

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATI ČKI FAKULTET DEPARTMAN ZA FIZIKU

Magnetne osobine antiferomagnetnih halogenida mangana

-master rad-

Mentor: dr Milan Pantić

Kandidat: Slobodan Radošević

Novi Sad, 2009

Sadržaj

Uv	Uvod 5											
1	Hajzenbergov model antiferomagnetizma1.1Habardov hamiltonijan	7 7 8 10 13 14										
2	Manganovi halogenidi i Hajzenbergov model 2.1 Kristalografska i magnetna struktura Rb ₂ MnCl ₄ 2.2 Modelni hamiltonijan	17 17 20										
3	Analiza u aproksimaciji spinskih talasa 3.1 Spektar elementarnih ekscitacija 3.1.1 Dijagonalizacija hamiltonijana 3.1.2 Goldstonov mod 3.1.2 3.2 Magnetizacija podrešetke 3.2.1 3DHAFM 3.2.2 2DHAFM	 23 23 23 27 27 27 29 										
4	Metod spinskih Grinovih funkcija 3 4.1 Tjablikovljevo dekuplovanje 4 4.1.1 Magnonski spektar 4 4.1.2 Magnetizacija podrešetke 4 4.1.3 Analiza rezultata 4 4.2 Kalenovo dekuplovanje 4 4.2.1 Magnonski spektar 4 4.2.3 3D model 4	 33 33 33 36 39 47 47 49 56 										
5	Zaključak	59										
A	Integracija u inverznom prostoru i magnetna Briluenova zona 61											
В	Integrali $I^a(\eta)$ 63											

\mathbf{C}	Integrali $J^d(\eta)$	69
D	Uopšteni Izingov model u teoriji srednjeg polja	73
\mathbf{E}	Integralni identitet	75

Uvod

Poslednjih decenija XX veka zabeleženo je veliko interesovanje za niskodimenzione sisteme, naročito za antiferomagnete kvadratne rešetke tipa K_2NiF_4 . Ovi sistemi se i dalje nalaze u centru istraživanja, kako eksperimentalnih, tako i teorijskih. Za to postoji nekoliko razloga.

Jedan od najvažnijih je otkriće visokotemperaturske superprovodnosti u jedinjenju La₂CuO₄, dopiranom barijumom (kasnije je usledio niz otkrića na drugim jedinjenjima). Čist La₂CuO₄ kristališe u gore pomenutoj strukturi. Njegove magnetne osobine, za koje se očekuje da stoje u vezi sa mehanizmom visokotemperaturske superprovodnosti, u velikoj meri se mogu razumeti ako se La₂CuO₄ shvati kao kvazidvodimenzioni Hajzenbergov antiferomagnet (Q2DHAFM) sa spinom S = 1/2. Sličan modelni hamiltonijan se koristi i pri opisu manganovih halogenida, s tom razlikom da je kod poslednjih u čvorovima rešetke lokalizovan spin S = 5/2. Predstavnici ove grupe jedinjenja, koji su proučeni u eksperimentima su Rb₂MnF₄, Cs₂MnCl₄, K₂MnF₄ i Rb₂MnCl₄.

S druge strane, postoje strogi teorijski rezultati koji tvrde da postojanje dugodometnog spinskog uredjenja pri konačnim temperaturama, u dvodimenzionom sistemu sa kontinualnom simetrijom nije moguće. Osnovno stanje antiferomagneta (AFM) se odlikuje postojanjem kvantnih fluktuacija koje snižavaju vrednost magnetizacije podrešetke. Ovaj efekat je izraženiji u niskodimenzionim sistemima. Pored njih, u stanjima sa $T \neq 0$ javljaju se znatne termalne fluktuacije. Ispostavlja se da u graničnom slučaju dve prostorne dimenzije, termalne fluktuacije odnose prevagu u odnosu na interakciju izmene, koja teži da orijentiše susedne spinove antiparalelno. Sistem u kojem dominiraju fluktuacije ne može posedovati spontanu magnetizaciju na bilo kojoj konačnoj temperaturi. Ipak, u eksperimentima je utvrdjeno postojanje dugodometnog uredjenja kod ove klase jedinjenja.

Eksperimentalno je konstatovano da se spinovi u navedenim jedinjenjima, koji su fiksirani u čvorovima kristalne rešetke, redjaju antiferomagnetno unutar odredjenih kristalografskih ravni (slojeva). Pri tome je interakcija spinova koji leže u posmatranoj ravni dominantna. Interakcija spinova koji pripadaju susednim ravnima je za nekoliko redova veličine slabija. Uspešan teorijski opis manganovih halogenida mora da objasni postojanje dugodometnog uredjenja na konačnim temperaturama. To se može postići uvodjenjem anizotropne interakcije u modelni hamiltonijan. U tekstu je razmatran XXZ tip anizotropije. Ispravnost takvog izbora je potvrdjena slaganjem teorijskih predvidjanja sa eksperimentalnim rezultatima.

U prvom odeljku rada su iznesene opšte napomene o primeni teorije spinskih talasa i Gri-

novih funkcija na Hajzenbergov antiferomagnet. U nastavku su opisane kristalografska i magnetna struktura posmatrane klase jedinjenja i definisan je modelni hamiltonijan. Kod definisanja hamiltonijana, kao dodatni parametar, u obzir je uzeta i interakcija izmedju slojeva. Jedan od zadataka ovog rada je da se pokaže opravdanost tretmana manganovih halogenida kao dvodimenzionih magnetnih struktura. Svi konkretni proračuni su sprovedeni za Rb_2MnCl_4 .

Teorijska analiza jedinjenja, koja se bazira na pomenutom hamiltonijanu, podeljena je u dve etape.

Prva predstavlja analizu magnetnih osobina Rb_2MnCl_4 u oblasti niskih temperatura. U tu svrhu je korišćena linearna teorija spinskih talasa (Spin Wave, SW). Izvršena je dijagonalizacija linearizovanog hamiltonijana. Spektar elementarnih pobudjenja sistema (magnonski spektar) je odredjen koristeći dve eksperimentalne vrednosti za disperziju. Takodje, izračunata je vrednost magnetizacije podrešetke na apsolutnoj nuli i prikazana je temperaturska zavisnost magnetizacije.

U drugoj etapi je primenjen metod dvovremenskih temperaturskih spinskih Grinovih funkcija (GF). Metod GF daje dobro slaganje sa eksperimentalnim vrednostima počevši od apsolutne nule pa sve do Nelove (kritične) temperature. Prilikom dekuplovanja GF korišćena su dva postupka: Tjablikovljevo dekuplovanje ili aproksimacija haotičnih faza (Random Phase Approximation, RPA) i Kalenova aproksimacija (Callen Approximation, CA). Magnonski spektar je odredjen samousaglašeno, koristeći iste eksperimentalne vrednosti kao pri SW tretmanu hamiltonijana. Odredjena je temperaturska zavisnost magnetizacije i Nelova temperatura. Ispitano je ponašanje magnetizacije u blizini Nelove temperature i odredjen je kritični eksponent β . Takodje, izvršeno je poredjenje RPA i CA pristupa.

Neke opšte napomene o I Briluenovoj zoni, impulsnom prostoru i inverznoj rešetki se nalaze u prilogu A. Na tom mestu je takodje dat obrazac za prelazak sa sume u impulsnom prostoru na integral. Isti je korišćen prilikom svih numeričkih izračunavanja.

U prilozima B i C su izdvojeni proračuni odredjenih integrala koji se pojavljuju pri ispitivanju termodinamičkih osobina dvodimenzionog Hajzenbergovog antiferomagneta na kvadratnoj rešetki, kako "po moguućnosti ne bi prekidali izlaganje u tekstu zalaženjem u čistu tehniku izračunavanja" ¹. Rezultate je moguće uopštiti, tako da se dobijaju formule koje se kasnije mogu iskoristiti za proučavanje 3D struktura tipa CsCl.

Zbog poredjenja sa metodom GF, u prilogu D je ukratko razmotren uopšteni Izingov model u aproksimaciji srednjeg polja.

Konačno, u prilogu E je pokazano važenje jednog identiteta koji je korišćen u Kalenovoj aproksimaciji.

Radi jednostavnijeg pisanja jednačina u tekstu je korišćen sistem jedinica u kome je $\hbar = k_{\rm B} = 1$. Zbog toga je integral izmene J, jedini parametar hamiltonijana sa dimenzijama energije koji je odredjivan pomoću eksperimentalnih podataka, uvek izražen u jedinicama Bolcmanove konstante.

 $^{^1\}mathrm{Iz}$ predgovora $\mathit{Kvantne}$ $\mathit{Mehanike}$ L. D. Landaua i E. M. Lifšica

Glava 1

Hajzenbergov model antiferomagnetizma

Prema savremenim shvatanjima magnetno uredjenje u kristalima je posledica elektrostatičke interakcije izmedju elektrona. Sama Kulonova interakcija ne zavisi od orijentacije spina, ali u kombinaciji sa Paulijevim principom može da prouzrokuje pojavu dugodometnog uredjenja [1, 2]. Usko povezana sa pojavom antiferomagnetizma je izolatorska faza kristala, koji bi prema jednostavnoj zonskoj teoriji trebali da budu provodnici [3]. Joni od kojih nastaje kristal sa sobom nose polupopunjene elektronske ljuske, tako da je formrana valentna zona polupopunjena. Za očekivati je da takvi kristali budu dobri provodnici. Ipak, jaka Kulonova interakcija otvara procep u provodnoj zoni i drži elektrone lokalizovane na čvorovima rešetke. Kod takvih, jako korelisanih sistema, spin elektrona dolazi do izražaja i javlja se antiferomagnetno uredjenje. Ovoj klasi jedinjenja pripadaju i halogenidi mangana čiji joni poseduju polupopunjene 3d-elektronske ljuske.

1.1 Habardov hamiltonijan

Osnovni model teorije magnetizma, koji u prvi plan ističe kombinovani doprinos Kulonove interakcije i Paulijevog principa je Habardov (Hubbard) model [1, 3, 4, 5]. Prilikom formulisanja Habardovog hamiltonijana se polazi od aproksimacije jake veze [6]. U takvom pristupu se pretpostavlja da su elektroni u većoj meri vezani za jonske ostatke. Najjednostavniji model opisuje sistem sa po jednom *s* orbitalom na svakom čvoru rešetke. Pošto se atomske orbitale sa različitih čvorova u opštem slučaju preklapaju, za opis lokalizovanih elektrona se koriste Vanijeove funkcije [5, 6]. Habardova aproksimacija u obzir uzima samo interakciju elektrona koji se nalaze na isom čvoru, dok elektroni sa konačnom verovatnoćom mogu da preskoče sa jednog na drugi čvor.

Habardov hamiltonijan, koji se bazira na iznetim pretpostavkama glasi:

$$\hat{H} = \sum_{\boldsymbol{n},\,\boldsymbol{m}} \sum_{\sigma} t_{\boldsymbol{n}\boldsymbol{m}} \hat{C}^{\dagger}_{\boldsymbol{m},\sigma} \hat{C}_{\boldsymbol{m},\sigma} + U \sum_{\boldsymbol{m}} \hat{n}_{\boldsymbol{m},\uparrow} \hat{n}_{\boldsymbol{m},\downarrow}.$$
(1.1)

U gornjoj relaciji U predstavlja intenzitet Kulonove interakcije izmedju dva elektrona na istom čvoru a $t_{nm} = t(n - m)$ amplitudu verovatnoće prelaska elektrona sa čvora n na čvorm

kristalne rešetke¹. Fermi operator $\hat{C}^{\dagger}_{\boldsymbol{m},\sigma}(\hat{C}_{\boldsymbol{m},\sigma})$ kreira (anihilira) elektron sa projekcijom spina $\sigma = \uparrow, \downarrow$ na čvoru \boldsymbol{m} . $\hat{C}^{\dagger}_{\boldsymbol{m},\sigma}\hat{C}_{\boldsymbol{m},\sigma} = \hat{n}_{\boldsymbol{m},\sigma}$ je uobičajena oznaka za operator broja elektrona.

Prvi deo hamiltonijana, $\hat{H}_0 = \sum_{n,m} \sum_{\sigma} t_{nm} \hat{C}^{\dagger}_{n,\sigma} \hat{C}_{m,\sigma}$, opisuje preskok elektrona sa čvora na čvor kristalne rešetke. Pošto se ovaj član hamiltonijana dijagonalizuje Blohovim funkcijama, može se reći da \hat{H}_0 tretira elektrone kao talase. Izdvojen operator \hat{H}_0 opisuje dinamiku neinteragujućih elektrona [1].

Drugi sabirak, $\hat{U}_{ee} = U \sum_{m} \hat{n}_{m,\uparrow} \hat{n}_{m,\downarrow}$, opisuje interakciju dva elektrona na istom čvoru. \hat{U}_{ee} je dijagonalan u Vanijeovoj reprezentaciji. Ovakav opis u prvi plan ističe korpuskularna svojstva elektrona i opisuje ih kao čestice koje "žive" na pojedinim čvorovima rešetke [1].

Nezavisno jedan od drugog, \hat{H}_0 i \hat{U}_{ee} se lako dijagonalizuju i ni jedan od njih zasebno ne forsira bilo koju vrstu dugodometnog spinskog uredjenja. Ipak, njihova kombinacija dozvoljava veliki broj mogućih uredjenih konfiguracija. Više teorema reguliše postojanje (ili nepostojanje) magnetnog uredjenja u Habardovom modelu pod odredjenim uslovima [1, 7].

Postoje dva granična slučaja u kojima je analiza Habardovog modela pojednostavljena. U limesu $U/t_{nm} \ll 1$, Kulonova interakcija se može smatrati za malu smetnju. To omogućava primenu standardnog perturbacionog računa, u kojem se kao polazište uzimaju ravni talasi (tj. slobodni elektroni). Pomenuta aproksimacija odgovara režimu kolektiviziranog magnetizma [8]. Drugi, mnogo zanimiljiviji slučaj $t_{nm}/U \ll 1$, odnosi se na jako korelisani sistem. Njemu će biti posvećeno više pažnje u nastavku.

1.2 Jako korelisani sistemi i Hajzenbergov model

Kada U-član dominira u Habardovom hamiltonijanu elektronima je otežan prelazak sa čvora na čvor. Takav model opisuje jako korelisan sistem, jer \hat{U}_{ee} dopušta interakciju samo izmedju elektrona sa suprotno orijentisanim spinovima. Ponašanje jako korelisanog sistema u mnogome zavisi od još jednog parametra. To je ukupan broj elektrona u sistemu, N_e , odnosno broj elektrona po čvoru rešetke.

Prekrivanjem izolovanih s orbitala se formira energetska traka. Ako svaka orbitala sa sobom nosi po jedan elektron ($N_{\rm e} = N$, N je broj čvorova novonastale kristalne rešetke), valentna traka je polupopunjena i za očekivati je da se kristal ponaša kao provodnik. Uzimanjem u obzir Kulonove interakcije izmedju elektrona, fizička slika se komplikuje jer dolazi do cepanja jedinstvene trake na dve (tzv. dve Habardove pod-trake, videti Sl. 1).

¹Ovi matrični elementi se mogu lako povezati sa $\epsilon(\boldsymbol{k})$, kinetičkom energijom elektrona u Blohovoj slici: $t_{\boldsymbol{n}\boldsymbol{m}} = \frac{1}{N}\sum_{\boldsymbol{k}} \epsilon(\boldsymbol{k}) \exp[\mathrm{i} \, \boldsymbol{k} \cdot (\boldsymbol{n} - \boldsymbol{m})]$

Sl. 1: Cepanje jedinstvene s - trake, nastale preklpanjem s - orbitala, na dve, usled interakcije U. Zbog energetskog procepa širine U, kristal postaje Motov izolator. Osenčeni delovi zona predstavljaju zauzeta stanja (prema [3]).

Stanja sa nižom energijom su rezervisana za elektrone koji pojedinačno okupiraju odredjeni čvor. Višu energijsku zonu popunjavaju elektroni koji dospevaju na čvor već zauzet od strane drugog elektrona. Zbog toga se Fermijev nivo nalazi izmedju dve novonastale podtrake i kristal sa polupopunjenom *s*-trakom iz metalne prelazi u fazu tzv. Motovog (Mott) izolatora [6].

Jaka Kulonova interakcija može potpuno da onemogući prelazak elektrona sa čvora na čvor $(t_{nm} \sim \Delta(n - m))$. Pri $N_{\rm e} = N$, u osnovnom stanju sistema se nalazi po jedan elektron na svakom čvoru. Orijentacija spinova tih elektrona je proizvoljna jer je $\hat{U}_{\rm ee} = 0$. Stepen degeneracije osnovnog stanja tada iznosi 2^N .

Kada su i t_{nm} i U različiti od nule, elektroni mogu da se kreću kroz kristal i degeneracija osnovnog stanja se ukida. Može se pokazati [5, 7, 9] da je u polupopunjenom kristalu ($N_{\rm e} = N$), pri $t_{nm}/U \ll 1$, Habardov hamiltonijan ekvivalentan sledećem efektivnom hamiltonijanu :

$$\hat{H}_{\text{eff}} = \frac{1}{2} \sum_{\boldsymbol{n}, \, \boldsymbol{m}} J_{\boldsymbol{n}\boldsymbol{m}} \, \hat{\boldsymbol{s}}_{\boldsymbol{n}} \cdot \hat{\boldsymbol{s}}_{\boldsymbol{m}}, \tag{1.2}$$

pri čemu gornja suma po n i m ide po svim čvorovima posmatrane rešetke. U jednačini (1.2) se pojavljuju operatori spina \hat{s}_n pojedinačnih elektrona (S = 1/2), lokalizovani na datim čvorovima kristalne rešetke, dok je konstanta superizmene definisana kao:

$$J_{nm} = 4 \frac{t_{nm}^2}{U}.$$
(1.3)

Superizmena je virtuelni proces koji se odvija u dve etape. U prvoj, elektron prelazi na drugi čvor i tako snižava svoju kinetičku energiju. U drugoj, jedan od elektrona se vraća na prazan čvor. Kao ukupan rezultat superizmene, spinovi sa čvorova koji su učestvovali u procesu mogu zadržati orijentaciju ili biti zamenjeni (videti Sl. 2). Ovakav proces je moguć samo ako su spinovi pomenutih elektrona antiparalelno orijentisani. Ta činjenica je u efektivnom hamiltonijanu naglašena kroz uslov $J_{nm} > 0$, koji forsira antiferomagnetno uredjenje. Sa porastom temperature, odstupanje od uredjene konfiguracije se sve više povećava i na kritičnoj temperaturi (Nelova temperatura, T_N) kristal prelazi u para-fazu [5].

Hamiltonijan iz jednačine (1.2), koji opisuje sistem lokalizovanih spinova, poznat je pod nazivom Hajzenbergov (Heisenberg) hamiltonijan. Značajna osobina Hajzenbergovog hamiltonijana (1.2) je njegova kontinualna simetrija u odnosu na proizvoljnu rotaciju spinskih operatora u prostoru (hamiltonijan poseduje SO(3) simetriju). Kod realnih jedinjenja se javlja znatno bogatija zonska struktura nego što je idealizovana, nastala prekrivanjem s orbitala. Konkretno, kod prelaznih metala, javlja se nepopunjena 3d orbitala. Tada postoji više nesparenih elektrona (tj. spinova) na svakom čvoru. Prema Hundovom pravilu [5], najnižu energiju poseduje stanje sa maksimalnom vrednošću z projekcije spina.

Sl. 2: Efekat superizmene (prema [6]): elektroni paralelnih spinova (a) ne učestvuju u virtuelnim procesima. Za razliku od njih, elektroni sa antiparalelnim spinovima skakanjem na susedne atome snižavaju svoju kinetičku energiju. Na kraju procesa, spinovi elektrona mogu zadržati istu orijentaciju [slučaj (b)], ili može doći do zamene orijentacije spinova[slučaj (c)].

Tako se, za kristal sa h nesparenih elektrona na čvoru, može napisati sledeći Hajzenbergov Hamiltonijan [5, 10]

$$\hat{H} = \frac{1}{2} \sum_{\boldsymbol{n}, \, \boldsymbol{m}} J_{\boldsymbol{n}\boldsymbol{m}} \, \hat{\boldsymbol{S}}_{\boldsymbol{n}} \cdot \hat{\boldsymbol{S}}_{\boldsymbol{m}}, \tag{1.4}$$

gde je $\hat{\mathbf{S}}_{n}$ spinski operator za S = h/2 a koeficijenti J_{nm} imaju komplikovaniju strukturu nego za slučaj S = 1/2 (videti [5]).

Hamiltonijan (1.4) čini polazište prilikom proučavanja sistema lokalizovanih spinova². Opšte rešenje Hajzenbergovog modela postoji samo u slučaju jednodimenzionog lanca za spin S = 1/2[5, 11] a za njegovu primenu na 2 i 3D sisteme su razvijeni brojni aproksimativni postupci [5, 7, 9, 12], kao i numeričke simulacije [13]. Neki od približnih postupaka su opisani u tekstu i primenjeni na manganove halogenide, specijalno na jedinjenje Rb₂MnCl₄.

1.3 Osnovno stanje antiferomagneta i spinski talasi

Prema klasičnoj definiciji, antiferomagnet je sistem koji se sastoji od dve (ili više) podrešetki, tako da najbliži susedi pripadaju različitim podrešetkama. Neka spinovi sa a podrešetke dominantno pokazuju u +z a spinovi sa b podrešetke u -z pravcu. Radi kasnije SW analize, kao i

 $^{^2}$ Sličan hamiltonijan se koristi prilikom opisa feromagnetnih materijala

primene metoda GF, poželjno je hamiltonijan (1.4) izraziti pomoću \hat{S}^{\pm} operatora. Pretpostavljajući da dominantni doprinos potiče od interakcije izmedju najbližih suseda, hamiltonijan (1.4) postaje:

$$\hat{H} = J \sum_{\boldsymbol{n} \in a} \sum_{\boldsymbol{\delta}} \left[\frac{1}{2} \left(\hat{S}_{\boldsymbol{n}}^{+}(a) \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}}^{-}(b) + \hat{S}_{\boldsymbol{n}}^{-}(a) \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}}^{+}(b) \right) + \hat{S}_{\boldsymbol{n}}^{z}(a) \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}}^{z}(b) \right],$$
(1.5)

pri čemu je δ vektor koji spaja u
očeni čvor sa najbližim susedima.

Konfiguracija, u kojoj svi spinovi a podrešetke leže duž +z pravca a spinovi b podrešetke duž -z pravca predstavlja osnovno stanje klasičnog antiferomagneta i naziva se Nelovo (Néel) stanje [6, 11]

$$|\psi\rangle^{\text{Nel}} = \prod_{\boldsymbol{n}\in a} |S, S^z = S\rangle_{\boldsymbol{n}} \prod_{\boldsymbol{m}\in b} |S, S^z = -S\rangle_{\boldsymbol{m}}.$$
(1.6)

Korektna SW analiza (tj. postupak bozonizacije) zahteva postojanje jedinstvene ose kvantizacije. Ovaj problem se može rešiti unitarnom transformacijom [7, 11] koja se sastoji u rotaciji b podrešetke oko x ose za 180°, odnosno zamenom:

$$\hat{S}^{\pm}_{\boldsymbol{m}}(b) \to +\hat{S}^{\mp}_{\boldsymbol{m}}(b), \qquad \hat{S}^{z}_{\boldsymbol{m}}(b) \to -\hat{S}^{z}_{\boldsymbol{m}}(b).$$
 (1.7)

Koristeći (1.7), Hamiltonijan (1.5) prelazi u

$$\hat{H} = J \sum_{\boldsymbol{n} \in a} \sum_{\boldsymbol{\delta}} \left[\frac{1}{2} \left(\hat{S}^{+}_{\boldsymbol{n}}(a) \hat{S}^{+}_{\boldsymbol{n}+\boldsymbol{\delta}}(b) + \hat{S}^{-}_{\boldsymbol{n}}(a) \hat{S}^{-}_{\boldsymbol{n}+\boldsymbol{\delta}}(b) \right) - \hat{S}^{z}_{\boldsymbol{n}}(a) \hat{S}^{z}_{\boldsymbol{n}+\boldsymbol{\delta}}(b) \right],$$
(1.8)

dok se za Nelovo stanje dobija

$$|\psi\rangle^{\text{Nel}} \to \prod_{\boldsymbol{n} \in a} |S, S^z = S\rangle_{\boldsymbol{n}} \prod_{\boldsymbol{m} \in b} |S, S^z = S\rangle_{\boldsymbol{m}}.$$
(1.9)

Vidi se da u novom koordinatnom sistemu (tzv. lokalni koordinatni sistem) Nelovo stanje izgleda kao feromagnetno. Takodje, jasno je da zbog prisustva članova $\hat{S}_{n}^{-}(a)\hat{S}_{n+\delta}^{-}(b)$ Nelovo stanje nije osnovno stanje Hajzenbergovog antiferomagneta. Pravo osnovno stanje antiferomagneta se odlikuje kvantnim fluktuacijama (odstupanjima od Nelovog stanja), koje se, usled strukture hamiltonijana (1.8) prenose kroz celu rešetku. Ukoliko ne bude drugačije naglašeno, sve jednačine će biti napisane u lokalnom koordinatnom sistemu.

Kao parametar uredjenosti koji karakteriše AFM fazu se koristi magnetizacija podrešetke α ($\alpha = a, b$), koja se definiše na sledeći način:

$$\langle \hat{S}^{z}(\alpha) \rangle = N_{\alpha}^{-1} \sum_{\boldsymbol{n} \in \alpha} \langle \hat{S}_{\boldsymbol{n}}^{z}(\alpha) \rangle, \qquad (1.10)$$

gde je N_{α} broj čvorova poderšetke. Kvantne fluktuacije snižavaju vrednost magnetizacije podrešetke u osnovnom stanju (videti odeljke 3.2 i 4.1.2). Veća odstupanja se javljaju u niskodimenzionim sistemima, pri manjim vrednostima spina. Kod dvodimenzionih sistema, za S = 1/2, dolazi do redukcije parametra uredjenosti u osnovnom stanju i do 37 % [14].

Osnovno stanje antiferomagneta nije poznato. Zbog toga se pri proučavanju osobina antiferomagneta na niskim temperaturama kreće od Nelovog stanja, dok je dinamika spinskog sistema opisana malim odstupanjima od $|\psi\rangle^{\text{Nel}}$. Utemeljenost ovog postupka se zasniva na nekoliko činjenica.

Pre svega, vrednosti za magnetizaciju podrešetke na apsolutnoj nuli i energiju osnovnog stanja, dobijeni na osnovu SW teorije, slažu se sa rezultatima egzaktnih dijagonalizacija i numeričkih simulacija za hamiltonijan (1.4) [9]. Takodje, postoji dobro slaganje izmedju predvidjanja SW teorije i eksperimentalnih vrednosti za niz fizičkih veličina (videti odeljak 3). Konačno, tip spinske konfiguracije antiferomagnetne rešetke u osnovnom stanju je predmet Maršalove (Marshall) teoreme [7, 9]. Ukupan spin antiferomagnetne rešetke se definiše kao:

$$\hat{\boldsymbol{S}}_{\text{tot}} = \sum_{\boldsymbol{n} \in a} \hat{\boldsymbol{S}}_{\boldsymbol{n}}(a) + \sum_{\boldsymbol{m} \in b} \hat{\boldsymbol{S}}_{\boldsymbol{m}}(b) = \sum_{\alpha} \sum_{\boldsymbol{n} \in \alpha} \hat{\boldsymbol{S}}_{\boldsymbol{n}}(\alpha).$$
(1.11)

Prema Maršalovoj teoremi [7, 9], osnovno stanje antiferomagneta, za jednak broj čvorova u podrešetkama *a* i *b* mora biti singletno $(\hat{\mathbf{S}}_{tot}|\psi\rangle^{AFM} = 0$, gde je $|\psi\rangle^{AFM}$ pravo osnovno stanje antiferomagneta). S obzirom da je Nelovo stanje singletno (u nerotiranom koordinatnom sistemu), Maršalova teorema je zadovoljena.

Za uvodjenje pojma spinskog talasa potrebno je Hajzenbergov hamiltonija napisati pomoću boze operatora. Prvo se definiše operator $\hat{n}_{m}(\alpha)$, koji na datom čvoru meri odstupanje spina od Nelove konfiguracije:

$$\hat{\alpha}_{\boldsymbol{n}}^{\dagger}\hat{\alpha}_{\boldsymbol{n}} = S - \hat{S}_{\boldsymbol{n}}^{z}(\alpha), \qquad \alpha = a, b, \tag{1.12}$$

gde je $\hat{\alpha}^{\dagger}_{n}(\hat{\alpha}_{n})$ boze operator koji kreira (anihilira) kvant pobudjenja lokalizovanog spina, na datoj podrešetci. Operatori \hat{S}^{\pm} se mogu dovesti u vezu sa $\hat{\alpha}^{\dagger}_{n}$ i $\hat{\alpha}_{n}$ pomoću transformacije Hoštajna i Primakova (Holstein-Primakoff) [7]:

$$\hat{S}_{\boldsymbol{m}}^{+}(\alpha) = \sqrt{2S}\sqrt{1 - \frac{\hat{n}_{\boldsymbol{m}}(\alpha)}{2S}}\,\hat{\alpha}_{\boldsymbol{m}},\tag{1.13}$$

$$\hat{S}_{\boldsymbol{m}}^{-}(\alpha) = \sqrt{2S} \,\hat{\alpha}_{\boldsymbol{m}}^{\dagger} \sqrt{1 - \frac{\hat{n}_{\boldsymbol{m}}(\alpha)}{2S}}.$$
(1.14)

Linearna teorija spinskih talasa se zasniva na razvoju korene funkcije u red:

$$\sqrt{1 - \frac{\hat{n}_{\boldsymbol{m}}(\alpha)}{2S}} = 1 - \frac{\hat{n}_{\boldsymbol{m}}(\alpha)}{4S} - \frac{\hat{n}_{\boldsymbol{m}}^2(\alpha)}{32S^2} - \dots$$
(1.15)

i zadržavanju na prvom članu, tj. na aproksimaciji korene funkcije jedinicom (tzv. Blohova aproksimacija). Pomenuto uprošćenje je opravdano samo dok je $\langle \hat{n}_{m} \rangle \ll 2S$. To odgovara niskim temperaturama, kad je odstupanje sistema od $|\psi\rangle^{\text{Nel}}$ srazmerno malo [9]. Na ovaj način se dobijaju sledeći izrazi za \hat{S}^{\pm} operatore

$$\hat{S}_{\boldsymbol{m}}^{+}(\alpha) \approx \sqrt{2S} \, \hat{\alpha}_{\boldsymbol{m}},
\hat{S}_{\boldsymbol{m}}^{-}(\alpha) \approx \sqrt{2S} \, \hat{\alpha}_{\boldsymbol{m}}^{\dagger}.$$
(1.16)

Zamenom (1.12) i (1.16) u (1.4) i zanemarivanjem članova koji sadrže proizvod četiri bozeoperatora³, prelaskom u impulsni prostor i primenom Bogoljubovljeve transformacije, dobija se dijagonalni hamiltonijan oblika (videti odeljak 3.1):

$$\hat{H}_{\rm SW} = \sum_{\alpha} \sum_{\boldsymbol{k}} \omega^{\alpha}(\boldsymbol{k}) \, \hat{\mathcal{N}}_{\boldsymbol{k}}^{\alpha} + \text{const.}$$
(1.17)

³Zanemaremi članovi opisuju rasejanje spinskih talasa. Na niskim temperaturama je broj magnona mali pa se njihova medjusobna interakcija može zanemariti. Linearna teorija spinskih talasa tretira magnone kao nezavisne čestice. Na visokim temperaturama to svakako nije slučaj.

Gornji Hamiltonijan dijagonalan po Bogoljubovljevim boze operatorima. Osnovno stanje sistema je definisano kao vakuum boze čestica ($\hat{\mathcal{N}}_{\boldsymbol{k}}^{\alpha} = 0$). Elementarna ekscitacija sistema (tj. kvant spinskog talasa) poseduje energiju $\omega^{\alpha}(\boldsymbol{k})$ i naziva se magnonom. Pri tome, usled Bogoljubovljeve transformacije, vakuumu sistema odgovara $\langle \hat{n}_{\boldsymbol{k}}^{\alpha} \rangle_{0} \neq 0$. Konačna vrednost za $\langle \hat{n}_{\boldsymbol{k}}^{\alpha} \rangle_{0}$ govori o postojanju kvantnih fluktuacija u osnovnom stanju sistema, što rezultuje smanjenjem magnetizacije podrešetke na T = 0K ($\langle \hat{S}^{z}(\alpha) \rangle_{0} < S$). Pored teorijskih predvidjanja [14], snižavanje vrednosti magnetizacije u osnovnom stanju je potvrdjeno i eksperimentalno [15]. Detalji proračuna (vrednosti za $\langle \hat{n}_{\boldsymbol{k}}^{\alpha} \rangle_{0}$, tj. $\langle \hat{S}^{z}(\alpha) \rangle_{0}$) zavise od strukture posmatranog jedinjenja, odnosno odgovarajućeg hamiltionijana.

1.4 Grinove funkcije, Tjablikovljevo i Kalenovo dekuplovanje

Metod Grinovih funkcija (GF) daje dobro slaganje sa eksperimentalnim rezultatima kako na niskim, tako i na visokim temperaturama. Glavna primena GF se zasniva na korišćenju spektralne teoreme koja omogućava računanje srednjih vrednosti proizvoda operatora [16]:

$$\langle \hat{B}\hat{A} \rangle = \lim_{\mu \to 0} \int_{-\infty}^{\infty} \mathrm{d}\omega \frac{\langle \langle \hat{A} | \hat{B} \rangle \rangle_{\omega + \mathrm{i}\mu} - \langle \langle \hat{A} | \hat{B} \rangle \rangle_{\omega - \mathrm{i}\mu}}{\exp[\beta \, \omega] - 1}, \qquad \beta = 1/T, \tag{1.18}$$

gde je

$$\langle \langle \hat{A} | \hat{B} \rangle \rangle_{\omega} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}(t - t') \theta(t - t') \langle [\hat{A}(t), \hat{B}(t')] \rangle \mathrm{e}^{\mathrm{i}\omega(t - t')}.$$
(1.19)

Grinova funkcija $\langle \langle \hat{A} | \hat{B} \rangle \rangle_{\omega}$ zadovoljava sledeću jednačinu kretanja [12, 16]:

$$\omega \langle \langle \hat{A} | \hat{B} \rangle \rangle_{\omega} = \frac{\mathrm{i}}{2\pi} \langle [\hat{A}, \hat{B}] \rangle + \langle \langle [\hat{A}, \hat{H}] | \hat{B} \rangle \rangle_{\omega}.$$
(1.20)

U teoriji GF primenjenih na Hajzenbergov antiferomagnet od najvećeg interesa je korelaciona funkcija $\langle \hat{S}_{n}^{-}(a)\hat{S}_{n}^{+}(a)\rangle \equiv \langle \hat{S}^{-}(a)\hat{S}^{+}(a)\rangle$. Pomenuti korelator se nalazi pomoću Grinove funkcije

$$G_{\boldsymbol{n}\boldsymbol{m}}^{+-}(\omega) = \langle \langle \hat{S}_{\boldsymbol{n}}^{+}(a) | \hat{S}_{\boldsymbol{m}}^{-}(a) \rangle \rangle_{\omega}, \qquad (1.21)$$

koja se odredjuje iz sistema jednačina tipa (1.20), uz korišćenje Hajzenbergovog hamiltonijana za dato jedinjenje.

Specifičnost ovog pristupa je pojava sve složenijih Grinovih funkcija, kao posledica komutatora $[\hat{A}, \hat{H}]$ sa desne strane jednačine (1.20). Kod primene GF na Hajzenbergov antiferomagnet, pojavljuju se GF strukture

$$\langle\langle \hat{S}_{\boldsymbol{n}}^{z} \hat{S}_{\boldsymbol{m}}^{\pm} | \hat{B}_{\boldsymbol{r}} \rangle \rangle_{\omega},$$
 (1.22)

gde je \hat{B} jedan od \hat{S}^{\pm} operatora. Prisustvo složenijih GF (koje sadrže proizvode tri operatora) u jednačinama za polazne onemogućava da se pomenuti sistemi reše. Više GF je potrebno eliminisati, odnosno izraziti ih pomoću dvooperatorskih funkcija. U tekstu su razmatrane dve aproksimacije za eliminisanje složenijih GF.

Prva aproksimacija predstavlja Tjablikovljevo dekuplovanje [12, 16] ili aproksimaciju haotičnih faza (Random Phase Approximation, RPA). Ona se sastoji u zanemarivanju korelacija izmedju transferzalnih komponenti spina sa jednog čvora i z-komponenti spina sa susednog čvora:

$$\langle\langle \hat{S}_{\boldsymbol{n}}^{z} \hat{S}_{\boldsymbol{m}}^{\pm} | \hat{B}_{\boldsymbol{r}} \rangle \rangle_{\omega} \longrightarrow \langle \hat{S}^{z} \rangle \langle\langle \hat{S}_{\boldsymbol{m}}^{\pm} | \hat{B}_{\boldsymbol{r}} \rangle \rangle_{\omega}, \qquad \boldsymbol{n} \neq \boldsymbol{m}$$

$$(1.23)$$

jer zbog translatorne invarijantnosti sistema srednja vrednost $\langle \hat{S}^z \rangle$ ne zavisi od izbora čvora podrešetke⁴. Ovako uvedeno $\langle \hat{S}^z \rangle$ se poklapa sa definicijom magnetizacije podrešetke iz (1.10). Kao rezultat Tjablikovljevog dekuplovanja, polazni sistemi GF se zatvaraju i moguće je odrediti energije elementarnih ekscitacija sistema⁵, koje, za razliku od SW magnona, sadrže temperaturnu zavisnost (videti odeljak 4.1.1). Tjablikovljevo dekuplovanje dobro opisuje temperaturno ponašanje magnetizacije (odeljak 4.1.2) i daje vrednost za kritičnu temperaturu veoma blisku eksperimentalnoj (odeljak 4.1.3).

Kalenovo dekuplovanje (Callen Approximation, CA) je zamišljeno kao poboljšanje Tjablikovljevog postupka [17, 18]. U CA se korelacije izmedju \hat{S}^{\pm} i \hat{S}^{z} sa različitih čvorova, u lokalnom koordinatnom sistemu, za spinove sa antiferomagnetnom interakcijom, uračunavaju na sledeći način:

$$\langle\langle \hat{S}_{\boldsymbol{n}}^{z} \hat{S}_{\boldsymbol{m}}^{\pm} | \hat{B}_{\boldsymbol{r}} \rangle\rangle_{\omega} \longrightarrow \langle \hat{S}^{z} \rangle \langle\langle \hat{S}_{\boldsymbol{m}}^{\pm} | \hat{B}_{\boldsymbol{r}} \rangle\rangle_{\omega} - \alpha \langle \hat{S}_{\boldsymbol{n}}^{\pm} \hat{S}_{\boldsymbol{m}}^{\pm} \rangle\langle\langle \hat{S}_{\boldsymbol{n}}^{\mp} | \hat{B}_{\boldsymbol{r}} \rangle\rangle_{\omega}, \qquad \boldsymbol{n} \neq \boldsymbol{m}$$
(1.24)

dok je za feromagnetno kuplovane spinove Kalenova aprosimacija data sa

$$\langle\langle \hat{S}_{\boldsymbol{n}}^{z} \hat{S}_{\boldsymbol{m}}^{+} | \hat{B}_{\boldsymbol{r}} \rangle\rangle_{\omega} \longrightarrow \langle \hat{S}^{z} \rangle \langle\langle \hat{S}_{\boldsymbol{m}}^{+} | \hat{B}_{\boldsymbol{r}} \rangle\rangle_{\omega} - \alpha \langle \hat{S}_{\boldsymbol{n}}^{-} \hat{S}_{\boldsymbol{m}}^{+} \rangle\langle\langle \hat{S}_{\boldsymbol{n}}^{+} | \hat{B}_{\boldsymbol{r}} \rangle\rangle_{\omega}. \qquad \boldsymbol{n} \neq \boldsymbol{m}$$
(1.25)

Pri tome je

$$\alpha = \frac{\langle \hat{S}^z \rangle}{2S^2} \tag{1.26}$$

parametar dekuplovanja koji je uveo Kalen⁶. Na visokim temperaturama (blizu kritične), $\alpha \rightarrow 0$ i Kalenovo dekuplovanje se svodi na RPA. Medjutim, najveće razlike izmedju CA i RPA se pojavljuju baš u okolini $T_{\rm N}$. U odeljcima 4.1 i 4.2 je pokazano da bolje slaganje sa eksperimentalnim vrednostima, u slučaju Rb₂MnCl₄ daje RPA (videti i [19]). To je u skladu sa opštom analizom iznetom u [12].

1.5 Mermin-Vagnerova teorema, Goldstonovi bozoni i spinska anizotropija

Izotropni Hajzenbergov antiferomagnet (HAFM) na kvadratnoj rešetki, za spin $S \ge 1$, poseduje dugodometno uredjenje na apsolutnoj nuli [9]. Situacija je znatno drugačija pri $T \ne 0$. Na bilo kojoj konačnoj temperaturi izotropni 2D HAFM ne može posedovati magnetizaciju podrešetke u odsustvu spoljašnjeg magnetnog polja [20]. Navedeni stav, poznat pod nazivom Mermin-Vagnerova (Mermin, Wagner) toerema, odnosi se na sve modele sa kontinualnom simetrijom a ne samo na Hajzenbergov Hamiltonijan [6]. Hajzenbergov hamiltonijan (1.4), tj. (1.8) ima

⁴U lokalnom koordinatnom sistemu u odsustvu spoljašnjeg polja je $\langle \hat{S}^z(a) \rangle = \langle \hat{S}^z(b) \rangle \equiv \langle \hat{S}^z \rangle$

⁵Energije elementarnih ekscitacija sistema su poolovi GF

 $^{^6}$ Ne treba mešati Kalenov parametar α sa ranije uvedenim indeksom koji označava podrešetke ai b

višu simetriju od simetrije osnovnog stanja antiferomagneta, koje je invarijantno u odnosu na rotaciju oko z ose (SO(2) simetrija). Kao posledica spontanog narušenja simetrije javljaju se Goldstonovi bozoni [6], magnoni čija energija teži nuli ($\omega^{\alpha}(\mathbf{k}) \to 0$) pri $|\mathbf{k}| \to 0$.

Za nastajanje Goldstonovih bozona, koji opisuju elementarne ekscitacije sistema, potreban je iščezavajuće mali iznos energije. Čim sistem izadje iz osnovnog u stanje sa $T \neq 0$, nastaje proizvoljan broj Goldstonovih bozona. U 2D sistemu (u 1D sistemu takodje), nastali Goldstonovi bozoni uništavaju dugodometno uredjenje.

Da bi se pokazlo kako je magnetne osobine manganovih halogenida moguće objasniti dvodimenzionim Hajzenbergovim modelom, potrebno je na odredjen način sniziti simetriju hamiltonijana (1.8). Prethodno definisani izotropni Hajzenbergov hamiltonijan je idealizacija. U realnim jedinjenjima se uvek javlja anizotropija, kao posledica dipol-dipol interakcije [13]. Ranije teorijske studije [21, 22, 23], koje su dipol-dipol interakciju uračunavale eksplicitnim dodavanjem dipol-dipol operatora u hamiltonijan, dale su rezultate koji se ne slažu sa eksperimentom⁷.

Drugi prilaz problemu anizotropije hamiltonijana je uvodjenje fenomenološkog parametra η , koli definiše laku osu magnetizacije duž +z pravca. Postojanje XXZ anizotropije (Izingov tip anizotropije) snižava SO(3) simetriju hamiltonijana. Anizotropija otvara gep u magnonskom spektru što dovodi do nestajanja Goldstonovih magnona, pa je formiranje spontane magnetizacije omogućeno (videti odeljke 3 i 4). Osim toga, eksperimentalno je ustanovljeno da model sa XXZ tipom anizotropije dobro opisuje manganove halogenide [24].

Hamiltonijan sa XXZ spinskom anizotropijom je sledećeg oblika:

$$\hat{H} = J \sum_{\boldsymbol{n} \in a} \sum_{\boldsymbol{\delta}} \left[\frac{1}{2} \left(\hat{S}_{\boldsymbol{n}}^{+}(a) \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}}^{+}(b) + \hat{S}_{\boldsymbol{n}}^{-}(a) \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}}^{-}(b) \right) - \eta \, \hat{S}_{\boldsymbol{n}}^{z}(a) \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}}^{z}(b) \right], \tag{1.27}$$

pri čemu je

$$\eta > 1. \tag{1.28}$$

Eksperimentima na kvazi dvodimenzionim Hajzenbergovim antiferomagnetima (Q2D HAFM) je utvrdjeno odsustvo magnonske disperzije duž z - ose [25, 26, 27]. Odnosno, eksperimenti pokazuju da je interakcija izmedju spinova koji se nalaze unutar odredjenih ravni za nekoliko redova veličine jača. Trodimenzioni karakter jedinjenja dozvoljava postojanje spontane magnetizacije na konačnim temperaturama. Medjutim, u radu (odeljak 3.2) je pokazano da najbolje slaganje sa eksperimentalnim vrednostima relativnu magnetizaciju na niskim temperaturama daje upravo 2D model. Spontana magnetizacija na konačnim temperaturama je posledica XXZ anizotropije Hamiltonijana [19].

 $^{^7\}mathrm{npr.}$ Izračunata Nelova temperatura se razlikuje od eksperimentalne za10%

Glava 2

Manganovi halogenidi i Hajzenbergov model

Tipičan predstavnik manganovih halogenida je Rb₂MnCl₄. U toj grupi jedinjenja se nalaze i Rb₂MnF₄, Cs₂MnCl₄ i K₂MnF₄. Pmenuti halogenidi spadaju u jednu širu klasu jedinjenja A₂MX₄, gde je A alkalni metal, M metal grupe gvoždja i X halogeni element. Sva jedinjenja kristališu u istoj strukturi i njihove magnetne osobine se veoma dobro mogu opisati Hajzenbergovim hamiltonijanom, u slučaju mangana sa spinom S = 5/2. Modelni hamiltonijan, koji se zasniva na eksperimentalnim činjenicama iznetim u daljem tekstu, predstavlja osnovu za teorijsko ispitivanje magnetnog sistema. Hamiltonijan sadrži kako spinsku, tako i prostornu anizotropiju. Spinska anizotropija je definisana parametrom η , dok se prostorna ogleda u postojanju različitih integrala superizmene duž različitih kristalografskih pravaca. Pri tome je interakcija izmedju spinova unutar x-y ravni dominantna, dok je integral superizmene koji povezuje spinove iz susednih ravni za nekoliko redova veličine manji. Spinska anizotropija ima vrednost vrlo blisku jedinici ($\eta \simeq 1 + 5 * 10^{-3}$). Integral superizmene medju najbližim susedima u ravni J i spinska anizotropija η se odredjuju pomoću eksperimentalnih podataka o magnonskoj disperziji, dok se medjuravanski integral superizmene J_{\perp} tretira kao parametar koji definiše dimenzionost magnetnie rešetke.

2.1 Kristalografska i magnetna struktura Rb_2MnCl_4

U eksperimentima sa rasejanjem neutrona [28, 29] je utvrdjeno da Rb₂MnCl₄ kristališe u strukturi tipa K₂NiF₄. Reč je o tetragonalnoj strukturi, sa dva molekula po jediničnoj ćeliji (videti Sl. 3). Parametri rešetke su $\tilde{a} = \tilde{b} = 5.05 \cdot 10^{-10}$ m, $\tilde{c} = 16.18 \cdot 10^{-10}$ m. Svaki Mn²⁺ jon se nalazi u centru oktaedra i okružena je sa po 6 Cl⁻ jona, koji su smešteni u oktaedarska temena. Oktaedri su rasporedjeni u trodimenzione rešetke, tako da Mn²⁺ joni sačinjavaju kvadratne mreže unutar x y ravni. Duž z pravca koji spaja temena susednih oktaedara, nalaze se dva Rb⁺ i dva Cl⁻ jona.

Elektronske konfiguracije Rb^+ i Cl^- jona odgovaraju popunjenim ljuskama kriptona i argona, respektivno. Zbog toga oni ne doprinose magnetizmu posmatranog kristala. Nosioci magnetizma jedinjenja Rb_2MnCl_4 su joni Mn^{2+} .

Mangan pripada prelaznim elementima grupe gvoždja. Njegova elektronska konfiguracija

je

 $[\operatorname{Ar}](3d)^5(4s)^2.$

Jon Mn^{2+} sa polupopunjenom 3*d* ljuskom nastaje otpuštanjem dva 4*s* elektrona. Ukupni orbitalni moment polupopunjene ljuske je jednak nuli ($\hat{\boldsymbol{L}} = \sum_{i=1}^{5} \hat{\boldsymbol{l}}_{i} = 0$). Shodno Hundovom pravilu, osnovno stanje jona Mn^{2+} je ⁶D. To znači da je na svakom čvoru kristalne rešetke, koji zauzima manganov jon, lokalizovan spin S = 5/2.

Sl. 3: Kristalografska elementarna ćelija Rb₂MnCl₄

Eksperimenti pokazuju da postoji jako antiferomagnetno kuplovanje izmedju spinova unutar x y –ravni. Vrednost ovog integrala superizmene (dalje izmene) će biti označena ja J.

Uzastopne ravni duž z –pravca su smaknute za $ae_y/2$. Zbog toga svaki spin ima po četiri fero i antiferomagnetno orijentisana suseda u dve bliske ravni. Pod pretpostavkom da interakcija izmene zavisi samo od rastojanja izmedju čvorova rešetke, biće uzeto da je intenzitet fero i antiferomagnetnog kuplovanja izmedju najbližih suseda iz uzastopnih ravni isti (videti Sl. 4).

Sl. 4: Magnetna elementarna ćelija Rb₂MnCl₄. Tačkasta linija označava integral superizmene unutar x y ravni J, dok isprekidana linija označava J_{\perp} . a i c su parametri elementarne ćelije koji definišu Briluenovu zonu ($a = \sqrt{2\tilde{a}}, c = \tilde{c}$)

U nastavku će ova konstanta interakcije biti označavana sa J_{\perp} . Superizmenska interakcija spinova iz susednih ravni se odvija kroz dva nemagnetna RbCl sloja, zbog čega je za nekoliko redova veličine slabija od unutarplanarnog kuplovanja $J (J_{\perp}/J \equiv \lambda_{\perp} \simeq 10^{-3}, 10^{-4})$ [13].

Spektar elementarnih ekscitacija je odredjen pomoću neelastičnog rasejanja neutrona pri T = 8K [28]. U tim eksperimentima je pokazano odsustvo disperzije duž z pravca za dve konkretne vrednosti \mathbf{k} ($\mathbf{k}_1 = (0.2\pi/a, 0, 0.5\pi/a), \mathbf{k}_2 = (0.3\pi/a, 0, 0.5\pi/a)$), dok izmerena vrednost za Nelovu temperaturu iznosi $T_{\rm N}^{\rm exp} = 56$ K. Eksperimentalno je konstatovano i postojanje procepa u magnonskom spektru. Njegova vrednost je $\omega(0) = 5.29$ cm⁻¹. U drugoj seriji eksperimenata [29], registrovano je postojanje anizotropije Izingovog tipa, koja je protumačena kao uzrok postojanja spontane mgnetizacije na konačnim temperaturama. Numerička vrednost koeficijenta anizotropije kod manganovih halogenida ($\eta - 1 \sim 1/200$) je eksperimentalno potvrdjena [24].

Treba pomenuti da postoji srodna klasa jedinjenja tipa perovskita AMX_3 (KNiF₃, KMnCl₃, itd). Osnovnu strukturnu jedinicu ovih kristala takodje sačinjavaju MX_6 oktaedri rasporedjeni u kubne rešetke. Ipak, magnetne osobine AMX_3 i A_2MX_4 jedinjenja se bitno razlikuju. Jedinjenja tipa perovskita se odlikuju postojanjem magnonske disperzije u sva tri Dekartova pravca, kao i antiferomafnetnim uredjenjem u 3 dimenzije. Jednom rečju, za njihov opis je potrebno koristiti 3DHAFM. Razlog tome je odsustvo nemagnetnih AX slojeva koji, kod A_2MX_4 jedinjenja razdvajaju aniferomagnetne ravni M^{2+} jona [30].

2.2 Modelni hamiltonijan

Hamiltonijan treba formulisati tako da se u prvi plan istakne dvodimenzioni karakter spinspin interakcija. Pri tome, radi opštije analize, biće uračunata i mnogo slabija interplanarna superizmenska interakciju. Kasniji SW tretman, kao i proračuni koji se zasnivaju na metodu GF, pokazaće da J_{\perp} , sve dok λ_{\perp} ne prelazi 10^{-3} , zanemarljivo utiče na magnetne osobine Rb₂MnCl₄.

Oosnovu hamiltonijana čini zbir medjusobno neinteragujućih antiferomagnetnih ravni sa spinskom anizotropijom (1.27):

$$\hat{H}_{2D} = J \sum_{(\boldsymbol{\rho},m)} \sum_{\boldsymbol{\delta}_{||}} \frac{1}{2} \left[\hat{S}^{+}_{(\boldsymbol{\rho},m)}(a) \hat{S}^{+}_{(\boldsymbol{\rho},m)+\boldsymbol{\delta}_{||}}(b) + \hat{S}^{-}_{(\boldsymbol{\rho},m)}(a) \hat{S}^{-}_{(\boldsymbol{\rho},m)+\boldsymbol{\delta}_{||}}(b) \right]
- J\eta \sum_{(\boldsymbol{\rho},m)} \sum_{\boldsymbol{\delta}_{||}} \hat{S}^{z}_{(\boldsymbol{\rho},m)}(a) \hat{S}^{z}_{(\boldsymbol{\rho},m)+\boldsymbol{\delta}_{||}}(b).$$
(2.1)

U gornjem izrazu je korišćena notacija po kojoj su koordinate spina u 3D kristalnoj rešetki odredjen pomoću vektora ρ iz x y ravni i položaja pripadne ravni, odredjenog sa mL:

$$\boldsymbol{m} = m_x a \boldsymbol{e}_x + m_y a \boldsymbol{e}_y + m L \boldsymbol{e}_z \equiv (\boldsymbol{\rho}, m), \qquad (2.2)$$

a m_x, m_y i m su celi brojevi. Vektor (ρ , m) prebrojava čvorove jedne podrešetke a δ_{\parallel} spaja uočeni čvor sa najbližim susedima unutar x y ravni.

Drugi sabirak opisuje antiferomagnetnu interakciju spinova koji pripadaju susednim $x\ y$ ravnima:

$$\hat{H}_{2} = J_{\perp} \sum_{(\boldsymbol{\rho},m)} \sum_{\boldsymbol{\delta}_{\perp}^{ab}} \frac{1}{2} \left[\hat{S}^{+}_{(\boldsymbol{\rho},m)}(a) \hat{S}^{+}_{(\boldsymbol{\rho},m)+\boldsymbol{\delta}_{\perp}^{ab}}(b) + \hat{S}^{-}_{(\boldsymbol{\rho},m)}(a) \hat{S}^{-}_{(\boldsymbol{\rho},m)+\boldsymbol{\delta}_{\perp}^{ab}}(b) \right]
- J_{\perp} \sum_{(\boldsymbol{\rho},m)} \sum_{\boldsymbol{\delta}_{\perp}^{ab}} \hat{S}^{z}_{(\boldsymbol{\rho},m)}(a) \hat{S}^{z}_{(\boldsymbol{\rho},m)+\boldsymbol{\delta}_{\perp}^{ab}}(b).$$
(2.3)

U hamiltonijanu (2.3) vektor δ^{ab}_{\perp} spaja antiferomagnetno povezane spinove iz susednih ravni. Pretpostavljeno je da ovaj tip interakcije ne poseduje spinsku anizotropiju.

Feromagnetna interakcija izmedju spinova iz susednih ravni je predstavljena trećim sabirkom:

$$\hat{H}_{3} = -\frac{J_{\perp}}{2} \sum_{\alpha} \sum_{(\boldsymbol{\rho},\mathrm{m})} \sum_{\boldsymbol{\delta}_{\perp}^{\alpha\alpha}} \frac{1}{2} \left[\hat{S}^{+}_{(\boldsymbol{\rho},\mathrm{m})}(\alpha) \hat{S}^{-}_{(\boldsymbol{\rho},\mathrm{m})+\boldsymbol{\delta}_{\perp}^{\alpha\alpha}}(\alpha) + \hat{S}^{-}_{(\boldsymbol{\rho},\mathrm{m})}(\alpha) \hat{S}^{+}_{(\boldsymbol{\rho},\mathrm{m})+\boldsymbol{\delta}_{\perp}^{\alpha\alpha}}(\alpha) \right]
- J_{\perp} \frac{1}{2} \sum_{\alpha} \sum_{(\boldsymbol{\rho},\mathrm{m})} \sum_{\boldsymbol{\delta}_{\perp}^{\alpha\alpha}} \hat{S}^{z}_{(\boldsymbol{\rho},\mathrm{m})}(\alpha) \hat{S}^{z}_{(\boldsymbol{\rho},\mathrm{m})+\boldsymbol{\delta}_{\perp}^{\alpha\alpha}}(\alpha), \qquad \alpha = a, b,$$
(2.4)

pri čemu $\delta_{\perp}^{\alpha\alpha}$ spaja najbliže susede iz uzastopnih ravni koji su povezani feromagnetno. Faktor 1/2 se pojavljuje iz razloga što se svaki feromagnetno povezani par spinova računa dvaput. Eventualno postojanje spinske anizotropije u ovom sabirku nije uzeto u obzir. Koristeći činjenicu da je $\delta_{\perp}^{\alpha\alpha} \neq 0$, hamiltonijan \hat{H}_3 se može uprostiti:

$$\hat{H}_{3} = -\frac{J_{\perp}}{2} \sum_{\alpha} \sum_{(\boldsymbol{\rho},\mathrm{m})} \sum_{\boldsymbol{\delta}_{\perp}^{\alpha\alpha}} \left[\hat{S}^{+}_{(\boldsymbol{\rho},\mathrm{m})}(\alpha) \hat{S}^{-}_{(\boldsymbol{\rho},\mathrm{m})+\boldsymbol{\delta}_{\perp}^{\alpha\alpha}}(\alpha) + \hat{S}^{z}_{(\boldsymbol{\rho},\mathrm{m})}(\alpha) \hat{S}^{z}_{(\boldsymbol{\rho},\mathrm{m})+\boldsymbol{\delta}_{\perp}^{\alpha\alpha}}(\alpha) \right]$$

$$\alpha = a, b, \qquad (2.5)$$

Konačno, interakciju antiferomagneta i spoljašnjeg magnetnog polja opisuje uobičajeni Zemanov član:

$$\hat{H}_{4} = -g\mu_{\rm B}\mathcal{H}\sum_{(\rho,{\rm m})} \left[\hat{S}^{z}_{(\rho,{\rm m})}(a) - \hat{S}^{z}_{(\rho,{\rm m})}(b)\right],\tag{2.6}$$

gde je $g \simeq 2$ Landeov g faktor elektrona, $\mu_{\rm B}$ Borov magneton a \mathcal{H} spoljašnje magnetno polje usmereno duž z ose.

Modelni hamiltonijan, koji je korišćen pri teorijskoj analizi Rb₂MnCl₄ je

$$\hat{H} = \hat{H}_{2D} + \hat{H}_2 + \hat{H}_3 + \hat{H}_4. \tag{2.7}$$

i sadrži spinsku i prostornu anizotroopiju. Hamiltonijan (2.7) opisuje trodimenzionu magnetnu strukturu (članovi (2.3) i (2.4)). Prisustvo prostorne anizotropije uz $\eta = 1$ dopušta postojanje Goldstonovih bozona (odeljci 3.1.2, i 4.1.1 i 4.2.1), ali je dugodometno uredjenje moguće u takvoj 3D strukturi (za 3D AFM ne važi Mermin-Vagnerova teorema). Medjutim, eksperimentalno posmatrana magnonska disperzija ne poseduje Goldstonov mod. Samo model sa spinskom anizotropijom korektno opisuje posmatrano jedinjenje. Granična vrednost $\lambda_{\perp} = 0$ odgovara 2DHAFM sistemu. Analiza iz odeljaka 3 i 4 će pokazati da je opravdano tretirati manganove halogenide kao 2DHAFM sa spinskom anizotropijom [19].

Glava 3

Analiza u aproksimaciji spinskih talasa

SW analiza predstavlja opšte prihvaćen metod za analizu Hajzenbergovog antiferomagneta na niskim temperaturama [5, 9, 15]. Dijagonalizacijom hamiltonijana kvadratnog po boze operatorima se nalazi magnonska disperzija. Poznavanjem energije magnona moguće je odrediti ponašanje magnetizacije u okolini apsolutne nule. Magnonska disperzija dobijena u SW pristupu ne pokazuje temperatursku zavisnost, što dovodi do značajnog precenjivanja vrenosti Nelove temperature. Pokazano je da postojanje Goldstonovog moda, ključnog za odsustvo dugodometnog uredjenja na konačnim temperaturama, zavisi samo od spinske a ne i od prostorne anizotropije. Takodje, ispravan oblik magnonskog spektra se dobija samo pri $\eta > 1$.

3.1 Spektar elementarnih ekscitacija

3.1.1 Dijagonalizacija hamiltonijana

Prvi korak ka odredjivanju magnonske disperzije je uvodjenje boze operatora u Blohovoj aproksimaciji (1.16), zajedno sa definicijom (1.12), u Hamiltonijan (2.7). Hamiltonijan bilinearan po boze-operatorima glasi:

$$\hat{H} \approx -\frac{S^2 N J z}{2} [\eta + 2\lambda_{\perp}] + JS \sum_{(\boldsymbol{\rho},\mathbf{m})} \sum_{\boldsymbol{\delta}_{||}} \left[\hat{a}_{(\boldsymbol{\rho},\mathbf{m})} \hat{b}_{(\boldsymbol{\rho},\mathbf{m})+\boldsymbol{\delta}_{||}} + \hat{a}_{(\boldsymbol{\rho},\mathbf{m})}^{\dagger} \hat{b}_{(\boldsymbol{\rho},\mathbf{m})+\boldsymbol{\delta}_{||}} \right]
+ JS \sum_{(\boldsymbol{\rho},\mathbf{m})} \sum_{\boldsymbol{\delta}_{||}} \left[\hat{a}_{(\boldsymbol{\rho},\mathbf{m})} \hat{a}_{(\boldsymbol{\rho},\mathbf{m})} + \hat{b}_{(\boldsymbol{\rho},\mathbf{m})+\boldsymbol{\delta}_{||}}^{\dagger} \hat{b}_{(\boldsymbol{\rho},\mathbf{m})+\boldsymbol{\delta}_{||}} \right]
+ JS \sum_{(\boldsymbol{\rho},\mathbf{m})} \sum_{\boldsymbol{\delta}_{\perp}^{ab}} \left[\hat{a}_{(\boldsymbol{\rho},\mathbf{m})} \hat{b}_{(\boldsymbol{\rho},\mathbf{m})+\boldsymbol{\delta}_{\perp}^{ab}} + \hat{a}_{(\boldsymbol{\rho},\mathbf{m})}^{\dagger} \hat{b}_{(\boldsymbol{\rho},\mathbf{m})+\boldsymbol{\delta}_{\perp}^{ab}} \right]
+ J_{\perp}S \sum_{(\boldsymbol{\rho},\mathbf{m})} \sum_{\boldsymbol{\delta}_{\perp}^{ab}} \left[\hat{a}_{(\boldsymbol{\rho},\mathbf{m})}^{\dagger} \hat{a}_{(\boldsymbol{\rho},\mathbf{m})} + \hat{b}_{(\boldsymbol{\rho},\mathbf{m})+\boldsymbol{\delta}_{\perp}^{ab}}^{\dagger} \hat{b}_{(\boldsymbol{\rho},\mathbf{m})+\boldsymbol{\delta}_{\perp}^{ab}} \right]
- J_{\perp}S \sum_{(\boldsymbol{\rho},\mathbf{m})} \sum_{\boldsymbol{\delta}_{\perp}^{aa}} \hat{a}_{(\boldsymbol{\rho},\mathbf{m})}^{\dagger} \hat{a}_{(\boldsymbol{\rho},\mathbf{m})+\boldsymbol{\delta}_{\perp}^{aa}} + J_{\perp}Sz \sum_{(\boldsymbol{\rho},\mathbf{m})} \hat{a}_{(\boldsymbol{\rho},\mathbf{m})}^{\dagger} \hat{a}_{(\boldsymbol{\rho},\mathbf{m})}
- J_{\perp}S \sum_{(\boldsymbol{\rho},\mathbf{m})} \sum_{\boldsymbol{\delta}_{\perp}^{bb}} \hat{b}_{(\boldsymbol{\rho},\mathbf{m})+\boldsymbol{\delta}_{\perp}^{bb}} + J_{\perp}Sz \sum_{(\boldsymbol{\rho},\mathbf{m})} \hat{b}_{(\boldsymbol{\rho},\mathbf{m})}^{\dagger} \hat{b}_{(\boldsymbol{\rho},\mathbf{m})}
+ g\mu_{B}\mathcal{H} \sum_{(\boldsymbol{\rho},\mathbf{m})} \left[\hat{a}_{(\boldsymbol{\rho},\mathbf{m})}^{\dagger} \hat{a}_{(\boldsymbol{\rho},\mathbf{m})} - \hat{b}_{(\boldsymbol{\rho},\mathbf{m})}^{\dagger} \hat{b}_{(\boldsymbol{\rho},\mathbf{m})} \right], \qquad (3.1)$$

pri čemu je uzeto u obzir da je (videti Sl. 4)

$$\sum_{\delta_{||}} 1 = \sum_{\delta_{\perp}^{\alpha\alpha}} 1 = \sum_{\delta_{\perp}^{ab}} 1 = z = 4, \qquad \sum_{(\rho,m)} 1 = N_{\alpha} = \frac{N}{2}.$$
(3.2)

Hamiltonijan (3.1) poprima jednostavniji oblik u impulsnom prostoru. Firije-amplitude se uvode poznatim relacijama

$$\hat{\alpha}_{(\boldsymbol{\rho},\mathrm{m})} = \frac{1}{\sqrt{N_{\alpha}}} \sum_{(\boldsymbol{k}_{||},k_{z})} \alpha_{(\boldsymbol{k}_{||},k_{z})} \mathrm{e}^{\mathrm{i}\boldsymbol{\rho}\cdot\boldsymbol{k}_{||} + \mathrm{im}Lk_{z}},$$

$$\hat{\alpha}_{(\boldsymbol{\rho},\mathrm{m})}^{\dagger} = \frac{1}{\sqrt{N_{\alpha}}} \sum_{(\boldsymbol{k}_{||},k_{z})} \alpha_{(\boldsymbol{k}_{||},k_{z})}^{\dagger} \mathrm{e}^{-\mathrm{i}\boldsymbol{\rho}\cdot\boldsymbol{k}_{||} - \mathrm{im}Lk_{z}}.$$
(3.3)

gde su $\mathbf{k}_{||}$ i k_z 2D i z- komponenta talasnog vektora \mathbf{k} . Uvrštavanjem (3.3) u (3.1) i korišćenjem

$$\frac{1}{N_{\alpha}} \sum_{(\boldsymbol{\rho},\mathbf{m})} e^{\mathbf{i}\boldsymbol{\rho}\cdot(\boldsymbol{k}_{||}\pm\boldsymbol{q}_{||}) + \mathrm{im}L(k_z\pm q_z)} = \Delta(\boldsymbol{k}_{||}=\mp \boldsymbol{q}_{||})\delta_{k_z\mp q_z}$$
(3.4)

dolazi se do sledećeg hamiltonijana:

$$\hat{H}_{SW} = -\frac{S^2 N J z}{2} \left[\eta + 2\lambda_{\perp} \right] + \sum_{\boldsymbol{k}} S J(\boldsymbol{k}) \left[\hat{a}^{\dagger}_{\boldsymbol{k}} \hat{b}^{\dagger}_{-\boldsymbol{k}} + \hat{a}_{\boldsymbol{k}} \hat{b}_{-\boldsymbol{k}} \right] + \sum_{\boldsymbol{k}} \left[\epsilon_{SW}(\boldsymbol{k}) + h \right] \hat{a}^{\dagger}_{\boldsymbol{k}} \hat{a}_{\boldsymbol{k}} + \sum_{\boldsymbol{k}} \left[\epsilon_{SW}(\boldsymbol{k}) - h \right] \hat{b}^{\dagger}_{\boldsymbol{k}} \hat{b}_{\boldsymbol{k}}.$$
(3.5)

U jednačini (3.5) su uvedene skraćene oznake:

$$\epsilon_{\rm sw}(\boldsymbol{k}) = JSz[\eta + \lambda_{\perp}(2 - \gamma_{\perp}^{aa}(\boldsymbol{k}))], \qquad (3.6)$$

$$J(\mathbf{k}) = Jz[\gamma_{\parallel}(\mathbf{k}_{\parallel}) + \lambda_{\perp}\gamma_{\perp}^{ab}(\mathbf{k})], \qquad (3.7)$$

$$h = \mu_{\rm B} g \mathcal{H}, \tag{3.8}$$

$$\lambda_{\perp} = J_{\perp}/J \tag{3.9}$$

dok su geometrijski faktori

$$\gamma_{||}(\boldsymbol{k}_{||}) = \frac{1}{z} \sum_{\boldsymbol{\delta}_{||}} e^{i\boldsymbol{\delta}_{||}\cdot\boldsymbol{k}_{||}} = \cos\frac{ak_x}{2}\cos\frac{ak_y}{2},$$

$$\gamma_{\perp}^{ab}(\boldsymbol{k}) = \frac{1}{z} \sum_{\boldsymbol{\delta}_{\perp}^{ab}} e^{i\boldsymbol{\delta}_{\perp}^{ab}\cdot\boldsymbol{k}} = \cos\frac{ak_x}{2}\cos\frac{ck_z}{2},$$

$$\gamma_{\perp}^{\alpha\alpha}(\boldsymbol{k}) = \frac{1}{z} \sum_{\boldsymbol{\delta}_{\perp}^{\alpha\alpha}} e^{i\boldsymbol{\delta}_{\perp}^{\alpha\alpha}\cdot\boldsymbol{k}} = \cos\frac{ak_y}{2}\cos\frac{ck_z}{2}.$$
(3.10)

Hamiltonijan (3.5) sadrži operatore $\hat{a}_{k}^{\dagger} \hat{b}_{-k}^{\dagger}$ i $\hat{a}_{k} \hat{b}_{-k}$ koji ne održavaju broj magnona. Njih je moguće eliminisati "u - v" transformacijom Bogoljubova [5, 6, 9], koja uvodi nove boze operatore \hat{A}_{k} i \hat{B}_{k} :

$$\hat{a}_{\boldsymbol{k}} = u_{\boldsymbol{k}}\hat{A}_{\boldsymbol{k}} + v_{\boldsymbol{k}}\hat{B}_{-\boldsymbol{k}}^{\dagger}, \qquad \hat{b}_{\boldsymbol{k}} = v_{\boldsymbol{k}}\hat{A}_{-\boldsymbol{k}}^{\dagger} + u_{\boldsymbol{k}}\hat{B}_{\boldsymbol{k}}, \\ \hat{a}_{\boldsymbol{k}}^{\dagger} = u_{\boldsymbol{k}}\hat{A}_{\boldsymbol{k}}^{\dagger} + v_{\boldsymbol{k}}\hat{B}_{-\boldsymbol{k}}, \qquad \hat{b}_{\boldsymbol{k}}^{\dagger} = v_{\boldsymbol{k}}\hat{A}_{-\boldsymbol{k}} + u_{\boldsymbol{k}}\hat{B}_{\boldsymbol{k}}^{\dagger}, \qquad (3.11)$$

pri čemu su $u_{\boldsymbol{k}}$
i $v_{\boldsymbol{k}}$ su parne i realne funkcije koje zadovoljavaju uslov¹

$$u_{k}^{2} - v_{k}^{2} = 1. ag{3.12}$$

Zamena (3.11) u (3.5) daje

$$\hat{H}_{SW} = -\frac{S^2 N J z}{2} \left[\eta + 2\lambda_{\perp} \right] + \sum_{\boldsymbol{k}} \left(\left[\epsilon_{SW}(\boldsymbol{k}) + h \right] v_{\boldsymbol{k}}^2 + \epsilon_{SW}(\boldsymbol{k}) - h \right] v_{\boldsymbol{k}}^2 \right)
+ \sum_{\boldsymbol{k}} 2S J(\boldsymbol{k}) u_{\boldsymbol{k}} v_{\boldsymbol{k}}
+ \sum_{\boldsymbol{k}} \hat{A}_{\boldsymbol{k}}^{\dagger} \hat{A}_{\boldsymbol{k}} \left(\left[\epsilon_{SW}(\boldsymbol{k}) + h \right] u_{\boldsymbol{k}}^2 + \left[\epsilon_{SW}(\boldsymbol{k}) - h \right] v_{\boldsymbol{k}}^2 + 2u_{\boldsymbol{k}} v_{\boldsymbol{k}} S J(\boldsymbol{k}) \right)
+ \sum_{\boldsymbol{k}} \hat{B}_{\boldsymbol{k}}^{\dagger} \hat{B}_{\boldsymbol{k}} \left(\left[\epsilon_{SW}(\boldsymbol{k}) + h \right] u_{\boldsymbol{k}}^2 + \left[\epsilon_{SW}(\boldsymbol{k}) - h \right] v_{\boldsymbol{k}}^2 + 2u_{\boldsymbol{k}} v_{\boldsymbol{k}} S J(\boldsymbol{k}) \right)
+ \sum_{\boldsymbol{k}} \hat{B}_{\boldsymbol{k}}^{\dagger} \hat{B}_{\boldsymbol{k}} \left(\left[\epsilon_{SW}(\boldsymbol{k}) + h \right] u_{\boldsymbol{k}}^2 + \left[\epsilon_{SW}(\boldsymbol{k}) - h \right] v_{\boldsymbol{k}}^2 + 2u_{\boldsymbol{k}} v_{\boldsymbol{k}} S J(\boldsymbol{k}) \right)
+ \sum_{\boldsymbol{k}} \left(2\epsilon_{SW}(\boldsymbol{k}) u_{\boldsymbol{k}} v_{\boldsymbol{k}} + S J(\boldsymbol{k}) \left[u_{\boldsymbol{k}}^2 + v_{\boldsymbol{k}}^2 \right] \right) \left(\hat{A}_{\boldsymbol{k}}^{\dagger} \hat{B}_{-\boldsymbol{k}}^{\dagger} + \hat{A}_{\boldsymbol{k}} \hat{B}_{-\boldsymbol{k}} \right).$$
(3.13)

Zahtev da nestanu nedijagonalni članovi iz (3.13) vodi na:

$$2\epsilon_{\rm sw}u_{\boldsymbol{k}} v_{\boldsymbol{k}} + SJ(\boldsymbol{k})(u_{\boldsymbol{k}}^2 + v_{\boldsymbol{k}}^2) = 0.$$
(3.14)

Rešavanjem sistema jednačina (3.12) i (3.14) po $u_{\mathbf{k}}$ i $v_{\mathbf{k}}$ i zamenom dobijenih funkcija u (3.13), dolazi se do dijagonalnog hamiltonijana (1.17):

$$\hat{H}_{\rm SW} = E_0 + \sum_{\boldsymbol{k}} \left[\omega_{\rm sw}^A(\boldsymbol{k}) \hat{A}_{\boldsymbol{k}}^{\dagger} \hat{A}_{\boldsymbol{k}} + \omega_{\rm sw}^B(\boldsymbol{k}) \hat{B}_{\boldsymbol{k}}^{\dagger} \hat{B}_{\boldsymbol{k}} \right], \qquad (3.15)$$

pri čemu je korišćeno:

$$u_{\boldsymbol{k}} = \sqrt{\frac{1}{2} \left[\frac{\epsilon_{\rm sw}(\boldsymbol{k})}{\sqrt{\epsilon_{\rm sw}^2(\boldsymbol{k}) - [SJ(\boldsymbol{k})]^2}} + 1 \right]},$$

$$v_{\boldsymbol{k}} = -\sqrt{\frac{1}{2} \left[\frac{\epsilon_{\rm sw}(\boldsymbol{k})}{\sqrt{\epsilon_{\rm sw}^2(\boldsymbol{k}) - [SJ(\boldsymbol{k})]^2}} - 1 \right]}.$$
(3.16)

Energije magnona u prisustvu spoljašnjeg magnetnog polja su

$$\omega_{\rm sw}^{A/B}(\boldsymbol{k}) = \sqrt{[\epsilon_{\rm SW}(\boldsymbol{k})]^2 - [SJ(\boldsymbol{k})]^2} \pm h,$$

$$= JSz\sqrt{[\eta + \lambda_{\perp}(2 - \gamma_{\perp}^{aa}(\boldsymbol{k}))]^2 - [\gamma_{\parallel}(\boldsymbol{k}_{\parallel}) + \lambda_{\perp}\gamma_{\perp}^{ab}(\boldsymbol{k})]^2} \pm g\mu_B \mathcal{H}$$
(3.17)

dok je energija osnovnog stanja, definisana vakuumom boze-čestica, data sa

$$E_{0} = -\frac{S^{2}NJz}{2} \left[\eta + 2\lambda_{\perp}\right] + \sum_{\boldsymbol{k}} \left[\sqrt{[\epsilon_{\rm sw}(\boldsymbol{k})]^{2} - [SJ(\boldsymbol{k})]^{2}} - 1\right].$$
(3.18)

Iz (3.17) se vidi da u prisustvu spoljašnjeg polja postoje dve magnonske grane, dok u odsustvu polja postoji jedna, dvostruko degenerisana. Energija SW magnona se ne menja sa temperaturom, što dovodi do nekorektnih rezultata na višim temperaturama. Nastavak SW analize je ograničen na $\mathcal{H} = 0$.

¹Ova veza izmedju u_{k} i v_{k} sledi iz boze komutacionih relacija $[\hat{a}_{k},\hat{a}_{k}^{\dagger}]=1$

Da bi se izračunala magnetizacija podrešetke na proizvoljnoj temperaturi, potrebno je fiksirati vrednosti nepoznatih veličina J, η i λ_{\perp} . To je moguće uraditi na osnovu eksperimentalnih podataka o magnonskoj disperziji.

U eksperimentima sa neelastičnim rasejanjem neutrona [28] je merena magnonska disperzija duž k_x pravca. Korišćenjem eksperimentalnih podataka o dve vrednosti $\omega(\mathbf{k})$, naime $\omega(0,0,0) = 5.29 \text{cm}^{-1}$ i $\omega(\pi/a,0,0) = 80 \text{cm}^{-1}$, za nekoliko različitih vrednosti λ_{\perp} , uz pomoć jednačine (3.17), odredjeni su parametri modela. Rezultati su prikazani u Tabeli 1.:

TABELA 1: Izračunati parametari modelnog Hamiltonojana za različite vrednosti λ_{\perp} u SW pristupu $5 \cdot 10^{-5}$ $5 \cdot 10^{-4}$ $5 \cdot 10^{-2}$ $5 \cdot 10^{-1}$ $5 \cdot 10^{-3}$ 0 λ_{\perp} 11.4857 11.4851 11.4799 11.4285 10.9387 7.6571 J

1.0021463

1.0022424

1.0032034

Granična	vrednost	λ_{\perp}	= 0 odgovara	anizotropnom	2DHAFM.	dok λ_{\perp}	$\neq 0$ opisi	uie 3DHAFM
oranona	viounosu	/ · ·	0 ougovara	unizou opnom			/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 ODINI M

1.0021367

Sl. 5: Magnonska disperzija Rb₂MnCl₄ na T = 8 K. Kružići su eksperimentalni podatci preuzeti iz [28], dok puna linija predstavlja disperziju izračunatu pomoću (3.17). Kriva disperzije duž $[\xi, 0, 0]$ -pravca ne zavisi od λ_{\perp} . Na x osi se je prikazan redukovani talasni vektor $\xi = \frac{ak_x}{2\pi}$

Za odgovarajuće skupove parametara $(\lambda_{\perp}, J, \eta)$, izračunata je magnonska disperzija. Rezultati su prikazani na Sl. 5., zajedno sa eksperimentalnim vrednostima.

Sa Sl. 5 se uočava da oblik disperzione krive ne zavisi od λ_{\perp} . To je razumljivo, jer su za fit krivih, koje odgovaraju različitim vrednostima λ_{\perp} , korušćene uvek iste dve eksperimentalne vrednosti magnonskih energija.

Što se tiče spinske anizotropije, sa Sl.5 se vidi da pri $\eta \neq 1$ magnonski spektar poseduje gep (videti jednačinu (3.20)), od presudnog značaja za postojanje spontane magnetizacije na konačnim temperaturama kod 2D modela (videti odeljak 5.1.3).

1.0021356

 η

1.0021357

3.1.2 Goldstonov mod

U slučaju spinske izotropije ($\eta = 1$), a prostorne anizotropije ($\lambda \neq \lambda_{\perp}$), magnonski spektar (3.17) poseduje Goldstonov mod. U blizini centra Briluenove zone važi²:

$$1 - \gamma_{\perp}^{aa}(\mathbf{k}) \approx \frac{1}{2} \left[\left(\frac{k_{y}a}{2} \right)^{2} + \left(\frac{k_{z}c}{2} \right)^{2} \right],$$

$$\gamma_{\perp}^{ab}(\mathbf{k}) \approx 1 - \frac{1}{2} \left[\left(\frac{k_{x}a}{2} \right)^{2} + \left(\frac{k_{z}c}{2} \right)^{2} \right],$$

$$\gamma_{\parallel}(\mathbf{k}_{\parallel}) \approx 1 - \frac{a^{2}|\mathbf{k}_{\parallel}|^{2}}{8}, \qquad |\mathbf{k}_{\parallel}|^{2} = k_{x}^{2} + k_{y}^{2}.$$
(3.19)

Zamenjujući (3.19) u (3.17) i zadržavajući samo najniže članove komponenti talasnog vektora, dolazi se do

$$\omega(\mathbf{k}) \approx JSz \sqrt{\left(1 + \lambda_{\perp}\right) \left(\frac{a|\mathbf{k}_{\parallel}|}{2}\right)^2 + 2\lambda_{\perp} \left(\frac{ck_z}{2}\right)^2}.$$
(3.20)

Iz (3.20) se vidi da pri $|\mathbf{k}| \rightarrow 0$ energija magnona iščezava, tj. da postoji Goldstonov mod. Ovaj rezultat postaje očigledan ako se hamiltonijan manganovog halogenida u odsustvu spoljašnjeg polja napiše pomoću skalarnih proizvoda (u nerotiranom koordinatnom sistemu), tj.

$$\hat{H} = J \sum_{\boldsymbol{n} \in a} \sum_{\boldsymbol{\delta}_{||}} \hat{\boldsymbol{S}}_{\boldsymbol{n}}(a) \cdot \hat{\boldsymbol{S}}_{\boldsymbol{n}+\boldsymbol{\delta}_{||}}(b) + J_{\perp} \sum_{\boldsymbol{n} \in a} \sum_{\boldsymbol{\delta}_{\perp}^{ab}} \hat{\boldsymbol{S}}_{\boldsymbol{n}}(a) \cdot \hat{\boldsymbol{S}}_{\boldsymbol{n}+\boldsymbol{\delta}_{\perp}^{ab}}(b)
- \frac{J_{\perp}}{2} \sum_{\alpha} \sum_{\boldsymbol{n} \in \alpha} \sum_{\boldsymbol{\delta}_{\perp}^{\alpha\alpha}} \hat{\boldsymbol{S}}_{\boldsymbol{n}}(\alpha) \cdot \hat{\boldsymbol{S}}_{\boldsymbol{n}+\boldsymbol{\delta}_{\perp}^{\alpha\alpha}}(\alpha) \qquad \boldsymbol{n} \equiv (\boldsymbol{\rho}, \mathbf{m}).$$
(3.21)

odakle se lako uvidja njegova invarijantnost u odnosu na SO(3) transformacije.

3.2 Magnetizacija podrešetke

3.2.1 3DHAFM

Magnetizacija a (ili b) podrešetke na proizvoljnoj temperaturi u odsustvu spoljašnjeg magnetnog polja, može se izračunati ako se (1.12) prepiše kao

$$\langle \hat{S}^{z}(a) \rangle = S - \frac{1}{N_{a}} \sum_{\boldsymbol{k}} \langle \hat{a}_{\boldsymbol{k}}^{\dagger} \hat{a}_{\boldsymbol{k}} \rangle.$$
(3.22)

Pošto je SW hamiltonijan dijagonalan po \hat{A}_{k} i \hat{B}_{k} operatorima, $\langle \hat{a}_{k}^{\dagger} \hat{a}_{k} \rangle$ se nalazi pomoću (3.11):

$$\langle \hat{a}_{\boldsymbol{k}}^{\dagger} \hat{a}_{\boldsymbol{k}} \rangle = u_{\boldsymbol{k}}^{2} \langle \hat{A}_{\boldsymbol{k}}^{\dagger} \hat{A}_{\boldsymbol{k}} \rangle + v_{\boldsymbol{k}}^{2} \langle \hat{B}_{-\boldsymbol{k}} \hat{B}_{-\boldsymbol{k}}^{\dagger} \rangle$$

$$= \frac{u_{\boldsymbol{k}}^{2}}{\exp\left[\beta \, \omega_{\rm sw}^{A}(\boldsymbol{k})\right] - 1} + \frac{v_{\boldsymbol{k}}^{2}}{1 - \exp\left[-\beta \, \omega_{\rm sw}^{B}(-\boldsymbol{k})\right]},$$

$$(3.23)$$

²Pomenuti izrazi su dobijeni korišćenjem aproksimacije $\cos x \approx 1-x^2/2$

jer nedijagonalni članovi otpadaju prilikom usrednjavanja. Zamenjujući (3.23), u_k i v_k u (3.22), dolazi se do jednačine koja odredjuje temperaturnu zavisnost magnetizacije podrešetke u SW aproksimaciji:

$$\langle \hat{S}^z \rangle^{\rm sw} = S - \frac{1}{N_a} \sum_{\boldsymbol{k}} \left[\frac{\epsilon_{\rm sw}(\boldsymbol{k})}{2\,\omega_{\rm sw}(\boldsymbol{k})} \coth \frac{\omega_{\rm sw}(\boldsymbol{k})}{2T} - \frac{1}{2} \right].$$
(3.24)

Specijalno, u slučaju apsolutne nule, gornja formula daje:

$$\langle \hat{S}^{z} \rangle_{0}^{\text{sw}} = S - \frac{1}{N_{a}} \sum_{\boldsymbol{k}} \left[\frac{\eta + \lambda_{\perp} (2 - \gamma_{\perp}^{aa}(\boldsymbol{k}))}{2 \sqrt{[\eta + \lambda_{\perp} (2 - \gamma_{\perp}^{aa}(\boldsymbol{k}))]^{2} - [\gamma_{\parallel}(\boldsymbol{k}_{\parallel}) + \lambda_{\perp} \gamma_{\perp}^{ab}(\boldsymbol{k})]^{2}}} - \frac{1}{2} \right]$$

$$\equiv S - \delta \langle \hat{S}^{z} \rangle_{0},$$
(3.25)

gde su sa $\delta \langle \hat{S}^z \rangle_0$ označene kvantne fluktuacije na T = 0 K. Za različite vrednosti parametara $(\lambda_{\perp}, J, \eta)$, izračunata je vrednost magnetizacije u osnovnom stanju (Tabela 2):

TABELA 2: Spontana magnetizacija podrešetke na apsolutnoj nuli $5 \cdot 10^{-5}$ $5 \cdot 10^{-4}$ $5 \cdot 10^{-3}$ $5 \cdot 10^{-2}$ 0 $5 \cdot 10^{-1}$ λ_{\perp} $\langle \hat{S}^z \rangle_0$ 2.32331 2.32347 2.32482 2.33397 2.36680 2.41920

Iz Tabele 2 se vide brojne vrednosti kvantnih fluktuacija u osnovnom stanju. Takodje, opaža se da $\langle \hat{S}^z \rangle_0$ raste sa medjuravanskim integralom izmene J_{\perp} .

Sl. 6: Temperaturska zavisnost magnetizacije u SW pristupu. Krive za $\lambda_{\perp} = 0$ i $\lambda_{\perp} = 5 \cdot 10^{-5}$ se poklapaju na upotrebljenoj rezoluciji.

Promena spontane magnetizacije sa temperaturom, za različite skupove $(\lambda_{\perp}, J, \eta)$, prikazana je na na Sl.6. Poredjenje relativne magnetizacije, izračunate u SW pristupu, sa eksperimentalnim

vrednostima je dato na SL.7. Grafik pokazuje da predvidjanja linearne teorije spinskih talasa prestaju da budu pouzdana već pri temperaturama $T \sim 0.4 T_{\rm N}^{\rm exp}$.

SW teorija znatno precenjuje vrednost za Nelovu temperaturu ($T_{\rm N}^{\rm exp} = 56$ K). Sa grafika relativne magnetizacije se vidi da se najbolje slaganje sa eksperimentalnim rezultatima dobija pri $\lambda_{\perp} < 5 \cdot 10^{-4}$. Čak i za $\lambda_{\perp} = 0$, jednačina (3.24) daje $T_{\rm N}^{\rm SW} = 128.433$ K.

Sl. 7: Temperaturska zavisnost relativne magnetizacije. Kružići su eksperimentalni rezultati preuzeti iz [28], dok linije predstavljaju rezultat SW analze. Krive za $\lambda_{\perp} = 0$ i $\lambda_{\perp} = 5 \cdot 10^{-5}$ se poklapaju na upotrebljenoj rezoluciji. $T_{\rm N}^{\rm exp} = 56$ K

3.2.2 2DHAFM

Rezultati prethodna dva odeljka pokazuju da najbolji opis elementarnih ekscitacija i magnetizacije podrešetke jedinjenja Rb_2MnCl_4 daje 2D model. Na ovom mestu će biti više reči o 2D Hajzenbergovom antiferomagnetu, o osnovnom stanju tog modela i o ulozi spinske anizotropije.

Magnonska disperzija (3.17), u odsustvu spoljašnjeg polja, kod 2DHAFM postaje

$$\omega^{2D}(\boldsymbol{k}_{||}) = JSz\sqrt{\eta^2 - \gamma_{||}^2(\boldsymbol{k}_{||})}.$$
(3.26)

Slaganje spektra $\omega(k_x)$ dobijenog iz jednačine (3.26) sa eksperimentalnim vrednostima je veoma dobro (videti Sl. 5). Na Sl. 8 je prikazana površina $\omega(k_x, k_y)$, sa koje se jasno uočava periodičnost magnonskih energija u inverznom prostoru [19]. Vrednosti parametara J i η su iz prve kolone Tabele 1. Najbolje slaganje sa eksperimentalnim vrednostima za relativnu magnetizaciju daje 2D model (videti Sl. 7). U slučaju 2DHAFM, jednačina (3.25) se svodi na

$$\langle \hat{S}^z \rangle_0^{2D} = S - \frac{1}{N_2} \sum_{\mathbf{k}_{||}} \left[\frac{\eta}{2\sqrt{\eta^2 - \gamma_{||}^2(\mathbf{k}_{||})}} - \frac{1}{2} \right],$$
(3.27)

gde je N_2 broj čvorova podrešetke u x y ravni. U prilogu B je pokazano kako se može izračunati traženi integral (jednačina (B.16)). Zamenom tako dobijenog rešenja u (3.27) nalazi se vrednost magnetizacije osnovnog stanja kao funkcija spinske anizotropije:

$$\langle \hat{S}^z \rangle_0^{2D}(\eta) = S - \frac{1}{2} \left[{}_{3}F_2\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1, 1; \frac{1}{\eta^2}\right) - 1 \right] \equiv S - \delta \langle \hat{S}^z \rangle_0(\eta),$$
(3.28)

pri čemu $\delta \langle \hat{S}^z \rangle_0(\eta)$ označava kvantne fluktuacije u osnovnom stanju kao funkciju spinske anizotropije, a ${}_3F_2$ predstavlja uopštenu hipergeometrijsku funkciju. Grafički prikaz ove zavisnosti je dat na Sl. 9.

Sl. 8: 3D prikaz magnonskih energija. Na x i y osi su prikazani redukovani talasni vektori, $\xi = ak_x/(2\pi)$ i $\zeta = ak_y/(2\pi)$, respektivno (prema [19])

Za izotropnu rešetku ($\eta = 1$) se dobija $\langle \hat{S}^z \rangle_0 = 2.3034$ (videti (B.18)), dok se za visoke vrednosti anizotropije osnovno stanje 2DHAFM svodi na osnovno stanje 2D Izingovog modela ($\langle \hat{S}^z \rangle_0 = 5/2$, videti (B.19)). Kvantne fluktuacije snižavaju vrednost magnetizacije u osnovnom stanju ali dugodometno uredjenje postoji pri T = 0K. Dakle, rezultati SW analize primenjeni na Rb₂MnCl₄ su u skladu sa opštim dokazom da osnovno stanje Hajzenbergovog modela na kvadratnoj rešetki, za S > 1 poseduje dugodometno uredjenje [9].

Sl. 9: Magnetizacija podrešetke 2DHAFM u osnovnom stanju kao funkcija spinske anizotropije.

Postojanje dugodometnog uredjenja na $T \neq 0$ K se oslikava u konačnoj vrednosti Nelove temperature. Kako SW teorija znatno precenjuje vrednosti za $T_{\rm N}$, dugodometno uredjenje na konačnim temperaturama će biti predmet odeljka o Grinovim funkcijama.

Što se tiče Goldstonovog moda, u slučaju 2DHAFM, jednačina (3.20) postaje

$$\omega(\mathbf{k}) \approx JSz \; \frac{a|\mathbf{k}_{||}|}{2}.\tag{3.29}$$

Goldstonovi bozoni se javljajau u izotropnom 2D modelu. Za razliku od 3D modela, kod 2DHAFM Goldstonovi bozoni uništavaju dugodometno uredjenje na konačnim temperaturama (M-W teorema). Iako 3D model sa $\eta = 1$ ne isključuje postojanje magnetizacije na konačnim temperaturama, on ne reprodukuje magnonski spektar odgovarajućeg oblika (videti Sl. 5). To ukazuje da je postojanje magnetizacije na $T \neq 0$ zavisi isključivo od spinske anizotropije a ne od 3D karaktera magnetne rešetke [19].

Glava 4

Metod spinskih Grinovih funkcija

Za potpuno odredjivanje osnovnih termodinamičkih osobina Rb₂MnCl₄, potrebno je izračunati četiri grinive funkcije: $G_{nm}^1 = \langle \langle \hat{S}_n^+(a) | \hat{S}_m^-(a) \rangle \rangle$, $\Gamma_{nm}^1 = \langle \langle \hat{S}_n^-(b) | \hat{S}_m^-(a) \rangle \rangle$, $G_{nm}^2 = \langle \langle \hat{S}_n^-(a) | \hat{S}_m^+(a) \rangle \rangle$ i $\Gamma_{nm}^2 = \langle \langle \hat{S}_n^+(b) | \hat{S}_m^+(a) \rangle \rangle$. Pri tome je, radi jednostavnijeg pisanja jednačina, indeks ω uz Grinove funkcije izostavljen i korišćeno je skraćeno označavanje čvorova rešetke, tj. $m = (\rho, m)$ (videti jednačinu (2.2)). Složenije GF koje se pojavljuju u jednačinama kretanja za $G_{nm}^1, \Gamma_{nm}^1, G_{nm}^2$ i Γ_{nm}^2 se moraju eliminisati odredjenim aproksimativnim postupkom. Prvo je razmatrano Tjablikovljevo (RPA) a zatim i Kalenovo (CA) dekuplovanje. Osnovna prednost GF metoda u odnosu na SW analizu je renormalizacija magnonskih energija, koja omogućava bolja predvidjanja na višim temperaturama. Na niskim temperaturama, rezultati dobijeni metodom GF se slažu sa linearnom aproksimacijom spinskih talasa. Pokazano je da metod GF, u kombinaciji sa RPA ili CA prilazom, daje rezultate u skladu sa strogim dokazima vezanim za 2D Hajzenbergov model. S obzirom da je SW analiza pokazala da najbolje slaganje sa eksperimentalnim vrednostima za magnetizaciju daje 2D model, njemu će biti posvećena najveća pažnja.

4.1 Tjablikovljevo dekuplovanje

4.1.1 Magnonski spektar

Četiri jednačine kretanja za odredjivanje traženih Grinovih funkcija se dobijaju računanjem potrebnih komutatora i zamenum u (1.20). One glase:

$$\begin{split} \omega \langle \langle \hat{S}_{\boldsymbol{n}}^{+(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle &= \frac{1}{2\pi} \langle \hat{S}^{z(a)} \rangle \Delta(\boldsymbol{n} - \boldsymbol{m}) + \\ &+ J \sum_{\boldsymbol{\delta}_{\parallel}} \langle \langle \hat{S}_{\boldsymbol{n}}^{z(a)} \hat{S}_{\boldsymbol{n} + \boldsymbol{\delta}_{\parallel}}^{-(b)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle + J\eta \sum_{\boldsymbol{\delta}_{\parallel}} \langle \langle \hat{S}_{\boldsymbol{n} + \boldsymbol{\delta}_{\parallel}}^{z(b)} \hat{S}_{\boldsymbol{n} + \boldsymbol{\delta}_{\parallel}}^{+(a)} | \hat{S}_{\boldsymbol{m}}^{+(a)} \rangle \rangle \\ &+ J_{\perp} \sum_{\boldsymbol{\delta}_{\perp}^{ab}} \langle \langle \hat{S}_{\boldsymbol{n}}^{z(a)} \hat{S}_{\boldsymbol{n} + \boldsymbol{\delta}_{\perp}^{ab}}^{-(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle + J_{\perp} \sum_{\boldsymbol{\delta}_{\perp}^{ab}} \langle \langle \hat{S}_{\boldsymbol{n} + \boldsymbol{\delta}_{\perp}^{ab}}^{z(a)} \hat{S}_{\boldsymbol{n} + \boldsymbol{\delta}_{\perp}^{ab}}^{+(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle \\ &- J_{\perp} \sum_{\boldsymbol{\delta}_{\perp}^{aa}} \langle \langle \hat{S}_{\boldsymbol{n}}^{z(a)} \hat{S}_{\boldsymbol{n} + \boldsymbol{\delta}_{\perp}^{aa}}^{+(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle + J_{\perp} \sum_{\boldsymbol{\delta}_{\perp}^{aa}} \langle \langle \hat{S}_{\boldsymbol{n} + \boldsymbol{\delta}_{\perp}^{aa}}^{z(a)} \hat{S}_{\boldsymbol{n}}^{+(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle \\ &+ h \langle \langle \hat{S}_{\boldsymbol{n}}^{+(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle, \end{split}$$

$$(4.1)$$

$$\begin{split} \omega \langle \langle \hat{S}_{\boldsymbol{n}}^{-(b)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle &= -J \sum_{\boldsymbol{\delta}_{\parallel}} \langle \langle \hat{S}_{\boldsymbol{n}}^{z(b)} \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\parallel}}^{+(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle - J\eta \sum_{\boldsymbol{\delta}_{\parallel}} \langle \langle \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\parallel}}^{z(a)} \hat{S}_{\boldsymbol{n}}^{-(b)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle \\ &- J_{\perp} \sum_{\boldsymbol{\delta}_{\perp}^{ab}} \langle \langle \hat{S}_{\boldsymbol{n}}^{z(b)} \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\perp}^{ab}}^{+(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle - J_{\perp} \sum_{\boldsymbol{\delta}_{\perp}^{ab}} \langle \langle \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\perp}^{ab}}^{z(a)} \hat{S}_{\boldsymbol{n}}^{-(b)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle \\ &+ J_{\perp} \sum_{\boldsymbol{\delta}_{\perp}^{bb}} \langle \langle \hat{S}_{\boldsymbol{n}}^{z(b)} \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\perp}^{bb}}^{-(b)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle - J_{\perp} \sum_{\boldsymbol{\delta}_{\perp}^{bb}} \langle \langle \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\perp}^{bb}}^{z(b)} \hat{S}_{\boldsymbol{n}}^{-(a)} \rangle \rangle \\ &+ h \langle \langle \hat{S}_{\boldsymbol{n}}^{+(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle, \end{split}$$

$$(4.2)$$

$$\begin{split} \omega \langle \langle \hat{S}_{\boldsymbol{n}}^{-(a)} | \hat{S}_{\boldsymbol{m}}^{+(a)} \rangle \rangle &= -\frac{\mathrm{i}}{2\pi} \langle \hat{S}^{z(a)} \rangle \Delta(\boldsymbol{n} - \boldsymbol{m}) + \\ &- J \sum_{\boldsymbol{\delta}_{\parallel}} \langle \langle \hat{S}_{\boldsymbol{n}}^{z(a)} \hat{S}_{\boldsymbol{n} + \boldsymbol{\delta}_{\parallel}}^{+(b)} | \hat{S}_{\boldsymbol{m}}^{+(a)} \rangle \rangle - J\eta \sum_{\boldsymbol{\delta}_{\parallel}} \langle \langle \hat{S}_{\boldsymbol{n} + \boldsymbol{\delta}_{\parallel}}^{z(b)} \hat{S}_{\boldsymbol{n}}^{-(a)} | \hat{S}_{\boldsymbol{m}}^{+(a)} \rangle \rangle \\ &- J_{\perp} \sum_{\boldsymbol{\delta}_{\perp}^{ab}} \langle \langle \hat{S}_{\boldsymbol{n}}^{z(a)} \hat{S}_{\boldsymbol{n} + \boldsymbol{\delta}_{\perp}^{ab}}^{+(b)} | \hat{S}_{\boldsymbol{m}}^{+(a)} \rangle \rangle - J_{\perp} \sum_{\boldsymbol{\delta}_{\perp}^{ab}} \langle \langle \hat{S}_{\boldsymbol{n} + \boldsymbol{\delta}_{\perp}^{ab}}^{z(a)} \hat{S}_{\boldsymbol{n}}^{-(a)} | \hat{S}_{\boldsymbol{m}}^{+(a)} \rangle \rangle \\ &+ J_{\perp} \sum_{\boldsymbol{\delta}_{\perp}^{aa}} \langle \langle \hat{S}_{\boldsymbol{n}}^{z(a)} \hat{S}_{\boldsymbol{n} + \boldsymbol{\delta}_{\perp}^{aa}}^{-(a)} | \hat{S}_{\boldsymbol{m}}^{+(a)} \rangle \rangle - J_{\perp} \sum_{\boldsymbol{\delta}_{\perp}^{aa}} \langle \langle \hat{S}_{\boldsymbol{n} + \boldsymbol{\delta}_{\perp}^{aa}}^{z(a)} \hat{S}_{\boldsymbol{n}}^{-(a)} | \hat{S}_{\boldsymbol{m}}^{+(a)} \rangle \rangle \\ &- h \langle \langle \hat{S}_{\boldsymbol{n}}^{-(a)} | \hat{S}_{\boldsymbol{m}}^{+(a)} \rangle \rangle, \end{split}$$

$$(4.3)$$

$$\begin{split} \omega\langle\langle \hat{S}_{\boldsymbol{n}}^{+(b)} | \hat{S}_{\boldsymbol{m}}^{+(a)} \rangle\rangle &= J \sum_{\boldsymbol{\delta}_{\parallel}} \langle\langle \hat{S}_{\boldsymbol{n}}^{z(b)} \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\parallel}}^{-(a)} | \hat{S}_{\boldsymbol{m}}^{+(a)} \rangle\rangle + J\eta \sum_{\boldsymbol{\delta}_{\parallel}} \langle\langle \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\parallel}}^{z(a)} \hat{S}_{\boldsymbol{n}}^{+(b)} | \hat{S}_{\boldsymbol{m}}^{+(a)} \rangle\rangle \\ &+ J_{\perp} \sum_{\boldsymbol{\delta}_{\perp}^{ab}} \langle\langle \hat{S}_{\boldsymbol{n}}^{z(b)} \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\perp}^{ab}}^{-(a)} | \hat{S}_{\boldsymbol{m}}^{+(a)} \rangle\rangle + J_{\perp} \sum_{\boldsymbol{\delta}_{\perp}^{ab}} \langle\langle \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\perp}^{ab}}^{z(a)} \hat{S}_{\boldsymbol{n}}^{+(b)} | \hat{S}_{\boldsymbol{m}}^{+(a)} \rangle\rangle \\ &- J_{\perp} \sum_{\boldsymbol{\delta}_{\perp}^{bb}} \langle\langle \hat{S}_{\boldsymbol{n}}^{z(b)} \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\perp}^{bb}} | \hat{S}_{\boldsymbol{m}}^{+(a)} \rangle\rangle + J_{\perp} \sum_{\boldsymbol{\delta}_{\perp}^{bb}} \langle\langle \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\perp}^{bb}}^{z(b)} \hat{S}_{\boldsymbol{n}}^{+(b)} | \hat{S}_{\boldsymbol{m}}^{+(a)} \rangle\rangle \\ &- h\langle\langle \hat{S}_{\boldsymbol{n}}^{+(b)} | \hat{S}_{\boldsymbol{m}}^{+(a)} \rangle\rangle. \end{split}$$
(4.4)

Dekuplovanje složenijih GF koje se pojavljuju u jednačinama (4.1)-(4.4) se vrši po šemi iz (1.23). Usled strukture hamiltonijana, sistem od četiri jednačine se raspada na dva sistema od po dve jednačine. Primena Tjablikovoljevog postupka je detaljno prikazana na jednačinama (4.1) i (4.2). Jednačine za Grinove funkcije adjungovanih operatora se dobijaju po analogiji. Nakon dekuplovanja, jednačine (4.1) i (4.2) postaju:

$$\begin{aligned}
\omega \langle \langle \hat{S}_{\boldsymbol{n}}^{+(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle &= \frac{1}{2\pi} \langle \hat{S}^{z(a)} \rangle \Delta(\boldsymbol{n} - \boldsymbol{m}) + \\
&+ J \langle \hat{S}^{z}(a) \rangle \sum_{\boldsymbol{\delta}_{\parallel}} \langle \langle \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\parallel}}^{-(b)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle + J \eta \langle \hat{S}^{z}(b) \rangle z_{\parallel} \langle \langle \hat{S}_{\boldsymbol{n}}^{+(a)} | \hat{S}_{\boldsymbol{m}}^{+(a)} \rangle \rangle \\
&+ J_{\perp} \langle \hat{S}^{z}(a) \rangle \sum_{\boldsymbol{\delta}_{\perp}^{ab}} \langle \langle \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\perp}^{ab}}^{-(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle + J_{\perp} \langle \hat{S}^{z}(b) \rangle z_{\perp}^{ab} \langle \langle \hat{S}_{\boldsymbol{n}}^{+(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle \\
&- J_{\perp} \langle \hat{S}^{z}(b) \rangle \sum_{\boldsymbol{\delta}_{\perp}^{aa}} \langle \langle \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\perp}^{aa}}^{+(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle + J_{\perp} \langle \hat{S}^{z}(b) \rangle z_{\perp}^{aa} \langle \langle \hat{S}_{\boldsymbol{n}}^{+(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle \\
&+ h \langle \langle \hat{S}_{\boldsymbol{n}}^{+(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle,
\end{aligned}$$
(4.5)

4.1. TJABLIKOVLJEVO DEKUPLOVANJE

$$\begin{split} \omega \langle \langle \hat{S}_{\boldsymbol{n}}^{-(b)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle &= -J \langle \hat{S}^{z}(b) \rangle \sum_{\boldsymbol{\delta}_{\parallel}} \langle \langle \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\parallel}}^{+(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle - J\eta \langle \hat{S}^{z}(a) \rangle z_{\parallel} \langle \langle \hat{S}_{\boldsymbol{n}}^{-(b)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle \\ &- J_{\perp} \langle \hat{S}^{z}(b) \rangle \sum_{\boldsymbol{\delta}_{\perp}^{ab}} \langle \langle \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\perp}^{ab}}^{+(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle - J_{\perp} \langle \hat{S}^{z}(a) \rangle z_{\perp}^{ab} \langle \langle \hat{S}_{\boldsymbol{n}}^{-(b)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle \\ &+ J_{\perp} \langle \hat{S}^{z}(b) \rangle \sum_{\boldsymbol{\delta}_{\perp}^{bb}} \langle \langle \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\perp}^{bb}}^{-(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle - J_{\perp} \langle \hat{S}^{z}(b) \rangle z_{\perp}^{bb} \langle \langle \hat{S}_{\boldsymbol{n}}^{-(b)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle \\ &+ h \langle \langle \hat{S}_{\boldsymbol{n}}^{+(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle \rangle, \end{split}$$
(4.6)

Jednačine se dodatno pojednostavljuju prelaskom u impulsni prostor. Transformacija je slična već korišćenoj za boze-operatore:

$$\hat{S}_{\boldsymbol{n}}^{\pm} = \frac{1}{\sqrt{N_{\alpha}}} \sum_{\boldsymbol{k}} \hat{S}_{\boldsymbol{k}}^{\pm} \mathrm{e}^{\pm \mathrm{i}\boldsymbol{k}\cdot\boldsymbol{n}},\tag{4.7}$$

tj.

$$\langle\langle \hat{S}_{\boldsymbol{n}}^{+(a)} | \hat{S}_{\boldsymbol{m}}^{-(a)} \rangle\rangle = \frac{1}{N_a} \sum_{\boldsymbol{k}} \langle\langle \hat{S}^{+}(a) | \hat{S}^{-}(a) \rangle\rangle_{\boldsymbol{k}} e^{i\boldsymbol{k}\cdot(\boldsymbol{n}-\boldsymbol{m})}.$$
(4.8)

Ostale Grinove funkcije se transformišu na isti način. Tako se dobija sledeći sistem

$$[\omega - \epsilon_{\text{RPA}}^{1}(\boldsymbol{k})] \langle \langle \hat{S}^{+}(a) | \hat{S}^{-}(a) \rangle \rangle_{\boldsymbol{k}} - \langle \hat{S}^{z}(a) \rangle J(\boldsymbol{k}) \langle \langle \hat{S}^{-}(b) | \hat{S}^{-}(a) \rangle \rangle_{\boldsymbol{k}} = \frac{1}{2\pi} 2 \langle \hat{S}^{z}(a) \rangle$$

$$\langle \hat{S}^{z}(b) \rangle J(\boldsymbol{k}) \langle \langle \hat{S}^{+}(a) | \hat{S}^{-}(a) \rangle \rangle_{\boldsymbol{k}} + [\omega + \epsilon_{\text{RPA}}^{2}(\boldsymbol{k})] \langle \langle \hat{S}^{-}(b) | \hat{S}^{-}(a) \rangle \rangle_{\boldsymbol{k}} = 0.$$

$$(4.9)$$

U gornjem sistemu se pojavljuju sledeće veličine

$$\epsilon_{\rm RPA}^{1}(\boldsymbol{k}) = Jz[\langle \hat{S}^{z}(b) \rangle(\eta + \lambda_{\perp}) + \langle \hat{S}^{z}(a) \rangle \lambda_{\perp}(1 - \gamma_{\perp}^{aa}(\boldsymbol{k}))] + h \equiv \epsilon_{\rm RPA}(\boldsymbol{k}) + h,$$

$$\epsilon_{\rm RPA}^{2}(\boldsymbol{k}) = Jz[\langle \hat{S}^{z}(a) \rangle(\eta + \lambda_{\perp}) + \langle \hat{S}^{z}(b) \rangle \lambda_{\perp}(1 - \gamma_{\perp}^{aa}(\boldsymbol{k}))] - h \equiv \epsilon_{\rm RPA}(\boldsymbol{k}) - h, \qquad (4.10)$$

dok su $J(\mathbf{k})$, λ_{\perp} i $\gamma^{aa}(\mathbf{k})$ definisani ranije (jednačine (3.7), (3.9) i (3.10)). Determinanta sistema (4.9) je

$$D_{1}(\omega) = \begin{vmatrix} \omega - \epsilon_{\text{RPA}}^{1}(\boldsymbol{k}) & -\langle \hat{S}^{z}(a) \rangle J(\boldsymbol{k}) \\ \langle \hat{S}^{z}(b) \rangle J(\boldsymbol{k}) & \omega + \epsilon_{\text{RPA}}^{2}(\boldsymbol{k}) \end{vmatrix}.$$
(4.11)

Iz uslova $D_1(\omega) = 0$ se nalaze polovi Grinovih funkcija:

$$\omega_{\text{RPA}}^{1/2}(\boldsymbol{k}) = \frac{\epsilon_{\text{RPA}}^{1}(\boldsymbol{k}) - \epsilon_{\text{RPA}}^{2}(\boldsymbol{k})}{2} \\
\pm \frac{1}{2}\sqrt{[\epsilon_{\text{RPA}}^{1}(\boldsymbol{k}) + \epsilon_{\text{RPA}}^{2}(\boldsymbol{k})]^{2} - 4\langle \hat{S}^{z}(b) \rangle \langle \hat{S}^{z}(a) \rangle J^{2}(\boldsymbol{k})}.$$
(4.12)

Ispostavlja se da determinanta sistema jednačina (4.3) i (4.4) zadovoljava uslov

$$D_2(\omega) = D_1(-\omega), \tag{4.13}$$

tako da drugi par polova GF čine

$$\omega_{\text{RPA}}^{3/4}(\boldsymbol{k}) = -\frac{\epsilon_{\text{RPA}}^{1}(\boldsymbol{k}) - \epsilon_{\text{RPA}}^{2}(\boldsymbol{k})}{2}$$

$$\mp \frac{1}{2}\sqrt{[\epsilon_{\text{RPA}}^{1}(\boldsymbol{k}) + \epsilon_{\text{RPA}}^{2}(\boldsymbol{k})]^{2} - 4\langle \hat{S}^{z}(b) \rangle \langle \hat{S}^{z}(a) \rangle J^{2}(\boldsymbol{k})}.$$
 (4.14)

Dakle, u prisustvu spoljašnjeg magnetnog polja, GF metod daje četiri različite energije elementarnih ekscitacija. U odsustvu spoljašnjeg polja ($\epsilon_{\text{RPA}}^1(\mathbf{k}) = \epsilon_{\text{RPA}}^2(\mathbf{k})$) postoje dve, dvostruko degenerisane.

Energije magnona su po definiciji pozitivne. Zbog toga je magnonski spektar u odsustvu spoljašnjeg polja dat sa:

$$\omega_{\text{RPA}}(\boldsymbol{k}) = \sqrt{[\epsilon_{\text{RPA}}(\boldsymbol{k})]^2 - [\langle \hat{S}^z \rangle J(\boldsymbol{k})]^2} \\
= J \langle \hat{S}^z \rangle z \sqrt{[\eta + \lambda_{\perp}(2 - \gamma_{\perp}^{aa}(\boldsymbol{k}))]^2 - [\gamma_{\parallel}(\boldsymbol{k}_{\parallel}) + \lambda_{\perp}\gamma_{\perp}^{ab}(\boldsymbol{k})]^2}.$$
(4.15)

Poredjenjem (4.15) i (3.17) uočava se da primena GF metoda dovodi do renormalizacije magnonskih energija. U odsustvu spoljašnjeg polja, GF spektar se dobija iz SW spektra jednostavnom zamenom $S \rightarrow \langle \hat{S}^z \rangle$. Ovako renormalizovane magnonske energije slabe sa temperaturom, što dovodi do bolje procene kritične temperature. Pojava magnetizacije u izrazu za energiju magnona znači i da se parametri hamiltonijana moraju odredjivati samousaglašeno. Odnosno, parametri hamiltonijana, J i η odredjeni GF metodom će se u opštem slučaju razlikovati od parametara SW modela. Kako je $\omega_{\text{RPA}}(\mathbf{k})/\omega_{\text{SW}}(\mathbf{k}) \propto \langle \hat{S}^z \rangle / S$, jasno je da i magnonski spektar dobijen RPA postupkom¹, u slučaju spinske izotropije, poseduje Goldstonov mod.

4.1.2 Magnetizacija podrešetke

Za odredjivanje magnetizacije dovoljno je poznavati $\langle \langle \hat{S}^+(a) | \hat{S}^-(a) \rangle \rangle_k$. Determinanta bilo kog od dva posmatrana sistema može zapisati kao:

$$D(\omega) = [\omega - \omega_{\text{RPA}}(\boldsymbol{k})][\omega + \omega_{\text{RPA}}(\boldsymbol{k})], \qquad (4.16)$$

pa je trazena GF

$$\langle\langle \hat{S}^{+}(a)|\hat{S}^{-}(a)\rangle\rangle_{\boldsymbol{k}} = \frac{\mathrm{i}}{2\pi} \frac{\langle \hat{S}^{z}\rangle}{\omega_{\mathrm{RPA}}(\boldsymbol{k})} \left[\frac{\omega_{\mathrm{RPA}}(\boldsymbol{k}) + \epsilon_{\mathrm{RPA}}(\boldsymbol{k})}{\omega - \omega_{\mathrm{RPA}}(\boldsymbol{k})} + \frac{\omega_{\mathrm{RPA}}(\boldsymbol{k}) - \epsilon_{\mathrm{RPA}}(\boldsymbol{k})}{\omega + \omega_{\mathrm{RPA}}(\boldsymbol{k})}\right].$$
(4.17)

Korišćenjem spektralne teoreme (1.18) i poznatog simboličkog identiteta²

$$\lim_{\mu \to 0} \frac{1}{x - a \pm \mathrm{i}\mu} = \mathcal{P}\frac{1}{x - a} \mp \mathrm{i}\pi\delta(x - a),\tag{4.18}$$

lako se nalazi korelaciona funkcija

$$\langle \hat{S}^{-}(a)\hat{S}^{+}(a)\rangle = 2\langle \hat{S}^{z}\rangle P_{S}(T)$$
(4.19)

$$P_{S}(T) = \frac{1}{N_{a}} \sum_{\boldsymbol{k}} \frac{\epsilon_{\text{RPA}}(\boldsymbol{k})}{2 \,\omega_{\text{RPA}}(\boldsymbol{k})} \operatorname{coth} \frac{\omega_{\text{RPA}}(\boldsymbol{k})}{2T} - \frac{1}{2}.$$
(4.20)

Poznavanjem funkcije $P_S(T)$, magnetizacija podrešetke na proizvoljnoj temperaturi i za proizvoljan spin S je odredjena Kalenovom formulom [17]

$$\langle \hat{S} \rangle = \frac{[S - P_S(T)][1 + P_S(T)]^{2S+1} + [S + 1 + P_S(T)][P_S(T)]^{2S+1}}{[1 + P_S(T)]^{2S+1} - [P_S(T)]^{2S+1}}.$$
(4.21)

Da bi se odredili parametri hamiltonijana, kritična temperatura i uspostavila veza izmedju RPA i SW rezultata, neophodno je ispitati ponašanje magnetizacije u okolini apsolutne nule, kao i na temperaturama blizu kritične.

 $^{^1 \}rm Kasnije će biti pokazano da je vrednost koeficijenta spinske anizotropije ista u SW i RPA pristupu, tj. da pomenuti odnos zaista važi$

 $^{^2 \}mathrm{Sa} \; \mathcal{P}$ je označena glavna vrednost odgovarajućeg integrala
Magnetizacija na niskim temperaturama i veza sa SW analizom

Jednačina (4.21) koja odredjuje magnetizaciju u RPA pristupu se dosta razlikuje od analognog SW izraza (3.24). Pre svega (4.21) je samousaglašena jednačina, jer magnetizacija ulazi u izraz za magnonsku energiju. Ipak, može pokazati da na jako niskim temperaturama (4.21) prelazi u (3.24). Za $T \approx 0$ K funkcija coth $[\omega_{\text{RPA}}(\boldsymbol{k})/(2T)]$ se može aproksimirati jedinicom. Tada je

$$P_{S}(0) \approx \frac{1}{N_{a}} \sum_{\boldsymbol{k}} \frac{\epsilon_{\text{RPA}}(\boldsymbol{k})}{2 \omega_{\text{RPA}}(\boldsymbol{k})} - \frac{1}{2}$$

$$= \frac{1}{N_{a}} \sum_{\boldsymbol{k}} \frac{\eta + \lambda_{\perp} (2 - \gamma_{\perp}^{aa}(\boldsymbol{k}))}{2 \sqrt{[\eta + \lambda_{\perp} (2 - \gamma_{\perp}^{aa}(\boldsymbol{k}))]^{2} - [\gamma_{\parallel}(\boldsymbol{k}_{\parallel}) + \lambda_{\perp} \gamma_{\perp}^{ab}(\boldsymbol{k})]^{2}}} - \frac{1}{2}.$$
 (4.22)

Magnetizacija na niskim temperaturama se dobija iz Kalenove formule, koja postaje

$$\langle \hat{S} \rangle_0 = \frac{[S - P_S(0)][1 + P_S(0)]^{2S+1} + [S + 1 + P_S(0)][P_S(0)]^{2S+1}}{[1 + P_S(0)]^{2S+1} - [P_S(0)]^{2S+1}}.$$
(4.23)

Veličina $P_S(0)$ je ekvivalentna sa ranije uvedenim kvantnim fluktuacijama u osnovnom stanju $\delta \langle \hat{S}^z \rangle_0$, dobijenim u okviru SW prilaza (jednačina (3.25)). Iz Tabele 2 se vidi da je $\delta \langle \hat{S}^z \rangle_0 \ll 1$, pa će najveći doprinos dolaziti od linearnih članova po $P_S(0)$. Korišćenjem binomnog obrazca i zadržavanjem samo najnižih članova po $P_S(0)$ u imeniocu i broiocu, dobija se

$$\langle \hat{S} \rangle_0 \approx \frac{S + P_S(0)[S(2S+1)-1]}{1 + (2S+1)P_S(0)}.$$
(4.24)

Odnosno, aproksimiranjem $[1 + (2S + 1)P_S(0)]^{-1}$ sa $1 - (2S + 1)P_S(0)$, RPA izraz za magnetizaciju, linaran po $P_S(0)$ postaje

$$\langle \hat{S} \rangle_0 \approx S - P_S(0),$$
(4.25)

što je SW rezultat. Uopšte uzevši, rezultati obe teorije na niskim temperaturama se slažu. Male razlike koje se pojavljuju su posledica članova višeg reda po $P_S(0)$. Iz jednačine (4.22) se vidi da magnetizacija rešetke u osnovnom stanju ne zavisi od unutarravanskog integrala izmene J, već samo od λ_{\perp} i η . To je prva naznaka da RPA postupak zadovoljava uslove Mermin-Vagnerove teoreme. Niže u tekstu je to strogo pokazano.

Magnetizacija na visokim temperaturama; kritična temperatura i kritični eksponent β

U blizini kritične (Nelove) temperature, $T_{\rm N},$ energija magnona teži nuli linearno sa magnetizacijom. Zbog toga se može pisati

$$\coth \frac{\omega_{\text{RPA}}(\boldsymbol{k})}{2T} \approx \frac{2T}{\omega_{\text{RPA}}(\boldsymbol{k})}.$$
(4.26)

Funkcija $P_S(T)$ se znatno pojednostavljuje:

$$P_{S}(T_{\rm N}) \approx \frac{1}{N_{a}} \sum_{\boldsymbol{k}} \frac{\epsilon_{\rm RPA}(\boldsymbol{k})}{2 \,\omega_{\rm RPA}(\boldsymbol{k})} \, \frac{2 \, T_{\rm N}}{\omega_{\rm RPA}(\boldsymbol{k})} \equiv \frac{T_{\rm N}}{J z \langle \hat{S} \rangle |_{T_{\rm N}}} \, C^{d}(\eta, \lambda_{\perp}), \tag{4.27}$$

gde je sa $C^d(\eta, \lambda_{\perp})$ označena geometrijska konstanta

$$C^{d}(\eta,\lambda_{\perp}) = \frac{1}{N_{a}} \sum_{\boldsymbol{k}} \frac{\eta + \lambda_{\perp}(2 - \gamma_{\perp}^{aa}(\boldsymbol{k}))}{[\eta + \lambda_{\perp}(2 - \gamma_{\perp}^{aa}(\boldsymbol{k}))]^{2} - [\gamma_{\parallel}(\boldsymbol{k}_{\parallel}) + \lambda_{\perp}\gamma_{\perp}^{ab}(\boldsymbol{k})]^{2}},$$
(4.28)

koja pored λ_{\perp} i η zavisi i od dimenzije d rešetke. Iz (4.27) se vidi da funkcija $P_S(T)$ neograničeno raste kako se temperatura približava kritičnoj ($P_S \propto \langle \hat{S}^z \rangle^{-1}$). Tada najznačajniji doprinos magnetizaciji u (4.21) potiče od najviših stepena $P_S(T_N)$. Upotrebom binomnog obrazca se dobija

$$[1 + P_S(T_N)]^{2S+1} \approx [P_S(T_N)]^{2S+1} + (2S+1)[P_S(T_N)]^{2S}$$

$$+ \frac{2S(2S+1)}{2!}[P_S(T_N)]^{2S-1} + \frac{2S(2S+1)(2S-1)}{3!}[P_S(T_N)]^{2S-2}$$
(4.29)

Zamenom ove aproksimacije u Kalenov obrazac za magnetizaciju se dobija

$$\langle \hat{S}^z \rangle \Big|_{T_{\mathrm{N}}} \approx \frac{S(S+1)}{3} \frac{1}{P_S(T_{\mathrm{N}})}.$$

$$(4.30)$$

Kombinovanjem (4.27) i (4.30) se dolazi do formule za računanje $T_{\rm N}$ u RPA pristupu

$$T_{\rm N} = \frac{S(S+1)}{3} \frac{Jz}{C^d(\lambda_{\perp},\eta)}.$$
(4.31)

Za odredjivanje ponašanja magnetizacije u blizini $T_{\rm N}$, potrebno je zadržati još jedan član u razvoju funkcije $\coth[\omega_{\rm RPA}(\mathbf{k})/(2T)]$, tj.

$$\operatorname{coth} \frac{\omega_{\text{RPA}}(\boldsymbol{k})}{2T} \approx \frac{2T}{\omega_{\text{RPA}}(\boldsymbol{k})} + \frac{1}{3} \frac{\omega_{\text{RPA}}(\boldsymbol{k})}{2T}.$$
(4.32)

Tada se dobija:

$$P_S(T_{\rm N}) \approx \frac{C^d(\lambda_{\perp}, \eta)}{Jz} \frac{T}{\langle \hat{S}^z \rangle} + \frac{Jz K^d(\lambda_{\perp}, \eta)}{12} \frac{\langle \hat{S}^z \rangle}{T}, \qquad (4.33)$$

$$K^{d}(\lambda_{\perp},\eta) = \frac{1}{N_{a}} \sum_{\boldsymbol{k}} [\eta + \lambda_{\perp} (2 - \gamma_{\perp}^{aa}(\boldsymbol{k}))].$$

$$(4.34)$$

Nakon zamene (4.34) u (4.30) i nešto preuredjivanja, dobija se

$$\langle \hat{S}^z \rangle \approx \left[\frac{T}{T_{\rm N}} \frac{1}{\langle \hat{S}^z \rangle} + \tilde{K}^d(\lambda_\perp, \eta) \; \frac{\langle \hat{S}^z \rangle}{T} \right]^{-1},\tag{4.35}$$

gde je

$$\tilde{K}^{d}(\lambda_{\perp},\eta) = \frac{JzK^{d}(\lambda_{\perp},\eta)}{12} \frac{3}{S(S+1)},$$
(4.36)

dok je $T_{\rm N}$ definisano u (4.31). Rešavanjem (4.35) po $\langle \hat{S}^z \rangle$ se dobija

$$\langle \hat{S}^z \rangle = \sqrt{\frac{T}{\tilde{K}^d(\lambda_\perp, \eta)} \left[1 - \frac{T}{T_N} \right]} \approx \sqrt{\frac{T_N}{\tilde{K}^d(\lambda_\perp, \eta)} \left[1 - \frac{T}{T_N} \right]} \sim \left[1 - \frac{T}{T_N} \right]^{1/2}, \tag{4.37}$$

odakle sa vidi da je u RPA pristupu $\beta = 1/2$. To je dobro poznati klasični rezultat, koji je GF metodom dobio Tjablikov [16] analizirajući Hajzenbergov model za S = 1/2.

Jednačine (4.15), (4.21), i (4.31), zajedno sa (4.28) čine osnovu za (najvećim delom) numeričku analizu, koja je izložena u narednom odeljku.

4.1.3 Analiza rezultata

Parametri 2D hamiltonijana

Najpre će biti razmotren 2D model ($\lambda_{\perp} = 0$). Parametri J i η se odredjuju samousaglašenim rešavanjem jednačina (4.15) i (4.21), uz korišćenje eksperimentalnih vrednosti za disperziju. Poznavanjem J i η , moguće je odrediti termodinamičke parametre sistema. Kako su poznate eksperimentalne vrednosti disperzije duž k_x -pravca, u tačkama (0,0,0) i (π/a ,0,0), na T = 8 K, sistem jednačina koji treba samousaglašeno rešiti glasi:

$$\begin{split} \omega_{\rm RPA}^{2D}(0,0) &= J\langle \hat{S}^{z} \rangle \Big|_{8} z \sqrt{\eta^{2} - 1} \\ \omega_{\rm RPA}^{2D}(\pi/a,0) &= J\langle \hat{S}^{z} \rangle \Big|_{8} z \eta \\ \langle \hat{S} \rangle \Big|_{8} &= \frac{[S - P_{S}^{2D}(8)][1 + P_{S}^{2D}(8)]^{2S+1} + [S + 1 + P_{S}^{2D}(8)][P_{S}^{2D}(8)]^{2S+1}}{[1 + P_{S}^{2D}(8)]^{2S+1} - [P_{S}^{2D}(8)]^{2S+1}} \\ P_{S}^{2D}(8) &= \frac{1}{N_{a}} \sum_{\mathbf{k}_{\parallel}} \frac{\epsilon_{\rm RPA}^{2D} \Big|_{8}}{2 \omega_{\rm RPA}^{2D}(\mathbf{k}_{\parallel})\Big|_{8}} \coth \frac{\omega_{\rm RPA}^{2D}(\mathbf{k}_{\parallel})\Big|_{8}}{2 \cdot 8} - \frac{1}{2}, \end{split}$$
(4.39)
$$\omega_{\rm RPA}^{2D}(\mathbf{k}_{\parallel})\Big|_{8} &= J\langle \hat{S}^{z} \rangle \Big|_{8} z \sqrt{\eta^{2} - \gamma_{\parallel}(\mathbf{k}_{\parallel})}, \qquad \epsilon_{\rm RPA}^{2D} \Big|_{8} = J\langle \hat{S}^{z} \rangle \Big|_{8} z \eta. \end{split}$$

Magnetizacija podrešetke na apsolutnoj nuli se može izračunati pomoću (4.23), pri čemu je (videti (B.16))

$$P_S^{2D}(0) = \frac{1}{2} \left[{}_{3}F_2\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1, 1; \frac{1}{\eta^2}\right) - 1 \right].$$
(4.40)

Nelova temperatura za date parametre je odredjena jednačinom (4.31), uz (videti (C.14))

$$C^{2D}(\eta, 0) = \frac{2}{\pi\eta} \mathcal{K}(1/\eta),$$
(4.41)

gde je \mathcal{K} potpuni eliptički integral 1. vrste, a $_{3}F_{2}$ uopštena hipergeometrijska funkcija. Rezultati su prikazani u sledećoj tabeli [19]

TABELA 3:							
RPA karakteristike 2D modela							
λ_{\perp}	J	η	$T_{\mathrm{N}}[K]$	$\langle \hat{S} \rangle_0$			
0	12.4785	1.0021356	55.635	2.32338			

pri čemu je J izraženo u jedinicama Bolcmanove konstante. Magnonska disperzija duž k_x pravca je prikazana na Sl. 10 (RPA disperzija duž k_x pravca se poklapa SW spektrom; 3D prikaz energijske površine se takodje poklapa).

Temperaturska zavisnost magnetizacije

Temperatursko ponašanje magnetizacije je predstavljeno na Sl. 11 (videti [19]) zajedno sa najboljim SW rezultatom (za $\lambda_{\perp} = 0$), dok je poredjenje eksperimentalnih vrednosti relativne magnetizacije sa teorijskom krivom prikazano na Sl.12.

Sl. 10: Magnonska disperzija Rb₂MnCl₄ na T = 8 K izračunata RPA postupkom (jednačina (4.40)), za 2D model (puna linija). Kružići su eksperimentalni podatci preuzeti iz [28]. Na x osi se je prikazan redukovani talasni vektor $\xi = \frac{ak_x}{2\pi}$

Pre svega, iz Tabele 3 se vidi jako dobro slaganje izmedju teorijske i eksperimentalne vrednosti za kritičnu temperaturu (relativna greška je $\simeq 0.65\%$). Drugo, vrednosti RPA i SW parametra J se razlikuju. To je posledica renormalizacije magnonskih energija.

Sa Sl. 11 i Sl. 12 se vidi da postoji jako dobro slaganje izmedju SW i RPA rezultata na niskim temperaturama (videti i jednačinu (4.25)).

Sl. 11: Temperatursko ponašanje spontane magnetizacije dobijena metodom GF u okviru RPA pristupa za 2D model (puna linija) u poredjenju sa SW rezultatom (isprekidana linija)

Predvidjanja obe teorije se slažu i sa eksperimentalnim vrednostima na niskim temperaturama. Na visokim temperaturama, rezultati pomenutih teorija se razilaze. Dok SW teorija drastično precenjuje vrednost za Nelovu temperaturu, metod GF, u kombinaciji sa Tjablikovljevim dekuplovanjem, daje dobra predvidjanja i na visokim temperaturama.

Sl. 12: Poredjenje relativne magnetizacije dobijene GF metodom u okviru RPA pristupa za 2D model (puna linija) i relativne magnetizacije dobijene linearnom teorijom spinskih talasa za 2D model (isprekidana linija) sa eksperimentalnim podacima (kružići) preuzetim iz [28]

Ipak, postoji odredjeno odstupanje od eksperimentalno opaženog ponašanja magnetizacije. Crtanjem funkcije $\ln \langle \hat{S}^z \rangle$ u zavisnosti od $\ln[1 - T/T_N]$, moguće je odrediti kritični eksponent β kao koeficijent pravca. Fitovanjem se dobija $\beta = 0.499218 \pm 0.000080$ [19] (videti Sl. 13), što se slaže sa jednačinom (4.37). Eksperimentalno odredjena vrednost pomenutog kritičnog eksponenta za klasu jedinjenja kojoj pripada Rb₂MnCl₄ se kreće u intervalu $0.15 < \beta < 0.18$ [27, 31]. Dakle, Tjablikovo dekuplovanje daje klasičnu vrednost kritičnog eksponenta β , koja se dobija iz Landauove teorije faznih prelaza [6].

Treba napomenuti da postoji unapredjena teorija spinskih talasa, tzv. samousaglašena teorija spinskih talasa (Self-Consistent Spin Wave Theory, SSWT). Primena SSWT na antiferomagnetne halogenide mangana je data u [32]. U pomenutom radu je diskutovan slučaj jedinjenja K₂MnF₄. Teorijski ocenjena vrednost Nelove temperature se razlikuje od eksperimentalno izmerene za $\simeq 19\%$, dok se za kritični eksponent koji opisuje ponašanje magnetizacije u okolini kritične temperature dobija $\beta = 1$. Prednosti RPA u odnosu na SSWT su očigledne.

Sl. 13: Grafik za odredjivanje kritičnog eksponenta β (prema [19])

Bolja vrednost kritičnog eksponenta β , odnosno kvalitetniji opis ponašanja magnetizacije u blizini kritične temperature se dobija primenom aparata renorm-grupe i sličnih tehnika specijalno razvijenih za tu svrhu (za primenu na manganove halogenide, videti npr. [33])

Uticaj spinske anizotropije

Mermin-Vagnerova teorema [20] govori da izotropni 2D Hajzenbergov model ne poseduje dugodometno uredjenje na konačnim temperaturama u odsustvu spoljašnjeg magnetnog polja. S druge strane, postoji dokaz [9] da izotropni Hajzenbergov antiferomagnet za $S \ge 1$ na kvadratnoj rešetki poseduje dugodometno uredjenje na T = 0 K. Zbog toga je važno ispitati na koji način se magnetne osobine Rb₂MnCl₄ menjaju pod uticajem spinske anizotropije. Odnosno, proveriti da li se RPA rezultati slažu sa ovim strogim dokazima.

Za izotropni model ($\eta = 1$) se dobija (videti Prilog B):

$$P_S^{2D}(T=0,\eta=1) = \frac{1}{2} \left[\frac{4}{\pi^2} \mathcal{K}^2 \left[\sqrt{1/2} \right] - 1 \right] = 0.196602, \tag{4.42}$$

pa je

$$\left. \langle \hat{S}^z \rangle_0 \right|_{\eta=1} = 2.30352,$$
(4.43)

što govori o postojanju dugodometnog uredjenja na T = 0 K. Numerička vrednost za $\langle \hat{S}^z \rangle_0|_{\eta=1}$ je u skladu sa rezultatima SW analize. U slučaju jake anizotropije Izingovog tipa $(\eta \gg 1)$ je $P_S^{2D}(T = 0, \eta \gg 1) = 0$, pa Kalenova formula daje

$$\left. \langle \hat{S}^z \rangle_0 \right|_{\eta \gg 1} = S,\tag{4.44}$$

ponovo u skladu sa SW rezultatom. Grafik funkcije $\langle \hat{S}^z \rangle_0(\eta)$ dobijen RPA pristupom je identičan sa već prikazanim na Sl. 9.

Kritična temperatura kao funkcija spinske anizotropije je odredjena sa (videti prilog C)

$$T_{\rm N}(\eta) = \frac{S(S+1)}{3} Jz \, \frac{\pi \, \eta}{2 \, \mathcal{K}(1/\eta)}.$$
(4.45)

Za izotropni model se dobija

$$T_{\rm N}(\eta = 1) = \lim_{\eta \to 1} \frac{S(S+1)}{3} Jz \ \frac{\pi \ \eta}{2 \ \mathcal{K}(1/\eta)} \sim \frac{1}{\mathcal{K}(1)} \to 0.$$
(4.46)

Pošto $T_{\rm N} \rightarrow 0$, izotropni sistem ne može posedovati uredjeno stanje na konačnim temperaturama. Dugodometno uredjenje postoji samo na apsolutnoj nuli (4.43) a na konačnim temperaturama biva uništeno Goldstonovim bozonima.

Zanimljivo je i ponašanje kritične temperature kod jako anizotropnog ($\eta \gg 1$) modela. Kako je $\mathcal{K}(0) = \pi/2$, za kritičnu temperaturu se dobija

$$T_{\rm N}(\eta \gg 1) = \frac{J \ z \ S(S+1)}{3} \ \eta. \tag{4.47}$$

Iz poslednje jednačine se na prvi pogled može zaključiti da sa porastom spinske anizotropije i kritična temperatura raste neograničeno. To svakako nema fizičkog smisla. Sa porastom η raste i vrednost magnetizacije u osnovnom stanju. U graničnom slučaju³ $\eta \to \infty$, osnovno stanje sistema prelazi u konfiguraciju Izingovog tipa (4.44). Čak i takav sistem mora posedovati konačnu Nelovu temperaturu [34].

Sl. 14: Kritična temperatura 2DHAFM na kvadratnoj rešetki kao funkcija spinske anizotropije

Anizotropni Hajzenbergov model, kako je uveden jednačinom (1.27), zapravo je fenomenološki model, koji dobro opisuje eksperimentalne podatke kada su mu parametri fiksirani na odredjeni način [12]. U ovom radu su parametri J i η odredjeni korišćenjem eksperimentalnih podataka o magnonskoj disperziji. Oni zbog toga nisu medjusobno nezavisni. Veza izmedju njih je data npr. jednačinom (4.38). Dakle, umesto (4.47) treba pisati

$$T_{\rm N}(\eta \gg 1) = \frac{z \ S(S+1)}{3} \ \frac{\omega_{\rm RPA}^{2D}(\pi/a,0)}{z \ \langle \hat{S}^z \rangle|_8} \approx \frac{(S+1)}{3} \ \omega_{\rm RPA}^{2D}(\pi/a,0), \tag{4.48}$$

 3 Graničnu vrednost $\eta \to \infty$ treba shvatiti u smislu aproksimacije Hajzenbergovog hamiltonijana Izingovim

jer je za velike vrednosti anizotropije na niskim temperaturama $\langle \hat{S}^z \rangle \approx S$. Jednačina (4.48) zapravo predstavlja rezultat aproksimacije srednjeg polja (Mean Field, MF) primenjene na uopšteni Izingov model. To je očekivano, jer je primena RPA na Izingov model ekvivalentna MF pristupu [35] (videti prilog (D)).

Cinjenica da temperatura faznog prelaza ne raste neograničeno sa η govori o kvalitetu primenjene aproksimacije i korišćenog metoda za odredjivanje parametara hamiltonijana⁴. Takodje, konacna Nelova temperatura u jako anizotropnom slučaju sugeriše da se hamiltonijan (1.27) može koristiti i za opis sistema čija se magnetna struktura znatno razlikuje od standardne, opisane izotropnim Hajzenbergovim modelom.

Uticaj prostorne anizotropije

Slično kao u odeljku 3.1, za nekoliko različitih vrednosti λ_{\perp} odredjeni su parametri hamiltonijana. Rezultati dobijeni samousaglašenim rešavanjem jednačina (4.15) i (4.21), zajedno sa pripadnim kritičnim temperaturama i vrednostima magnetizacije podrešetke na apsolutnoj nuli, prikazani su u Tabeli 4. Radi poredjenja, u istoj tabeli su date i vrednosti odgovarajućih veličina koje karakterišu 2D model ($\lambda_{\perp} = 0$).

Izračunate vrednosti parametara modela za različite vrednosti λ_\perp u RPA prilazu						
λ_{\perp}	0	$5\cdot 10^{-5}$	$5\cdot 10^{-4}$	$5\cdot 10^{-3}$	$5\cdot 10^{-2}$	$5\cdot 10^{-1}$
J	12.4785	12.4698	12.4088	12.1541	11.2883	7.6808
η	1.0021356	1.0021357	1.0021367	1.0021463	1.0022424	1.0032034
$\langle \hat{S}^z \rangle_0$	2.32338	2.32354	2.32488	2.33395	2.36681	2.4192
$T_{\rm N}$	55.635	55.7128	56.3796	60.6734	74.2798	104.498

TABELA 4:

Poredjenjem gornjih sa vrednostima iz Tabele 1., opaža se da se vrednosti spinske anizotropije dobijene u SW i RPA pristupu poklapaju. To je posledica jednostavne veze izmedju magnonskih energija dobijenih u pomenuta dva pristupa. U SW, kao i u RPA prilazu, koeficijent spinske anizotropije je odredjen sa

$$\eta = 1 + (1 + \lambda_{\perp}) \left(\frac{1}{\sqrt{1 - [\omega(0,0)/\omega(\pi/a,0)]^2}} - 1 \right).$$
(4.49)

Kasnije će ta činjenica biti od značaja za poredjenje rezultata Kalenovog sa Tjablikovim dekuplovanjem.

Na Sl. 15 je prikazana promena spontane magnetizacije sa temperaturom za 2D model i nekoliko 3D modela. Na Sl. 16 je dato poredjenje relativnih magnetizacija za iste vrednosti λ_{\perp} kao na Sl. 15. Grafik magnonske disperzije duž k_x pravca je kao na Sl. 10 i u opšte ne zavisi od λ_{\perp} . Iz Tabele 4, kao i sa Sl.15 i Sl.16 se vidi da prostorna anizotropija slabo utiče na vrednosti kritične tempreature sve dok važi $\lambda_{\perp} \lesssim 10^{-3}$. Slično je i sa ostalim parametrima.

⁴Naravno da je kritična temperatura Izingovog modela srazmerna odgovarajućem izmenskom integralu $(T_{\rm N}^{\rm Ising} \sim J', \text{ videti prilog D})$, pa $T_{\rm N} \rightarrow \infty$ pri $J' \rightarrow \infty$. Cilj ovog paragrafa je da se pokaže kako u slučaju kada u hamiltonijanu (2.7) dominira član sa spinskom anizotropijom, RPA postupak daje rezultate koji opisuju uopšteni Izingov model

Sl. 15: Spontana magnetizacija podrešetke za različite vrednosti λ_\perp

Sl. 16: Relativne magnetizacije (linije) za različite vrednosti λ_{\perp} u poredjenju sa eksperimentalnim podacima (tačke) iz [28]

Konkretno, najbolju vrednost za $T_{\rm N}$ daje model s
a $\lambda_{\perp}=5\cdot 10^{-5}$. Ta vrednost se za0.13%razlikuje od Kritične temperature koju daje 2D model. Medjutim, tako mala razlika u kritičnim temperaturama nije razlog da se modelu s
a $\lambda_{\perp}=5\cdot 10^{-5}$ da prednost u odnosu na 2D model.

Povećavanjem broja parametara hamiltonijana uzimanjem u obzir i interakcija izmedju drugih i trećih najbližih suseda u ravni, kao i u susednim ravnima, i njihovim podešavanjem, moguće je dobiti vrednosti kritične temperature još bliže eksperimentalnoj. Osnovno preimućstvo 2D modela je njegova jednostavnost. Svi njegovi parametri su odredjeni na osnovu eksperimentalnih podataka, tačnije pomoću samo dve vrednosti za magnonsku disperziju. Druga bitna činjenica je da model sa $\lambda_{\perp} \neq 0$ daje isti oblik disperzione krive duž k_x pravca kao 2D model. Odatle proizilazi da sve trenutno dostupne rezultate eksperimenata zadovoljavajuće opisuje 2D model. O svrsishosdnosti uključivanja medjuravanske interakcije u hamiltonijan može se suditi tek posle razmatranja dodatnih ekspreimentalnih rezultata. Recimo, nakon poredjenja teorijskih predvidjanja sa eksperimentalnim vrednostima magnonske disperzije duž još nekih pravaca visoke simetrije unutar Briluenove zone.

4.2 Kalenovo dekuplovanje

4.2.1 Magnonski spektar

Primena Kalenovog dekuplovanja na jednačine (4.1) i (4.2) daje sledeći sistem

$$\begin{split} &\omega\langle\langle\hat{S}_{\mathbf{n}}^{+(a)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle = \frac{i}{2\pi}\langle\hat{S}^{z(a)}(a)\rangle\Delta(\mathbf{n}-\mathbf{m}) + h\langle\langle\hat{S}_{\mathbf{n}}^{+(a)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle \\ &+ J\langle\hat{S}^{z}(a)\rangle\sum_{\boldsymbol{\delta}_{\parallel}}\langle\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\parallel}}^{+(b)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle - J\alpha(a)\sum_{\boldsymbol{\delta}_{\parallel}}\langle\hat{S}_{\mathbf{n}}^{-(a)}\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\parallel}}^{-(b)}\rangle\langle\langle\hat{S}_{\mathbf{n}}^{+(a)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle \\ &+ J\eta z\langle\hat{S}^{z}(b)\rangle\langle\langle\hat{S}_{\mathbf{n}}^{+(a)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle - J\eta \alpha(b)\sum_{\boldsymbol{\delta}_{\parallel}}\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\parallel}}^{+(a)}\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\parallel}}^{-(a)}\rangle\langle\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\parallel}}^{-(a)}\rangle\langle\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\parallel}}^{-(a)}\rangle\rangle \\ &+ J_{\perp}\langle\hat{S}^{z}(a)\rangle\sum_{\boldsymbol{\delta}_{\perp}^{ab}}\langle\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\perp}}^{-(b)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle - J_{\perp}\alpha(a)\sum_{\boldsymbol{\delta}_{\perp}^{ab}}\langle\hat{S}_{\mathbf{n}}^{-(a)}\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\perp}}^{-(b)}\rangle\langle\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\parallel}}^{+(a)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle \\ &+ J_{\perp} z\langle\hat{S}^{z}(b)\rangle\langle\langle\hat{S}_{\mathbf{n}}^{+(a)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle - J_{\perp}\alpha(b)\sum_{\boldsymbol{\delta}_{\perp}^{ab}}\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\perp}}^{+(a)}\rangle\langle\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\perp}}^{-(a)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle \\ &- J_{\perp}\langle\hat{S}^{z}(a)\rangle\sum_{\boldsymbol{\delta}_{\perp}^{a}}\langle\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\perp}}^{+(a)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle + J_{\perp}\alpha(a)\sum_{\boldsymbol{\delta}_{\perp}^{a}}\langle\hat{S}_{\mathbf{n}}^{-(a)}\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\perp}^{a}}^{+(a)}\rangle\langle\langle\hat{S}_{\mathbf{n}}^{+(a)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle \\ &+ J_{\perp} \eta z\langle\hat{S}^{z}(a)\rangle\langle\langle\hat{S}_{\mathbf{n}}^{+(a)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle - J_{\perp}\alpha(a)\sum_{\boldsymbol{\delta}_{\perp}^{a}}\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\perp}^{a}}\hat{S}_{\mathbf{n}}^{+(a)}\rangle\langle\langle\hat{S}_{\mathbf{n}+a}^{+(a)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle, \end{split}$$

$$\begin{split} &\omega\langle\langle\hat{S}_{\mathbf{n}}^{-(b)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle = h\langle\langle\hat{S}_{\mathbf{n}}^{-(b)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle \\ &- J\langle\hat{S}^{z}(b)\rangle\sum_{\boldsymbol{\delta}_{\parallel}}\langle\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\parallel}}^{+(a)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle + J\alpha(b)\sum_{\boldsymbol{\delta}_{\parallel}}\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\parallel}}^{+(b)}\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\parallel}}^{+(a)}\rangle\langle\langle\hat{S}_{\mathbf{n}}^{-(b)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle \\ &- J\eta z\langle\hat{S}^{z}(a)\rangle\langle\langle\hat{S}_{\mathbf{n}}^{-(b)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle + J\eta\alpha(a)\sum_{\boldsymbol{\delta}_{\parallel}}\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\parallel}}^{-(b)}\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\parallel}}^{-(b)}\rangle\langle\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\parallel}}^{+(a)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle \\ &- J_{\perp}\langle\hat{S}^{z}(b)\rangle\sum_{\boldsymbol{\delta}_{\perp}^{0,b}}\langle\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\perp}^{0,b}}^{+(a)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle + J_{\perp}\alpha(b)\sum_{\boldsymbol{\delta}_{\perp}^{0,b}}\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\perp}^{0,b}}^{-(b)}\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\perp}^{0,b}}^{-(a)}\rangle\langle\langle\hat{S}_{\mathbf{n}}^{-(b)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle \\ &- J_{\perp} z\langle\hat{S}^{z}(a)\rangle\langle\langle\hat{S}_{\mathbf{n}}^{-(b)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle + J_{\perp}\alpha(a)\sum_{\boldsymbol{\delta}_{\perp}^{0,b}}\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\perp}^{0,b}}^{-(b)}\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\perp}^{0,b}}^{-(a)}\rangle\langle\langle\hat{S}_{\mathbf{n}}^{-(a)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle \\ &+ J_{\perp}\langle\hat{S}^{z}(b)\rangle\sum_{\boldsymbol{\delta}_{\perp}^{0,b}}\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\perp}^{0,b}}^{-(a)}\rangle - J_{\perp}\alpha(b)\sum_{\boldsymbol{\delta}_{\perp}^{0,b}}\langle\hat{S}_{\mathbf{n}}^{-(b)}\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\perp}^{0,b}}^{-(b)}\rangle\langle\langle\hat{S}_{\mathbf{n}}^{-(b)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle \\ &- J_{\perp} \eta z\langle\hat{S}^{z}(b)\rangle\langle\langle\hat{S}_{\mathbf{n}}^{-(b)}|\hat{S}_{\mathbf{m}}^{-(a)}\rangle\rangle + J_{\perp}\alpha(b)\sum_{\boldsymbol{\delta}_{\perp}^{0,b}}\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\perp}^{0,b}}\hat{S}_{\mathbf{n}}^{-(b)}\rangle\langle\langle\hat{S}_{\mathbf{n}+\boldsymbol{\delta}_{\perp}^{0,b}}\hat{S}_{\mathbf{m}}^{-(b)}\rangle\rangle, \end{split}$$

gde je $\alpha(a/b) = \langle \hat{S}^z(a/b) \rangle / (2S^2)$. Nakon prelaska u impulsni prostor transformacijom (4.7), posmatrani sistem jednačina se svodi na

$$[\omega - \epsilon_{\rm CA}^{1}(\boldsymbol{k})] \langle \langle \hat{S}^{+}(a) | \hat{S}^{-}(a) \rangle \rangle_{\boldsymbol{k}} - \langle \hat{S}^{z}(a) \rangle J_{\rm CA}(\boldsymbol{k}) \langle \langle \hat{S}^{-}(b) | \hat{S}^{-}(a) \rangle \rangle_{\boldsymbol{k}} = \frac{\mathrm{i}}{2\pi} 2 \langle \hat{S}^{z}(a) \rangle,$$

$$\langle \hat{S}^{z}(b) \rangle J_{\rm CA}(\boldsymbol{k}) \langle \langle \hat{S}^{+}(a) | \hat{S}^{-}(a) \rangle \rangle_{\boldsymbol{k}} + [\omega + \epsilon_{\rm CA}^{2}(\boldsymbol{k})] \langle \langle \hat{S}^{-}(b) | \hat{S}^{-}(a) \rangle \rangle_{\boldsymbol{k}} = 0.$$
 (4.52)

Nove veličine definisane u Kalenovoj šemi dekuplovanja su:

$$\begin{aligned} \epsilon^{1}_{\rm CA}(\boldsymbol{k}) &= \tilde{\epsilon}^{a}_{\parallel} + \tilde{\epsilon}^{ab}_{\perp} + \tilde{\epsilon}^{aa}_{\perp} - \langle \hat{S}^{z}(a) \rangle \tilde{J}^{aa}_{\perp}(\boldsymbol{k}) + h \equiv \epsilon_{\rm CA}(\boldsymbol{k}) + h, \\ \epsilon^{2}_{\rm CA}(\boldsymbol{k}) &= \tilde{\epsilon}^{a}_{\parallel} + \tilde{\epsilon}^{ab}_{\perp} + \tilde{\epsilon}^{bb}_{\perp} - \langle \hat{S}^{z}(b) \rangle \tilde{J}^{bb}_{\perp}(\boldsymbol{k}) - h \equiv \epsilon_{\rm CA}(\boldsymbol{k}) - h, \end{aligned}$$
(4.53)

$$J_{\rm CA}(\boldsymbol{k}) = \tilde{J}_{\parallel}(\boldsymbol{k}_{\parallel}) + \tilde{J}_{\perp}^{ab}(\boldsymbol{k}), \qquad (4.54)$$

pri čemu su

$$\begin{split} \tilde{\epsilon}^{b}_{\parallel} &= \epsilon^{b}_{\parallel} \left[1 - \frac{\alpha(b)}{\langle \hat{S}^{z}(a) \rangle \eta} \Phi_{\parallel}^{--} \right] = J\eta z \langle \hat{S}^{z}(b) \rangle \left[1 - \frac{\alpha(b)}{\langle \hat{S}^{z}(a) \rangle \eta} \Phi_{\parallel}^{--} \right], \\ \tilde{\epsilon}^{ab}_{\perp} &= \epsilon^{ab}_{\perp} \left[1 - \frac{\alpha(a)}{\langle \hat{S}^{z}(b) \rangle} \Phi_{\perp}^{--} \right] = J_{\perp} z \langle \hat{S}^{z}(b) \rangle \left[1 - \frac{\alpha(a)}{\langle \hat{S}^{z}(b) \rangle} \Phi_{\perp}^{--} \right], \\ \tilde{\epsilon}^{aa}_{\perp} &= \epsilon^{aa}_{\perp} \left[1 + \frac{\alpha(a)}{\langle \hat{S}^{z}(a) \rangle} \Phi_{\perp}^{-+} \right] = J_{\perp} z \langle \hat{S}^{z}(a) \rangle \left[1 + \frac{\alpha(a)}{\langle \hat{S}^{z}(a) \rangle} \Phi_{\perp}^{-+} \right], \\ \tilde{J}_{\parallel}(\mathbf{k}_{\parallel}) &= J_{\parallel}(\mathbf{k}_{\parallel}) \left[1 - \frac{\alpha(b)}{\langle \hat{S}^{z}(a) \rangle} \Phi_{\parallel}^{--} \right] = Jz \gamma_{\parallel}(\mathbf{k}_{\parallel}) \left[1 - \frac{\alpha(b)}{\langle \hat{S}^{z}(a) \rangle} \Phi_{\parallel}^{--} \right], \\ \tilde{J}^{ab}_{\perp}(\mathbf{k}) &= J^{ab}_{\perp}(\mathbf{k}) \left[1 - \frac{\alpha(b)}{\langle \hat{S}^{z}(a) \rangle} \Phi_{\perp}^{--} \right] = J_{\perp} z \gamma^{ab}_{\perp}(\mathbf{k}) \left[1 - \frac{\alpha(b)}{\langle \hat{S}^{z}(a) \rangle} \Phi_{\perp}^{--} \right], \\ \tilde{J}^{aa}_{\perp}(\mathbf{k}) &= J^{aa}_{\perp}(\mathbf{k}) \left[1 + \frac{\alpha(a)}{\langle \hat{S}^{z}(a) \rangle} \Phi_{\perp}^{-+} \right] = J_{\perp} z \gamma^{aa}_{\perp}(\mathbf{k}) \left[1 + \frac{\alpha(a)}{\langle \hat{S}^{z}(a) \rangle} \Phi_{\perp}^{-+} \right]. \end{split}$$

Uvedene su i definicije

$$\Phi_{\parallel}^{--} = \frac{1}{N_a} \sum_{\boldsymbol{k}} \langle \hat{S}^{\pm}(a) \hat{S}^{\pm}(b) \rangle_{\boldsymbol{k}} \gamma_{\parallel}(\boldsymbol{k}_{\parallel}) = \frac{1}{N_a} \sum_{\boldsymbol{k}} \langle \hat{S}^{\pm}(b) \hat{S}^{\pm}(a) \rangle_{\boldsymbol{k}} \gamma_{\parallel}(\boldsymbol{k}_{\parallel}), \qquad (4.56)$$

$$\Phi_{\perp}^{--} = \frac{1}{N_a} \sum_{\boldsymbol{k}} \langle \hat{S}^{\pm}(a) \hat{S}^{\pm}(b) \rangle_{\boldsymbol{k}} \gamma_{\perp}^{ab}(\boldsymbol{k}) = \frac{1}{N_a} \sum_{\boldsymbol{k}} \langle \hat{S}^{\pm}(b) \hat{S}^{\pm}(a) \rangle_{\boldsymbol{k}} \gamma_{\perp}^{ab}(\boldsymbol{k})$$
(4.57)

$$\Phi_{\perp}^{-+} = \frac{1}{N_a} \sum_{\boldsymbol{k}} \langle \hat{S}^{\mp}(a) \hat{S}^{\pm}(a) \rangle_{\boldsymbol{k}} \gamma_{\perp}^{aa}(\boldsymbol{k}) = \frac{1}{N_a} \sum_{\boldsymbol{k}} \langle \hat{S}^{\mp}(a) \hat{S}^{\pm}(a) \rangle_{\boldsymbol{k}} \gamma_{\perp}^{aa}(\boldsymbol{k}).$$
(4.58)

Gornje jednakosti su posledica realnosti koeficijenata u polaznom Hamiltonijanu. Radi preglednijeg pisanja, temperaturska zavisnost veličina $\Phi_{\parallel}^{--}, \Phi_{\perp}^{--}$ i Φ_{\perp}^{-+} je ispuštena. Pri dobijanju sistema (4.52) je korišćena jednakost

$$\sum_{\boldsymbol{k}} F(\boldsymbol{k})\gamma(\boldsymbol{k}+\boldsymbol{q}) = \gamma(\boldsymbol{q})\sum_{\boldsymbol{k}} F(\boldsymbol{k})\gamma(\boldsymbol{k}), \quad \operatorname{za}\gamma(\boldsymbol{k}) = \gamma_{\parallel}(\boldsymbol{k}_{\parallel}), \gamma_{\perp}^{ab}(\boldsymbol{k}), \gamma_{\perp}^{aa}(\boldsymbol{k})$$
(4.59)

koja važi kada je $F(\mathbf{k})$ parna funkcija po komponentama talasnog vektora (videti prilog E).

Polovi GF u odsustvu spoljašnjeg polja se nalaze iz determinante sistema (4.52)

$$\omega_{\rm CA}(\boldsymbol{k}) = \pm \sqrt{[\epsilon_{\rm CA}(\boldsymbol{k})]^2 - [\langle \hat{S}^z \rangle \tilde{J}_{\rm CA}(\boldsymbol{k})]^2} \\
= \pm J \langle \hat{S}^z \rangle z \left\{ \left(\left[\eta - \frac{\Phi_{\parallel}^{--}}{2S^2} \right] + \lambda_{\perp} \left[1 - \frac{\Phi_{\perp}^{--}}{2S^2} \right] + \lambda_{\perp} \left[1 + \frac{\Phi_{\perp}^{-+}}{2S^2} \right] (1 - \gamma_{\perp}^{aa}(\boldsymbol{k})) \right)^2 \\
- \left(\gamma_{\parallel}(\boldsymbol{k}_{\parallel}) \left[1 - \frac{\eta \Phi_{\parallel}^{--}}{2S^2} \right] + \lambda_{\perp} \gamma_{\perp}^{ab}(\boldsymbol{k}) \left[1 - \frac{\Phi_{\perp}^{--}}{2S^2} \right] \right)^2 \right\}^{1/2}.$$
(4.60)

Magnonske energije odgovaraju polovima sa pozitivnim predznakom. Rešavanjem sistema (4.52) se nalaze Grinove funkcije:

$$\langle \langle \hat{S}^{+}(a) | \hat{S}^{-}(a) \rangle \rangle_{\boldsymbol{k}} = \frac{i}{2\pi} \frac{\langle \hat{S}^{z} \rangle}{\omega_{CA}(\boldsymbol{k})} \left[\frac{\omega_{CA}(\boldsymbol{k}) + \epsilon_{CA}(\boldsymbol{k})}{\omega - \omega_{CA}(\boldsymbol{k})} + \frac{\omega_{CA}(\boldsymbol{k}) - \epsilon_{CA}(\boldsymbol{k})}{\omega + \omega_{CA}(\boldsymbol{k})} \right],$$

$$\langle \langle \hat{S}^{-}(b) | \hat{S}^{-}(a) \rangle \rangle_{\boldsymbol{k}} = -\frac{i}{2\pi} \frac{\langle \hat{S}^{z} \rangle^{2} J_{CA}(\boldsymbol{k})}{\omega_{CA}(\boldsymbol{k})} \left[\frac{1}{\omega - \omega_{CA}(\boldsymbol{k})} - \frac{1}{\omega + \omega_{CA}(\boldsymbol{k})} \right],$$

$$(4.61)$$

dok se potrebne korelacione funkcije dobijaju primenom spektralne teoreme

$$\langle \hat{S}^{-}(a)\hat{S}^{+}(a)\rangle_{\boldsymbol{k}} \equiv \Phi^{-+}(\boldsymbol{k}) = 2\langle \hat{S}^{z}\rangle \left[\frac{\epsilon_{\mathrm{CA}}(\boldsymbol{k})}{2\omega_{\mathrm{CA}}(\boldsymbol{k})}\coth\frac{\omega_{\mathrm{CA}}(\boldsymbol{k})}{2T} - \frac{1}{2}\right], \langle \hat{S}^{-}(a)\hat{S}^{-}(b)\rangle_{\boldsymbol{k}} \equiv \Phi^{--}(\boldsymbol{k}) = -\frac{\langle \hat{S}^{z}\rangle^{2}\widetilde{J}_{\mathrm{CA}}(\boldsymbol{k})}{\omega_{\mathrm{CA}}(\boldsymbol{k})}\coth\frac{\omega_{\mathrm{CA}}(\boldsymbol{k})}{2T}.$$

$$(4.62)$$

Spektar dobijen Kalenovom šemom dekuplovanja se na prvi pogled dosta razlikuje od RPA spektra. Ipak, za 2D model je moguće povući paralelu izmedju RPA i CA, jer se odgovarajuće jednačine mogu svesti na sličan oblik.

4.2.2 2D model

Magnonska disperzija

Za dalja razmatranja je pogodno CA magnonsku disperziju 2D modela prepisati kao:

$$\omega_{\rm CA}^{\rm 2D}(\boldsymbol{k}_{\parallel}) = \widetilde{J}(T) \langle \hat{S}^z \rangle z \, \sqrt{\widetilde{\eta}^2(T) - \gamma_{\parallel}^2(\boldsymbol{k}_{\parallel})} \tag{4.63}$$

gde su

$$\tilde{\eta}(T) = \frac{\eta - \frac{\Phi_{\parallel}^{--}}{2S^2}}{1 - \eta \frac{\Phi_{\parallel}^{--}}{2S^2}}, \qquad \qquad \tilde{J}(T) = J \left(1 - \frac{\Phi_{\parallel}^{--}}{2S^2} \eta\right)$$
(4.64)

neke vrste efektivnih koeficijenta spinske anizotropije i unutarravanskog integrala izmene koje se pojavljuju u Kalenovoj šemi dekuplovanja. Na osnovu (4.63) i (4.64) sledi da se rezultati CA svode na RPA kada $\Phi_{\parallel}^{--}/(2S)^2 \rightarrow 0$, odnosno, vidi se da je bolje slaganje izmedju RPA i CA za veće vrednosti spina⁵ S.

 $^{^5\}mathrm{To}$ se u ostalom vidi i iz obrazaca po kojima se vrši dekuplovanje viših GF

Magnonski spekar (4.63) je identičan sa RPA spektrom, uz "renormalizovane" vrednosti integrala izmene i spinske anizotropije. Zbog toga je magnonska disperzija duž k_x pravca identična sa RPA disperzijom prikazanom na Sl. 10. Pomoću renormalizovanih veličina $\tilde{\eta}(T)$ i $\tilde{J}(T)$ može napisati i ϵ_{CA}^{2D} , naime

$$\epsilon_{\rm CA}^{\rm 2D} = J(T) \ \tilde{\eta}(T) z \ \langle \hat{S}^z \rangle. \tag{4.65}$$

Na osnovu toga se lako može naći veza izmedju RPA vrednosti za J i η , i odgovarajućih veličina u Kalenovom prilazu. Magnonski spektar je meren pri T = 8 K, pa važi $J^{\text{RPA}} = \tilde{J}(T = 8\text{K})$, $\eta^{\text{RPA}} = \tilde{\eta}(T = 8\text{K})$ i $\langle \hat{S}^z \rangle^{\text{CA}}|_{T=8\text{K}} = \langle \hat{S}^z \rangle^{\text{RPA}}|_{T=8\text{K}}$, jer je sistem kuplovanih jednačina za odredjivanje J^{RPA} , η^{RPA} i $\langle \hat{S}^z \rangle^{\text{RPA}}|_{T=8\text{K}}$ identičan sa sistemom za odredjivanje $\tilde{\eta}(T = 8\text{K})$, $\tilde{J}(T = 8\text{K})$ i $\langle \hat{S}^z \rangle^{\text{RPA}}|_{T=8\text{K}}$. Odatle je

$$J^{CA} = \frac{J^{RPA}}{1 - \frac{f_8}{2S^2}}, \qquad \eta^{CA} = \frac{\eta^{RPA} + \frac{f_8}{2S^2}}{1 + \eta^{RPA} \frac{f_8}{2S^2}}, \qquad (4.66)$$

gde je

$$f_8 = \Phi_{\parallel}^{--}(T = 8\mathrm{K}). \tag{4.67}$$

Pošto je za $\eta = 1$ i $\tilde{\eta}(T) = 1$, iz jednačine (4.63) sledi da u slučaju spinske izotropije i CA spektar poseduje Goldstonov mod⁶.

Magnetizacija podrešetke u osnovnom stanju

Slično kao kod RPA postupka, uvodi se funkcija $P_S(T)$ definisana relacijom $\langle \hat{S}^-(a)\hat{S}^+(a)\rangle = 2\langle \hat{S}^z \rangle P_S(T)$. Poredjenjem ove definicije sa prvom jednačinom iz (4.62), vidi se da je za CA

$$P_S(T) = \frac{1}{N_a} \sum_{\boldsymbol{k}_{\parallel}} \left[\frac{\epsilon_{\rm CA}}{2 \,\omega_{\rm CA}^{\rm 2D}(\boldsymbol{k}_{\parallel})} \coth \frac{\omega_{\rm CA}^{\rm 2D}(\boldsymbol{k}_{\parallel})}{2T} - \frac{1}{2} \right]. \tag{4.68}$$

Iz (4.62) se nalazi i korelaciona funkcija $\Phi_{\parallel}^{--}(T)$ za 2D model:

$$\Phi_{\parallel}^{--}(T) = -\frac{1}{N_a} \sum_{\boldsymbol{k}_{\parallel}} \frac{\gamma_{\parallel}(\boldsymbol{k}_{\parallel}) \langle \hat{S}^z \rangle^2 \hat{J}_{\parallel}(\boldsymbol{k}_{\parallel})}{\omega_{\rm CA}^{2D}(\boldsymbol{k}_{\parallel})} \coth \frac{\omega_{\rm CA}^{2D}(\boldsymbol{k}_{\parallel})}{2T}.$$
(4.69)

Za datu temperaturu, magnetizacija podreštke je odredjena Kalenovom formulom (4.21). U slučaju apsolutne nule, funkcija $P_S(T)$ postaje

$$P_{S}(0) = \frac{1}{2} \left[{}_{3}F_{2} \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1, 1; \frac{1}{\tilde{\eta}^{2}(0)} \right) - 1 \right],$$

$$\Phi_{\parallel}^{--}(0) \equiv f_{0}, \qquad (4.70)$$

gde je sa ${}_{3}F_{2}$ označena uopštena hipergeometrijska funkcija. Izvodjenje gornje formule pretpostavlja da važi $\tilde{\eta}(0) > 1$, odnosno $|f_{0}/(2S)^{2}| < 1$. Sledi dokaz da je za posmatrani sistem taj uslov ispunjen.

 $^{^{6}}$ Radi jednostavnijeg pisanja, indeksi CA i RPA uzJi η neće biti pisani sve dok se ne budu poredili rezultati Tjablikovog i Kalenovog dekuplovanja u odnosu na fiksirane eksperimentalne vrednosti magnonskih energija

Na apsolutnoj nuli je (videti prilog B)

$$f_{0} = -\frac{\langle \hat{S}^{z} \rangle_{0}}{N_{a}} \sum_{\boldsymbol{k}_{\parallel}} \frac{\gamma_{\parallel}^{2}(\boldsymbol{k}_{\parallel})}{\sqrt{\tilde{\eta}^{2}(0) - \gamma_{\parallel}^{2}(\boldsymbol{k}_{\parallel})}} = \frac{\langle \hat{S}^{z} \rangle_{0}}{N_{a}} \sum_{\boldsymbol{k}_{\parallel}} \left[\sqrt{\tilde{\eta}^{2}(0) - \gamma_{\parallel}^{2}(\boldsymbol{k}_{\parallel})} - \frac{\tilde{\eta}(0)}{\sqrt{\tilde{\eta}^{2}(0) - \gamma_{\parallel}^{2}(\boldsymbol{k}_{\parallel})}} \right] \\ = -\frac{\langle \hat{S}^{z} \rangle_{0}}{4 \ \tilde{\eta}(0)} \,_{3}F_{2} \left(\frac{1}{2}, \frac{3}{2}, \frac{3}{2}; 2, 2; \frac{1}{\tilde{\eta}^{2}(0)} \right), \qquad (4.71)$$

pri čemu je ponovo korišćen uslov $|f_0/(2S)^2| < 1$. Veličina $f_0/(2S^2)$ se može eliminisati iz (4.64):

$$\frac{f_0}{2S^2} = \frac{\tilde{\eta}(0) - \eta}{\tilde{\eta}(0) \eta - 1},\tag{4.72}$$

tako da prethodna jednačina postaje

$$\frac{\eta - \tilde{\eta}(0)}{\tilde{\eta}(0) \eta - 1} = \frac{\langle S^z \rangle_0}{8 \ \tilde{\eta}(0) \ S^2} \ _3F_2\left(\frac{1}{2}, \ \frac{3}{2}, \ \frac{3}{2} \ ; 2, \ 2; \ \frac{1}{\tilde{\eta}^2(0)}\right). \tag{4.73}$$

Pod uslovom da je η poznato, jednačina (4.73) zajedno sa Kalenovom formulom za magnetizaciju, sačinjava sistem po dve nepoznate veličine $\langle \hat{S}^z \rangle_0$ i $\tilde{\eta}(0)$. Lako je videti da je u slučaju spinske izotropije i $\tilde{\eta}(0) = 1$, odnosno $\langle \hat{S}^z \rangle_0 = 2.30352$ i $f_0/(2S^2) = -0.1016$. Povećavanjem η , veličina $f_0/(2S^2)$ raste, ostajući uvek manja od nule. Grafik zavisnosti $f_0/(2S^2)$ od η je prikazan na Sl. 17. Kako u računu nije došlo do protivrečnosti, može se smatrati da je polazna pretpostavka $|f_0/(2S)^2| < 1$ ispravna.

Sl. 17: Zavisnost veličin
e $f_0/(2S^2)$ o parametru spinske anizotropije. U graničnom slučaj
u $\eta\to\infty$ važi $f_0/(2S^2)\to 0$

Pretpostavimo sada da je u polaznom hamiltonijanu (2.1) fiksirana vrednost koeficijenta spinske anizotropije. Pošto je uvek $|f_0/(2S)^2| < 1$, sledi da je $\tilde{\eta}(0) < \eta$, odnosno $1/\tilde{\eta}(0) > 1/\eta$. To dalje znači da je⁷ $P_S^{CA}(0) > P_S^{RPA}(0)$. Kako je u odeljku o Tjablikovljevom dekuplovanju pokazano da koeficijent spinske anizotropije uzima iste vrednosti u SW i RPA pristupu, može se zaključiti da je magnetizacija podrešetke u osnovnom stanju dobijena Kalenovim dekuplovanjem, za proizvoljne konačne vrednosti $\eta > 1$, uvek manja od odgovarajuće RPA magnetizacije

⁷Oznake $P_S^{CA}(0)$ i $P_S^{RPA}(0)$ se odnose na veličine izračunate pomoću $\tilde{\eta}(0)$, odnosno η .

(videti Sl. 18). Drugim rečima, bolje slaganje sa SW pristupom na apsolutnoj nuli daje RPA⁸. Pri $\eta = 1$ i $\eta \to \infty$ rezultati pometnute tri teorije se poklapaju.

Sl. 18: Zavisnost magnetizacije podrešetke u osnovnom stanju od spinske anizotropije pri fiksiranoj vrednosti η u hamiltonijanu. Na prikazanoj rezoluciji, RPA i SW rezultati se poklapaju

Pošto je $f_0 \propto \langle \hat{S}^z \rangle_0$, za očekivati je da je uslov $|f_0/(2S^2)| < 1$ ispunjen i za druge vrednosti S > 1. To znači da se prethodno izneseni zaključci važe za Hajzenbergove antiferomagnete na kvadratnoj rešetki kod kojih je S > 1.

Nelova temperatura

U blizini kritične temperature magnetizacija teži nuli, pa se može iskoristiti aproksimacijea $\operatorname{coth}[\omega_{CA}^{2D}(\boldsymbol{k}_{\parallel})/(2T)] \approx 2T/\omega_{CA}^{2D}(\boldsymbol{k}_{\parallel})$, već korišćena prilikom RPA analize. Ponavljajući postupak izložen u odeljku o Tjablikovoljevm dekuplovanju, dolazi se do

$$P_S(T \approx T_{\rm N}) = \frac{T_{\rm N}}{\tilde{J}(T_{\rm N}) z \langle \hat{S}^z \rangle} \frac{2}{\pi} \frac{1}{\tilde{\eta}(T_{\rm N})} \mathcal{K} \left[\frac{1}{\tilde{\eta}(T_{\rm N})} \right], \qquad (4.74)$$

uz

$$f_{\rm N} \equiv \Phi_{\parallel}^{--}(T_{\rm N}), \tag{4.75}$$

dok \mathcal{K} označava potpuni eliptički integral 1. vrste. Zamenom prethodnog rezultata u (4.30), dolazi se do CA izraza za kritičnu temperaturu

$$T_{\rm N} = \frac{\tilde{J}(T_{\rm N}) \ z \ S \ (S+1)}{3} \ \frac{\pi}{2 \ \mathcal{K}[1/\tilde{\eta}(T_{\rm N})]}.$$
(4.76)

Da bi se odredila kritična temperatura u CA pristupu, potrebno je naći i korelacionu funkciju $f_{\rm N}$. Zadržavajući se na prvom članu u razvoju hiperboličnog kotangensa, dobija se

$$f_{\mathrm{N}} = -\frac{2 T_{\mathrm{N}}}{Jz} \frac{1}{1 - \eta \frac{f_{\mathrm{N}}}{2S^2}} \frac{1}{N_a} \sum_{\boldsymbol{k}_{\parallel}} \frac{\gamma_{\parallel}^2(\boldsymbol{k}_{\parallel})}{\tilde{\eta}^2(T_{\mathrm{N}}) - \gamma_{\parallel}^2(\boldsymbol{k}_{\parallel})}$$
$$= \frac{2 T_{\mathrm{N}}}{\tilde{J}(T_{\mathrm{N}})z} \left(1 - \frac{2}{\pi} \mathcal{K}\left[\frac{1}{\tilde{\eta}(T_{\mathrm{N}})}\right]\right).$$
(4.77)

 8 U prethodnom odeljku je pokazano i da se RPA vrednost za $\langle \hat{S}^z\rangle_0$ u prvoj aproksimaciji svodi na SW rezultat

Eliminacijom $T_{\rm N}$ izmedju (4.76) i (4.77) dobija se samousaglašena jednačina za odredjivanje korelacione funkcije $f_{\rm N}$:

$$f_{\rm N} = \frac{2}{3} S \left(S+1\right) \tilde{\eta}(f_{\rm N}) \frac{1-X(f_{\rm N})}{X(f_{\rm N})},\tag{4.78}$$

pri čemu su

$$\frac{2}{\pi} \mathcal{K}\left(\frac{1}{\tilde{\eta}(T_{\mathrm{N}})}\right) \equiv X(\tilde{\eta}(T_{\mathrm{N}})) \equiv X(f_{\mathrm{N}}),
\tilde{\eta}(T_{\mathrm{N}}) \equiv \tilde{\eta}(f_{\mathrm{N}}).$$
(4.79)

Prilikom dobijanja prethodnih formula je pretpostavljeno da je uvek $|f_N/(2S)^2| < 1$. Da bi se pokazalo važenje tog uslova za svako $\eta \ge 1$, potrebno je prvo ispitati slučaj $\eta = 1$, jer je korelaciona funkcija f_N izražena pomoću eliptičkog integrala 1. vrste. U graničnom slučaju $\eta \rightarrow 1$ se dobija

$$f_{\rm N}\Big|_{\eta=1} = \frac{2}{3} S (S+1) \lim_{\eta \to 1} \tilde{\eta}(f_{\rm N}) \frac{1 - X(f_{\rm N})}{X(f_{\rm N})} = -\frac{2}{3} S (S+1), \tag{4.80}$$

odakle je $|f_N|_{\eta=1}/(2S^2)| = 7/15$. Sa porastom η , veličina $|f_N/(2S^2)|$ teži nuli, ostajući uvek negativna (videti Sl. 19).

Sl. 19: Zavisnost veličin
e $f_{\rm N}/(2S^2)$ o parametru spinske anizotropije. U graničnom slučaj
u $\eta\to\infty$ važi $f_{\rm N}/(2S^2)\to 0$

Za proizvoljne vrednosti η i J, jednačine (4.76) i (4.78) potpuno odredjuju Nelovu temperaturu u slučaju 2D modela. Pomenute dve jednačine predstavljaju CA analogon formule (4.45), dobijene u RPA prilazu.

Odmah treba zabeležiti da i Kalenovo dekuplovanje vodi do rezultata u skladu sa Mermin Vagnerovom teoremom, jer je

$$\lim_{\eta \to 1} T_{\rm N} = \frac{J z S (S+1)}{3} \lim_{\eta \to 1} \frac{\pi \,\tilde{\eta}(T_{\rm N})}{2 \,\mathcal{K}[1/\tilde{\eta}(T_{\rm N})]} \left(1 - \eta \,\frac{f_{\rm N}}{2S^2}\right) \\ = \frac{J z S (S+1)}{3} \,\frac{\pi}{2} \left(1 + \frac{S+1}{3 \,S}\right) \lim_{\eta \to 1} \frac{1}{\mathcal{K}[1/\eta]} \to 0, \tag{4.81}$$

zbog $\lim_{\eta \to 1} \tilde{\eta} = \lim_{\eta \to 1} \eta = 1.$

Sl. 20: Poredjenje redukovanih kritičnih temperatura $T_{\rm N}[JzS(S+1)]^{-1}$ dobijenih RPA i CA pristupom [19], pri fiksiranim vrednostima J i η u početnom hamiltonijanu (2.1)

Ako se u polaznom hamiltonijanu (2.1) fiksiraju parametri J i η , moguće je uporediti predvidjanja Tjablikovljevog i Kalenovog dekuplovanja. Sa Sl. 20 se vidi da je kritična temperatura koju predvidja CA uvek viša od T_N koja se dobija Tjablikovljevim dekuplovanjem [19], što je u suprotnosti u odnosu na tvrdjenje izneto u [36]. Rezultati obe teorije se slažu pri $\eta = 1$ i za $\eta \to \infty$ (tada $f_N \to 0$, pa važi $\tilde{J} \to J$ i $\tilde{\eta} \to \eta$), kada se Hajzenbergov model apriksimira Izingovim.

$\mathbf{Rb}_{2}\mathbf{MnCl}_{4}$

Prethodna diskusija podrazumeva jedinstvenu vrednost parametra spinske anizotropije i unutarravanskog integrala izmene u RPA i CA prilazu, tj. fiksiranu vrednost η i J u polaznom Hamiltonijanu (2.1). Rezultati RPA i CA proračuna se mogu porediti i na drugi način. Pod pretpostavkom da je fiksirana vrednost magnonskih energija (kao eksperimentalni podatak), η^{RPA} i J^{RPA} su povezani sa η^{CA} i J^{CA} jednačinama (4.66). Koristeći eksperimentalne podatke iz [28], jednačine (4.63), (4.66), (4.67), (4.70), (4.73), (4.76), (4.78) i Kalenovu formulu za magnetizaciju (4.21), dolazi se do rezultata sumiranih Tabeli 5.

TABELA 5: CA karakteristike 2D modela

$f_8/(2S^2)$	$J^{\scriptscriptstyle m CA}$	$\eta^{\scriptscriptstyle\mathrm{CA}}$	$f_0/(2S^2)$	$\langle \hat{S} \rangle_0$	$f_{\rm N}/(2S^2)$	$T_{\mathbf{N}}^{\mathrm{CA}}[K]$
-0.102189	11.3216	1.00262	-0.0949882	2.32352	-0.290365	62.1445

Kada se uporedi Tabela 5 sa Tabelom 3, lako se uvidjaju razlike izmedju RPA i CA rezultata. Pre svega, insistiranje na jednakim magnonskim disperzijama pri T = 8 K vodi do drugačijih vrednosti parametara J i η . Kao posledica toga, magnetizacija podrešetke u osnovnom stanju i kritična temperatura se razlikuju. Dok je razlika u $\langle \hat{S} \rangle_0$ praktično zanemarljiva (relativno odstupanje je ~ 0.003%), Nelova temperatura izračunata u CA pristupu je primetno viša od RPA kritične temperature (relativno odstupanje je ~ 9%). Mnogo bolje slaganje sa eksperimentalnom vrednošću daje RPA ($T_{\rm N}^{\rm exp} = 56$ K, videti [19]).

Prema Tabeli 3 i Tabeli 5, CA vrednost za $\langle \hat{S} \rangle_0$ je viša od RPA vrednosti. To nije u suprotnosti sa Sl.18, jer je tada razmatran slučaj fiksiranih parametara u početnom hamiltonijanu.

Sl. 21: Temperaturska zavisnost magnetizacije podrešetke u RPA i CA pristupu [19]

Sl. 22: Poredjenje relativnih magnetizacija izračunatih RPA i CA postupkom

Temperatursko ponašanje magnetizacije dobijeno Tjablikovljevim, odnosno Kalenovim dekuplovanjem je prikazano na Sl. 21 [19], dok je na Sl. 22 dato poredjenje relativnih magnetizacija. Bolje slaganje sa eksperimentom ponovo daje Tjablikovljevo dekuplovanje. Treba napomenuti da fiksiranje RPA parametara u hamiltonijanu (2.1) vodi do još većeg neslaganja sa eksperimentom. Tada se iz jednačina (4.78) i (4.76) dobija $T_{\rm N} = 67.0424$ K.

4.2.3 3D model

S obzirom da CA za 2D model precenjuje vrednost kritične temperature, za očekivati je da kod 3D modela odstupanje od eksperimentalnih podataka bude još naglašenije. Za odredjivanje magnetizacije u osnovnom stanju, Nelove temperature i parametara hamiltonijana, potrebno je poznavanje korelacionih funkcija (4.56), (4.57) i (4.58). Na apsolutnoj nuli pomenute ko-relacione funkcije postaju:

$$\Phi_{\parallel}^{--}(0) = -\frac{1}{N_a} \sum_{\boldsymbol{k}} \frac{\langle \hat{S}^z \rangle_0^2 \, \widetilde{J}_{CA}(\boldsymbol{k}) \Big|_0}{\omega_{CA}(\boldsymbol{k}) \Big|_0} \, \gamma_{\parallel}(\boldsymbol{k}_{\parallel}), \qquad (4.82)$$

$$\Phi_{\perp}^{--}(0) = -\frac{1}{N_a} \sum_{\boldsymbol{k}} \frac{\langle \hat{S}^z \rangle_0^2 \, \widetilde{J}_{CA}(\boldsymbol{k}) \Big|_0}{\omega_{CA}(\boldsymbol{k}) \Big|_0} \, \gamma_{\perp}^{ab}(\boldsymbol{k}), \qquad (4.83)$$

$$\Phi_{\perp}^{-+}(0) = \frac{1}{N_a} \sum_{\boldsymbol{k}} \langle \hat{S}^z \rangle_0 \left[\frac{\epsilon_{\rm CA}(\boldsymbol{k}) \Big|_0}{\omega_{\rm CA}(\boldsymbol{k}) \Big|_0} - 1 \right] \gamma_{\perp}^{aa}(\boldsymbol{k}), \qquad (4.84)$$

dok u blizini kritične temperature važe sledeće aproksimacije

$$\Phi_{\parallel}^{--}(T_{\rm N}) = -\frac{2T_{\rm N}}{J z} \frac{1}{N_a} \sum_{k} \frac{\gamma_{\parallel}(k_{\parallel}) B(k)}{A^2(k) - B^2(k)}, \qquad (4.85)$$

$$\Phi_{\perp}^{--}(T_{\rm N}) = -\frac{2T_{\rm N}}{J z} \frac{1}{N_a} \sum_{k} \frac{\gamma_{\perp}^{ab}(k) B(k)}{A^2(k) - B^2(k)}, \qquad (4.86)$$

$$\Phi_{\perp}^{-+}(T_{\rm N}) = \frac{2T_{\rm N}}{J z} \frac{1}{N_a} \sum_{\boldsymbol{k}} \frac{\gamma_{\perp}^{aa}(\boldsymbol{k}) A(\boldsymbol{k})}{A^2(\boldsymbol{k}) - B^2(\boldsymbol{k})}.$$
(4.87)

Pri tome su

$$A(\mathbf{k}) = \left[\eta - \frac{\Phi_{\parallel}^{--}(T_{\rm N})}{2S^2} \right] + \lambda_{\perp} \left[1 - \frac{\Phi_{\perp}^{--}(T_{\rm N})}{2S^2} \right] + \lambda_{\perp} \left[1 - \gamma_{\perp}^{aa}(\mathbf{k}) \right] \left[1 + \frac{\Phi_{\perp}^{-+}(T_{\rm N})}{2S^2} \right],$$

$$B(\mathbf{k}) = \gamma_{\parallel}(\mathbf{k}_{\parallel}) \left[1 - \frac{\Phi_{\parallel}^{--}(T_{\rm N})}{2S^2} \eta \right] + \lambda_{\perp} \gamma_{\perp}^{ab}(\mathbf{k}) \left[1 - \frac{\Phi_{\perp}^{--}(T_{\rm N})}{2S^2} \right].$$
(4.89)

Nelova temperatura je u Kalenovoj aproksimaciji za 3D model odredjena sa

$$T_{\rm N} = \frac{S(S+1)}{3} \frac{J z}{C\left[\lambda_{\perp}, \Phi_{\parallel}^{--}(T_{\rm N}), \Phi_{\perp}^{--}(T_{\rm N}), \Phi_{\perp}^{-+}(T_{\rm N})\right]},\tag{4.90}$$

gde je

$$C\left[\lambda_{\perp}, \Phi_{\parallel}^{--}(T_{\rm N}), \Phi_{\perp}^{--}(T_{\rm N}), \Phi_{\perp}^{-+}(T_{\rm N})\right] = \frac{1}{N_a} \sum_{\boldsymbol{k}} \frac{A(\boldsymbol{k})}{A^2(\boldsymbol{k}) - B^2(\boldsymbol{k})}.$$
(4.91)

Numeričkim rešavanjem jednačina (4.82), (4.83) i (4.84), zajedno sa (4.60) i Kalenovom formulom (4.21), za nekoliko različitih vrednosti λ_{\perp} , dobijaju se vrednosti magnetizacije u osnovnom stanju Rb₂MnCl₄. Rezultati su prikazani u Tabeli 6. Vrednosti za Nelovu temperaturu, izračunate pomoću jednačina (4.85)-(4.91) su takodje prikazane u Tabeli 6.

	-				- •
λ_{\perp}	$5 \cdot 10^{-5}$	$5 \cdot 10^{-4}$	$5 \cdot 10^{-3}$	$5 \cdot 10^{-2}$	$5 \cdot 10^{-1}$
J	11.31757	11.30740	11.23020	10.68300	7.38454
η	1.002620	1.002640	1.002800	1.004630	1.02333
$\Phi_{\parallel}^{}(0)$	-1.18675	-1.181110	-1.142650	-0.993575	-0.702575
$\Phi_{\perp}^{}(0)$	-0.881516	-0.879513	-0.864624	-0.798211	-0.659999
$\Phi_{\perp}^{-+}(0)$	0.478437	0.476243	0.460153	0.390974	0.257052
$\langle \hat{S}^z \rangle_0$	2.323670	2.325020	2.334200	2.368280	2.423880
$\Phi_{\parallel}^{}(T_{\rm N})$	-3.712980	-3.666620	-3.433393	-2.84774	-2.05298
$\Phi_{\perp}^{-}(T_{\rm N})$	- 2.524920	-2.527760	-2.50381	-2.31116	-1.956190
$\Phi_{\perp}^{-+}(T_{\rm N})$	2.524920	2.527730	2.503420	2.306570	1.920810
$T_{\rm N}$	62.5395	63.7386	69.8099	86.6559	123.0190

 $\label{eq:table} {\rm TABELA~6}:$ Izračunate vrednosti parametara modela za različite vrednosti λ_\perp u CA prilazu

Poredjenjem rezultata iz Tabele 6 sa odgovarajućim vrednostima iz Tabele 4, primećuje se dosta dobro slaganje predvidjanja Tjablikovljevog i Kalenovog dekuplovanja na niskim temperaturama i za male vrednosti spinske anizotropije. Na visokim temperaturama, mnogo bolje rezultate daje RPA. Slični zaključci su izneti u [12], gde se pokazuje da bolje slaganje sa rezultatima Monte Karlo silulacija za HAFM na kvadratnoj rešetki daje Tjablikovljevo dekuplovanje.

Treba naglasiti da magnonska disperzija na T = 8 K ni u CA pristupu ne zavisi od λ_{\perp} .

Glava 5

Zaključak

Dugodometno spinsko uredjenje u niskodimenzionom izotropnom Hajzenbergovom antiferomagnetu na konačim temperaturama ne postoji prema Mermin-Vgnerovoj teoremi. Spontana magnetizacija pri $T \neq 0$ kod manganovih halogenida, za koje se ispostavlja da su jako dobra realizacijua 2DHAFM, može se objasniti uvodjenjem spinske anizotropije. Na taj način se otvara gep u magnonskom spektru i onemogućeno je nastajanje proizvoljnog broja Goldstonovih bozona koji uništavaju dugodometno uredjenje na konačnim temperaturama. Ukratko, osnovna ideja na kojoj se bazira toerijski opis pomenute klase jedinjenja je snižavanje simetrije hamiltonijana.

Halogenid Rb_2MnCl_4 je iscrpno proučeni u eksperimentima, tako da su osnovni parametri njegove magnetne rešetke, kao i razne termodinamičke osobine, poznati sa velikom tačnošću. Dobar model treba da, polazeći od malog broja eksperimentalnih činjenica kao što su struktura magnetne ćelije i spektar elementarnih ekscitacija na niskoj temperaturi, reprodukuje što više merljivih termodinamičkih veličina sistema. Ispostavlja se da je u slučaju Rb_2MnCl_4 takav model 2DHAFM na kvadratnoj rešetki.

U radu je pokazano da je poznavanjem samo dve eksperimentalne vrednosti magnonskih energija moguće odrediti parametre hamiltonijana, temperatursko ponašanje magnetizacije i kritičnu temperaturu za konkretno jedinjenje Rb₂MnCl₄. Primenjena su tri teorijska postupka i uporedjenji su njihovi rezultati.

Prvo je posmatran sistem na niskim temperaturama i korišćena je standardna teorija linearnih spinskih talasa. Očekivano, SW teorija dobro funkcioniše na niskim temperaturama. Dobijen je korektan oblik magnonskog spektra, kao i relativna vrednost magnetizacije podrešetke koja se dobro slaže sa eksperimentalnim podacima sve do nekih $0.3T_N$. Procenjena je i vrednost kvantnih fluktuacija u osnovnom stanju. Na temperaturama višim od navedene, teorija SW se razilazi sa eksperimentom i predvidja kritičnu temperaturu skoro dva puta višu od opažene.

Dobro slaganje sa eksperimentalnim vrednostima za relativnu magnetizaciju, kao i bolju procenu kritične temperature daje metod Grinovih funkcija. Za dekuplovanje složenijih GF koje se pojavljuju u polaznim jednačinama su razmatrane dve aproksimacije: Tjablikovljevo dekuplovanje (RPA) i Kalenovo dekuplovanje (CA). Ispostavlja se da bolje slaganje sa SW teorijom na apsolutnoj nuli daje RPA. Dalje, na visokim temperaturama bolje slaganje sa eksperimentom se dobija u RPA šemi dekuplovanja. RPA vrednost kritične temperature se razlikuje od eksperimentalne za ~ 0.5%, dok CA precenjuje $T_{\rm N}$ skoro za 10%. Konačno, relativna magnetizacija izračunata RPA postupkom se bolje slaže sa eksperimentalnim podacima

nego odgovarajuća CA kriva.

Pored osnovne provere slaganja teorijskih i eksperimentalnih vrednosti za 2D model, ispitan je i uticaj eventualne interakcije izmedju spinova koji pripadaju različitim kristalografskim ravnima. Rezultati sve tri pomenute teorijske metode pokazuju da medjuravanska interakcija ne igra značajnu ulogu sve dok njen odnos sa unutarravanskim integralom izmene ne prelazi $\sim 10^{-3}$, što je vrednost koja prevazilazi eksperimentalno izmerene za datu klasu jedinjenja.

Nezavisno od jedinjenja Rb₂MnCl₄, razmatran je i uticaj spinske anizotropije u Hajzenbergovom antiferomagnetu na kvadratnoj rešetki u SW i GF prilazu. U slučaju spinske izotropije, SW, RPA i CA daju istu vrednost kvantnih fluktuacija u osnovnom stanju. Kod modela sa jakom spinskom anizotropijom, sve tri teorije predvidjaju osnovno stanje uopštenog izingovog modela, odnosno iščezavanje kvantnih fluktuacija u osnovnom stanju. U skladu sa Mermin Vagnerovom teoremom, RPA i CA predvidjaju da kritična temperatura izotropnog 2D modela teži u nulu, odnosno da dugodometno uredjenje u tom slučaju ne postoji.

Na kraju treba istaći da se navedeni teorijski prilaz, koji je korišćen u ovom radu može veoma uspešno primeniti na seriju manganovih halogenida (Rb_2MnF_4 , Cs_2MnCl_4 , K_2MnF_4). Medjutim, glavni problem trenutno predstavlja mali broj odgovarajućih eksperimentalnih rezultata za ova jedinjenja.

Prilog A

Integracija u inverznom prostoru i magnetna Briluenova zona

Prelazak sa sume na integral u inverznom prostoru se vrši prema pravilu [5, 37]

$$\frac{1}{N_d v_0} \sum_{\boldsymbol{k}} F(\boldsymbol{k}) = \int \frac{\mathrm{d}^d \boldsymbol{k}}{(2\pi)^d} F(\boldsymbol{k}), \tag{A.1}$$

gde je $N_d = L^d$ broj čvorova (pod)rešetke, v_0 zapremina elementarne ćelije, d dimenzija sistema a integracija se vrši po I Briluenovoj zoni. Pod I Briluenovom zonom se podrazumeva Vigner - Zajcova ćelija u inverznom prostoru [37]. Za definisanje Vigner-Zajcove ćelije potrebno je odrediti osnovne vektore translacije inverzne rešetke. Ako se sa a_i označe primitivni vektori direktne rešetke, osnovni vektori translacije recipročne rešetke b_i su definisani jednakostima:

$$\boldsymbol{a}_i \cdot \boldsymbol{b}_j = 2\pi \delta_{ij}, \quad i = 1, 2, \dots d. \tag{A.2}$$

Osnovnu osobinu kristala predstavlja periodično ponavljanje odredjene strukture u prostoru. Magnetne osobine jedinjenja su diktirane spinskom rešetkom, tako da se kao osnovni motiv mora posmatrati magnetna a ne kristalografska elementarna ćelija. Struktura tipa K_2NiF_4 je tetragonalna, tako da su osnovni vektori magnetne elementarne ćelije direktne rešetke (videti Sl. 4):

$$\boldsymbol{a}_1 = a\boldsymbol{e}_x, \quad \boldsymbol{a}_2 = a\boldsymbol{e}_y, \quad \boldsymbol{a}_3 = c\boldsymbol{e}_z.$$
 (A.3)

Rešenja jednačina (A.2) se mogu tražiti u obliku

$$\boldsymbol{b}_i = \sum_j A_{ij} \boldsymbol{e}_j. \tag{A.4}$$

Zamenom (A.4) u (A.2) se dobijaju koeficijenti A_{ij} . Primitivni vektori recipročne rešetke su:

$$\boldsymbol{b}_1 = \frac{2\pi}{a} \boldsymbol{e}_x, \quad \boldsymbol{b}_2 = \frac{2\pi}{a} \boldsymbol{e}_y, \quad \boldsymbol{b}_3 = \frac{2\pi}{c} \boldsymbol{e}_z \tag{A.5}$$

Kada su poznati vektori \boldsymbol{b}_i , jednostavno se konstruše I Briluenova zona. Na Sl. 23 je prikazana I Briluenova zona za 2D i 3D rešetku. Briluenova zona za kvadratnu rešetku je kvadrat ivice $2\pi/a$, dok je u slučaju tetragonalne strukture reč o kvadru ivica $2\pi/a$, $2\pi/a$ i $2\pi/c$.

Sl. 23: I Briluenova zona za (a) kvadratnu i (b) tetragonalnu rešetku.

Podintegralne funkcije koje se pojavljuju prilikom analize 3D modela za Rb₂MnCl₄ su oblika

$$F(\mathbf{k}) = F(\mathbf{k} \cdot \mathbf{a}_1, \mathbf{k} \cdot \mathbf{a}_2, \mathbf{k} \cdot \mathbf{a}_3) = F(ak_x, ak_y, ck_z),$$
(A.6)

gde je F parna funkcija argumenata. U tom slučaju, jednačina (A.1) postaje

$$\frac{1}{Na^2c} \sum_{\boldsymbol{k}} F(\boldsymbol{k}) = \int_{-\pi/a}^{\pi/a} \int_{-\pi/c}^{\pi/a} \frac{dk_x \, dk_y \, dk_z}{(2\pi)^3} \, F(ak_x, ak_y, ck_z), \tag{A.7}$$

Uvodjenjem smena $a_i k_i = x_i$ i korišćenjem simetrije pod
integralne podintegralne funkcije, dobija se

$$\frac{1}{N_3} \sum_{k} F(k) = \int_0^{\pi} \int_0^{\pi} \int_0^{\pi} \frac{\mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}{\pi^3} F(x, y, z).$$
(A.8)

Sličnim postupkom se za 2D model dobija

$$\frac{1}{N_2} \sum_{\boldsymbol{k}_{||}} F(\boldsymbol{k}_{||}) = \int_0^\pi \int_0^\pi \frac{\mathrm{d}x \,\mathrm{d}y}{\pi^2} F(x, y). \tag{A.9}$$

Osim u retkim interesantnim slučajima (videti priloge B i C), integrale (A.8) i (A.9) je nemoguće reštiti analitički. Tada se rešenja traže numeričkim metodama. U ovom radu je za numeričku integraciju korušćen programski paket *Mathematica* 5.2. for Students.

Prilog B Integrali $I^d(\eta)$

Postojanje konačne magnetizacije na apsolutnoj nuli, zavisi od ponašanja integrala iz jednačine (3.27), koji se pojavljuje i u GF prilazu. Kod izotropnog 2D modela na kvadratnoj rešetki, taj integral se može izraziti pomoću generalisane hipergeometrijske funkcije [38].

Integral je definisan jednačinom:

$$I_1^{2D}(\eta) = \frac{1}{N_2} \sum_{\boldsymbol{k}_{||}} \frac{\eta}{\sqrt{\eta^2 - \gamma_{||}^2(\boldsymbol{k}_{||})}} = \frac{\eta}{\pi^2} \int_0^{\pi} \int_0^{\pi} \frac{\mathrm{d}x \,\mathrm{d}y}{\sqrt{\eta^2 - \cos^2 \frac{x}{2} \cos^2 \frac{y}{2}}},\tag{B.1}$$

odnosno:

$$I_1^{2D}(\eta) = \frac{2}{\pi^2} \int_0^\pi \mathrm{d}x \ \int_0^{\pi/2} \frac{\mathrm{d}y}{\sqrt{1 - a_x^2 \cos^2 y}},\tag{B.2}$$

gde je

$$a_x = \frac{\cos[x/2]}{\eta}.\tag{B.3}$$

Integral po y je potpuni eliptički integral 1. vrste $\mathcal{K}(a_x)$, što se lako pokazuje. Znači

$$I_1^{2D}(\eta) = \frac{4}{\pi^2} \int_0^{\pi/2} \mathrm{d}x \, \mathcal{K}\left[\frac{\cos x}{\eta}\right]. \tag{B.4}$$

Smenom $\cos x/\eta = t$ se dolazi do sledećeg oblika za $I^{2D}(\eta)$

$$I_1^{2D}(\eta) = \frac{4 \eta}{\pi^2} \int_0^{1/\eta} \mathrm{d}t \; \frac{\mathcal{K}(t)}{\sqrt{1 - \eta^2 t^2}},\tag{B.5}$$

koji je pogodniji za dalju analizu. Za sve vrednosti $\eta \geq 1,$ moguće je dobiti analitičko rešenje na sledeći načnin.

Eliptički integral 1. vrste se može izraziti pomoću hipergeometrijske funkcije [39]:

$$\mathcal{K}(t) = \frac{\pi}{2} F\left(\frac{1}{2}, \frac{1}{2}; 1; t^2\right) = \frac{\pi}{2} \sum_{m=0}^{\infty} \frac{(1/2)_m (1/2)_m}{(1)_m} \frac{t^{2m}}{m!},\tag{B.6}$$

gde su uvedene uobičajene skraćene oznake za količnik $\Gamma\text{-funkcija:}$

$$(a)_m = \frac{\Gamma(a+m)}{\Gamma(a)}.$$
(B.7)

Zamenom (B.6) u (B.5), uz smenu promenjive u integralu, $t\eta \rightarrow t$, dobija se

$$I_1^{2D}(\eta) = \frac{2}{\pi} \sum_{m=0}^{\infty} \frac{(1/2)_m (1/2)_m}{(1)_m} \frac{1}{m! \eta^{2m}} \int_0^1 \mathrm{d}t \frac{t^{2m}}{\sqrt{1-t^2}}.$$
 (B.8)

Da bi se izračunao preostali integral, može se opet iskoristiti hipergeometrijska funkcija. Naime

$$\frac{1}{\sqrt{1-t^2}} = F\left(\frac{1}{2}, 1; 1; t^2\right) = \sum_{n=0}^{\infty} \frac{(1/2)_n (1)_n}{(1)_n} \frac{t^{2n}}{n!},\tag{B.9}$$

tako da je

$$\int dt \frac{t^{2m}}{\sqrt{1-t^2}} = \frac{t^{2m+1}}{2} \sum_{n=0}^{\infty} \frac{(1/2)_n}{n!} \frac{t^{2n}}{n+m+1/2}.$$
(B.10)

Medjutim, kako je

$$n + m + 1/2 = \frac{\Gamma[(m + 3/2) + n]}{\Gamma[(m + 1/2) + n]}$$
(B.11)

dobija se

$$\int \mathrm{d}t \frac{t^{2m}}{\sqrt{1-t^2}} = \frac{t^{2m+1}}{2m+1} F\left(\frac{1}{2}, \ m+\frac{1}{2}; \ m+\frac{3}{2}; \ t^2\right),\tag{B.12}$$

pri čemu je iskorišćena jednačina (B.7). Za t = 1, gornji hipergeometrijski red apsolutno konvergira [38]. U tom slučaju važi i (videti [38])

$$F(a, b; c; 1) = \frac{\Gamma(c) \Gamma(c - a - b)}{\Gamma(c - a) \Gamma(c - b)}.$$
(B.13)

Korišćenjem (B.13) se dolazi do

$$\int_0^1 \mathrm{d}t \frac{t^{2m}}{\sqrt{1-t^2}} = \frac{\sqrt{\pi}}{2} \, \frac{\Gamma(m+1/2)}{\Gamma(m+1)}.\tag{B.14}$$

Vraćanjem (B.14) u (B.8) dobija se

$$I_1^{2D}(\eta) = \sum_{m=0}^{\infty} \frac{(1/2)_m (1/2)_m (1/2)_m}{(1)_m (1)_m} \frac{1^{2m}}{m! \eta^{2m}}.$$
(B.15)

Preostali red nije ništa drugo do u
opštena hipergeometrijska funkcija $_{3}F_{2}$, tj.

$$I_1^{2D}(\eta) = {}_3F_2\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1, 1; \frac{1}{\eta^2}\right).$$
(B.16)

Red iz (B.16), koji definiše generalisanu hipergeometrijsku funkciju, apsolutno konvergira za $\eta \geq 1$ [38]. Tako je za proizvoljne vrednosti $\eta \geq 1$ moguće dobiti numeričke vrednosti integrala. Ipak, rešenje je moguće napisati i malo drugačije, tako da se lakše ispitaju dva zanimljiva slučaja: $\eta = 1$ (izotropni 2D model) i $\eta \gg 1$ (jako anizitropni model Izingovog tipa).

Generalisana hipergeometrijska funkcija iz (B.16) se može napisati pomoću eliptičnog integrala 1. vrste [40]

$${}_{3}F_{2}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1, 1; \frac{1}{\eta^{2}}\right) = \frac{4}{\pi^{2}}\mathcal{K}^{2}\left[\sqrt{\frac{1}{2}\left(1 - \sqrt{1 - \frac{1}{\eta^{2}}}\right)}\right]$$
(B.17)

Sada je lako videti da se $\eta=1$ dobija

$$I_1^{2D}(\eta = 1) = \frac{4}{\pi^2} \mathcal{K}^2 \left[\sqrt{1/2} \right] = 1.3932.$$
 (B.18)

Za $\eta \gg 1$, rezultat je

$$I_1^{2D}(\eta \gg 1) = 1,$$
 (B.19)

jer je $\mathcal{K}(0) = \pi/2$.

Sličnim postupkom se može izračunati i integral

$$I_2^{2D}(\eta) = \frac{1}{N_2} \sum_{\boldsymbol{k}_{||}} \sqrt{\eta^2 - \gamma_{||}^2(\boldsymbol{k}_{||})} = \frac{1}{\pi^2} \int_0^{\pi} \int_0^{\pi} \mathrm{d}x \, \mathrm{d}y \sqrt{\eta^2 - \cos^2 \frac{x}{2} \cos^2 \frac{y}{2}},\tag{B.20}$$

koji se pojavljuje kod Kalenovog dekiplovanja (jednačina (4.71)). Korišćenjem definicije eliptičkog integrala 2. vrste i njegovom reprezentacijom pomoću hipergeometrijske funkcije

$$\mathcal{E}(t) = \frac{\pi}{2} F\left(-\frac{1}{2}, \frac{1}{2}; 1; t^2\right),\tag{B.21}$$

dobija se

$$I_2^{2D}(\eta) = \eta \ _3F_2\left(-\frac{1}{2}, \ \frac{1}{2}, \ \frac{1}{2}; \ 1, \ 1; \ \frac{1}{\eta^2}\right). \tag{B.22}$$

U primeni Kalenovog dekuplovanja na 2DHAFM se pojavljuje i veličina

$$_{3}F_{2}\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1, 1; \frac{1}{\eta^{2}}\right) - {}_{3}F_{2}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1, 1; \frac{1}{\eta^{2}}\right).$$
 (B.23)

Gornji izraz je moguće naći u zatvorenoj formi ako se krene od razvoja u
opštenih hiperge-ometrijskih funkcija. Kako je $\Gamma(-1/2) = -2\sqrt{\pi} = -2\Gamma(1/2)$, može se pisati

$$(-1/2)_m - (1/2)_m = \frac{\Gamma\left(-\frac{1}{2} + m\right)}{\Gamma\left(-\frac{1}{2}\right)} \left(1 + 2\left(-\frac{1}{2} + m\right)\right) = 2m(-1/2)_m.$$
 (B.24)

Na taj način se dolazi do

$${}_{3}F_{2}\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1, 1; \frac{1}{\eta^{2}}\right) - {}_{3}F_{2}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1, 1; \frac{1}{\eta^{2}}\right)$$

= $2\sum_{m=0}^{\infty} \frac{(-1/2)_{m} (1/2)_{m} (1/2)_{m}}{(1)_{m} (1)_{m}} \frac{1}{\eta^{2m}} \frac{1}{(m-1)!}.$ (B.25)

Posle translacije indeksa u sumi $(m \rightarrow m + 1)$ i korišćenja veze

$$(a)_{n+1} = (a+1)_n \,\frac{\Gamma(a+1)}{\Gamma(a)},\tag{B.26}$$

konačno se dobija

$${}_{3}F_{2}\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1, 1; \frac{1}{\eta^{2}}\right) - {}_{3}F_{2}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1, 1; \frac{1}{\eta^{2}}\right)$$

$$= \frac{2}{\eta^{2}} \frac{\Gamma^{2}\left(\frac{3}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(-\frac{1}{2}\right)} {}_{3}F_{2}\left(\frac{1}{2}, \frac{3}{2}, \frac{3}{2}; 2, 2; \frac{1}{\eta^{2}}\right)$$

$$= -\frac{1}{4\eta^{2}} {}_{3}F_{2}\left(\frac{1}{2}, \frac{3}{2}, \frac{3}{2}; 2, 2; \frac{1}{\eta^{2}}\right).$$
(B.27)

Važno je primetiti da je ovako dobijena funkcija negativno definisana za sve $\eta>1.$

PRIMEDBA: Postupak za računanje integrala $I_1^{2D}(\eta)$ i $I_2^{2D}(\eta)$ se može lako u
opštiti na proizvoljan broj dimenzija. Tako, za d = 3, treba izračunati

$$I^{3D}(\eta) = \frac{1}{\pi^3} \prod_{\alpha=1}^3 \int_0^{\pi} dx_\alpha \frac{\eta}{\sqrt{\eta^2 - \prod_{\alpha=1}^3 (\cos[x_\alpha/2])^2}} \\ = \frac{1}{\pi} \int_0^{\pi} dz \frac{2}{\pi^2} \int_0^{\pi} dx \int_0^{\pi/2} \frac{dy}{\sqrt{1 - b_{xz}^2 \cos^2 y}}, \\ b_{xz} = \frac{\cos[x/2] \cos[z/2]}{\eta} \equiv \frac{\cos[x/2]}{\eta_z},$$
(B.28)

Na osnovu (B.16) se može pisati

$$I^{3D}(\eta) = \frac{1}{\pi} \int_0^{\pi} dz \,_{3}F_2\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1, 1; \frac{1}{\eta_z^2}\right) \\ = \frac{2}{\pi} \sum_{m=0}^{\infty} \frac{(1/2)_m \,(1/2)_m \,(1/2)_m}{(1)_m \,(1)_m} \,\frac{1}{m! \,\eta^{2m}} \int_0^{\pi/2} dz \cos^{2m} z.$$
(B.29)

Pošto je [39]:

$$\int_0^{\pi/2} \mathrm{d}z \, \cos^{2m} z = \frac{\sqrt{\pi}}{2} \, \frac{\Gamma(m+1/2)}{\Gamma(m+1)},\tag{B.30}$$

dobija se

$$I^{3D}(\eta) = {}_{4}F_{3}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1, 1, 1; \frac{1}{\eta^{2}}\right).$$
(B.31)

Iz $({\rm B.16})$ i $({\rm B.31})$ se lako uočava obrazac za uopštavanje na proizvoljan broj prostornih dimenzija

$$I_{1}^{d}(\eta) = \frac{1}{\pi^{d}} \prod_{\alpha=1}^{d} \int_{0}^{\pi} \mathrm{d}x_{\alpha} \frac{\eta}{\sqrt{\eta^{2} - \prod_{\alpha=1}^{d} (\cos[x_{\alpha}/2])^{2}}}$$
$$= _{d+1}F_{d} \left(\underbrace{\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}}_{d+1 \text{ put}}; \underbrace{\frac{1}{1, 1, \dots, 1}}_{d \text{ puta}}; \frac{\eta}{\eta^{2}}\right),$$
(B.32)

koji važi za $\eta \geq 1$ i za $d \geq 1.$

Potpuno analognim postupkom se nalazi

$$I_{2}^{d}(\eta) = \frac{1}{\pi^{d}} \prod_{\alpha=1}^{d} \int_{0}^{\pi} \mathrm{d}x_{\alpha} \sqrt{\eta^{2} - \prod_{\alpha=1}^{d} (\cos[x_{\alpha}/2])^{2}} \\ = _{d+1}F_{d} \left(-\frac{1}{2}, \underbrace{\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}}_{d \text{ puta}}; \underbrace{\frac{1}{1, 1, \dots, 1}}_{d \text{ puta}}; \frac{1}{\eta^{2}} \right).$$
(B.33)

Prilog C Integrali $J^d(\eta)$

Odsustvo magnetizacije podrešetke na konačnim temperaturama 2D modela je posledica divergencije integrala iz (4.28). U slučaju kvadratne rešetke, integral je moguće izračunati analitički, kao što je pokazano u ovom prilogu. Na taj način se pokazuje da Tjablikovljevo i Kalenovo dekuplovanje dovode do rezultata u saglasnosti sa Mermin-Vagnerovom teoremom.

Polazi se od njegove definicije

$$C^{2D}(\eta,0) \equiv J^{2D}(\eta) = \frac{1}{N_2} \sum_{\boldsymbol{k}_{||}} \frac{\eta}{\eta^2 - \gamma_{||}^2(\boldsymbol{k}_{||})} = \frac{\eta}{\pi^2} \int_0^{\pi} \int_0^{\pi} \frac{\mathrm{d}x \,\mathrm{d}y}{\eta^2 - \cos^2 \frac{x}{2} \cos^2 \frac{y}{2}},\tag{C.1}$$

i prepisuje se kao

$$J^{2D}(\eta) = \frac{2}{\pi^2 \eta} \int_0^{\pi} \mathrm{d}x \ \int_0^{\pi/2} \ \frac{\mathrm{d}y}{1 - a_x^2 \ \cos^2 y} \equiv \frac{2}{\pi^2 \eta} \int_0^{\pi} \mathrm{d}x \ \int_0^{\pi/2} \mathrm{d}y \ F_1(x, y), \tag{C.2}$$

pri čemu je uvedena oznaka

$$a_x = \frac{\cos[x/2]}{\eta}.\tag{C.3}$$

Integral F_1 po y se može rešiti kao neodredjeni integral. Prvi korak je uvodjenje smene $y = \tan[t/2]$, nakon čega se dobija

$$\int \frac{\mathrm{d}y}{1 - a_x^2 \, \cos^2 y} = \frac{2}{1 - a_x^2} \int \,\mathrm{d}t \, \frac{1 + t^2}{\prod_{\alpha = 1}^4 (t - t_\alpha)},\tag{C.4}$$

gde su t_{α} koreni jednačine

$$t^{4}(1-a_{x}^{2}) + t^{2}2(1+a_{x}^{2}) + (1-a_{x}^{2}) = 0.$$

Lako se pokazuje da je

$$t_1 = i\sqrt{\frac{1+a_x}{1-a_x}} \equiv i\sqrt{d}, \quad t_2 = -t_1, \quad t_3 = -\frac{1}{t_1}, \quad t_4 = \frac{1}{t_1}.$$
 (C.5)

Kako su sva četiri korena različita, može se pisati

$$\frac{1+t^2}{\prod_{\alpha=1}^4 (t-t_{\alpha})} = \sum_{\alpha=1}^4 \frac{A_{\alpha}}{t-t_{\alpha}},$$
(C.6)

uz definiciju koeficijenata A_{α}

$$A_{\alpha} = \frac{1 + t_{\alpha}^2}{\prod\limits_{\beta \neq \alpha} (t_{\alpha} - t_{\beta})}.$$
(C.7)

Zamena (C.5) u (C.6) i (C.7) vodi na elementarnu integraciju:

$$\int \frac{\mathrm{d}y}{1 - a_x^2 \cos^2 y} = \frac{2A_1}{1 - a_x^2} \ln \frac{(t - t_1)(t + \frac{1}{t_1})}{(t + t_1)(t - \frac{1}{t_1})} \\ = -\frac{2A_1}{1 - a_x^2} \ln \frac{(t^2 - 1) + \mathrm{i} t(\sqrt{d} + \sqrt{1/d})}{(t^2 - 1) - \mathrm{i} t(\sqrt{d} + \sqrt{1/d})},$$
(C.8)

gde je

$$A_1 = \frac{1}{2} \frac{t_1}{t_1^2 - 1}.$$
(C.9)

Korišćenjem poznate relacije

$$\ln\frac{a+\mathrm{i}\,b}{a-\mathrm{i}\,b} = 2\,\mathrm{i}\arctan\frac{b}{a},\tag{C.10}$$

nakon vraćanja smene i upotrebe nekoliko trigonometrijskih identiteta, dolazi se do

$$\int \frac{\mathrm{d}y}{1 - a_x^2 \,\cos^2 y} = \frac{1}{\sqrt{1 - a_x^2}} \arctan \frac{\tan[y/2]}{\sqrt{1 - a_x^2}}.$$
(C.11)

Kako je $a_x \neq 1$, lako se nalazi i odredjeni integral

$$\int_0^{\pi/2} \frac{\mathrm{d}y}{1 - a_x^2 \cos^2 y} = \frac{\pi}{2\sqrt{1 - a_x^2}}.$$
(C.12)

Zamenom (C.12) u (C.19) dolazi se do rešenja

$$J^{2D}(\eta) = \frac{2}{\pi\eta} \int_0^{\pi/2} \frac{\mathrm{d}x}{\sqrt{1 - (1/\eta)^2 \,\cos^2 x}}.$$
 (C.13)

Jednostavno se pokazuje da je za $\eta \geq 1$ preostli integral ekvivalentan sa uobičajenom definicijom potpunog eliptičkog integrala 1. vrste, $\mathcal{K}(1/\eta)$. Dakle, u slučaju kvadratne rešetke, definitivno se dobija:

$$J^{2D}(\eta) = \frac{2}{\pi\eta} \mathcal{K}(1/\eta). \tag{C.14}$$

Eliptički integral prve vrste ima singularitet u $\eta = 1$, što se vidi iz aproksimativne formule [41]

$$\mathcal{K}(x\simeq 1) \approx \ln \frac{4}{\sqrt{1-x^2}}.$$
 (C.15)

Odnosno,

$$\lim_{\eta \to 1} J^{2D}(\eta) = \frac{2}{\pi} \lim_{\eta \to 1} \mathcal{K}(1/\eta) \to \infty.$$
(C.16)

Kako je $\mathcal{K}(0) = \pi/2$, za $\eta \gg 1$ se dobija

$$\lim_{\eta \to \infty} J^{2D}(\eta) = \frac{1}{\eta}.$$
(C.17)

Integral (C.19) se takodje može uopštiti na više dimenzija. Ako se rešenje (C.14) izrazi pomoći hipergeometrijske funkcije, dobija se

$$J^{2D}(\eta) = \frac{1}{\eta} {}_{2}F_{1}\left(\frac{1}{2}, \frac{1}{2}; 1; \frac{1}{\eta^{2}}\right).$$
(C.18)

Kod računanja 3D verzije integrala $J^d(\eta)$

$$J^{3D}(\eta) = \frac{\eta}{\pi^3} \int_0^{\pi} \int_0^{\pi} \int_0^{\pi} \frac{\mathrm{d}x \,\mathrm{d}y \,\mathrm{d}z}{\eta^2 - \cos^2 \frac{x}{2} \cos^2 \frac{y}{2} \cos^2 \frac{z}{2}} = \frac{1}{\eta \,\pi} \int_0^{\pi} \mathrm{d}z \quad \frac{2}{\pi^2} \int_0^{\pi} \mathrm{d}x \,\int_0^{\pi/2} \frac{\mathrm{d}y}{1 - b_{xz}^2 \,\cos^2 y}, \tag{C.19}$$

gde je

$$b_{xz} = \frac{\cos[x/2] \, \cos[z/2]}{\eta} \equiv \frac{\cos[x/2]}{\eta_z},$$
 (C.20)

problem se svodi na

$$J^{3D}(\eta) = \frac{1}{\eta \pi} \int_0^{\pi} dz \,_2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; \frac{\cos^2 z/2}{\eta^2}\right) = \frac{2}{\eta \pi} \int_0^{\pi/2} dz \,_2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; \frac{\cos^2 z}{\eta^2}\right)$$
$$= \frac{2}{\eta \pi} \sum_{m=0}^{\infty} \frac{(1/2)_m \,(1/2)_m}{(1)_m \, m! \, \eta^{2m}} \int_0^{\pi/2} dz \,\cos^{2m} z \tag{C.21}$$

gde su uvedene oznake kao u Prilogu B. S obzirom na (B.30), dobija se

$$J^{3D}(\eta) = \frac{1}{\eta} {}_{3}F_{2}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1, 1; \frac{1}{\eta^{2}}\right)$$
(C.22)

Dakle, za proizvoljno dse konačno dobija

$$J_{1}^{d}(\eta) = \frac{1}{\pi^{d}} \prod_{\alpha=1}^{d} \int_{0}^{\pi} \mathrm{d}x_{\alpha} \frac{\eta}{\eta^{2} - \prod_{\alpha=1}^{d} (\cos[x_{\alpha}/2])^{2}}$$
$$= \frac{1}{\eta} {}_{d}F_{d-1} \left(\underbrace{\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}}_{d \text{ puta}}; \underbrace{\frac{1}{1, 1, \dots, 1}}_{d-1 \text{ put}}; \frac{1}{\eta^{2}} \right).$$
(C.23)

Zanimljiva je veza koja sledi iz (B.32) i (C.23):

$$I_1^d(\eta) = \eta \ J^{d+1}(\eta) \tag{C.24}$$

ili

$$J^{d}(\eta) = \frac{1}{\eta} I_{1}^{d-1}(\eta).$$
(C.25)

Integrali $J^{3D}(\eta)$, $I_1^{3D}(\eta)$ i $I_2^{3D}(\eta)$ se pojavljuju pri RPA i CA analizi antiferomagnetnih struktura tipa CsCl. Za SW opis CsCl strukture videti [42].

Prednost zapisa pomoću u
opštene hipergeometrijske funkcije, svih integrala razmatranih u Prilozima B i C, je što se lako u
očava njihova konvergencija (ili divergencija) prema jednostavnim kriterijumima iz
netim u [38]. Takodje, numeričko izračunavanje je ubt
zano i olakšano, s obzirom da u navedenom programskom paketu postoje definisane komande za generalisanu hipergeometrijsku funkciju, čije je brojne vrednosti moguće dobiti sa proizvoljnom tačnošću. Npr, prvih 500 decimala za $_{3}F_{2}\left(\frac{1}{2}, \frac{1}{2}; 1, 1; 1\right)$ iznosi

 $1.3932039296856768591842462603253682426574812175156178789742816318803240125750\\366306786473298578095559965666266639988217194283959122395415845975943533044025\\221746647492762134308767269002926451909050114273286687917140115373989541662822\\809289906377325581219686046457856738621208731426173649651244439289977275263679\\163163567635820291371984606362946637576459792729357678997051796486530542738188\\598772827753419599805347303484388402212970308993671582127547679163791007115391\\757468369102458138698809197329647.$
Prilog D

Uopšteni Izingov model u teoriji srednjeg polja

U slučaju velikih vrednosti spinske anizotropije, hamiltonijan 2D Hajzenbergovog modela prelazi u

$$\hat{H} = -J' \sum_{\boldsymbol{n}} \sum_{\boldsymbol{\delta}_{\parallel}} \hat{S}^{z}_{\boldsymbol{n}}(a) \hat{S}^{z}_{\boldsymbol{n}+\boldsymbol{\delta}_{\parallel}}(b) - h \sum_{\boldsymbol{n}} \left[\hat{S}^{z}_{\boldsymbol{n}}(a) - \hat{S}^{z}_{\boldsymbol{n}}(b) \right]$$
(D.1)

uz $J\eta\equiv J'.$ Gornji hamiltonijan definiše u
opšteni Izingov model (u konkretnom slučaju zaS=5/2).

Osnovna pretpostavka teorije srednjeg polja (Mean Field, MF) je da se operator $\hat{S}^z_n(\alpha)$ može napisati u obliku [5, 10, 12]

$$\hat{S}_{\boldsymbol{n}}^{z}(\alpha) = \langle \hat{S}_{\boldsymbol{n}}^{z}(\alpha) \rangle + \delta \hat{S}_{\boldsymbol{n}}^{z}(\alpha), \tag{D.2}$$

gde je $\delta \hat{S}^{z}_{n}(\alpha)$ mala popravka u odn
su na srednju vrednost operatora. Zamenom (D.2) u (D.1) i zadržavanjem na linearnim članovima po
 $\delta \hat{S}^{z}_{n}(\alpha)$, dobija se MF hamiltonijan Izingovog modela

$$\hat{H}_{\rm MF} = -J' \sum_{\boldsymbol{n}} \sum_{\boldsymbol{\delta}_{\parallel}} [\langle \hat{S}_{\boldsymbol{n}}^{z}(a) \rangle \delta \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\parallel}}^{z}(b) + \delta \hat{S}_{\boldsymbol{n}}^{z}(a) \langle \hat{S}_{\boldsymbol{n}+\boldsymbol{\delta}_{\parallel}}^{z}(b) \rangle]
- h \sum_{\boldsymbol{n}} \left[\delta \hat{S}_{\boldsymbol{n}}^{z}(a) - \delta \hat{S}_{\boldsymbol{n}}^{z}(b) \right] + H_{0}$$
(D.3)

pri čemu je sa H_0 označen doprinos konstantnih članova. Radi jednaostavnijeg pisanja, u nastavku će simbol δ biti ispušten. Računanjem potrebnih komutatora i prelaskom u impulsni prostor, dobija se

$$\langle \langle \hat{S}^{+}(a) | \hat{S}^{-}(a) \rangle \rangle_{\boldsymbol{k}} = \frac{i}{2\pi} \frac{2 \langle \hat{S}^{z}(a) \rangle}{\omega - \omega_{MF}},$$

$$\omega_{MF} = J' z \langle \hat{S}^{z}(a) \rangle + h.$$
(D.4)

Jednostavno se pokazuje da isti rezultat daje primena RPA na dekuplovanje viših GF u slučaju hamiltonijana (D.1). U odsustvu spoljašnjeg polja je $\langle \hat{S}^z(a) \rangle = \langle \hat{S}^z(b) \rangle$. Spontata magnetizacija je odredjena Kalenovom formulom (4.21), uz

$$P_S^{\rm MF}(T) = \frac{1}{\exp[\beta \ \omega_{\rm MF}] - 1}.$$
 (D.5)

U blizini kritične temperature je

$$P_S^{\rm MF}(T \simeq T_{\rm N})^{\rm MF} \approx \frac{T_{\rm N}}{\omega_{\rm MF}},\tag{D.6}$$

pa se postupkom opisanim u 5.1.2 dobija

$$T_{\rm N}^{\rm MF} = \frac{S(S+1)}{3} J' z. \tag{D.7}$$

Na niskim temperaturama je (videti (4.25))

$$\langle \hat{S} \rangle_0 \approx S - P_S^{\rm MF}(0) = S,$$
 (D.8)

što drugim rečima govori da kvantne fluktuacije ne postoje u osnovnom stanju Izingovog modela. Zbog toga je

$$\omega_{\rm MF}(T\simeq 0) = J'Sz. \tag{D.9}$$

Zamena (D.9) u (D.7) daje

$$T_{\rm N}^{\rm MF} = \frac{(S+1)}{3} \,\omega_{\rm MF}(T \simeq 0).$$
 (D.10)

Jednačina (D.10) je ekvivalentna sa (4.48) jer MF spektar ne pokazuje zavisnost od talasnog vektora ($\gamma(\mathbf{k}_{\parallel}) = 0$).

Prilog E Integralni identitet

U Kalenovoj šemi dekuplovanja se pojavljuju izrazi tipa (videti (4.59)):

$$\sum_{\boldsymbol{k}} F(\boldsymbol{k})\gamma(\boldsymbol{k}+\boldsymbol{q}), \tag{E.1}$$

gde je

$$\gamma(\boldsymbol{k}) = \gamma_{\parallel}(\boldsymbol{k}_{\parallel}), \ \gamma_{\perp}^{ab}(\boldsymbol{k}), \ \gamma_{\perp}^{aa}(\boldsymbol{k})$$
(E.2)

Ispravnost jednačine (4.59) će biti pokazana za $\gamma(\mathbf{k}) = \gamma_{\parallel}(\mathbf{k}_{\parallel})$. Dokaz je analogan za druga dva geometrijska faktora. Ispuštanjem indeksa _{||} zbog preglednijeg pisanja, dobija se

$$\sum_{\boldsymbol{k}} F(\boldsymbol{k})\gamma(\boldsymbol{k}+\boldsymbol{q}) = \sum_{\boldsymbol{k}} F(k_x, k_y, k_z) \cos\frac{[k_x+q_x]a}{2} \cos\frac{[k_y+q_y]a}{2}.$$
(E.3)

Medjutim, kako je

$$\cos[\alpha + \beta] = \cos\alpha \cos\beta - \sin\alpha \sin\beta \tag{E.4}$$

integral iz jednačine (E.3) postaje

$$\sum_{k} F(k_x, k_y, k_z) \left[\cos \frac{k_x a}{2} \cos \frac{k_y a}{2} \cos \frac{q_x a}{2} \cos \frac{q_y a}{2} - \cos \frac{k_x a}{2} \sin \frac{k_y a}{2} \cos \frac{q_x a}{2} \sin \frac{q_y a}{2} - \sin \frac{k_x a}{2} \cos \frac{q_x a}{2} \sin \frac{q_y a}{2} \sin \frac{q_x a}{2} + \sin \frac{k_x a}{2} \sin \frac{k_y a}{2} \sin \frac{q_x a}{2} \sin \frac{q_y a}{2} \right].$$

Zbog parnosti podintegralne funkcije otpadaju svi članovi koji sadrže sinuse. Dakle, ostaje

$$\sum_{\boldsymbol{k}} F(\boldsymbol{k})\gamma(\boldsymbol{k}+\boldsymbol{q}) = \cos\frac{q_x a}{2} \cos\frac{q_y a}{2} \sum_{\boldsymbol{k}} F(k_x,k_y,k_z) \cos\frac{k_x a}{2} \cos\frac{k_y a}{2}, \quad (E.5)$$

što je rezultat naveden u (4.59). Sve veličine $F(\mathbf{k})$ koje se pojavljuju u CA formalizmu su parne jer se komponente talasnog vektora uvek pojavljuju kao argumenti kosinusnih funkcija.

Literatura

- [1] H. Tasaki, Prog. Theor. Phys. **99** 489 (1998) (cond-mat/9712219)
- [2] H. Tasaki, Eur. Phys. J. B **64** 365 (2008)
- [3] M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. **70** 1059 (1998)
- [4] J. Hubbard, Proc. Roy. Soc. (London) A276 238 (1963)
- [5] K. Yosida, *Theory of Magnetism*, Springer-Verlag, New York (1996)
- [6] Alexander Altland, Ben Simons, Condensed Matter Field Theory, Cambridge University Press, (2006)
- [7] A. Auerbach, Interacting Electrons and Quantum Magnetism, Springer-Verlag, (1994)
- [8] S. Doniach, E. H. Sondheimer, Green's Functions for Solid State Physicist, W. A. Benjamin, Massachusetts (1974)
- [9] E. Manousakis, Rev. Mod. Phys. **63** 1 (1991)
- [10] R. M. White, *Quantum Theory of Magnetism*, McGraw-Hill Book, (1970)
- [11] D. C. Mattis Theory of Magnetism I, Springer-Verlag, Berlin (1988)
- [12] P. Fröbrich and P. J. Kuntz, Phys. Rep. **432** 223-304 (2006)
- [13] T. Huberman, D. A. Tennant, R. A. Cowley, R. Coldea, C. D. Frost, J. Stat. Mech. P05017 (2008)
- [14] M. Rutonjski, S. Radošević, M. Skrinjar, M. Pavkov-Hrvojević, D. Kapor and M. Pantić, Phys. Rev. B 76 172506 (2007)
- [15] C. M. van Uijen, H. W de Wijn, Phys. Rev. B **30** 5265 (1984)
- [16] S. V. Tyablikov The Methods in the Quantum Theory of Magnetism, Plenum Press, New York (1967)
- [17] H. B. Callen, Phys. Rev. **130** 890 (1963)
- [18] F. B. Anderson, H. B. Callen, Phys. Rev. **136** A1068 (1964)
- [19] S. Radošević, M. Pavkov-Hrvojević, M. Pantić, M. Rutonjski, D. Kapor and M. Škrinjar, Eur. Phys. J. B 68, 511 – 517 (2009)

- [20] N. Mermin and H. Wagner, Phys. Rev. Lett. **17** 1133 (1966)
- [21] C. Pich and F. Schwabl, Phys. Rev. B 47, 7957 (1993)
- [22] C. Pich and F. Schwabl, Phys. Rev. B 49, 413 (1994)
- [23] C. Pich and F. Schwabl, J. Magn. Magn. Matter. **140-144**, 1709 (1995)
- [24] T. Huberman, R. Coldea, R. A. Cowley, D. A. Tennant, R. L. Leheny, R. J. Christianson, C. D. Frost, Phys. Rev. B 72 014413 (2005)
- [25] R. J. Birgeneau, H. J. Guggenheim, G. Shirane, Phys. Rev. Lett. 22 720 (1969)
- [26] J. Skalyo, G. Shirane, R. J. Birgeneau, H. J. Guggenheim, Phys. Rev. Lett. 23 1394 (1969)
- [27] R. J. Birgeneau, H. J. Guggenheim, G. Shirane, Phys. Rev. B 8 304 (1973)
- [28] B. Schröder, V. Wagner, N. Lehner, K. M. Kesharwani, R. Geick, Phys. Stst. Sol (b) 97 501 (1980)
- [29] A. Epstein, E. Gurewitz, J. Makovsky, H. Shaked, Phys. Rev. B 2, 3703 (1970)
- [30] M. E. Lines, Phys. Rev. **164** 736 (1967)
- [31] R. J. Birgeneau, J. Skalyo, Jr., G. Shirane, Phys. Rev. B 3 1736 (1973)
- [32] V. Yu. Irkin, A. A. Katanin, M. I. Katsenelson, Phys. Rev. B 60, 1082 (1999)
- [33] V. Yu. Irkin, A. A. Katanin, Phys. Rev. B 57, 379 (1998)
- [34] J. F. Devlin, Phys. Rev. B 4, 136 (1971)
- [35] P. Fröbrich, P. J. Kuntz, M. Saber, Ann. Phys. (Leipzig) 11 387 (2002)
- [36] A.-Y. Hu, Y. Chen, Physica A **387** 34713476 (2008)
- [37] C. Kittel, Quantum Theory of Solids, John Wiley & Sons, inc., New York (1963) (na ruskom)
- [38] D. S. Mitrinović, Uvod u Specijalne Funkcije, Naučna Knjiga, Beograd (1991)
- [39] G. A. Korn, T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1961)
- [40] J. M. Borwein, P. B. Borwein, Pi and the AGM A Study in Analytic Number Theory and Computational Complexity, John Wiley & Sons, New York (1987)
- [41] K. Huang, *Statistical Mechanics*, John Wiley & Sons, New York (1987)
- [42] R. Kubo, Phys. Rev. 87 568 (1952)

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET

KLJUČNA DOKUMENTACIJSKA INFORMACIJA

Redni broj: RBR	
Identifikacioni broj:	
IBR	
Tip dokumentacije: TD	Monografska dokumentacija
Tip zapisa:	Tekstualni štampani materijal
1 Z Vrsta rada:	Diplomski rad
VR	
Autor: AU	Slobodan Radosevic, br. dos. 26M/06
Mentor:	dr Milan Pantić
MN Naslow wada	Magnatua agahina antifaramagnataih halaganida mangana
Nasiov rada: NR	Magnetne osobine antiferomagnetnin nalogenida mangana
Jezik publikacije: IP	srpski (latinica)
Jezik izvoda:	srpski/engleski
Zemlja publikovanja:	Srbija
ZP Uže geografsko područje:	Vojvodina
UGP	2000
Goaina: GO	2009
Izdavač: 17	Autorski reprint
Mesto i adresa:	Prirodno-matematički fakultet, Trg Dositeja Obradovića 4, Novi Sad
MA Fizički opis rada:	
FO	
Naučna oblast: NO	Fizika
Naučna disciplina:	Teorijska fizika kondenzovane materije
ND Predmetna odrednica/ kliučne reči:	Haizenbergov model, spinske Grinove funkcije. Nelova temperatura
PO	najzenoergov model, spinske ormove runkelje, rvelova emperatura
UDK Č	
Čuva se: ČU	Biblioteka departmana za fiziku, PMF-a u Novom Sadu
Važna napomena:	nema
VN Izvod:	
IZ	
Datum prihvatanja teme od NN veća: DP	
Datum odbrane: DO	

Članovi komisije: KO Predsednik: član:

član:

dr Mario Škrinjar dr Milan Pantić dr Milica Pavkov-Hrvojević

UNIVERSITY OF NOVI SAD FACULTY OF SCIENCE AND MATHEMATICS

KEY WORDS DOCUMENTATION

Monograph publication
Textual printed material
Final paper
Slobodan Radošević, br. dos. 26M/06
Dr Milan Pantić
Magnetic properties of antiferromagnetic manganese halides
Serbian (Latin)
English
Serbia
Vojvodina
2009
Author's reprint
Faculty of Science and Mathematics, Trg Dositeja Obradovića 4, Novi Sad
5/182/32/0/71/0/3
Dhyging
1 hysics
Solid state theory
Solid state theory
Heisenberg model Green's functions. Neel temperature
Telsenserg model, Steen 5 functions, Teer temperature
Library of Department of Physics. Trg Dositeia Obradovića 4
· · · · · · · · · · · · · · · · · · ·
none

Accepted by the Scientific Board: ASB Defended on: DE Thesis defend board: DB President: Member: Member:

Dr Mario Škrinjar Dr Milan Pantić Dr Milica Pavkov-Hrvojević