.0	d (Å)		hki	2 θ	d (Å)	<u></u>	hkl	2.0	(Å) b	1	hki
15.294	5.7932	6	110									15.042	5.8900	7	110
18.235	4.8649	6	111					18.330	4.8400	4	111				
23.529	3.7809	7	120					<u>.</u>				23.869	3.7280	14	210
25.882	3.4423	5	211									26.171	3.4050	9	211
30.000	2.9785	38	220	29.579	3.0200	40	220	30.183	2.9610	45	220	30.329	2.9470	35	220
24 765	2 94 70	7	122												
31.705	2.0170		300												
34.118	2.6279	6	310									34.037	2.6340	4	310
35.588	2.5226	100	311	34.982	2.5650	100	311	35.525	2.5270	100	311	35.759	2.5110	100	311
36.765	2.4445	17	222									37.408	2.4040	3	222
												38.956	2.3120	3	320
												40.525	2.2260	2	321
42.941	2.1061	45	400	42.585	2.1230	40	400				L				
43.529	2.0790	51	400		ļ			43.356	2.0870	45	400	43.466	2.0820	16	400
			ļ									46.248	1.9630	1	411
												50.210	1.8170	4	421
53.529	1.7119	11	422	52.762	1.7350	30	422	53.832	1.7030	14	422	53.935	1.7000	12	422
				56.340	1.6330	60	511					56.302	1.6340	2	510
57.059	1.6141	18	333 511					57.413	1.6050	45	511	57.491	1.6030	32	511
												59.822	1.5460	3	520
			1									60.953	1.5200	3	521
				61.854	1.5000	40	440								
62.941	1.4766	49	440					63.842	1.4580	60		63.165	1.4720	41	440
					ļ						L	68.488	1.3700	1	610
					L							69.529	1.3520	2	611
71.176	1.3247	5	620		<u> </u>							71.657	1.3170	4	620
74.118	1.2792	12	541					74.543	1.2730	20	533	74.749	1.2700	10	533
			ļ			L						75.728	1.2560	2	622
		<u> </u>				ļ					<u> </u>	10.130	1.2420	1	542
78.235	1.2219	4	631			<u> </u>		70 470	1 2060	11	444	70 709	1 2200	-	444
79.412	1.2067	4	444		ļ	–		/9.4/0	1.2000	14	444	91725	1.2300	1	641
		ļ										04.735	1,1440	1	552
07.050	4 4 4 6 2		6.42	00 270	1 1070	10	731	97 5 8 2	1 1 1 4 0	19	642	87 681	1.1340	5	642
87.353	1.1163	4	042	00.219	1.1070	10	/31	07.302	1.1140	10	042	89.607	1.0940	1	730
00.000	1 0002	<u> </u>	720					90 555	1 0850	Δ	731	90 555	1.00-0	15	731
90.000	1.0902	9	130	02 076	1.0630	10	800	30.000	1.0000	- T		92 525	1.0670	1	650
			+	32.070	1.0000	1.0						93 779	1.0560	1	732
94 706	1 0481	7						95,437	1.0420	6	800	95.558	1.0410	6	800
34.700	1.0401	+			+					-	+	97.421	1.0260	1	741
	<u> -</u>		+	+	+			103.451	0.9820	6	822				
105.588	0.9679	7	831	1	1			106.523	0.9620	18	751				1
111.471	0.9328	4	840	†	1	1		111.618	0.9320	12	840		<u>†</u>		

Tabela 5.2.: Difrakcioni podaci iz **PDF** baze

33

...

			75	525 [1]	290	063 [2]		41038 [3]				
				=		1 11	50 .0		LiFe-O-			
L10.5	re _{2.5} U ₄		LII (0			Lii /~0	0508		LII (a - 0			
(a=8	.327 A)		(a=o	(.310 A)		(a-o	.330 A)		(a=8.331 A)			
Τ=	298 K		P	4332		Р,	43 3 2		. P	4332		
2 θ	d [Å]	1	2 θ	d [Å]	I	2θ	d [Å]	1	2θ	d [Å]	1	
15.294	5.7932	6	15.04	5.8905	9	15.02	5.8983	10	15.02	5.8983	10	
18.235	4.8649	6	18.46	4.8062	2	18.44	4.8113	2				
23.529	3.7809	7	23.90	3.7231	15	23.86	3.7293	15	23.86	3.7293	14	
25.882	3.4423	5	26.22	3.3987	10	26.18	3.4038	5	26.18	3.4038	5	
30.000	2.9785	38	30.36	2.9440	38	30.32	2.9478	37	30.32	2.9478	36	
31.765	2.8170	7										
34.118	2.6279	6	34.06	2.6322	4	34.00	2.6367	2	34.00	2.6367	3	
35.588	2.5226	100	35.78	2.5095	100	35.72	2.5136	100	35.72	2.5136	100	
36.765	2.4445	17	37.40	2.4045	1	37.36	2.4069	2	37.36	2.4069	2	
			39.00 2.3094 3		38.96	2.3117	3	38.94	2.3128	4		
			40.54	2.2252	2	40.48	2.2283	4	40.48	2.2283	3	
42.941	2.1061	45										
43.529	2.0790	51	43.48	2.0813	19	43.42	2.0840	19	43.42	2.0840	16	
			46.26	1.9625	2	46.20	1.9649	2	46.20	1.9649	2	
			50.22	1.8166	4	50.14	1.8193	3	50.14	1.8193	3	
						51.40	1.7777	1				
53.529	1.7119	11	53.96	1.6992	14	53.88	1.7016	13	53.86	1.7021	13	
			56.34	1.6330	1	56.26	1.6351	3	56.26	1.6351	2	
57.059	1.6141	18	57.52	1.6022	34	57.44	1.6043	35	57.42	1.6048	29	
			59.82	1.5460	3	59.74	1.5479	3	59.72	1.5484	3	
		<u> </u>	60.96	1.5198	3				60.86	1.5221	1	
62.941	1.4766	49	63.18	1.4716	47	63.08	1.4737	49	63.08	1.4737	40	
			65.36	1.4277	1							
			69.62	1.3504	2	69.50	1.3525	1	69.50	1.3525	1	
71.176	1.3247	5	71.70	1.3163	5	71.58	1.3182	5	71.58	1.3182	5	
74.118	1.2792	12	74.78	1.2695	10	74.66	1.2713	10	74.64	1.2716	9	
			75.80	1.2550	2	75.66	1.2569	2	75.66	1.2569	3	
			76.80	1.2411	1	76.68	1.2427	2	76.66	1.2430	1	
78.235	1.2219	4										
79.412	1.2067	4	79.82	1.2016	2	79.68	1.2033	2	79.66	1.2036	2	
	1	1		T		84.62	1.1452	1	84.62	1.1452	1	
87.353	1.1163	4	87.72	1.1126	6	87.58	1.1140	6	87.56	1.1142	5	
90.000	1.0902	9	90.68	1.0838	15	90.52	1.0853	17	90.50	1.0855	15	
94.706	1.0481	7	95.60	1.0406	6	95.42	1.0421	7	95.40	1.0423	5	
	1		103.58	0.9811	3				103.36	0.9826	3	
105.588	0.9679	7	106.62	0.9614	10	106.42	0.9626	12	106.40	0.9627	9	
		T							107.42	0.9564	2	
111.471	0.9328	4	111.84	0.9308	3	111.60	0.9321	4	111.58	0.9322	2	
			118.34	0.8978	2							

Tabela 5.3.: Difrakcioni podaci iz ICSD baze

.

			2	7900 [4]		35	768 [5]		30718 [6]			
].	Fe. O.		11	Fe. O.		L	Fe ₂ O ₂		1	i-FeO.		
(a	0 2 2 7 Å).5, C 2.5 C 4	00 K	(0-1	2 202 Å		- /a-	-151 0 04	、	
(a-	0.321 A)		(a-0.350	IA) 1-12	00 K	(a-0	0.232 A)		(a-	· 5.210 A	,	
Т	=298 K			a - 3 m S		F 0	-3 m Z			bca		
2θ	d [Å]		2 θ	d [A]		2 θ	d [A]	1	2 θ	d [A]	>4	
15.294	5.7932	6							16.70	5.3085	35	
18.235	4.8649	6	18.32	4.8426	4	18.52	4.7907	2	19.26	4.6083	5	
		<u> </u>							21.58	4.11/8	88	
23.529	3.7809	7							23.68	3.7572	100	
25.882	3.4423	5		0.0000	- 10	00.40	0.0040	07	00 1 4	2 00 1 1		
30.000	2.9785	38	30.10	2.9689	40	30.46	2.9346	31	29.14	3.0644	4	
31.765	2.8170								32.22	2.1182	72	
34.118	2.52/9	400	25.46	2 5214	100	25.00	2 5029	100	35.74	2.0004	10	
35.588	2.5226	100	35.46	2.5314	100	37.54	2.3020	2	36.58	2.5467	20	
30.703	2.4445	17	37.10	2.4232		57.54	2.0000		42.86	2.4000	5	
42.541	2.1001	40	43.10	2 0988	18	43.62	2 0749	20		2.7000		
40.023	4.UIJU			<u>~.0000</u>			<u> </u>		45,10	2.0102	9	
			<u> </u>						45.21	2.0056	10	
		<u> </u>	<u> </u>						46.28	1,9617	27	
				-					46.40	1.9569	15	
			53,46	1.7139	13				53.56	1.7110	12	
53,529	1.7119	11	53.60	1.7098	7	54.14	1.6940	13	54.54	1.6825	11	
			1						54.68	1.6785	6	
									56.44	1.6303	20	
		<u> </u>	<u> </u>	·					56.62	1.6255	46	
			56.98	1.6161	36				56.78	1.6213	22	
57.059	1.6141	18	57.14	1.6120	19	57.72	1.5972	35				
									62.30	1.4903	7	
			62.58	1.4843	46							
62.941	1.4766	49	62.74	1.4809	24	63.40	1.4671	49	62.46	1.4869	5	
									68.40	1.3715	5	
									69.10	1.3593	6	
			71.00	1.3275	5				69.28	1.3562	5	
71.176	1.3247	5	71.20	1.3243	2	71.96	1.3122	5	71.58	1.3166	1	
			74.40	1.2804	9		ļ		74.00	4.0700		
74.118	1.2792	12	74.26	1.2//1	5	75.00	1 0055		75.04	1.2/62	2	
			/5.26	1.2626		/5.06	1.2000	10	75.34	1.2010		
70.005	4 2240	<u> </u>	<u> </u>						79.02	1.2047		
78.235	1.2219	4	70.24	1 2080	1	80.12	1 1978	3	79.92	1 2003	$+ \frac{1}{1}$	
(9.412	1.200/	+	86.80	1 1 2 2 0 0 9	6	00.12		۲Ť	, 0.02		┼───	
87 353	1 1 1 6 3	4	87.06	1 1 1 1 9 3	3	88.08	1,1090	5			+	
90.000	1.0902	9	89 70	1.0931	15	91.04	1.0805	16		<u> </u>	+	
		+	+		+	91.34	1.0777	8		-	<u>†</u>	
94.706	1.0481	7	94.52	1.0496	6			1			<u>†</u>	
	+	<u> </u>	94.84	1.0469	3	1		<u> </u>			<u> </u>	
	<u> </u>		1	1	1	96.00	1.0373	7				
		1	1	1		96.32	1.0348	4				
	1	1	102.34	0.9896	4							
	<u> </u>	1	102.70	0.9871	2							
			105.32	0.9696	11	104.04	0.9780	3				
105.588	0.9679	7	105.70	0.9672	6	107.12	0.9583	11				
						107.50	0.9559	6	108.76	0.9483	3	
			110.40	0.9388	3				110.12	0.9404	4	
111.471	0.9328	4	110.82	0.9364	2	112.38	0.9278	5	110.64	0.9374	4	

Tabela 5.4.: Difrakcioni podaci iz ICSD baze

Osnovni spektar $Li_{0.5}Fe_{2.5}O_4$ pokazuje prisustvo dve faze. Pikovi dominanto pripadaju prostornoj grupi $P4_332$, ali je uočeno i prisustvo druge faze koja najverovatnije odgovara prostornoj grupi *Pbca* za isti hemijski sastav (pikovi $2\theta = 32.765$; 42.941; 78.235 u tabeli 5.4.).

Uticaj koncentracije lantana, koji se može videti u tabeli 3.1., se ispoljava kao povećanje prisustva faze Fd - 3m sa povećanjem koncentracije. Pikovi na $2\theta = 32.765$; 42.941 mogu se pripisati prisustvu visokotemperaturne faze $\delta - LiFe_sO_g$ snimljene na 1200 K, što može biti posledica postupka dobijanja uzorka na visokim temperaturama. Na ovaj način možemo tvrditi da su snimljeni uzorci najverovatnije dvofazni sistemi, što se simetrije kristalne rešetke tiče. Pored očekivane spinelne strukture u manjem procentu je zastupljena ortorombska faza *Pbca* istog jedinjenja (Tabela 5.4.).

Iz **ICSD** baze smo izdvojili jedinjenja čije su karakteristike najviše odgovarale karakteristikama jedinjenja koja su ispitivana. To su jedinjenja sa hemijskom formulom $LiFe_5O_8$, i jedinstvenim identifikacionim brojevima 35768 i 29063. Jedinjenje sa jedinstvenim identifikacionim brojem 35768 ima prostornu grupu Fd - 3mZ i parametar ćelije a = 8.292Å, dok je kod jedinjenja sa jedinstvenim identifikacionim brojem 29063, prostorna grupa $P4_332$, a parametar ćelije a = 8.330Å. Treće jedinjenje čije su karakteristike najviše odgovarale karakteristikama ispitivanog jedinjenja ima hemijsku formulu Li_5FeO_4 i jedinstveni identifikacioni broj 30718. Ovom jedinjenju odgovara prostorna grupa Pbca i parametri ćelije a = 9.218Å, b = 9.213Å i c = 9.159Å.

Programom *PowderCell* dobili smo izgled kristalne rešetke navedenih jedinjenja, što je i prikazano na slikama 5.1., 5.2., 5.3.

Slika 5.1.: Kristalna rešetka jedinjenja sa prostornom grupom P4₃32

Slika 5.2.: Kristalna rešetka jedinjenja sa prostornom grupom *Pbca*

Slika 5.3.: Kristalna rešetka jedinjenja sa prostornom grupom *Fd – 3 mZ*

Pomoću podataka dobijenih o ovim jedinjenjima nacrtani je i uporedni difraktogram. On je prikazan na slici 5.4.

Slika 5.4.: Uporedni difraktogram

6. Zaključak

Polazeći od snimljenih difraktograma praha za spinelne čvrste rastvore tipa $Li_{a,5}Fe_{2,5-x}La_xO_4$ izvršeno je indiciranje i analiza položaja snimljenih pikova. Uočeno je pojavljivanje pikova na $2\theta = 23.529$; 25.882 kojih nema u spinelnoj strukturi tipa Fd - 3mS. Sa druge strane ovi pikovi se pojavljuju u difraktogramima litijum ferita čija je struktura rešena u prostornoj grupi $P4_332$. Ova poređenja su data u uporednim tabelama u kojima su navedeni karakteristični literaturni podaci. Odatle smo zaključili da je ispitivani osnovni uzorak litijum ferita iskristalisao u prostornoj grupi $P4_332$, a da se ubacivanjem lantana menja simetrija prostorne grupe jer se postepeno gase određeni pikovi. Ova promena bi odgovarala prelasku u simetriju prostorne grupe koja je literaturno uočena kod litijum ferita čiji su difraktogrami snimljeni na povišenoj temperaturi bliže strukturnom faznom prelazu na 850°C. Ovome odgovara prostorna grupa Fd - 3mS.

U tom smislu razrešen je problem simetrije polaznog jedinjenja, ali je ostalo neidentifikovano nekoliko pikova manjeg intenziteta ($2\theta = 31.765$; 42.941; 78.235). Poređenjem sa literaturnim podacima uočeno je da ovi pikovi pripadaju ili prostornoj grupi *Pbca* ili δ -modifikaciji litijum ferita koja se javlja na visokim temperaturama T = 1553K, a kojoj odgovara simetrija Fd - 3m. Prisustvo δ -modifikacije bi se moglo opravdati visokotemperaturskim tretmanom pri sintezi ispitivanih čvrstih rastvora, dok je prisustvo druge prostorne grupe (*Pbca*) pretpostavljeno samo na osnovu postojanja takvog rezultata za litijum ferit u **ICSD** bazi podataka.

Uočene promene u simetriji elementarne ćelije kristalne rešetke pojavljuju se i u difraktogramima praha snimanim na povišenim temperaturama ka tački topljenja uzorka za pojedine uzorke. Ovo nas je navelo na zaključak da se materijal slično ponaša pri ubacivanju novog katjona (La^{3+}) u malim koncentracijama kao i pri povećanju temperature uzorka.

Ovakva istraživanja su od koristi za ciljno praćenje promene fizičkih osobina novosintetizovanih materijala na osnovu promene sastava, odnosno ubacivanja manjeg procenta primesnih katjona.

Sva ova istraživanja su sprovedena na osnovu poređenja sa literaturnim podacima zahvaljujući postojećim bazama podataka *PDF* i *ICSD*. Ove baze nam omogućavaju znatno brži pristup informacijama. Posebne pogodnosti su dodatne mogućnosti vizuelizacije strukture i praćenje promena na difraktogramu praha usled promene strukture ćelije.

Literatura

- [1] Marin S. J., O'Keeffe M., Partin D. E.: Structures and crystal chemistry of ordered spinels: Li Fe5 O8, Li Zn Nb O4 and Zn2 Ti O4, *Journal of Solid State Chemistry* JSSCB 113 (1994) 413-419
- [2] Braun P. B.: A Superstructure in Spinels, *Nature* (London), **NATUA 170**, (1952), 1123
- [3] De Picciotto L. A., Thackeray M. M.: Lithium insertion into the spinel Li Fe5 O8, Materials Research Bulletin, MRBUA 21, (1986), 584-592
- [4] De Boer F., van Santen J. H., Verwey E. J. W.: The Electrostatic Contribution to the Lattice Energy of Some Ordered Spinels, *Journal of Chemical Physics*, JCPSA 18, (1950), 1032-1034
- [5] Tomas A., Laruelle P.: Affinement de la Structure des Formes Ordonnee et Desordonnee de l' Octaoxopentaferrate de Lithium, Li Fe5 O8, Acta Crystallographica C (39,1983-), ACSCE 39, (1983), 1615-1617
- [6] Luge R., Hoppe R.: Zur Kenntnis von Li5 Fe O4. Mit einer Notiz uber Mischkristalle Na5 Fe1 –x Gax O4, Zeitschrift fuer Anorganische und Allgemeine Chemie, ZAACA 513, (1984), 141-150
- [7] Strickler Roy: J. Am. Ceram. Soc., 44, (1961), 225
- [8] Shieber: J. Inorg. Nucl. Chem., 26, (1964), 1363
- [9] Shieber: J. Inorg. Nucl. Chem., 26, (1964), 1363
- [10] Shieber: J. Inorg. Nucl. Chem., 26, (1964), 1363
- [11] De Picciotto L., Thackeray M.: Mater. Res. Bull., 21, (1986), 583
- [12] Karanović LJ.: *Primenjena kristalografija*, Univerzitet u Beogradu, Beograd, 1996.
- [13] Kittel C.: Uvod u fiziku čvrstog stanja, Savremena administracija, Beograd, 1970.
- [14] Antić B.: Uticaj katjonske raspodele na fizičke osobine mešovitih biksbita i spinela, Doktorska disertacija, Beograd, 1997.

Prilog A

Crystal Information 75525

 Title
 Lithium Pentaferrate(III)

 Formula
 Li (Fe5 08)

 Comments
 Structures and crystal chemistry of ordered spinels: Li Fe5 08. Li Zn Nb 04. and Zn2

 Ti 04

Asymmetric Unit

Asymmetric Unit: 5 atoms Unit Cell: 56 atoms

index label typexyzsofutype uiso0Li1Li1+0.62500.62501.000010.02301Fe1Fe3+0.99810.99810.99811.000010.00332Fe2Fe3+0.12500.36740.88261.000010.00313O1O2-0.38490.38490.38491.000010.00334O2O2-0.11690.12720.38351.000010.0043

Cell Parameters

a b c $\alpha \beta \gamma$ 8.3185 8.3185 8.3185 90 90 90 Formula Units: 4

Symmetry

Hall Symbol P 4acd 2ab 3 Equivalent Positions 24 P 43 3 2 HM Symbol HM Number 212 Setting Standard Centrosymmetric No Lattice Type Ρ Point Group 432 Laue Class m-3m

TitleLithium Pentairon(III) OxideFormulaLi Fe5 O8Comments A Superstructure in Spinels

Asymmetric Unit

Asymmetric Unit: 5 atoms Unit Cell: 56 atoms

index label typexyzsofutype uiso0Li1Li1+0.62500.62500.62501.000010.00001Fe1Fe3+0.12500.3780-0.12801.000010.00002Fe2Fe3+0.00300.00300.00301.000010.00003O1O2-0.1320-0.13200.13201.000010.00004O2O2-0.38200.38200.38201.000010.0000

Cell Parameters

a b c α β γ 8.33 8.33 8.33 90 90 90

Formula Units: 4

Symmetry

Hall Symbol	P 4acd 2ab 3
Equivalent Positions	24
HM Symbol	P 43 3 2
HM Number	212
Setting	Standard
Centrosymmetric	No
Lattice Type	Р
Point Group	432
Laue Class	m-3m

TitleLithium Iron Oxide (1/5/8)FormulaLi Fe5 O8CommentsLithium insertion ionto the spinel Li Fe5 O8

Asymmetric Unit

Asymmetric Unit: 5 atoms Unit Cell: 56 atoms

indexlabeltypexyzsofutypeuiso0Li1Li1+0.62500.62500.62501.000010.01271Fe1Fe3+0.00000.00000.00001.000010.00632Fe2Fe3+0.12500.37500.87501.000010.00633O1O2-0.37500.37500.37501.000010.02534O2O2-0.12500.12500.87501.000010.0253

Cell Parameters

a b c α β γ 8.331 8.331 8.331 90 90 90

Formula Units: 4

Symmetry

Hall Symbol	P 4acd 2ab 3
Equivalent Positions	24
HM Symbol	P 43 3 2
HM Number	212
Setting	Standard
Centrosymmetric	No
Lattice Type	Ρ
Point Group	432
Laue Class	m-3m

TitleLithium Iron(III) Oxide *FormulaLi.5 Fe2.5 O4Comments The Electrostatic Contribution to the Lattice Energy of Some Ordered Spinels

Asymmetric Unit

Asymmetric Unit: 4 atoms Unit Cell: 72 atoms

index label typexyzsofutype uiso0Fe1Fe3+0.00000.00000.00001.000010.00001Fe2Fe3+0.62500.62500.62500.750010.00002Li1Li1+0.62500.62500.62500.250010.00003O1O2-0.38500.38500.38501.000010.0000

Cell Parameters

a b c α β γ 8.39 8.39 8.39 90 90 90

Formula Units: 8

Symmetry

Hall Symbol	F 4d 2 3 -1d
Equivalent Positions	48
HM Symbol	F_d -3 m
HM Number	227
Setting	1
Centrosymmetric	Yes (off origin)
Lattice Type	F
Point Group	m-3m
Laue Class	m-3m

TitleLithium Octaoxopentaferrate(III)FormulaLi Fe5 O8CommentsAffinement de la Structure des Formes Ordonnee et Desordonnee de
l'Octaoxopentaferrate de Lithium. Li Fe5 O8

Asymmetric Unit

Asymmetric Unit: 4 atoms Unit Cell: 72 atoms

index label typexyzsofutype uiso0Fe1Fe3+0.12500.12500.12501.000010.00581Fe2Fe3+0.50000.50000.50000.750010.00002Li1Li1+0.50000.50000.50000.250010.00003O1O2-0.25590.25591.000010.0000

Cell Parameters

a b c α β γ 8.292 8.292 8.292 90 90 90

Formula Units: 4

Symmetry

Hall Symbol	-F 4vw 2vw 3
Equivalent Positions	48
HM Symbol	Fd-3 m
HM Number	227
Setting	2
Centrosymmetric	Yes
Lattice Type	F
Point Group	m-3m
Laue Class	m-3m

Title Pentalithium Iron(III) Oxide Formula Li5 Fe O4 Comments Zur Kenntnis von Li5 Fe O4. Mit einer Notiz ueber Mischkristalle Na5 Fe1-x Gax O4

Asymmetric Unit

Asymmetric Unit: 10 atoms

Unit Cell: 80 atoms

sof utype uiso y z index label type x Fe1 Fe3+ 0.1169 0.1455 0.1175 1.0000 2 0.0000 0 01 02- 0.0045 0.2507 0.9854 1.0000 2 0.0000 1 02 02- 0.2457 0.2483 0.2401 1.0000 2 0.0000 2 03 02- 0.2431 0.0320 0.0006 1.0000 2 0.0000 3 0.0000 04 02- 0.0340 0.0069 0.2452 1.0000 2 4 0.0136 Li1 Li1+ 0.8801 0.3511 0.1269 1.0000 1 5 Li2 Li1+ 0.3939 0.1122 0.1422 1.0000 1 0.0066 6 Li3 Li1+ 0.1475 0.8709 0.1046 1.0000 1 0.0147 7 Li4 Li1+ 0.1195 0.1103 0.8366 1.0000 1 0.0151 8 Li5 Li1+ 0.3408 0.8833 0.8986 1.0000 1 0.0233 9

Cell Parameters

a b c α β γ 9.218 9.213 9.159 90 90 90 Formula Units: 8

Symmetry

-P 2ac 2ab Hall Symbol Equivalent Positions 8 Pbca HM Symbol 61 HM Number Standard Setting Centrosymmetric Yes Ρ Lattice Type mmm Point Group mmm Laue Class

Kratka biografija

Svetlana Grković rođena je 17.04.1976. godine u Somboru, Republika Srbija. Osnovnu školu, kao i Gimnaziju "Veljko Petrović", prirodno-matematički smer završila je u Somboru. Prirodno-matematički fakultet u Novom Sadu, smer profesor fizike, upisala 1995. godine.

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET

KLJUČNA DOKUMENTACIJSKA INFORMACIJA

Redni broj: RBR Identifikacioni broj: **IBR** Tip dokumentacije: TD Tip zapisa: ΤZ Vrsta rada: VR Autor: AU Mentor: MN Naslov rada: NR Jezik publikacije: JP Jezik izvoda: JI Zemlja publikovanja: ZΡ Uže geografsko područje: UGP Godina: GO Izdavač: IZ Mesto i adresa: MA Fizički opis rada: FO Naučna oblast: NO Naučna disciplina: ND Predmetna odrednica/ ključne reči: PO UDK Čuva se: ČU

Monografska dokumentacija Tekstualni štampani materijal Diplomski rad Svetlana Grković dr Agneš Kapor, redovni profesor Promene u simetriji kristalne rešetke u spinelnim čvrstim rastvorima tipa $Li_{0.5}Fe_{2.5-x}La_xO_4$ srpski (latinica) srpski/engleski Srbija i Crna Gora Vojvodina 2003 Autorski reprint Prirodno-matematički fakultet, Trg Dositeja Obradovića 4, Novi Sad 6/47/14/5/9/7/1 Fizika Fizika čvrstog stanja - kristalografija Spinelni čvrsti rastvori, Difraktogrami $Li_{0.5}Fe_{2.5-x}La_xO_4$, Pretraživanje baza ICSD i PDF Biblioteka departmana za fiziku, PMF-a u Novom Sadu Važna napomena: VN Izvod: IZ

nema

Opisana je kristalna struktura spinelnih čvrstih rastvora $Li_{0.5}Fe_{2.5-x}La_xO_4$. Anlizirani su snimljeni difraktogrami praha. Određena su međuravanska rastojanja *d* i izvršeno njihovo indeksiranje. Dobijeni podaci su upoređeni sa literaturnim podacima dobijenim iz baza *ICSD* i *PDF*. Zaključeno je da ispitivani čvrsti rastvori pripadaju grupi *P4*₃32 i pokazuju prisustvo druge faze prostorne grupe *Pbca*.

19.jun 2003. god.

12. septembar 2003. god.

dr Radomir Kobilarov, redovan profesor, predsednik dr Agneš Kapor, redovan profesor, mentor dr Dušan Lazar, docent, član

Datum prihvatanja teme od NN veća: DP Datum odbrane: DO Članovi komisije: KO Predsednik: član: član:

UNIVERSITY OF NOVI SAD FACULTY OF SCIENCE AND MATHEMATICS

KEY WORDS DOCUMENTATION

Accession number: ANO Identification number: INO Document type: DT Type of record: TR Content code: СС Author: AU Mentor/comentor: MN Title: ΤI Language of text: LT Language of abstract: LA Country of publication: CP Locality of publication: LP Publication year: PY Publisher: PU Publication place: PP Physical description: PD Scientific field: SF Scientific discipline: SD Subject/ Key words: SKW UC

Monograph publication

Textual printed material

Final paper

Svetlana Grković

Agneš Kapor, Ph. D., full professor

The Changes of Crystal Symmetry in Spinel Type Solid Solutions of $Li_{0.5}Fe_{2.5-x}La_xO_4$ Serbian (Latin)

English

Serbia and Montenegro

Vojvodina

2003

Author's reprint

Faculty of Science and Mathematics, Trg Dositeja Obradovića 4, Novi Sad 6/47/14/5/9/7/1

Physics

Solid State Physics - Crystallography

Spinel Solid Solutions, Diffraction pattern of the $Li_{0.5}Fe_{2.5-x}La_xO_4$ Series, Exploring *ICSD* and *PDF* databases

Holding data: HD Note: N Abstract: AB Library of Department of Physics, Trg Dositeja Obradovića 4

none

Description of crystal structure of solid state $Li_{0.5}Fe_{2.5-x}La_xO_4$ spinels. Analysis of X-ray powder diffraction patterns. Determination of interplanar distances *d*. Comparision of our data with data from *ICSD* and *PDF* databases. It has been concluded that solid solutions, used in this paper, belong to space group $P4_332$, and show presence of the other phase which belongs to *Pbca* space group. June, 19th, 2003.

September 12th, 2003.

ASB Defended on: DE Thesis defend board: DB President: Member:

Accepted by the Scientific Board:

Member:

Radomir Kobilarov, Ph. D., full professor, Faculty of Science and Mathematics, Novi Sad Agneš Kapor, Ph. D., full professor, Faculty of Science and Mathematics, Novi Sad Dušan Lazar, Ph. D., assistant professor, Faculty of Science and Mathematics, Novi Sad

