

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA FIZIKU

Promptno gama spektroskopsko merenje emisije nakon zahvata neutrona na ⁹³Nb

- master rad -

Mentor:

Dr Nikola Jovančević

Kandidat: Selena Ilić

Novi Sad, 2017. godine

<u>Sadržaj</u>

1.	Uvo	od	.4
2.	Osn	ovi gama spektrometrije	.5
2	.1.	Mehanizmi interakcije fotona sa sredinom	.5
2	.2.	Atenuacioni koeficijenti	.7
2	.3.	Detektori gama zračenja	.8
2	.4.	Germanijumski detektori	.9
2	.5.	BGO	11
2	.6.	Suzbijanje Komptonskog fona	12
3.	Pro	mptna gama neutronska aktivaciona analiza	14
3	.1.	Neutroni u promptnoj gama neutronskoj aktivacionoj analizi (PGAA)	15
3	.2.	Osobine PGAA	16
3	.3.	Karakteristike promptnih gama spektara	19
4. I	Efikas	snost detektora	21
4	.1.	Efikasnost u piku potpune apsorpcije	22
5.	Eks	perimentalan rad	27
5	.1.	Opis reaktora	27
5	.2.	Opis eksperimentalne postavke	28
5	.3.	HYPERMET-PC	31
6.	Rez	ultati merenja	33
6	.1.	Određivanje relativne efikasnosti detektora	33
6 s	.2. uzbij	Rezultati merenja promptne neutronske aktivacije ⁹³ Nb kada nije izvršeno komptonsko anje	, 40
	6.2.	1. Identifikovani fonski γ pikovi	14
	6.2.	 Identifikovani γ pikovi ⁹⁴Nb⁴ 	18
6 s	.3. uzbij	Rezultati merenja promptne neutronske aktivacije ⁹³ Nb kada je izvršeno komptonsko anje	54
	6.3.	1. Identifikovani fonski γ pikovi	54
	6.3.	 Identifikovani γ pikovi ⁹⁴Nb 	53

6.4. Određivanje relativnog intenziteta γ pikova	⁹⁴ Nb detektovanih nakon zahvata neutrona
na ⁹³ Nb	
Zaključak	
Bibliografija	

1. Uvod

Promptna gama neutronska aktivaciona analiza (PGAA) je široko primenljiva nuklearna tehnika za određivanje prisustva i količine mnogih izotopa elemenata u ispitivanim uzorcima. Ispitivani uzorci mogu imati mase u rasponu od nekoliko mikrograma do nekoliko grama. Ova metoda je nedestruktivna i hemijska forma i oblik uzorka nisu od velikog značaja.

PGAA se zasniva na ozračivanju uzorka neutronskim snopom i vrši se promptno merenje gama zračenja koje prati deekscitaciju pobuđenih jezgara. Za ozračivanje se uglavnom koriste termalni neutroni. Redovno se obavljaju analize geoloških, arheoloških uzoraka, artefakata, minerala, metala, stakla, katalizatora, keramike, kao i uzoraka iz industrije.

Energija i intenzitet gama prelaza nakon zahvata neutrona predstavljaju pouzdane spektroskopske podatke koji se koriste za istraživanje astrofizičkih reakcija, proizvodnju medicinskih izotopa, reaktorsku tehnologiju, proizvodnju retkih izotopa, itd. Merenja promptnog gama zračenja koje se emituje nakon zahvata neutrona predstavljaju jednu od najvažnijih tehnika eksperimentalne nuklearne fizike za dobijanje korisnih informacija o nuklearnoj strukturi. Podaci koji se dobijaju iz ovih merenja su neophodni za određivanje parametara nuklearnih struktura kao što je gustina nivoa. Zbog toga je ova tehnika važna kako za fundamentalna tako i za primenjena istraživanja.

U ovom radu se analizira promptno gama zračenje koja se emituje nakon zahvata neutrona na izotopu ⁹³Nb u reakciji ⁹³Nb (n, γ) ⁹⁴Nb. Merenje je vršeno u MTA–EK Institutu za energetska istraživanja u Budimpšti, Mađarska.

U našem eksperimentu je izabrana meta od niobijuma jer se niobijum u prirodi javlja kao monoizotop – ⁹³Nb, što značajno pojednostavljuje analizu podataka. Niobijum već ima primenu u nuklearnoj tehnologiji. Njegove legure se koriste kod nuklearnih reaktora kao materijal za oblaganje goriva [1]. Međutim, zbog svoje visoke otpornosti na temperaturu i relativno niskog efikasnog preseka za zahvat termalnih neutrona, može se naći više primena za niobijum. Iz tog razloga je vrlo bitno prikupljanje novih podataka o ⁹⁴Nb.

Prvi deo ovog rada predstavlja pregled osnovnih teorijskih principa interakcije gama fotona sa materijom. Nakon toga je dat opis osnovnih karakteristika detektora. Zatim su navedena osnovna svojstva i principi na kojima se zasniva promptna gama neutronska aktivaciona analiza. Ostatak rada je posvećen analizi spektara aktiviranog ⁹⁴Nb u cilju određivanja relativnih intenziteta koji su upoređeni sa postojećim referentnim vrednostima.

2. Osnovi gama spektrometrije

2.1. Mehanizmi interakcije fotona sa sredinom

Fotoni, s obzirom na to da su elektroneutralni, ne gube konstantno energiju dok se prostiru kroz različite sredine. Umesto toga, oni mogu preći različite dužine puteva pre nego što interaguju sa atomima sredine. Koliki put će dati foton preći zavisi od verovatnoće interakcije po jedinici dužine puta, koja zavisi od vrste sredine i energije fotona. [2] Foton u interakciji može da se apsorbuje, odnosno nestaje, ili da se raseje, pri čemu menja pravac kretanja, sa ili bez gubitka energije.

Tomsonovo i Rejlijevo rasejanje su dva procesa u kojima fotoni interaguju sa materijom bez znatnog transfera energije. U Tomsonovom rasejanju, elektron, za koji se pretpostavlja da je slobodan, osciluje klasično, kao odgovor na električni vektor elektromagnetnog talasa. Oscilujući elektron promptno emituje zračenje (fotone) iste frekvencije kao što je frekvencija upadnog talasa. Krajnji efekat Tomsonovog rasejanja, koje predstavlja elastično rasejanje, jeste skretanje određenog broja upadnih fotona bez gubitka energije u sredini. U modernoj, kvantno-mehaničkoj teoriji interakcije fotona i elektrona, Tomsonovo rasejanje predstavlja niskoenergetsku granicu Komptonovog rasejanja, kako se energija upadnog fotona približava nuli.

Rejlijevo rasejanje fotona predstavlja rezultat interakcije fotona sa atomom kao celinom. Ugao rasejanja je uglavnom veoma mali. Ne postoji značajan gubitak energije fotona pri interakciji sa atomom koji doživljava uzmak dovoljan za očuvanje impulsa.

Glavni mehanizmi deponovanja energije od strane fotona u neku sredinu su: fotoelektrični efekat, Komptonovo rasejanje, proizvodnja para čestica–antičestica (elektron–pozitron) i fotonuklearne reakcije.

Izbacivanje elektrona sa površine materijala (uglavnom metala) prilikom apsorpcije elektromagnetnog zračenja (svetlosti) naziva se fotoelektrični efekat. Maksimalna kinetička energija koju fotoelektron ima je:

$$T_{max} = hv - A$$

v je frekvencija upadnog fotona, h je Plankova konstanta (6.62 · 10⁻³⁴ Js), A je izlazni rad i zavisi od vrste metala.

Verovatnoća proizvodnje fotoelektrona zavisi od rednog broja (Z) atoma sredine i energije fotona. Najveća je za materijale sa visokim Z i za niskoenergetske fotone sa frekvencijama iznad granične frekvencije. Granična frekvencija je frekvencija zračenja ispod koje se fotoelektroni ne emituju, čak i kada se primenjuju visoki intenziteti svetlosti. Verovatnoća fotoefekta je proporcionalna sa $Z^4 / (hv)^3$.

Kada je energija koja se prenosi sa fotona na atomski elektron mnogo veća u odnosu na vezivnu energiju elektrona u atomu, elektron se može tretirati kao da je slobodan i u stanju mirovanja. Zakoni održanja energije i impulsa ne dozvoljavaju apsorpciju fotona od strane elektrona pod ovim uslovima. Na slobodnom elektronu se foton može rasejati, i to sa gubitkom energije (Komptonov efekat) ili bez gubitka energije (Tomsonovo rasejanje). Fotoelektrični efekat nastaje zato što elektron koji apsorbuje foton interaguje sa jezgrom i ostalim elektronima u atomu kako bi se održala ukupna energija i impuls svih interagujućih delova. Zato su vezivanje elektrona i njegova interakcija sa ostatkom atoma ključni da bi došlo do fotoelektričnog efekta.

Komptonovo rasejanje je neelastično rasejanje fotona na elektronu atoma sredine. Ovom prilikom foton predaje deo svoje energije elektronu i nastavlja da se kreće u drugom pravcu sa manjom energijom tj. većom talasnom dužinom. Verovatnoća Komptonovog efekta je proporcionalna sa Z/E (Z je redni broj jezgra atoma materijala, E je energija fotona).

Komptonov pomak (razlika talasnih dužina rasejanog i upadnog zračenja) je dat sledećim izrazom:

$$\Delta \lambda = \lambda' - \lambda = c \left(\frac{1}{\nu'} - \frac{1}{\nu}\right) = \frac{h}{mc} (1 - \cos \theta)$$

 λ' je talasna dužina rasejanog fotona, λ je talasna dužina upadnog fotona, h je Plankova konstanta, m je masa elektrona, c je brzina svetlosti, θ je ugao rasejanja. Stoga, pomak u talasnoj dužini ne zavisi od frekvencije upadnog fotona. Veličina pomaka pri uglu rasejanja od $\theta = 90^{\circ}$ je:

$$\Delta \lambda = \frac{h}{mc} = 2.43 \cdot 10^{-12} \mathrm{m}$$

Ova veličina se naziva Komptonova talasna dužina.

Foton sa energijom koja je veća ili jednaka dvostrukoj energiji mirovanja elektrona ($hv \ge 2mc^2$) može da se konvertuje u par elektron-pozitron u polju atomskog jezgra. Proizvodnja para se takođe može javiti u polju atomskog elektrona, ali je verovatnoća za to znatno manja i energetski prag iznosi $4mc^2$. Ovaj proces se često naziva proizvodnja tripleta zbog prisustva atomskog elektrona pored stvorenog para. Kada se proizvodnja para dešava u polju jezgra, energija uzmaka masivnih jezgara je zanemarljiva. Zato se energija fotona *hv* pretvara u:

$$hv = 2mc^2 + T_+ + T_-$$

 T_+ i T_- su kinetičke energije para, $2mc^2$ je dvostruka energija mirovanja elektrona. Distribucija viška energije između elektrona i pozitrona je kontinualna – tj. kinetička energija svakog od njih može de se kreće od nule do $hv - 2mc^2$. Osim toga, energetski spektri su gotovo isti za ove dve čestice i zavise od atomskog broja jezgra. Verovatnoća proizvodnje para raste sa povećanjem energije fotona, a njena zavisnost od atomskog broja je približno ~ Z^2 . Dešava se i inverzni proces u kome elektron i pozitron doživljavaju anihilaciju i proizvode fotone. Pozitron se može anihilirati u toku kretanja, iako je verovatnije da će prvo usporiti, privući elektron, a zatim formirati pozitronijum. Pozitronijum je vezani sistem koji je analogan atomu vodonika i koga formiraju par elektron–pozitron koji orbitiraju oko njihovog zajedničkog centra mase. Pozitronijum postoji oko 10^{-10} s pre nego što dođe do anihilacije elektrona i pozitrona. Kako je ukupan impuls pozitronijuma pre raspada nula, prema zakonu održanja impulsa, moraju biti proizvedena barem dva fotona. Najverovatniji događaj je stvaranje dva fotona energija 0.511 MeV koji se kreću u suprotnim smerovima. Ako se pozitron anihilira u toku kretanja, onda je ukupna energija fotona jednaka zbiru $2mc^2$ i kinetičke energije pozitrona. Može doći i do proizvodnje tri fotona. Prisustvo anihilacionih fotona energija 0.511 MeV oko bilo kojeg izvora pozitrona uvek predstavlja potencijalnu opasnost od zračenja.

Jezgro atoma može da apsorbuje foton i da pri tome dođe do izbacivanja nukleona. Ovaj proces se naziva fotodezintegracija. Foton mora imati dovoljno energije da prevaziđe vezivnu energiju nukleona koja obično iznosi nekoliko MeV. Kinetička energija izbačenog nukleona je jednaka energiji fotona umanjenoj za vezivnu energiju nukleona. Verovatnoća za fotonuklearne reakcije je nekoliko redova veličine manja od ukupne verovatnoće za fotoelektrični efekat, Komptonov efekat i proizvodnju para.

2.2. Atenuacioni koeficijenti

Prostiranje fotona u sredini opisuje verovatnoća po jedinici pređenog puta da će foton interagovati nekim od pomenutih fizičkih procesa. Ova verovatnoća, označena sa μ , naziva se linearni koeficijent atenuacije (ili makroskopski efikasan presek) i ima dimenziju inverzne dužine (npr. cm⁻¹). Koeficijent μ zavisi od energije fotona i materijala kroz koji prolaze fotoni. Maseni atenuacioni koeficijent μ/ρ se dobija deljenjem μ sa gustinom materijala (ρ). Obično se izražava u cm²g⁻¹ i predstavlja verovatnoću interakcije po g cm⁻² materijala.

Monoenergetski fotoni se u uniformnoj meti atenuiraju po eksponencijalnom zakonu. Neki od njih se rasejavaju, a neki se apsorbuju. N(x) predstavlja broj fotona koji dopire do dubine materijala x, a da nisu interagovali:

$$N(x) = N_0 e^{-\mu x}$$

 $e^{-\mu x}$ je verovatnoća da će upadni foton normalan na materijal debljine x proći kroz njega bez interakcije.

Linearni atenuacioni koeficijent za fotone određene energije u datom materijalu se sastoji od individualnih doprinosa fizičkih procesa koji mogu da uklone fotone iz upadnog snopa. Piše se:

$\mu = \tau + \sigma + k$

τ, σ i *k* su redom linearni atenuacioni koeficijenti za fotoefekat, Komptonov efekat i proizvodnju para čestica–antičestica. Odgovarajući maseni atenuacioni koeficijetni su τ/ρ, σ/ρ, i κ/ρ za materijal gustine ρ. [2] Mogli bi se dodati i (najčešće) mali doprinosi atenuaciji usled fotonuklearnih reakcija i Rejlijevog rasejanja, ali su ovde zanemareni.

Na Slici 2.1. su prikazani pojedinačni efekti koji doprinose ukupnom atenuacionom koeficijentu. Na niskim energijama dominira fotoelektrični efekat. Na srednjim energijama je najizraženiji doprinos Komptonovog efekta. Kako efikasni presek za oba procesa opada sa porastom energije, i ukupni atenuacioni koeficijent se smanjuje kako raste energija fotona. Od 1.022 MeV počinje stvaranje parova, što na višim energijama dovodi do porasta ukupnog atenuacionog koeficijenta. Na visokim energijama doprinos fotoefekta i Komptonovog efekta je praktično zanemarljiv i jedini način putem kojeg se vrši atenuacija fotonskog zračenja je stvaranje parova.

Slika 2.1. – Zavisnost atenuacionih koeficijenata od energije

2.3. Detektori gama zračenja

Gama zračenje interaguje sa materijom putem različitih mehanizama, od kojih svaki prenosi energiju gama fotona na elektrone i, u slučaju proizvodnje para elektron–pozitron, na pozitrone. Ove čestice gube kinetičku energiju rasejanjem unutar detektora, stvarajući pri tome jonizovane atome i jonske parove. Te sekundarne čestice čine osnovu detektorskog signala.

U praksi, odabrani materijal mora osigurati potpunu apsorpciju unutar detektora ostvarive veličine. Kako bi se ovo ostvarilo, materijal mora imati visok koeficijent apsorpcije za gama zračenje. Koeficijenti apsorpcije za sve značajne procese rastu sa atomskim brojem, pa je potrebno koristiti materijal sa visokim atomskim brojem. Nakon apsorpcije gama zračenja,

detektorski materijal mora da omogući prikupljanje stvorenog naelektrisanja i predstavljanja istog u vidu električnog signala, što se ostvaruje obezbeđivanjem električnog polja koje će pokupiti naelektrisanje iz detektora. To se može se uraditi samo ako detektor ima odgovarajuće električne karakteristike. Ovo je razlog korišćenja poluprovodničkih detektora.

Druga vrsta detektora koja se takođe često koristi su scintilacioni detektori, kod kojih postoji prenos energije naelektrisanih sekundarnih čestica na atome koji prelaze u osnovno stanje emisijom svetlosti koja se zatim prikuplja fotomultiplikatorom. Ako naelektrisane čestice treba da se prikupljaju električnim poljem, onda na raspolaganju mora postojati mehanizam koji bi omogućio da se naelektrisane čestice kreću u tom polju na kontrolisani način.

Najčešće korišćeni materijali za detekciju gama zračenja su silicijum (Si) i germanijum (Ge). Najveća mana silicijuma je njegov nizak atomski broj (Z = 14), pa se u praksi koristi samo za merenje niskoenergetskih fotona. Silicijumski detektori su u rutinskoj upotrebi u spektrometriji X–zračenja. Germanijum se više koristi za detekciju gama zračenja jer je atomski broj germanijuma znatno veći (Z = 32), pa je samim tim i efikasni presek za fotoefekat kod germanijumskih detektora 60 puta veći u odnosu na silicijumske.

2.4. Germanijumski detektori

Germanijum je najčešće korišćen materijal za detekciju gama zračenja. Njegov atomski broj čini ga praktičnim za detektovanje gama zračenja viših energija. Mana germanijumskih detektora je ta što se, za razliku od silicijumskih, moraju hladiti na niske temperature. Prvi germanijumski detektori koji su bili komercijalno dostupni su bili Ge(Li) detektori, kod kojih je litijum driftovan u kristal germanijuma. Ovi detektori su bili zapremine od nekoliko kubnih centimetara i imali su rezoluciju od 4 do 5 keV na energiji od 1332 keV. Međutim, stalno su se morali držati na niskim temperaturama, čak i kada se nisu koristili u merenju, zbog velike pokretjivosti atoma litijuma. Tokom godina, kao odgovor na veliku potražnju ove vrste detektora, tehnologija za proizvodnju germanijuma visoke čistoće je znatno poboljšana. Pojavili su se besprimesni Ge detektori (HPGe – High Purity Germanium). Ovi detektori omogućavaju merenje zračenja sa energijama koje su manje od 10 keV i otporniji su na radijaciona oštećenja od Ge(Li) detektora. [3] Nije neophodno da se konstantno drže na niskim temperaturama, već samo tokom merenja kako bi se uklonio fon koji potiče od struje curenja.

Princip rada germanijumskih detektora se zasniva na tome da jonizujuće zračenje prilikom prolaska kroz poluprovodnike formira parove elektron–šupljina, koji se primenom spoljašnjeg električnog polja sakupljaju na odgovarajućim elektrodama. Konverzija tog naelektrisanja u signal se vrši pomoću pretpojačavača. Poluprovodnički detektorski sistem se uglavnom sastoji od: detektora, izvora visokog napona, pretpojačavača, analogno-digitalnog konvertora i multikanalnog analizatora.

Slika 2.2. – Komponente detektorskog sistema

Energija potrebna za formiranje para elektron–šupljina je oko 10 puta manja od energije koja je potrebna za jonizaciju gasa. Ovi detektori zato imaju mnogo bolju energetsku rezoluciju od gasnih i scintilacionih detektora. Pošto poluprovodnici imaju veliku gustinu, njihova zaustavna moć je veća od gasova kod gasnih detektora, a zbog kompaktnog oblika vreme odziva je malo. Jedan od nedostataka poluprovodničkih detektora je taj što zahtevaju hlađenje na niske temperature pre početka merenja. Sa porastom temperature raste broj slobodnih nosilaca naelektrisanja generisanih termalnim kretanjem. Tok ovakvih elektrona i šupljina se zove struja curenja i predstavlja električni šum u signalu pri merenju zračenja. Za hlađenje detektora se koristi uglavnom tečni azot (LN₂), kojim se detektor hladi do –200 °C. Još jedan od nedostataka je taj što su osetljivi na radijaciona oštećenja. [3]

HPGe detektori se najviše primenjuju u gama spektroskopiji. Predstavljaju najvažniji deo niskofonskih gama spektroskopskih sistema koji se koriste u mnogim istraživanjima. Jedan od glavnih problema kod ovih sistema jeste redukcija fona. Fon može poticati od prirodne radioaktivnosti nuklida iz okruženja, od kosmičkog zračenja, od radioaktivnih nečistoća u samom detektoru i elektronskih smetnji. Za redukciju fona se koriste različiti načini zaštite. Koristi se pasivna zaštita od olova ili gvožđa ili se upotrebljava aktivna zaštita u antikoicidentnom sistemu merenja korišćenjem više detektora. Često se prave i podzemne laboratorije u kojima se redukuje fon koji potiče od kosmičkog zračenja.

Danas je dostupno više tipova germanijumskih detektora od različitih proizvođača. Najpoznatiji proizvođači su: ORTEC, PGT i CANBERRA. Germanijumski detektori se mogu podeliti na detektore niskih energija (3 – 100 keV), n– i p– BEGe detektore (3 keV – 3 MeV) i n– i p– koaksijalne detektore (3 keV – 3 MeV). Generalno, detektori imaju dobru osetljivost i rezoluciju na niskim energijama, dobru osetljivost na visokim energijama ili se postiže određeni kompromis u rezoluciji i osetljivosti i na visokim i na niskim energijama. Za konkretna merenja potrebno je izabrati oblik i veličinu detektora koji će dati najbolje rezultate.

2.5. BGO

BGO, sa hemijskom formulom Bi₄(GeO₄)₃, relativno je novi materijal u scintilacionoj spektrometriji. Dobija se iz rastopljene smeše oksida bizmuta i germanijuma. Iako je njegov prinos svetlosti nizak u odnosu na NaI(Tl), njegova znatno veća gustina mu daje mnogo bolju zaustavnu moć i čini ga idealnim za aktivnu zaštitu sistema. [4] Slika 2.3 upoređuje sopstvene efikasnosti za dva materijala. Ovde se ne uzimaju u obzir interakcije u kojima ne dolazi do potpune apsorpcije koje bi povećale efikasnost BGO–a za suzbijanje pozadinskog zračenja. Fotoni energije 150 keV su 90% apsorbovani slojem BGO–a debljine 2.3 mm. Jednostavnije rečeno, BGO detektor veličine 16 puta manje od veličine NaI(Tl) detektora ima istu efikasnost kao NaI(Tl) detektor. Međutim, budući da je prinos svetlosti dosta manji, rezolucija BGO–a je lošija, što ga ne čini dobrim materijalom za spektrometriju koja traži mnogo detaljniju obradu od detekcije.

Slika 2.3. – Sopstvene efikasnosti za NaI (Tl) i BGO detektorima istih dimenzija (38mm x 38mm)

Za razliku od NaI(Tl), BGO se koristi bez aktivatora. Budući da postoji veliki pomak između optičkih i emisionih spektara Bi^{3+} stanja, relativno malo samo–apsorpcije se dešava i kristal je proziran u odnosu na vlastitu emisiju. Čak i tako, relativna efikasnost je samo 15 – 20% od one za NaI(Tl). BGO je inertan i nije higroskopan i ne mora biti hermetički zatvoren u kućište.

2.6. Suzbijanje Komptonskog fona

Aktivno smanjenje pozadine je metod koji se koristi za smanjenje kontinuuma ispod izmerenih pikova gama fotona. Smanjuje se Komptonov kontinuum u okviru spektra, ali i kontinuum koji potiče od kosmičkog zračenja. Ovo uključuje dodatne detektore koji detektuju gama fotone koji ili izlaze iz detektora (u slučaju Komptonskog suzbijanja) ili ulaze u detektor (u slučaju suzbijanja pozadine).

Komptonski rasejani gama fotoni koji izlaze iz detektora predstavljaju nepotpunu apsorpciju gama fotona. To znači da će odbroj rezultovati ne u piku potpune apsorpcije (full energy peak), već u Komptonskom kontinuumu. Ako se može naći način smanjenja toga, svi pikovi koji stoje na kontinuumu će se meriti sa nižom neodređenošću.

Jednostavan trik je da se HPGe detektor okruži sa drugim detektorom visoke efikasnosti, koji se naziva zaštitni γ -detektor (veto, guard ili shield detektor). Ovaj detektor daje obaveštenje kad god je gama foton rasejan iz HPGe detektora. To može da zaustavi analogno-digitalne konvertore (ADC) / multikanalne analizatore (MCA) da beleže događaj. NaI(Tl) scintilatori su tradicionalno korišćeni u tu svrhu, ali ako je prostor ograničen, može se koristiti skuplji i efikasniji bizmut-germanat (B₄Ge₃O₁₂; BGO). Slabija energetska rezolucija scintilatora ovde nije problematična – najvažnija stvar je da se osigura da je svaki rasejan gama foton detektovan. [4]

Slika 2.4. predstavlja šematski dijagram jednostavnog sistema za Komptonsko suzbijanje. Jedinica koincidencije detektuje kada se impulsi u HPGe i guard detektoru pojavljuju zajedno. Širina impulsa iz scintilacionog detektora je mnogo manja nego iz HPGe. Izlazni signali iz guard detektora moraju da se odgode za tačno određen iznos vremena kako bi se odbio impuls iz HPGe detektora unutar ADC / MCA. Ako se impuls iz guard detektora konvertuje u logički impuls i odloži za tačno određenu količinu, moguće je da se pomoću jedinice koincidencije postigne automatsko odbacivanje svakog impulsa iz HPGe koji će biti tamo u to vreme.

Slika 2.4. – Antikoicidentno kolo za Komptonsko suzbijanje

Činjenica da materijal sa visokim Z okružuje HPGe detektor je korisna u smislu da će obezbediti dodatni štit za njega – i pasivni i aktivni. Spoljašnji gama foton će morati da prođe kroz guard detektor da bi došao do HPGe. Ako interaguje sa oba detektora, događaj će biti odbijen. Isto tako, escape pikovi (pikovi koji potiču od fotona koji su izbegli detekciju) će biti uklonjeni iz spektra pošto se anihilacioni fotoni koji odlaze iz HPGe detektuju guard detektorom.

Najozbiljniji nedostatak nastaje kada se mere nuklidi koji emituju gama fotone u kaskadi. Ako se jedan od tih gama fotona detektuje u spektrometrijskom detektoru, a drugi u guard detektoru, odbroj će biti izgubljen iz pika pune apsorpcije (full–energy pika) – u stvari, svi pikovi pune apsorpcije koji se odnose na kaskadu će biti potisnuti. Moguće je i potpuno odbacivanje gama fotona u spektrometrijskom detektoru kada su oni koincidentni sa fotonima koji su rasejani od zaštite nazad u guard detektor. Što je bolje Komptonovo suzbijanje, to je manji odbroj u pikovima kaskada. Oprema je osmišljena tako da maksimalno uklanja gama fotone koji se pojavljuju istovremeno.

3. Promptna gama neutronska aktivaciona analiza

Promptna gama neutronska aktivaciona analiza (ili kraći naziv: promptna gama aktivaciona analiza – PGAA) je radioanalitička metoda za određivanje elementalnog sastava materijala. Zasniva se na nuklearnoj reakciji radijativnog zahvata neutrona. Ova reakcija se dešava za svaki izotop svakog elementa, osim za ⁴He. [5] Zato se, u principu, celokupna elementalna i izotopska analiza može obaviti korišćenjem PGAA. Ipak, sve do nedavno se ova tehnika uglavnom koristila samo kao dopunsko analitičko oruđe.

Nakon otkrića neutrona 1932. godine, neuton i nuklearne reakcije u kojima on učestvuje su se počele temeljno ispitivati. Tokom proučavanja reakcija zahvata neutrona u vodoničnim materijalima, primećena je emisija gama zračenja već 1934. godine. Ovo je prvo promptno gama zračenje koje je detektovano. Sada se zna da se radi o promptnom gama fotonu energije 2223 keV koji potiče iz reakcije ¹H(n, γ)²H.

György Hevesy je 1936. godine predložio da se detekcija radioaktivnih nuklida koji se formiraju tokom ozračivanja neutronima koristi u analitičke svrhe. Neutronska aktivaciona analiza (NAA) je jedna od najvažnijih tehnika analize elemenata u tragovima, ali se koristi i u geologiji, arheologiji, hemiji itd.

Veliki napredak krajem šezdesetih godina prošlog veka postignut je uvođenjem germanijumskih poluprovodničkih detektora koji su imali bar dvadeset puta bolju energetsku rezoluciju od najboljih NaI scintilatora. Selektivnost PGAA metode je povećana zahvaljujući novim Ge(Li)–detektorima i Ge(Li) – NaI(Tl) sistemima sa potiskivanjem komptonskih događaja.

PGAA se koristi za utvrđivanje prisustva i količine više elemenata simultano u uzorcima masa od nekoliko µg do nekoliko g. Hemijska forma i oblik uzorka su relativno nebitni. Merenja traju od nekoliko minuta do nekoliko sati po uzorku.

Uzorak se ozračuje kontinualno snopom neutrona. Neutroni zatim interaguju sa jezgrima atoma materijala. Nakon zahvata neutrona, jezgro se pobuđuje i nastaje složeno jezgro. Ovo jezgro se raspada emisijom promptnog gama zračenja visokih energija (do 11 MeV). Nakon emisije promptnog gama zračenja, jezgro koje nastaje može da bude stabilno ili radioaktivno. Neutronska aktivaciona analiza (NAA) radi sa radioaktivnim jezgrima. Radioaktivna jezgra se potom raspadaju emisijom β – čestica i kaskadnog gama zračenja koje se naziva zakasnelo gama zračenje (delayed gamma radiation). NAA ispituje ovo gama zračenje. Informacija koja se dobija iz njega je energija zračenja koja je karakteriistična za svaki element. Zato se preko energije vrši identifikacija elemenata unutar uzorka. Intenzitet zakasnelog gama zračenja je proporcionalan sa količinom (koncentracijom) elemenata u uzorku. PGAA je metod komplementaran NAA metodi. Analizira gama fotone koji se emituju iz složenog jezgra. PGAA merenje je drugačije od NAA, jer se gama zračenje detektuje direktno tokom ozračivanja uzorka neutronima, tako da je ova metoda manje osetljiva u odnosu na NAA. Prednost PGAA metode u odnosu na NAA jeste da se mogu detektovati elementi čija jezgra, nakon raspada složenog jezgra, prelaze u stabilna jezgra ili elementi čija su jezgra radioaktivna nakon zahvata neutrona, ali ne emituju kaskadno gama zračenje. Najčešći elementi koji se određuju promptnom gama aktivacionom analizom su elementi sa niskim rednim brojem, poput: H, B, N.

Slika 3.1. – Šematski prikaz radijativnog neutronskog zahvata

3.1. Neutroni u promptnoj gama neutronskoj aktivacionoj analizi (PGAA)

Kao što je ranije pomenuto, promptna gama neutronska aktivaciona analiza se zasniva na reakciji zahvata neutrona. Električno naelektrisanje neutrona je nula; otuda se njegova kinetička energija ne menja kada se približava jezgru. S obzirom na to da na neutrone ne utiče Kulonova barijera jezgra, neutron bilo koje energije može izazvati nuklearnu reakciju. Pomoću ovih reakcija se mogu ispitati svojstva materijala. Najvažniji proces u promptnoj gama aktivacionoj analizi je zahvat niskoenergetskih neutrona.

Neutron nije stabilan. Sa periodom poluraspada od 10.24(2) min, raspada se u proton emitovanjem β^{-} čestice i antineutrina. Slobodni neutroni koji se koriste za ozračivanje mogu se proizvesti samo u nuklearnim reakcijama. Ovi neutroni, čije su energije obično nekoliko MeV, moraju se usporiti do energija koje su uglavnom ispod nekoliko eV moderatoratorima koji sadrže laka jezgra (H, D, Be, C). [5]

Neutroni se prema energijama mogu klasifikovati u grupe. Spori neutroni se proizvode tokom termalizacije u moderatorima približno sobne temperature ili u hladnim moderatorima. U zavisnosti od temperature moderatora, mogu se razlikovati termalni i hladni neutroni. Njihove energije su manje od 100 meV. Neutroni koji imaju energije od oko 0.1 - 1 eV se nazivaju epitermalni. Energije rezonantnih i intermedijarnih neutrona se prostiru od 1 eV - 1 keV i 1 keV - 1 MeV, respektivno. Brzim neutronima se nazivaju neutroni čije su energije više od 1 MeV. U nuklearnoj analizi, neutroni čije su energije u opsegu između energija termalnih i brzih neutrona, uglavnom se nazivaju jednostavno epitermalni neutroni.

3.2. Osobine PGAA

Važna karakteristika reakcije radijativnog neutronskog zahvata u analitičke svrhe je da i zahvaćene i emitovane čestice imaju veliku prodornu moć. Npr. komad gvožđa (ima srednji efikasni presek za zahvat) debljine 1 cm propušta 80% snopa termalnih neutrona i otprilike istu frakciju visokoenergetskog promptnog gama zračenja. U PGAA se obično koriste gama linije energije iznad 100 keV, što znači da je samoapsorpcija od malog značaja. Izuzev slučajeva kada je efikasni presek ili prosečan atomski broj uzorka ekstremno visok, promptna gama neutronska aktivacija uzoraka mase do nekoliko grama se može smatrati matrično nezavisnom, tj. efekat drugih komponenata na gama intenzitete koji potiču od elementa od interesa uglavnom nije značajan. Neutronski snopovi ozračuju uzorke kroz čitavu njihovu debljinu i zato će rezultat analize biti prosečan sastav ozračenog uzorka. Ovo takođe omogućava analizu čvrstog (bulk) uzoraka.

Neki od slučajeva kada analitičari moraju biti oprezni su sledeći. Kada uzorak kao glavnu komponentu ima nuklid sa visokim efikasnim presekom za zahvat neutrona, neutronska samozaštita može postati vrlo bitna. Ako je uzorak homogen, to će samo uniformno smanjiti površine pikova, tj. neće narušiti odnose površina pikova i neće izmeniti određene koncentracije. Kada se uzorak sastoji uglavnom od teških elemenata, gama samoapsorpcija može postati jako važna za niskoenergetske gama fotone. Međutim, za energije gama zračenja koje su veće od 2 MeV, atenuacija je gotovo konstantna, što znači da apsolutni intenziteti jednako opadaju. Zato se visokoenergetski gama fotoni mogu koristiti za određivanje odnosa masa bez ikakvih korekcija. Takođe se mora paziti kada se radi sa geometrijski velikim uzorcima (nekoliko cm debljine). Na Slici 3.2. je predstavljena transmisija gama zračenja od strane olovnih slojeva različitih debljina.

Slika 3.2. – Transmisija snopa gama zračenja kao funkcija energije u slučaju olovne zaštite različitih debljina

Rezultat je nezavisan od hemijskog stanja uzorka, jer analitički signal potiče od ekscitacije nuklida, ne elektrona u ljuskama.

Još jedna bitna osobina PGAA proizilazi iz činjenice da se ekscitacija i detekcija dešavaju istovremeno. Ovo se može postići stavljanjem uzorka u snop neutrona, dok se gama zračenje detektuje normalno na pravac snopa neutrona. I snop i detektor definišu aktivnu zapreminu uzorka odakle se emitovano gama promptno zračenje može detektovati. To znači da zapremina iznosi nekoliko kubnih centimetara. Inače, sam uzorak može biti različitih veličina sve dok se deo njega može locirati na poziciju za uzorak. Ova osobina PGAA je čini jedinstvenom za ispitivanje velikih nehomogenih objekata tj. pri radu sa vrednim artefaktima. [5]

Usled istovremene aktivacije i detekcije, kao i širokog spektralnog opsega detektora gama zračenja, svi elementi se analiziraju istovremeno. Vreme brojanja za koje je potrebno da se postigne preciznost za elemente od interesa može da se odredi u toku merenja i prekinuta merenja mogu biti nastavljena u bilo kom trenutku.

S obzirom na to da se gama i neutronska polja ne mogu razdvojiti kao što se mogu kod NAA, potrebna je složenija zaštita. Ovo zahteva više materijala zaštite u blizini detektora, čime se povećava spektralna pozadina indukovana od strane neutrona koji su rasejani o ove materijale.

PGAA je na više načina nedestruktivna metoda. Prvo, nije potrebna priprema uzorka. Sa druge strane, ozračivanje ne menja sastav elemenata u uzorku. Fluks najčešće korišćenih neutronskih snopova je obično niži od 10^9 cm⁻²s⁻¹. Ozračivanjem uzorka u vremenskom intervalu od jednog dana i pretpostavljajući da su svi neutroni apsorbovani, dobija se da je broj konvertovanih jezgara ispod 10^{14} , što je za 7 – 8 redova veličine manje od broja atoma u uzorku. Konvertovana jezgra su obično stabilni izotopi istog elementa. Izotopski sastav je promenjen u izvesnoj meri, ali ta promena nije velika čak ni u ekstremnim uslovima koji su gore navedeni.

Radijaciona oštećenja ozračenog materijala izazvana neutronima i gama zračenjem su zanemarljiva. Međutim, u slučajevima kada je emisija naelektrisanih čestica indukovana neutronima, materijal može da doživi manja radijaciona oštećenja usled jonizujućih čestica proizvedenih i apsorbovanih unutar uzorka. To može rezultirati modifikacijama hemijske ili kristalne strukture, nakon kojih sledi promena boje uzorka. Ovaj efekat može biti značajan kada ozračeni uzorak sadrži litijum, bor ili azot.

Obično jedini problem koji zahteva pažnju nastaje kada se formiraju radioaktivni izotopi. Vremena ozračivanja uglavnom ne prelaze nekoliko dana. Izotopi koji imaju period poluraspada duži od nedelju dana nisu dovoljno aktivirani da bi se njihovo zračenje detektovalo, bilo analitički ili dozimetrijski. U najgorem slučaju, uzorci moraju da se hlade nekoliko nedelja sve dok njihova radijacija ne dostigne nivo pozadinskog zračenja.

Posebna pažnja se mora obratiti kada se analizira fisioni materijal. Iz radioaktivnosti originalnog objekta se može odrediti njegova istorija prethodnih ozračivanja i ovo može da izmeni novo ozračivanje.

Svaki hemijski element, osim ⁴He, može da se analizira korišćenjem PGAA. Međutim, efikasni preseci za zahvat neutrona variraju 8 redova veličine (od 0.00019 barn za O do 48800 barn za Gd). Ova činjenica se može posmatrati kao mana jer se elementi ne mogu odrediti sa sličnom osetljivošću. Ali, ova osobina se može posmatrati i kao prednost, jer se elementi sa velikim efikasnim presecima mogu odrediti u matricama sa niskim efikasnim presecima sa mnogo većom osetljivošću i tačnošću nego bilo kojom drugom metodom.

Glavna vrlina ove metode jeste određivanje lakih elemenata (Ca i lakših od Ca). Oni predstavljaju glavne komponente stena, minerala, cementa, betona itd. Efikasni preseci za zahvat su obično nekoliko desetina barna za ove elemente, što omogućava njihovo praćenje čak i u slabijim snopovima neutrona. Najvažniji element od elemenata ove vrste je vodonik, koji se može analizirati u gotovo bilo kojoj vrsti matrice sa prilično dobrom osetljivošću. Zato je PGAA jedinstven i specifičan instrument za određivanje sadržaja vodonika ili vode u tragovima.

Činjenica da se ekscitacija i merenje odvijaju istovremeno rezultuje određenim ograničenjima metode. U NAA, uzorci se ozračuju u izotropnom neutronskom polju i zakasnelo gama zračenje iz uzorka se može detektovati čak i u kontaktnoj geometriji. U PGAA se koriste samo niskodivergentni neutronski snopovi za aktivaciju i detektor se ne može postaviti previše

blizu aktiviranom uzorku. Sa druge strane, tokom merenja zakasnelog zračenja u NAA, dešava se samo deo od ukupnog broja raspada, što smanjuje osetljivost metode, dok se u PGAA svi indukovani promptni gama fotoni mogu detektovati sa datom efikasnošću. Svi ovi efekti utiču na to da je analitička osetljivost PGAA manja za faktor $10^{-4} - 10^{-6}$ u odnosu na NAA. Ovaj nedostatak se delimično može prevazići dužim ozračivanjem i korišćenjem masivnijih uzoraka.

3.3. Karakteristike promptnih gama spektara

Najviše energije promptnih gama linija su blizu 12 MeV, dok su linije koje potiču od raspada uglavnom ispod 3 MeV. Zato je energetski opseg promptnih gama spektara mnogo širi od onog koji se koristi u NAA. Promptni gama spektri uglavnom sadrže nekoliko stotina pikova, što je bar za red veličine više nego u gama spektrima radioaktivnih nuklida. Zbog visokih energija, Komptonovi platoi su dosta duži u promptnim gama spektrima i zato je najveći deo odbroja u pozadini, a ne u pikovima. [5]

Složenost promptnog gama spektra zavisi od strukture nuklearnih nivoa nuklida koji emituje zračenje i naročito od broja nivoa između stanja zahvata i osnovnog stanja. Najlakši nuklidi nemaju nivoe ispod nivoa na kojem je zahvaćen neutron. Zato se u njihovim spektrima pojavljuje samo jedan promptni gama pik koji potiče od prelaza iz stanja zahvata u osnovno stanje (²H i ³H nuklidi). Druga laka jezgra imaju jedan ili dva nivoa ispod stanja na kojem se nalazi zahvaćen neutron, tako da, osim direktnog prelaza, postoji još nekoliko prelaza u spektru (⁷Li, ⁸Li, ¹³C, ¹⁷O). U ovom tipu spektra (tip 1), promptne gama linije su intenzivne tj. njihove verovatnoće emisije su uglavnom veće od 10%, a njihove energije su distribuirane manje ili više ravnomerno do stanja zahvata. Linije nižih energija se uvek nalaze na Komptonovom platou prouzrokovanim linijama viših energija, što rezultira povećanjem osnovne linije ka nižim energijama.

Sa povećanjem broja nukleona, promptni gama spektar nuklida postaje sve komplikovaniji usled povećanog broja mogućih prelaza. Za elemente na kraju Periodnog sistema elemenata karakterističan je drugi osnovni tip (tip 2) promptnog gama spektra. On sadrži samo nekoliko karakterističnih pikova, s obzirom na to da se mnogi pikovi poklapaju i formiraju gladak kontinuum koji kontinualno raste sa opadanjem energije (najtipičniji su Eu, Tb i Ir). Promptni gama pikovi koji se mogu identifikovati se pojavljuju samo na niskoenergetskim i visokoenergetskim krajevima spektra i potiču od primarnih i prelaza do osnovnog stanja. (Prelazi koji polaze od stanja zahvata se nazivaju primarni prelazi. Prelazi koji ih slede su sekundarni, dok oni koji stižu do osnovnog nivoa se zovu prelazi do osnovnog stanja.) U nekim slučajevima se mogu prepoznati kaskadni parovi (dva ili više uzastopnih prelaza se nazivaju kaskade), pošto je suma njihovih energija jednaka vezivnoj energiji (E₁, S_n – E₁; E2, S_n – E₂ itd.). Verovatnoće emisije za ove linije su male, tipično nekoliko procenata. Pikovi X–zračenja se mogu pojaviti na kontinuumu, obično ispod 100 keV. Osnovni tipovi promptnih gama spektara su ilustovani na Slici 3.3.:

Slika 3.3. – Tipični oblici promptnih gama spektara za najlakše elemente (tip 1; levo) i za najteže elemente (tip 2; desno)

Tipični elementi koji imaju spektar tipa 1 su: H, Li, Be, B, C, N, O, F i neki od težih elemenata poput Pb i Bi. Tip 2 je karakterističan kod retkih zemnih elemenata i težih elemenata poput Ir, Au. Spektri tipa 2 obično imaju prazninu na sredini energija u listama karakterističnih promptnih gama pikova.

Gustina promptnih gama pikova na visokim energijama je mnogo manja od gustine na niskim energijama. Zato se visokoenergetski pikovi mogu mnogo više koristiti za kvalitativnu analizu. Kada se analiziraju uzorci sa više elemenata, može se uočiti da gornja polovina energetskog opsega (6 – 12 MeV) obično sadrži pikove koji potiču od lakih elemenata usled energetske zavisnosti vezivne energije.

Brzi neutroni kosmičkog porekla ili oni koji potiču iz sekundarnih (n, n')–reakcija u materijalima zaštite mogu da ekscituju jezgro u germanijumskom detektoru i da stvore tzv. "Ge–trouglove" koji su jasni indikatori brzih neutrona. Najvažniji impulsi iz (n, n')–reakcija na germanijumskom detektoru se pojavljuju na energijama od 596 keV i 692 keV, a manje značajni trouglovi na 834 keV, 563 keV i 1039 keV. Slika 3.4. prikazuje tipičan izgled "Ge–trouglova" koji nastaju prilikom neelastičnih rasejanja brzih neutrona na ⁷²Ge.

Slika 3.4. – "Ge-trouglovi" na energijama 596 keV i 692 keV

4. Efikasnost detektora

Jedan od osnovnih zadataka u PGAA je da se odrede brzine nuklearnih reakcija. Za to se mora znati tzv. efikasnost brojanja detektora. Kod germanijumskih detektora ona zavisi od nekoliko faktora, od kojih su najvažniji geometrija i energija zračenja. U zavisnosti ood toga kako se detektor koristi, njegova efikasnost se može definisati na više načina:

- Relativna efikasnost predstavlja opštu meru učinka detektora koja povezuje njegovu efikasnost detekcije gama fotona ⁶⁰Co energije 1332 keV sa efikasnošću detekcije istog gama fotona standardnim NaI detektorom.
- U gama spektrometriji, namera je da se površina pika u spektru poveže sa količinom radioaktivnosti koju taj pik predstavlja. Za to je potrebna absolute full energy peak efficiency (apsolutna efikasnost u piku potpune apsorpcije). [4] Ona povezuje površinu pika na određenoj energiji sa brojem gama fotona koje emituje izvor i mora zavisiti od geometrijske postavke izvora i detektora.
- Apsolutna totalna efikasnost (Absolute total efficiency) povezuje broj gama fotona koje emituje izvor sa ukupnim odbrojem koji je detektovan. To uzima u obzir pikove potpune apsorpcije (full energy peak) i sve nepotpune apsorpcije predstavljene Komptonovim kontinuumom.
- Sopstvena efikasnost (Intrinsic efficiency) povezuje odbroje u spektru sa brojem gama fotona koji padaju na detektor. Ova efikasnost je osnovni parametar detektora i ne zavisi od geometrije izvora / detektora.

Efikasnost, na bilo koji način definisana, zavisi od energije i potpuna kalibracija detektorskog sistema zahteva da se odredi odnos energija/efikasnost. Moglo bi se pretpostaviti da je dovoljno znati o procesima interakcije koji se odigravaju, apsorpcione koeficijente

detektorskog materijala i atenuaciju unutar enkapsulacije detektora, da bi se mogla izračunati efikasnost detektora. Nažalost, takve proračune sprečavaju ograničenja u matematičkim alatima na raspolaganju i nedostaci sa kojima se detektori mogu proizvesti. Zato se kalibracija efikasnosti izvodi na samim gama spektrima. Postoje napori za snadbevanjem teorijskih kalibracionih podataka od strane proizvođača uz svaki detektor, tako da je moguće da će se potreba za kalibraciju od strane korisnika smanjiti u budućnosti.

4.1. Efikasnost u piku potpune apsorpcije

Ovo je parametar od najvećeg značaja u praktičnoj gama spektrometriji. Računanje efikasnosti u piku potpune apsorpcije je direktno – predstavlja odnos detektovanih odbroja u piku i broja fotona koje emituje izvor:

$$\varepsilon\left(E_{\gamma}\right) = \frac{C_{\gamma}}{NP_{\gamma}}K = \frac{R_{\gamma}}{AP_{\gamma}}K$$

gde je C_{γ} izmerena neto površina pika, R_{γ} brzina brojanja (count rate) tj. površina pika u jedinici vremena, N broj raspada, A aktivnost, odnosno broj raspada u jedinici vremena, P_{γ} verovatnoća emisije odgovarajućeg gama fotona (AP_{γ} se naziva gama aktivnost) i K sadrži sve faktore korekcije za gubitke tokom detekcije gama zračenja, kao što su mrtvo vreme i slučajno sumiranje. Aktivnost izvora se treba korigovati za raspad od datuma njegove pripreme.

Uobičajeno je da se konstruiše kriva efikasnosti kojom se predstavlja zavisnost efikasnosti od energije. Slika 4.1. predstavlja grafik efikasnosti za p–tip koaksijalni detektor. Skala je logaritamska. Kriva je približno linearna u okviru energetskog opsega koji se najčešće koristi, npr. od 100 do 2000 keV. Ispod 100 keV, efikasnost opada zbog apsorpcije u materijalu oko detektora. Efikasnost takođe opada i iznad 100 keV, jer je manja verovatnoća da će se ukupna energija gama zračenja u potpunosti apsorbovati u detektoru. Na energijama iznad 3000 keV, efikasnost opada brže nego što bi linearni odnos na to ukazivao.

Slika 4.1. – Kriva efikasnosti za kapsulirani koaksijalni detektor p–tipa. Strelica ukazuje na anihilacioni pik na energiji 511keV.

Da bi se izvela jednačina za kalibraciju efikasnosti, mora se razmatrati da li je linearni odnos na log – log dijagramu zadovoljavajuć ili je potreban složeniji odnos. Bez obzira na oblik izabrane jednačine, teško se može pronaći jednostavna kriva koja obuhvata celokupan opseg energija. Zato je uobičajeno da se kriva efikasnosti dobija tako što se podaci podele u dve grupe. Npr. na Slici 4.1. jedna grupa podataka je iznad prevoja koji je na oko 100 keV, a druga ispod.

Podaci na Slici 4.1. uključuju vrednost efikasnosti za anihilacioni pik na 511 keV iz ²²Na, koji leži ispod kalibracione krive. Postoje dva moguća razloga za to. Prvo, ukoliko se ne uzme u obzir veća širina anihilacionog pika prilikom procene njegove površine, dobiće se manji rezultat. Međutim, u konkretnom slučaju prikazanom na slici, razlog leži u okruženju izvora. Tačkasti izvor ²²Na je bio postavljen na čvrstoj plastičnoj polici. Pozitroni iz izvora koji se rasejavaju unutar police biće anihilirani u blizini izvora. Sa druge strane, pozitroni koji napuštaju izvora i putuju daleko od police imaju tendenciju da se anihiliraju na nekom rastojanju od izvora i još dalje od detektora. To znači da će se ti anihilacioni fotoni detektovati sa manjom verovatnoćom, što daje manju efikasnost. Rešenje ovog problema je jednostavno. Treba pokriti izvor sa dovoljnom količinom čvrstog materijala kako bi se osiguralo da se svi pozitroni anihiliraju u okolini izvora i tada se može dobiti tačnije efikasnost za anihilacioni pik. To je opšti način merenja koji se primenjuje kada se meri foton energije 511 keV koji je emitovan od strane pozitronskog izvora zračenja.

U područjima kao što su aktivacione analize, gotovo sva merenja se rade simultano. Uzorci i standardi koji se ozračuju istovremeno se mere pod istim uslovima i površine pikova njihovih spektara se direktno upoređuju. Obračuni implicitno uzimaju u obzir efikasnost i uključuju sve faktore koji bi mogli dovesti do greške. U prirodi se nalazi ograničen broj najučestalijih radionuklida. Velika je prednost kada se merenja vrše relativno u odnosu na referentni standard za svaki radionuklid, u odnosu na interpolaciju kalibracione krive. Interpolacija neminovno uvodi dodatne nesigurnosti. Kalibraciona kriva se pravi samo onda kada program za analizu spektra ne pruža nikakvu drugu opciju. Međutim, pri tome se moraju imati u vidu greške koje nastaju pri korištenju kalibracione krive.

Za određivanje energetske zavisnosti efikasnosti mogu se koristiti mešoviti izvori koji sadrže monoenergetske gama emitere sa dobro poznatim aktivnostima ili višeenergetske gama izvore. U prvom slučaju se sumiranje pravih koincidencija (true coincidence summing) ne može dogoditi, čak ni u bliskim geometrijama. U PGAA se obično koriste geometrije u kojima je rastojanje između uzorka i detektora veliko. Verovatnoća detektovanja gama fotona date energije je ε , a verovatnoća detektovanja dva gama fotona iste energije istovremeno oko ε^2 . Stoga je efekat sumiranja pravih koincidencija mali, sve dok je ε malo. Na primer, u slučaju detektora sa prečnikom od 5 cm na udaljenosti od 25 cm od izvora, maksimalna vrednost efikasnosti brojanja je 0.0025 (tj. jednaka je geometrijskoj efikasnosti), čime je gubitak površine pika koji nastaje kada foton izgubi celokupnu enegiju unutar aktivne zapremine detektora (full–energy peak) usled sumiranja pravih koincidencija ispod 0.25%. Korišćenje kolimatora čini ovaj gubitak još manjim.

Slučajna koincidencija (random coincidence), tj. pojava kada se gama foton poklapa sa događajem iz Komptonske pozadine drugog gama fotona, takođe može smanjiti intenzitet ispitivanog pika gama fotona. Verovatnoća za slučajnu koincidenciju je ε_{tot} . ε_{tot} je tzv. totalna efikasnost, tj. verovatnoća da će doći do proizvodnje odbroja na bilo kojoj energiji u spektru i njena vrednost je blizu vrednosti geometrijske efikasnosti. Zbog velikog broja pikova u promptnom gama spektru, preporučljivo je držati detektor na većoj udaljenosti od uzorka kako bi se smanjili efekti koincidencije.

U PGAA je često dovoljno da se koriste samo relativne efikasnosti. Tokom određivanja relativne efikasnosti nije važno da se zna aktivnost izvora, a relativna efikasnost ne zavisi ni od nesigurnosti uzrokovane pozicioniranjem izvora. Zato se može odrediti sa većom tačnošću. Kada se prebaci na relativnu efikasnost, jednačina kojom se opisuje energetska zavisnost efikasnosti postaje jednostavnija:

$$\varepsilon_{rel} = \frac{C}{P_{\gamma}} K^*$$

U ovoj jednačini K* označava energetski zavisne faktore korekcije, kao što je npr. sumiranje pravih koincidencija. Ovaj faktor se približava vrednosti 1 ako je detektor daleko od izvora. ε u gore napisanim jednačinama za efikasnost, može uključiti i atenuaciju gama zračenja u slojevima između uzorka i detektora (npr. neutronska zaštita). Zato je važno da se efikasnost detektorskog sistema kalibriše sa istim rasporedom (arrangement) koji se koristi za merenja

nepoznatih izvora. U slučaju izmene sistema, poželjno je da se ponovo odredi efikasnost. Redovni pregledi mogu pomoći u otkrivanju oštećenja detektora, elektronskih kvarova itd.

Najbolji način da se izvede tačna kalibracija efikasnosti jeste da se koristi više izvora. Izvori treba da imaju delove spektara koji se energetski međusobno preklapaju. Da bi se pokrio ceo opseg energija koji se koristi u PGAA, potrebno je kombinovati podatke iz nekoliko merenja koja uključuju i multienergetske gama izvore i reakcije zahvata.

Da bi se mogla izračunati efikasnost na proizvoljnim vrednostima energije, potrebno je imati glatku funkciju. Skupovi podataka iz različitih izvora moraju biti normirani zajedno na energetskim regijama na kojima se spektri preklapaju. Postoji nekoliko pristupa interpolaciji efikasnosti na proizvoljnim vrednostima: korišćenjem poluempirijskih funkcija, nelinearnih i linearnih funkcija. Na log–log skali se koristi polinomni pristup:

$$\ln \varepsilon(E) = \sum_{i=0}^{n} a_i (\ln E)^i$$

Ovaj oblik je dovoljno fleksibilan da prati krivu efikasnosti u širokom opsegu energija. Parametri polinoma mogu biti određeni metodom najmanjih kvadrata.

Najpreciznija metoda za normiranje skupova podataka iz različitih izvora je da se uvedu faktori normiranja u sumi najmanjih kvadrata, čime se i ti faktori određuju iz fita. Iz svega toga se može odrediti relativna ili apsolutna efikasnost, normirana na jedan apsolutni kalibracioni izvor. Kriva apsolutne efikasnosti stvorena ovim postupkom u PGAA sistemu u Budimpešti korišćenjem apsolutnih i relativnih izvora, prikazana je na Slici 4.2.

Slika 4.2. –Apsolutna efikasnost u piku potpune apsorpcije (Absolute full–energy peak efficiency) određena za PGAA sistem u Budimpešti 2001. godine. Koristio se polinom 8. stepena da bi se fitovala kriva efikasnosti na log–log skali u opsegu energija od 30 keV do 10.8 MeV u HYPERMET–PC programu. Kalibracioni izvor¹⁵² Eu služio je kao apsolutni kalibracioni izvor.

Nakon što je konstruisana kriva efikasnosti, ona se koristi kako bi se dobili podaci za efikasnost koji su potrebni u jednačini $\varepsilon = \frac{R_{\gamma}}{AP_{\gamma}}K$ kako bi se pomoću površine pika dobila aktivnost.

Osim napomene da kalibracioni spektri treba da budu visokog kvaliteta, treba spomenuti i eksperimentalne uslove pod kojima kalibracioni izvori treba da budu mereni ili koju formu bi trebalo da imaju. U idealnom slučaju, trebalo bi imati tačkaste monoenergetske gama izvore niske aktivnosti. Takođe bi trebalo imati razumno veliku udaljenost između izvora i detektora. Postoji nekoliko razloga zbog kojih kalibraciona kriva možda ne bi bila relevantna kada bi se koristio realan uzorak. Neki od njih su:

- različito rastojanje između izvora i detektora
- različit oblik izvora
- apsorpcija unutar izvora
- slučajno sumiranje (random summing) na visokoj brzini brojanja

- raspad izvora tokom merenja
- problemi sa tajmingom u elektronici
- sumiranje pravih koincidencija na bliskoj geometriji.

5. Eksperimentalan rad

5.1. Opis reaktora

Eksperiment je sproveden u PGAA mernoj stanici MTA EK instituta u Budimpešti. Istraživački reaktor u Budimpešti je "tank–type" (sa rezervoarom) reaktor sa berilijumskim reflektorom (uveden prilikom nadogradnje 1967. godine), u kojem se i za hlađenje i kao moderator koristi voda. Sovjetskog je porekla i od 1993. godine radi u trenutnom režimu od 10 MW. Reaktor ima razne primene, među kojima je najbitnija da služi kao izvor neutrona. Na jednom od izlaza iz reaktora postavljen je sistem za usporavanje neutrona sa moderatorskom ćelijom kako bi se omogućilo da reaktor radi kao izvor hladnih neutrona (Cold Neutron Source – CNS) sa tri različita neutronska voda. Naš eksperiment je bio smešten u eksperimentalnoj hali koja se nalazi neposredno pored reaktorske hale zajedno sa drugim eksperimentima koji koriste hladne neutrone, u eksperimentalnom delu za promptnu gama aktivacionu analizu (Slika 5.1.).

Slika 5.1. – Šematski prikaz reaktora u Budimpešti sa listom trenutno aktivnih eksperimenata. Merenje je vršeno u PGA–NIPS delu CNS hale.

5.2. Opis eksperimentalne postavke

Naša eksperimentalna postavka se sastojala od dva HPGe detektora (relativnih efikasnosti 27% i 23%) postavljena normalno u odnosu na dolazeći snop neutrona i direktno okrenuta ka meti. Detektori su bili postavljeni u najbližoj mogućoj geometriji. Između njih, na pravac dolazećih neutrona postavljena je meta od 99.99% čistog niobijuma u obliku tanke pločice dimenzija 25*25*2 mm pod uglom od 45° u odnosu na snop. Ispred oba detektora stavljena je zaštita od PVC–a koja je služila za dodatnu moderaciju neutrona. Ova zaštita je dopirana litijumom kako bi se smanjio broj neutrona koji dospevaju do detektora nakon rasejanja. Oko detektora od 23% relativne efikasnosti se nalazio olovni štit, dok se oko detektora od 27%, pored olovnog štita, nalazila i Komptonska zaštita u vidu BGO detektora. U ovom radu korišćeni su podaci sa HPGe detektora koji se nalazio unutar BGO detektora i BGO detektora. Podaci sa drugog HPGe detektora su bili neophodni za druge eksperimente vezane za ova merenje.

Eksperimentalni podaci neophodni za analizu (energija događaja i vreme detekcije događaja za oba detektora) su prikupljeni sa CAEN–ovim N6724 digitajzerom koji ima mogućnost snimanja podataka sa 4 uređaja istovremeno (u ovom eksperimentu su korišćena tri kanala, dva za HPGe detektore i jedan za BGO detektor). CAEN digitajzer omogućuje da se snime ne samo spektri događaja u detektorima, već i vremenski trenutak dolaska svakog događaja, čime se omogućuje offline analiza podataka. Offline analiza ovakvih podataka ima za prednost to, što za razliku od analognih signala, nije neophodno zadati koincidentne uslove pre početka eksperimenta. Bitno je napomenuti da, iako ovakva vrsta analiza ima razne prednosti u odnosu na eksperimente sa analognom opremom, digitalno prikupljanje podataka i dalje pati od slabijeg kvaliteta rezolucije u odnosu na analognu opremu, što u preciznijim merenjima može da predstavlja problem.

Slika 5.2. – CAEN-ov N6724 digitajzer

Šema eksperimentalne postavke:

Slika 5.3. – Delovi aparature: 1. – HPGe detektor relativne efikasnosti 23%; 2. – CAEN–ov
N6724 digitajzer; 3. – BGO; 4. – HPGe detektor relativne efikasnosti 27%; 5. – BGO; 6. – Model
777 8 Channel variable gain amplifier PHILLIPS SCIENTIFIC proizvodnje; 7. – ORTEC constant–fraction discriminator EG&G – ESN; 8. – TFA

(a)

(b)

Slika 5.4. – Slike eksperimentalne postavke

5.3. HYPERMET–PC

Za fitovanje pikova u ovom radu korišćen je HYPERMET-PC program. HYPERMET-PC je softverski paket za analizu spektara gama zračenja razvijen u Budimpešti, uglavnom za primene u eksperimentima koji se tiču promptne gama neutronske aktivacione analize (PGAA). Algoritam koji se koristi u HYPERMET-PC programu se zasniva na HYPERMET kodu, koji je 70-ih godina razvijen u FORTRANU za automatsku i efikasnu analizu multikanalnih pulse-height spektara. [7] Softver omogućava automatsko fitovanje spektara snimljenih HPGe detektorima do 16k kanala. Rezultati automatskog fita se mogu interaktivno menjati po potrebi. Dodatne rutine unutar paketa omogućavaju visoko preciznu kalibraciju energije i intenziteta koja je neophodna za preciznu kvalitativnu i kvantitativnu analizu, što je i primarna namena ovog softvera.

Slika 5.5. – Primer fitovanja većeg broja linija bliskih energija u malom energetskom opsegu u HYPERMET-PC programu

HYPERMET-PC se ističe u odnosu na mnoge druge softverske pakete za obradu gama spektara time što je u mogućnosti da dobro razdvaja energetski bliske linije (dublete, triplete), bilo da su u pitanju linije sličnih intenziteta ili čak kombinacija intenzivnijih i manje intenzivnih linija. Takođe, u poređenju sa drugim softverima bolje pronalazi slabije pikove [8]. Primer razdvajanja linija u HYPERMET-PC programu prikazan je na Slici 5.5.

HYPERMET fituje pikove i fon simultano u regionima od 20 do 100 kanala koristeći nelinarni metod najmanjih kvadrata. Maksimalan broj pikova unutar regiona je ograničen na deset. Funkcija koja opisuje oblik pika i komponenti fona predstavlja sumu poluempirijskih članova, koji su zasnovani na fizičkim efektima koji se dešavaju u detektoru. Fonska funkcija se sastoji od niskoenergetskog repa i "step" funkcije fiksirane za centroidu Gausijana, dok je osnovna linija opisana polinomom drugog reda. Što se tiče pikova, oni su opisani funkcijom koja se sastoji od Gausijana i niskoenergijskog "skew" člana:

$$y(j) = \left[\sum_{i=1}^{m} \Gamma_{i} e^{\frac{(j-E_{i})^{2}}{\delta^{2}}}\right] + \left[\sum_{i=1}^{m} \alpha_{i} e^{\frac{j-E_{i}}{\beta}} \cdot 0.5 erfc\left(\frac{j-E_{i}}{\delta} + \frac{\delta}{2\beta}\right)\right]$$

Slika 5.6. – Primer oblika funkcija za fitovanje pika i fona u HYPERMET-PC program.

gde je y(j) vrednost fita za kanal j, prvi izraz u zagradi predstavlja Gausijan, drugi je "skew" član; Γ_i , E_i i δ_i su, respektivno, amplituda, pozicija i širina Gausove krive; α_i je amplituda, a β_i nagib eksponencijalnog opadanja "skew" funkcije; erfc funkcija predstavlja konvoluciju sa Gausovom krivom. Na Slici 5.6. je prikazan standardan oblik pika u HYPERMET-u.

6. Rezultati merenja

6.1. Određivanje relativne efikasnosti detektora

Izgled spektra koji nastaje deekscitacijom 36 Cl u reakciji 35 Cl (n, γ) 36 Cl prikazan je na Slici 6.1.

Energetska kalibracija je izvršena u HYPERMET–PC programu. U tu svrhu, u gama spektru su odabrani pikovi poznatih energija [6] prikazani u Tabeli 6.1.

Tabela 6.1. – γ pikovi ³⁶Cl koji su korišćeni za energetsku kalibraciju

Kanal	Energija [keV]
705	511
1607	1164.86
3066	2223
8425	6110.98

Dobijena je kalibraciona kriva čija je jednačina:

Energija [keV] = 0.163188511912 + 0.724439395147 · Kanal

Kao što je ranije spomenuto, u PGAA svaki neutronski aktiviran element emituje zračenje karakteristične energije. Stoga se preko energije pikova u spektru mogu odrediti elementi koji se nalaze u ozračenom uzorku, tj. može se izvršiti identifikacija uzorka.

U spektru prikazanom na Slici 6.1. identifikovani su sledeći fonski γ pikovi koji su prikazani u Tabeli 6.2. [6].

Energija [keV]	Referentna energija (E _r) [keV]	Identifikacija
		74 Ge (E _r = 52.50 (10) keV, p _γ
54.07 (11)		= 11 (21) %); ⁷² Ge (Er = 53.47
		(5) keV, $p_{\gamma} = 17.3$ (6)%)
		72 Ge (E _r = 68.75 (20) keV, pγ
66.10 (16)		= 26.8 (9)%); ⁶⁴ Ni (E _r = 63.60
		keV, $p_{\gamma} = 18.0 (1.0)\%$)
78.61 (9)	78.1 (3)	$^{31}P(p_{\gamma} = 73.20\%)$
87.62 (15)	89.18 (4)	65 Cu (p _y = 27 (4) %)
140.78 (8)	139.81 (10)	74 Ge (p _{γ} = 36 (6) %)
175.26 (13)	175.05 (3)	70 Ge (p _{γ} = 100 (10) %)
199.49 (8)	199.90 (7)	65 Cu (p _{γ} = 1.46 (25) %)
253.46 (12)	253.01 (10)	74 Ge (p _{γ} = 100 (18) %)
325.37 (14)	326.00 (20)	72 Ge (p _γ = 100 (5) %)
511		Anihilacija
558.68 (9)	560.30 (10)	72 Ge (p _γ = 10.5 (4) %)
595.90 (9)	595.84 (15)	73 Ge (p _{γ} = 100.0 (1.0) %)
		73 Ge (E _r = 608.35 keV, p _γ =
608.33 (15)		22.4 (3) %); 63 Cu (E _r = 608.75
		(3) keV, $p_{\gamma} = 24.0 (1.0) \%$)
		70 Ge (E _r = 632.20 (20) keV,p _γ
		= 3.6 (7) %); ⁷⁴ Ge (E _r = 632.4
632.46 (5)		(3) keV, $p_{\gamma} = 6.0 (2.0) \%$; ³⁵ Cl
		$(E_r = 632.43 \text{ keV}, p_\gamma = 1.270$
		(10) %)
692.24 (18)	692.03 (2)	56 Fe (p _{γ} = 16 (3) %)
702.62 (11)	701.49 (11)	$^{\prime 3}$ Ge (p _{γ} = 6.19 (6) %)
708.5 (1.2)	708.14 (3)	70 Ge (p _γ = 50 (5) %)
868.13 (7)	867.90 (1)	73 Ge (p _{γ} = 59.1 (6) %)
960.04 (23)		73 Ge (E _r = 961.05 (10) keV, p _γ

Tabela 6.2. – fonski γ pikovi koji su identifikovani u spektru ³⁶Cl

		= 14.49 (17) %; ⁷² Ge (E _r =
		962 (1) keV, $p_{\gamma} = 7.32$ (26) %)
1095.58 (26)	1095.42 (4)	70 Ge (p _γ = 30 (3) %)
1100.96 (24)	1101.27 (10)	73 Ge (p _{γ} = 15.59 (17) %)
1138.75 (24)	1139.19 (4)	70 Ge (p _γ = 27 (3) %)
1202.06 (28)	1204.21 (11)	73 Ge (p _{γ} = 10.08 (16) %)
1298.71 (14)	1298.56 (5)	70 Ge (p _{γ} = 28 (3) %)
1378.76 (16)	1378.66 (7)	70 Ge (p _{γ} = 9.0 (1.0) %)
1439.94 (35)	1439.37 (3)	65 Cu (p _{γ} = 4.6 (6) %)
1778.70 (7)	1777.8	70 Ge (p _γ = 1.60 (12) %)
2023.77 (28)	2223.25	${}^{1}\text{H} (p_{\gamma} = 100.00 (12) \%)$
		37 Cl (E _r = 2351.4 (3) keV, p _γ =
2252 60 (25)		4.0 (1.0) %); 70 Ge (E _r =
2332.09 (23)		2351.41 (24) keV, $p_{\gamma} = 6.0$
		(1.0) %)
4693 55 (24)	4690 68 (10)	27 Al (E _r = 4690.68 (10) keV,
+075.55 (2+)	4070.00 (10)	$p_{\gamma} = 16.49 (72) \%$
5089.08 (17)	5089.21 (11)	74 Ge (p _γ = 15 (3) %)
5269.63 (3)	5269.60 (4)	70 Ge (p _{γ} = 3.92 (35) %)
6392.29 (23)	6390.17 (4)	72 Ge (p _{γ} = 74 (7) %)
6768.92 (25)	6768.81 (5)	⁶ Li ($p_{\gamma} = 61$ (4) %)
6903.45 (25)	6915.68 (4)	70 Ge (p _{γ} = 15.32 (29) %)
7247.31 (35)	7245.91 (5)	⁶ Li ($p_{\gamma} = 100 (5) \%$)
7279.87 (27)	7278.82 (9)	⁵⁶ Fe ($p_{\gamma} = 21$ (5) %)
7631.0 (4)	7631.18 (10)	⁵⁶ Fe ($p_{\gamma} = 100 (24) \%$)
7645.36 (36)	7645.58 (10)	⁵⁶ Fe ($p_{\gamma} = 86 (20) \%$)
7723.89 (31)	7724.03 (11)	27 Al (p _γ = 96.06 (36) %)

U spektru dobijenom iz reakcije ³⁵Cl (n, γ) ³⁶Cl (Slika 6.1.) identifikovani su sledeći γ pikovi koji potiču od deekscitacije ³⁶Cl. [6] Oni su predstavljeni u Tabeli 6.3.

Tabela 6 3 -	 identifikovani 	v nikovi	i koji potiču	od deekso	vitacije ³⁶ Cl
1 40014 0.5.	i dentinino v uni	/ pincovi	r Roji pouou	ou deering	mucije Ci

Energija [keV]	Referentna energija (E _r) [keV]	Identifikacija
292.70 (5)	292.18	35 Cl (p _{γ} = 1.12 (11) %)
436.21 (18)	436.22	35 Cl (p _γ = 3.47 (4)%)
500.02 (4)		
517.2 (3)	517.07	35 Cl (p _{γ} = 85.1 (7) %)
787.44 (16)		${}^{35}\text{Cl} (\text{E}_{\text{r}} = 786.30 \text{ keV}, \text{p}_{\gamma} = \\ 38.37 (18) \%; \text{E}_{\text{r}} = 788.42$

		keV, $p_{\gamma} = 60.8 (6) \%$)
1130.92 (25)	1031.24	35 Cl (p _y = 7.01 (5) %)
		35 Cl (E _r = 1162.73 keV, p _γ =
1164.96 (6)		8.54(34)%; E _r = 1164.86, p _γ
1104.80 (0)		$= 100.00 (63) \%; E_r =$
		1170.94, $p_{\gamma} = 20.4 (1.2)\%)$
1327.01 (19)	1327.4	35 Cl (p _{γ} = 4.51 (4) %)
1372.24 (23)	1372.87	35 Cl (p _{γ} = 1.19 (4) %)
1463.17 (22)	1463 (6)	35 Cl (p _{γ} = 0.52 (22) %)
1600.6 (5)	1601.06	35 Cl (p _{γ} = 13.61 (10) %)
1639.8 (2.2)	1640.09	35 Cl (p _{γ} = 1.79 (19) %)
1647.95 (14)	1648.3	35 Cl (p _{γ} = 1.94 (8) %)
		35 Cl (E _r = 1709.10 (4), p _γ =
		0.82 (7) %); 56 Fe (E _r = 1710.2
1711 22 (6)		(3), $p_{\gamma} = 0.86$ (25) %; ⁵⁹ Ni (E _r
1711.22 (0)		$= 1712.30 (9), p_{\gamma} = 1.67 (5)$
		%); ⁷³ Ge ($E_r = 1712.96$ (12),
		$p_{\gamma} = 1.44 \ (8) \ \%)$
		35 Cl (E _r = 1786.17 (10), p _γ =
1787.03 (11)		$0.82 (15) \%$; $E_r = 1787.80 (5)$,
		$p_{\gamma} = 1.98 \ (8) \ \%)$
1937.1 (3)	1937.05 (2)	35 Cl (p _{γ} = 1.72 (11) %)
1951.00 (5)	1951.13	$^{35}Cl (p_{\gamma} = 71.0 (6) \%)$
1959.19 (5)	1959.34	$^{35}Cl (p_{\gamma} = 46.0 (4) \%)$
2033.81 (18)	2034.73 (2)	$^{33}Cl (p_{\gamma} = 2.68 (8) \%)$
2040.64 (24)	2041.49 (3)	$^{35}Cl (p_{\gamma} = 1.34 (7) \%)$
2074.52	2075.43 (1)	$^{33}Cl (p_{\gamma} = 2.83 (8) \%)$
2091.51 (22)	2091.95 (4)	33 Cl ($p_{\gamma} = 0.82$ (7) %)
2311.37 (15)	2311.49 (2)	$^{33}Cl (p_{\gamma} = 4.0 (1.0) \%)$
		$^{3'}Cl (E_r = 2351.4 (3) \text{ keV}, p_{\gamma} = 70 \text{ keV}$
2352.7 (3)		4 (1) %); ⁷⁶ Ge ($E_r = 2351.41$
		$(24) \text{ keV}, p_{\gamma} = 6.4 (9) \%)$
2418.6 (6)	2418.54 (3)	33 Cl ($p_{\gamma} = 2.1$ (3) %)
		33 Cl (E _r = 2468.17 (22) keV,
		$p_{\gamma} = 2.7$ (4) %; $E_r = 24/0.01$
2469.36 (24)		(2) keV, $p_{\gamma} = 2.7$ (4) %; $E_r =$
		2474.10(3) keV, py = 0.9(4)
		%)
		$E_r = 2489$ (6) keV, $p_{\gamma} = 2489$ (7) keV, $p_{\gamma} = 2489$ (8) keV, $p_{\gamma} = 2489$ (7) keV, $p_{\gamma} = 2489$ (8) keV, $p_{\gamma} $
2400.04 (12)		$0.45 (11) \%; E_r = 2489.80 (4)$
2490.84 (12)		$\text{KeV}, p_{\gamma} = 1.5 / (/) \%; E_r =$
		2492.21 (12) KeV, $p_{\gamma} = 1.2$ (5)
		$\frac{\%}{^{35}\text{Cl}(E - 2676.22)}$
2676 28 (0)		$CI (E_r - 20/0.52 (22) \text{ KeV},$ $p = 5.07 (10) 04 \cdot \text{E} = 2692.25$
2070.38 (9)		$p_{\gamma} = 3.57 (17) \%, E_r = 2002.23$ (22) keV $p_r = 0.52 (7) \%$
		(23) NCV, $p_{\gamma} = 0.32(1)\%)$
r		
---	----------------	--
		35 Cl (E _r = 2794.71 (13) keV,
		$p_{\gamma} = 0.41 (22) \%; E_r = 2797.90$
2801.2 (5)		(2) keV, $p_{\gamma} = 1.08$ (11) %; $E_r =$
2801.2 (3)		2798.05 (3) keV, $p_{\gamma} = 0.93$ (7)
		%; $E_r = 2801.19$ (5) keV, $p_v =$
		2.05 (8) %)
2845.36 (17)	2845.590 (10)	$^{35}Cl (p_{\gamma} = 3.91 (4) \%)$
		35 Cl (E _r = 2863.810 (10) keV,
2864.00 (7)		$p_{\gamma} = 3.91 (4) \%$; $E_r = 2866.88$
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		(4) keV, $p_{\gamma} = 2.16 (15) \%$)
2876.6 (3)	2876.57 (3)	$^{35}Cl (p_{\gamma} = 1.83 (8) \%)$
2896.0 (4)	2896.200 (10)	$^{35}Cl (p_{\gamma} = 1.64 (7) \%)$
2974.93 (19)	2975.33 (3)	$^{35}Cl (p_{\gamma} = 4.21 (4) \%)$
2994.64 (19)	2994.540 (10)	$^{35}Cl (p_{y} = 3.13 (8) \%)$
3001.15 (25)	3001 160 (20)	$\frac{35}{Cl}(p_{y} = 2.42(8)\%)$
3016 16 (20)	3016.070 (20)	$\frac{35}{10}$ Cl (p = 2.12 (0) %)
3061.95 (9)	3061 980 (20)	35 Cl (n - 12 64 (9) %)
3116 45 (17)	3116,000 (20)	$\frac{1}{35}$ Cl (n = 3.32 (4) %)
3333 02 (25)	3333 01 (4)	$\frac{CI(p_{\gamma} = 3.32(4))}{35CI(p_{\gamma} = 2.72(8))}$
3333.02(23)	2274.08 (4)	$\frac{CI(p_{\gamma} - 2.72(8)\%)}{^{35}CI(p_{\gamma} - 2.01(8)\%)}$
3373.02 (4)	2429.06 (20)	$\frac{CI(p_{\gamma} - 2.01(8)\%)}{^{35}CI(r_{\gamma} - 2.0C(4)\%)}$
3429.09 (24)	3428.96 (20)	$\frac{1}{35} Cl (p_{\gamma} = 3.06 (4) \%)$
3589.7 (5)	3589.16 (13)	1000000000000000000000000000000000000
		$^{55}Cl (E_r = 3599.330 (10) \text{ keV},$
3601.53 (22)		$p_{\gamma} = 1.83 (8) \%; E_r = 3603.960$
		(20) keV, $p_{\gamma} = 1.34$ (7) %)
		33 Cl (E _r = 3821.560 (20) keV,
3822.9 (3)		$p_{\gamma} = 3.58 (11) \%; E_r = 3825.17$
		(5) keV, $p_{\gamma} = 2.80 (11) \%$)
3980.46 (27)	3981.11 (5)	33 Cl ($p_{\gamma} = 3.73$ (8) %)
4082.22 (4)	4082.76 (3)	33 Cl ($p_{\gamma} = 2.95$ (8) %)
		35 Cl (E _r = 4440.490 (20) keV,
4440.0 (4)		$p_{\gamma} = 4.21(4) \%$; ⁷⁴ Ge (E _r =
(+)		4439.95 (11) keV, $p_{\gamma} = 10.0$
		(2.0) %)
		35 Cl (E _r = 4944.40 (2) keV, p _y
4944.85 (25)		= 4.25 (8) %; E _r $= 4945.230$
		(20) keV, $p_{\gamma} = 2.16$ (19) %)
4090 10 (20)	4070 800 (10)	35 Cl (E _r = 4979.890 (10) keV,
4980.19 (20)	4979.890 (10)	$p_{\gamma} = 13.83 (13) \%$
		35 Cl (E _r = 5246.17 (4) keV, p _y
5247.4 (4)		= 0.9 (4) %; E _r = 5247.070
		(10) keV, $p_y = 2.20 (11) \%$)
5517.2 (3)	5517.190 (20)	35 Cl (p _y = 6.30 (8) %)
5715.11 (0.22)	5715.36 (0.01)	$^{35}Cl (p_{\gamma} = 20.40 (21) \%)$
6110.58 (21)	6110.98	35 Cl (p _y = 74.0 (8) %)
6224.6 (6)	-	35 Cl (E _r = 6619.730 (10), p _r =
(-)		

		28.41 (29) %); E _r = 6627.940
		(1), $p_{\gamma} = 16.44$ (20) %)
6978.0 (3)	6977.950 (10)	35 Cl (p _{γ} = 8.31 (12) %)
7414.5 (1.4)	7414.090 (10)	35 Cl (p _{γ} = 36.9 (6) %)
7790.6 (3)	7790.450 (10)	35 Cl (p _{γ} = 29.9 (4) %)
8578.9 (3)	8578.700 (10)	35 Cl ($p_{\gamma} = 9.92$ (16) %)

Za γ pikove ³⁶Cl relativna efikasnost se može predstaviti formulom:

$$\epsilon_{rel} = \frac{N}{p_{\gamma}}$$

Zavisnost relativne efikasnosti od energije je predstavljena na Slici 6.2. Ova kriva je rađena u HYPERMET–PC programu. Kriva relativne efikasnosti je napravljena na osnovu dva kalibraciona izvora – ¹³³Ba i ³⁶Cl kako bi se pokrio što širi energetski opseg. Gama linije ¹³³Ba se nalaze na niskim energijama, a ³⁶Cl srednje i više energije. γ pikovi pomenuta dva kalibraciona izvora ne postoje u energetskom regionu od 70 keV do 160 keV, zbog čega je kriva relativne efikasnosti detektora u tom predelu određena sa većom nepreciznošću.

Slika 6.2. – Grafik relativne efikasnosti detektora

U HYPERMET–PC programu, kriva efikasnosti je predstavljena funkcijom koja je određena preko ortonormiranih polinoma koji se fituju prema eksperimentalnim podacima za efikasnost koristeći metod najmanjih kvadrata. [5] Oblik ovih polinoma je sledeći (za primer je uzet polinom 7. stepena):

$$\varepsilon = \exp\left(A_0 N_{f_0} T(0) + A_1 N_{f_1} T(1) + A_2 N_{f_2} T(2) + A_3 N_{f_3} T(3) + A_4 N_{f_4} T(4) + A_5 N_{f_5} T(5) + A_6 N_{f_6} T(6) + A_7 N_{f_7} T(7)\right)$$

 A_i su koeficijenti polinoma, N_{fi} su faktori normiranja za ortonormirane polinome, a T(i) su ortonormirani polinomi koji se određuju na sledeći način:

$$T(0) = 1$$

$$T(1) = X - a_1$$

$$T(2) = (X - a_2) T(1) - b_2 T(0)$$

$$T(3) = (X - a_3) T(2) - b_3 T(1)$$

$$T(4) = (X - a_4) T(3) - b_4 T(2)$$

$$T(5) = (X - a_5) T(4) - b_5 T(3)$$

$$T(6) = (X - a_6) T(5) - b_6 T(4)$$

$$T(7) = (X - a_7) T(6) - b_7 T(5)$$

gde su a_i i b_i parametri koji se određuju fitovanjem, dok se parametar X računa kao:

$$X = c_0 + c_1 \ln E \ (keV)$$

gde su c_0 i c_1 parametri linearne transformacije x-ose. Kod primene ortonormiranih polinoma, opseg u kojem se vrši fitovanje krive efikasnosti se transformiše tako da najniža i najviša energija između kojih je fit efikasnosti izvršen imaju, redom, vrednosti X = 1 i X = -1.

U našem slučaju kriva efikasnosti predstavlja polinom 6. stepena. Parametri linearne transformacije x-ose su:

$$c_0 = -2.88427337118$$

 $c_1 = 0.42886685$

Koeficijenti polinoma imaju vrednosti date u Tabeli 6.4.

Stepen	Koeficijenti polinoma (A_i)	Σ
0	0	0
1	-180.232414	8.29285
2	-40.9570087	3.049006
3	-9.83892141	4.199299
4	-7.81668071	1.015134
5	4.24513305	2.055817
6	-4.79556095	2.01996

Tabela 6.4. – Koeficijenti polinoma krive relativne efikasnosti

Ostali faktori su dati u Tabeli 6.5.

Tabela 6.5. –	Faktori	krive	relativne	efikasnosti
---------------	---------	-------	-----------	-------------

Stepen	Faktori normiranja (N _{fi})	a _i	b_i
0	0.00268792		
1	0.00940364	-0.36935	
2	0.0128184	0.290307	0.081703
3	0.02738417	-0.3403	0.538176
4	0.08599896	0.237812	0.219113
5	0.19424093	-0.00227	0.101394
6	0.51617051	0.381737	0.196022

6.2. Rezultati merenja promptne neutronske aktivacije ⁹³Nb kada nije izvršeno komptonsko suzbijanje

Izgled spektra ⁹⁴Nb aktiviranog u reakciji ⁹³Nb (n, γ) ⁹⁴Nb u logaritamskoj skali prikazan je na Slici 6.3.

Slika 6.3. – Spektar ⁹⁴Nb kada nije izvršeno komptonsko suzbijanje

Energetska kalibracija je izvršena na osnovu sledećih pikova datih u Tabeli 6.6. [6]

Kanal	Energija [keV]
125	99.41
143	113.4
645	511
2807	2223
8625	6831.18
9073	7186.54

Tabela 6.6. – γ pikovi ⁹⁴Nb koji su korišćeni za energetsku kalibraciju

Dobijena je kalibraciona kriva prvog stepena, čija je jednačina:

Energija [keV] = 0.139661128433 + 0.792029706471 · Kanal

Na Slici 6.4. je prikazan spektar ⁹⁴Nb koji je dobijen kada je u eksperimentalnoj postavci bio uključen BGO u logaritamkoj skali.

Slika 6.4. – Spektar ⁹⁴Nb kada je BGO bio u eksperimentalnoj postavci

Ovaj spektar je energetski kalibrisan na isti način kao i spektar ³⁶Cl, pa mu je, samim tim, jednačina kalibracione krive ista.

Na Slici 6.3. je predstavljen spektar ⁹⁴Nb koji je sniman pomoću HPGe detektora. U njemu se nalaze γ pikovi neutronski aktivirane mete, kao i fon u koji su uključeni i komtonski kontinuumi. Na Slici 6.4. je prikazan spektar koji je dobijen kada je u eksperimentalnoj postavci, uz HPGe detektor, bio u upotrebi i BGO detektor. U njemu se vidi gama zračenje koje nije u potpunosti apsorbovano u HPGe detektoru koje doprinosi stvaranju fona. Da bi se fon iz spektra ⁹⁴Nb smanjio, od spektra ⁹⁴Nb kod koga nije izvršeno komptonsko suzbijanje (Slika 6.3.) oduzima se spektar koji je dobijen kada je u eksperimentalnoj postavci bio uključen BGO (Slika 6.4.). Dobijeni spektar je prikazan na Slici 6.5.

Slika 6.5. – Spektar koji nastaje oduzimanjem spektra sa Slike 6.3. i spektra sa Slike 6.4.

Slika 6.6. – Spektar ⁹⁴Nb sa i bez komptonskog suzbijanja

Uz svaki pik potpune apsorpcije prisutan je Komptonski kontinuum vezan za taj pik. Oduzimanjem spektara Komptonski kontinuumi su smanjeni i, samim tim, pikovi su izraženiji. Na Slici 6.7. prikazan je deo spektra neutronski aktiviranog ⁹³Nb sa nekoliko γ pikova pre i posle oduzimanja fona.

Slika 6.7. – γ fotoni sa i bez komptonskog suzbijanja

6.2.1. Identifikovani fonski γ pikovi

U spektru ⁹³Nb dobijenog u reakciji ⁹³Nb (n, γ) ⁹⁴Nb (Slika 6.3.) identifikovani su γ fonski pikovi dati u Tabeli 6.7. [6].

Tabela 6.7. – fonski γ pikovi koji su identifikovani u spektru ⁹⁴Nb koji je dobijen kada nije izvršeno komptonsko suzbijanje

E [keV]	Referentna energija (E _r) [keV]	Identifikacija
53.20 (23)		⁷² Ge ($p_{\gamma} = 17.3$ (6) % na E = 53.47 (5) keV); ⁷⁴ Ge ($p_{\gamma} = 11$ (2) % na E = 52.50 (10) keV)
139.82 (11)	139.81 (10)	74 Ge (p _γ = 36 (6) %)

174.40 (19)	175.05 (3)	70 Ge (p _γ = 100 (10) %)
198.25 (10)		⁷⁶ Ge ($p_{\gamma} = 1.25$ (22) % na E = 197.2 (3) keV); ³⁷ Cl ($p_{\gamma} =$ 0.690 (10) % na E = 196.400
		(10) keV)
511.12 (8)		Anihilacioni pik
596.12 (8)	595.850 (10)	3 Ge (p _γ = 100.0 (1.1) %)
608.39 (10)	609.31 (7)	$^{214}\text{Bi} (p_{\gamma} = 46.1 (5) \%)$
867.53 (9)	867.900 (10)	73 Ge (p _{γ} = 59.1 (6) %)
969.24 (18)	968.71 (15)	$^{2'}$ Al ($p_{\gamma} = 1.51$ (22) %)
976.78 (21)	975.9 (4)	72 Ge (p _y = 8 (2) %)
1138.9 (3)		⁷³ Ge ($p_{\gamma} = 1.00$ (6) % na E = 1138.79 (6) keV); ⁶³ Cu ($p_{\gamma} = 2.48$ (8) % na E = 1138.820 (20) keV); ⁷⁰ Ge ($p_{\gamma} = 26.4$ (2.8) % na E = 1139.19 (4) keV)
1166.45 (18)	1164.86	35 Cl (p _y = 100.0 (6) %)
1366.31 (10)		${}^{27}\text{Al} (p_{\gamma} = 1.36 (22) \% \text{ na E} = 1364.99 (20) \text{ keV}); {}^{73}\text{Ge} (p_{\gamma} = 0.24 (6) \% \text{ na E} = 1366.8 (4) \text{ keV})$
1402.65 (15)		${}^{65}Cu (p_{\gamma} = 0.17 (3) \% \text{ na E} = 1401.26 (21) \text{ keV}; {}^{63}Cu (p_{\gamma} = 0.24 (3) \% \text{ na E} = 1401.66 (19) \text{ keV})$
1429.04 (19)		
1449.38 (21)		$ \begin{array}{c} {}^{\prime 6}\text{Ge} \ (p_{\gamma} = 1.14 \ (24) \ \% \ na \ E = \\ 1448.14 \ (13) \ keV); {}^{65}\text{Cu} \ (p_{\gamma} = \\ 0.34 \ (8) \ \% \ na \ E = 1450.6 \ (3) \\ keV); {}^{63}\text{Cu} \ (p_{\gamma} = 0.57 \ (3) \ \% \ na \\ E = 1447.69 \ (4) \ keV) \end{array} $
1527.75 (17)		$\begin{array}{c} {}^{27}\text{Al} (p_{\gamma} = 6.5 \ (7) \ \% \ na \ E = \\ 1526.17 \ (11) \ keV); \ {}^{35}\text{Cl} \ (p_{\gamma} = \\ 0.45 \ (7) \ \% \ na \ E = 1526.85 \ (4) \\ keV) \end{array}$
1633.12 (19)		⁷⁰ Ge ($p_{\gamma} = 10.1$ (1.0) % na E = 1632.0 (5) keV); ⁶⁵ Cu ($p_{\gamma} =$

) % na E = 1633.89 (6)
keV);	73 Ge (p _y = 2.2 (8) % na
E	= 1635.5 (3) keV)
⁵⁶ Fe ($p_{\gamma} = 0.14 (7) \%$ na E =
1672.	$(1 (8) \text{ keV}); ^{76}\text{Ge} (p_{\gamma} =$
1671.87 (19) 3.2 (7)	% na $E = 1673.22(15)$
keV);	27 Al (p _y = 0.82 (11) %
na E	= 1673.43 (11) keV
⁵⁹ Ni ($p_{\gamma} = 1.67 (5) \%$ na E =
1712.56 (11)	30 (9) keV; ⁷³ Ge (p _y =
1/12.56 (11) 1.44	(8) % na $E = 1712.96$
	(12) keV)
⁵⁶ Fe (r	$p_{\gamma} = 1.14 (24) \%$ na E =
1721.97 (19) 1722.4	0 (12) keV; ⁶⁵ Cu (p _y =
0.41	(6) % na $E = 1723.07$
	(12) keV)
1726.64 (15) 1725.29 (3) ⁵⁶	$Fe (p_{\gamma} = 22 (4) \%)$
⁵⁶ Fe (r	$p_{\gamma} = 0.41 (10) \%$ na E =
1760.1	1 (20) keV); 65 Cu (p _γ =
1761.75 (16) 0.15 (2	5) % na $E = 1761.6(6)$
keV); ⁶	$^{53}Cu (p_{\gamma} = 0.24 (3) \% na)$
E =	= 1761.01 (22) keV)
1767.69 (22) 1767.7 (7) ⁷³ Ge	$e(p_{\gamma} = 0.120(20)\%)$
1778.70 (3) 1777.80 ⁷⁰ G	$e (p_{\gamma} = 1.60 (12) \%)$
1975.40 (14) 1975.37 (4) 35	$Cl(p_{\gamma} = 2.4(3)\%)$
2223.260 (14) 2223	$^{1}\text{H}(p_{\gamma} = 100 \%)$
2283.91 (23) 2282.770 (10) ²⁷ A	Al $(p_{\gamma} = 16.9 (7) \%)$
³⁵ Cl (t	$p_{\gamma} = 3.9 (1.1) \%$ na E =
2311.4	90 (20) keV); ²⁷ Al ($p_{\gamma} =$
2313.54 (18) 0.14 (4	4) % na E = $2313.3(3)$
keV);	73 Ge (p _y = 1.44 (13) %
na J	E = 2313.6 (4) keV
2471.4 (3) 2470.01 (2) ³⁵	$Cl (p_{\gamma} = 2.7 (4) \%)$
2538.4 (3) 2537.25 (3) ³⁵ C	$l(p_{\gamma} = 1.53 (15) \%)$
2590.5 (3) 2590.240 (10) ²⁷ A	Al $(p_{\gamma} = 15.1 (7) \%)$
3034.51 (22) 3033.890 (10) ²⁷ A	$1 (p_{\gamma} = 31.5 (1.4) \%)$
3465.36 (19) 3465.070 (10) ²⁷ A	$l(p_{\gamma} = 25.1 (1.4) \%)$
³⁵ Cl (1	$p_{\gamma} = 0.71 (7) \%$ na E =
3504.0	00(3) keV); ⁵⁶ Fe (p _y =
3503.3 (4) 0.62 (2	20) % na $E = 3504.5$ (8)
	keV)
^{65}Cu (t	$p_{\gamma} = 1.73 (22) \%$ na E =
3332.0 (4)	530.56 (10) keV);
³⁵ Cl ($(p_{\gamma} = 2.0 (6) \%$ na E =
3590.16 (19) 3589.1	16 (13) keV; ²⁷ Al (p _y =
16.9 ((7) % na $E = 3591.210$

		(10) keV); 73 Ge (p _{γ} = 0.800
		(20) % na $E = 3591.29$ (17)
		keV); 63 Cu (p _y = 1.51 (12) %
		na E = 3591.38 (17) keV
3677.35 (18)	3677.740 (20)	$^{14}N(p_{\gamma} = 48.6(7)\%)$
3849.4 (4)	3849.110 (10)	27 Al (p _y = 11.1 (7) %)
4081.19 (16)	4082.76 (3)	$^{35}Cl (p_{\gamma} = 2.95 (8) \%)$
4154.4 (1.0)	4155.10	70 Ge (p _y = 2.80 (20) %)
		37 Cl (p _y = 16.2 (1.8) % na E =
1262 6 (2)		4361.8 (3) keV); 72 Ge (p _y =
4302.0 (3)		3.17 (11) % na E = 4363.5
		(1.5) keV)
		27 Al (p _y = 1.540 (20) % na E =
4277 8 (C)		4377.620 (20) keV); ⁶⁵ Cu (p _γ
4377.8 (0)		= 1.88 (24) % na $E = 4377.75$
		(10) keV)
4386.9 (8)	4385.1 (1.1)	65 Cu ($p_{\gamma} = 8.54 (1.1) \%$)
4487.9 (3)	4490.9 (4)	$^{37}Cl (p_{\gamma} = 52 (4) \%)$
4509.44 (25)	4508.730 (20)	$^{14}N(p_{\gamma} = 56.0(8)\%)$
		93 Nb (p _y = 1.23 (5) % na E =
5120 12 (12)		5129.15 (13) keV); 41 K (p _γ =
5129.12 (13)		11.2 (6) % na E = 5131.64
		(10) keV)
5269.53 (16)	5269.160 (20)	14 N (p _γ = 100.0 (1.4) %)
5383.69 (18)	5383.88 (9)	⁷⁰ Ge ($p_{\gamma} = 6.5$ (5) %)
5410.90 (22)	5411.070 (10)	27 Al (p _y = 7.2 (4) %)
		54 Fe (p _{γ} = 3.5 (4) % na E =
		5745.5 (7) keV); 57 Fe (p _γ = 3.6
5747.2 (3)		(4) % na $E = 5746.7$ (6) keV);
		40 K (p _{γ} = 10 (2) % na E =
		5749.31 (9) keV)
5922.08 (23)	5920.35 (7)	56 Fe (p _{γ} = 33 (7) %)
6018.1 (3)	6018.42 (7)	50 Fe (p _γ = 34.14 (7.28) %)
6164.29 (20)	6162.7 (6)	⁵⁷ Fe ($p_{\gamma} = 5.0 (5) \%$)
6226.98 (21)	6227.89 (16)	72 Ge (p _{γ} = 10.9 (1.5) %)
		70 Ge (p _γ = 7.4 (6) % na E =
6320.07 (21)		6320.0 (4) keV); 14 N (p _γ = 61
0320.07 (21)		(1) % na $E = 6322.430$ (20)
		keV)
		35 Cl (p _{γ} = 0.52 (11) % na E =
6346 2 (3)		6343.79 (10) keV); 73 Ge (p _γ =
0540.2 (5)		0.140 (20) % na E = 6344 (10)
		keV)
6404.7 (3)	6405.04 (9)	$^{\prime 3}$ Ge (p _γ = 0.76 (14) %)
6608 88 (24)		$^{\prime 0}$ Ge (p _γ = 0.80 (7) % na E =
0000.00 (24)		6607.45 (14) keV)

6623.4 (3)	6623 (2)	61 Ni (p _γ = 2.2 (8) %)
6675.14 (22)	6674.9 (7)	63 Cu ($p_{\gamma} = 6.01 (14) \%$)
6736.28 (23)	6738 (3)	61 Ni (p _γ = 1.6 (5) %)
6770.18 (23)	6768.81 (9)	$^{6}\text{Li} (p_{\gamma} = 61.29 (4) \%)$
7134.92 (24)	7135.24 (12)	²⁷ Al ($p_{\gamma} = 0.18$ %)
7247.4 (3)	7245.91 (5)	⁶ Li ($p_{\gamma} = 100 (5) \%$)
7279.4 (3)	7278.82 (9)	⁵⁶ Fe ($p_{\gamma} = 21$ (5) %)
7299.7 (4)	7298.98 (3)	14 N (p _y = 31.5 (5) %)
7368 4 (3)		⁵⁹ Ni ($p_{\gamma} = 4.38 (0.15)$ % na E
7308.4 (3)		= 7367.31 (0.05) keV
		35 Cl (p _{γ} = 36.9 (6) % na E =
7415 5 (3)		7414.090 (10) keV); 70 Ge (p _{γ}
7415.5 (5)		= 7.8 (7) % na E = 7415.58 (4)
		keV)
7631.4 (3)	7631.18 (10)	56 Fe (p _{γ} = 100 (24) %)
7645.7 (3)	7645.58 (10)	56 Fe (p _{γ} = 86 (20) %)
7693.2 (3)	7693.400 (10)	27 Al (p _γ = 11.8 (7) %)
7724.1 (3)	7724.03 (10)	27 Al (p _γ = 96.1 (4) %)
9298.4 (4)	9297.8 (1.0)	⁵⁴ Fe ($p_{\gamma} = 100$ (9) %)

6.2.2. Identifikovani γ pikovi ⁹⁴Nb

U istom spektru (Slika 6.3.) su identifikovani sledeći γ pikovi ⁹⁴Nb [6]:

Tabela 6.8. – identifikovani γ pikovi ⁹⁴Nb u spektru koji je dobijen kada je u eksperimentalnoj postavci nije bio BGO

E [keV]	Referentna energija (E _r) [keV]	Identifikacija
77.26 (10)	78.67	93 Nb (p _{γ} = 11.9 (5) %)
99.37 (10)	99.41	93 Nb (p _{γ} = 100 (3) %)
113.35 (10)	113.4	⁹³ Nb ($p_{\gamma} = 52.5 (1.6) \%$)
161.21 (10)	161.26	93 Nb (p _γ = 6.5 (4) %)
253.10 (24)	253.11	93 Nb (p _γ = 46 (1) %)
255.90 (13)	255.93	93 Nb (p _{γ} = 61.1 (2.3) %)
293.30 (17)	293.20	93 Nb (p _{γ} = 22.1 (9) %)
309.98 (15)	309.910 (10)	93 Nb (p _{γ} = 22.9 (5) %)
327.94 (16)		

337.57 (17)	337.530 (10)	93 Nb (p _{γ} = 20.2 (8) %)
451.30 (15)	451.04 (15)	93 Nb (p _γ = 0.99 (5) %)
454.40 (12)	454.30 (5)	93 Nb (p _y = 0.89 (5) %)
458.48 (8)	458.460 (10)	93 Nb ($p_{\gamma} = 8.1$ (3) %)
		93 Nb (p _y = 2.2 (3) % na E =
494.09 (15)		484.4 (3) keV); ⁷² Ge ($p_{\gamma} =$
484.08 (15)		20.4 (7) % na E = 485.3 (1.0)
		keV)
499.52 (8)	499.430 (10)	93 Nb (p _y = 21.8 (6) %)
518.15 (8)	518.120 (10)	93 Nb (p _y = 20.1 (8) %)
525.8 (5)	525.77 (5)	93 Nb (p _y = 2.8 (3) %)
527.70 (17)	527.570 (20)	93 Nb (p _y = 4.2 (3) %)
562.37 (8)	562.340 (10)	93 Nb (p _y = 9.85 (22) %)
590.62 (8)	590.60 (5)	93 Nb (p _y = 3.10 (21) %)
		93 Nb (p _y = 2.17 (4) % na E =
(2)(5)(12)		635.99(4) keV; ³⁷ Cl (p _y =
636.52 (13)		39.66 (1.1) % na E = 637.680
		(20) keV)
		93 Nb (p _y = 1.67 (6) %); 70 Ge
640.9 (3)	641.05 (6)	$(p_{\gamma} = 3.68 (5) \% \text{ na } \text{E} = 639.40$
		(20) keV)
		⁹³ Nb ($p_{\gamma} = 1.72$ (15) % na E =
692 54 (12)		683.03 (22) keV); 41 K (p _γ = 47
082.34 (12)		(7) % na $E = 681.930$ (10)
		keV)
689.84 (9)	689.910 (20)	93 Nb (p _γ = 6.1 (3) %)
693.5 (4)	693.76 (5)	93 Nb (p _{γ} = 3.00 (6) %)
696.5 (5)	696.2 (3)	93 Nb (p _{γ} = 0.49 (5) %)
748	748.4 (3)	93 Nb (p _{γ} = 1.08 (5) %)
751.64 (11)	751.78 (7)	93 Nb (p _{γ} = 4.58 (10) %)
755.20 (8)	755.28 (7)	93 Nb (p _{γ} = 4.19 (3) %)
775.61 (7)	775.99 (6)	93 Nb (p _γ = 5.4 (4) %)
782.50 (11)	782.57 (3)	93 Nb (p _{γ} = 2.12 (20) %)
812.51 (11)	812.46 (13)	93 Nb (p _{γ} = 2.9 (3) %)
835.66 (7)	835.72 (3)	93 Nb (p _{γ} = 12.7 (7) %)
878.73 (10)	878.85 (10)	93 Nb (p _γ = 6.7 (4) %)
883.66 (7)	883.8 (6)	93 Nb (p _γ = 6.6 (4) %)
893.99 (9)	894.24 (5)	93 Nb (p _y = 6.5 (4) %)
896.87 (23)	897.00 (10)	93 Nb (p _γ = 4.9 (3) %)
911.55 (8)	911.56 (9)	93 Nb (p _γ = 6.1 (4) %)
		93 Nb (p _γ = 1.43 (15) % na E =
		935.9 (5) keV); 70 Ge (p _γ = 4.3
935.54 (16)		(6) % na $E = 935.38$ (11)
		keV); ⁷⁶ Ge ($p_{\gamma} = 2.7$ (5) % na
		E = 935.80 (10) keV

946.66 (6)	946.84 (3)	93 Nb (p _{γ} = 16.16 (9) %)
957.18 (6)	957.34 (5)	93 Nb ($p_{\gamma} = 8.82 (5) \%$)
1001.55 (18)	1001.75 (15)	93 Nb (p _y = 1.23 (20) %)
1007.27 (9)	1007.80 (5)	93 Nb ($p_{\gamma} = 2.3$ (3) %)
		$\begin{cases} {}^{93}\text{Nb} (p_{\gamma} = 0.94 (10) \% \text{ na E} = \\ 1019.60 (4) \text{ keV}); {}^{56}\text{Fe} (p_{\gamma} = \\ 6.0 (1.2) \% \text{ na E} = 1019.020 \\ (20) \text{ keV}) {}^{65}\text{Cu} (p_{\gamma} = 0.98 (13)) \end{cases}$
1019.51 (13)		% na E = 1019.46 (5) keV, % na E = 1019.46 (5) keV, $^{63}\text{Cu} (p_{\gamma} = 1.18 \text{ (4) }\% \text{ na } E = 1019.59 \text{ (0.03) keV},$ $^{70}\text{Ge} (p_{\gamma} = 2.40 \text{ (19) }\% \text{ na } E = 1020.00 \text{ keV})$
1052.82 (16)	1052.9 (5)	93 Nb (p _y = 2.22 (25) %)
1056.10 (12)	1056.39 (15)	93 Nb (p _y = 0.54 (20) %)
1100.19 (10)	1100.11 (15)	93 Nb (p _y = 2.9 (3) %)
1106.95 (15)		$\begin{array}{c} {}^{93}\text{Nb} (p_{\gamma} = 2.9 (3) \% \text{ na E} = \\ 1107.4 (3) \text{ keV}); {}^{73}\text{Ge} (p_{\gamma} = \\ 8.26 (12) \% \text{ na E} = 1105.560 \\ (10) \text{ keV}); {}^{64}\text{Ni} (p_{\gamma} = 5.4 (3) \% \\ \text{na E} = 1107.40 \text{ keV}) \end{array}$
1118.54 (8)	1119.1 (4)	93 Nb (p _y = 11 (3) %)
1129.19 (7)		⁹³ Nb ($p_{\gamma} = 5.5$ (4) % na E = 1129.0 (3) keV); ³⁵ Cl ($p_{\gamma} =$ 7.01 (5) % na E = 1131.24 keV)
1151.51 (10)	1151.5 (5)	93 Nb (p _y = 2.0 (4) %)
1160.09 (22)		$\begin{array}{c} {}^{93}\text{Nb} \ (p_{\gamma} = 2.3 \ (3) \ \% \ na \ E = \\ 1160.0 \ (5) \ keV); {}^{63}\text{Cu} \ (p_{\gamma} = \\ 2.27 \ (7) \ \% \ na \ E = 1158.830 \\ (10) \ keV); {}^{41}\text{K} \ (p_{\gamma} = 9 \ (1) \ \% \ na \\ E = 1158.900 \ (20) \ keV); {}^{35}\text{Cl} \\ (p_{\gamma} = 8.5 \ (4) \ \% \ na \ E = 1162.73 \\ keV) \end{array}$
1186.29 (12)		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
1191.88 (12)	1192.20 (5)	93 Nb (p _y = 4.3 (4) %)
1206.11 (6)		$\begin{array}{c} {}^{93}\text{Nb} \ (p_{\gamma} = 7.5 \ (5) \ \% \ na \ E = \\ 1206.52 \ (24) \ keV); \ {}^{73}\text{Ge} \ (p_{\gamma} = \\ 10.08 \ (16) \ \% \ na \ E = 1204.210 \\ (10) \ keV) \end{array}$

		93 Nb (p _y = 1.6 (3) % na E =
1215.30 (14)		$1214.6(3)$ keV; $p_{\gamma} = 1.08(20)$
		% na $E = 1216.5$ (5) keV)
1222.77 (10)	1222.98 (12)	93 Nb (p _y = 3.6 (4) %)
1228.79 (7)	1228.21 (11)	93 Nb (p _y = 3.3 (4) %)
1239.45 (7)	1239.38 (25)	93 Nb (p _y = 3.0 (4) %)
1257.11 (7)	1257.03 (14)	93 Nb (p _y = 1.87 (25) %)
1273.73 (11)	1273.4 (5)	93 Nb (p _y = 1.92 (25) %)
		93 Nb (p _y = 0.6 (3) % na E =
1282.45 (11)		$1281.7(5) \text{ keV};^{27} \text{Al} (p_{\gamma} = 3.9)$
× ,		(4) % na $E = 1283.54$ (7) keV)
1291.31 (10)	1291.3 (5)	93 Nb (p _y = 3.60 (26) %)
1299.58 (21)	1300.5 (5)	93 Nb (p _y = 0.54 (10) %)
1308.26 (10)	1308.1 (4)	93 Nb (p _y = 2.22 (20) %)
1334.64 (9)	1334.6 (5)	93 Nb (p _y = 1.92 (20) %)
		93 Nb (p _y = 6.11 (12) % na E =
		$1419.60 (1.3) \text{ keV}$: $40^{40} \text{K} (p_{\pi} =$
1419.07 (16)		8 (3) % na E = 1418.970 (20)
		keV)
		93 Nb (p _y = 6.11 (12) % na E =
		$1419.60 (1.3) \text{ keV}$; $^{40}\text{K} (p_{\gamma} =$
1419.07 (16)		8 (3) % na E = 1418.970 (20)
		keV)
		93 Nb (p _y = 3.45 (0.07) % na E
		= 1441.20 (1.50) keV; ⁶⁵ Cu
1440.73 (14)		$(n_{\rm eff} = 4.59 \ (0.58) \ \% \ na \ E =$
		1439.37 (0.03) keV
		93 Nb (p _y = 4.93 (0.10) % na E
		= 1459.60 (1.40) keV; ⁷⁶ Ge
1460.07 (12)		$(p_{y} = 17.29 (2.97) \%$ na E =
		1457.84 (0.10) keV)
		93 Nb (p _y = 1.67 (6) % na E =
		3879.10(20) keV; ²⁷ Al (p _y =
3878.88 (21)		9.7 (4) % na $E = 3875.480$
		(10) keV); 76 Ge (p _y = 4.7 (8) %
		na E = 3875.48 (15) keV
3890.49 (17)		93 Nb (p _y = 1.03 (5) % na E =
		$3888.70(20)$ keV; $p_{\gamma} = 1.03$
		(5) % na $E = 3892.80$ (20)
		keV); 63 Ni (p _y = 1.58 (9) % na
		E = 3888.97 (8) keV); ²⁷ Al (p _y)
		= 0.82 (4) % na E = 3889.73
		(6) keV)
		93 Nb (p _y = 1.53 (6) % na E =
3920.47 (22)		3919.60(20) keV; ⁵⁶ Fe (p _y =
		4.6 (1.0) % na E = 3921.5 (7)

		keV)
		93 Nb (p _y = 1.180 (20) % na E =
		3936.700 (20) keV: ²⁷ Al (p _y =
3936.1 (4)		1.18(7) % na E = 3935.280
		(20) keV
4015 48 (15)	4015.90 (20)	93 Nb ($p_{rr} = 2.41(7)\%$)
		93 Nb (p _x = 2.02 (6) % na E =
		$4130\ 30\ (20)\ \text{keV}$: ²⁷ Al (n =
4130.84 (22)		24.7(1.1) % na E = 4133.410
		(10) keV
		93 Nb (p _x = 1.38 (6) % na
		4260.77 (17) keV: ²⁷ Al (n =
4260.81 (13)		$24 \ 37 \ (1 \ 1) \ \% \ na \ F = 4259 \ 540$
		(10) keV
		65 Cu (p = 1.44 (18) % pa E =
		427658(10)keV): ⁹³ Nb (n. =
4276 6 (3)		0.44 (10) % na E = 4277 61
1270.0 (3)		$(21) \text{ keV}$: $^{27}\text{Al} (p_r = 0.61 (4))$
		% na $E = 4280.37 (10) \text{ keV}$
		93 Nh (n = 1.38 (3) % na E =
4394 5 (4)		4395.05(16) keV: ⁷⁰ Ge (n. =
		60(4) % na F – 4391 70 keV)
		93 Nb (n = 0.340 (10) % na E =
		$4403\ 27\ (23)\ \text{keV}\cdot\text{n}=0.590$
		(10) % na E = 4406.65 (18)
4403.8 (3)		(10) / $($
++03.0 (3)		F = 4401.7 (3) keV): ⁶⁰ Ni (n
		= 1.31 (4) % na $F = 4404.82$
		(5) keV
		93 Nh (n = 1.63 (6) % na E =
		4431.96(16) keV: ²⁷ Al (p ₂ =
4431.96 (24)		2.90(14)% na E = 4428 410
		(10) keV
		93 Nb (p. = 1.48 (6) % na E =
		4501.41 (16) keV: ⁷⁴ Ge (n. =
4502.2 (3)		2.4 (4) % na E = 4501.58 (12)
1502.2 (5)		keV): 63 Cu ($p_{\gamma} = 1.48$ (7) % na
		E = 4504.04 (11) keV
		5^{77} Fe (p _x = 1.2 (3) % na E =
		4521.0 (6) keV): ⁹³ Nb (p ₄ =
4522.8 (3)		1.030 (20) % na E = 4524.09
		(16) keV
		72 Ge (p _y = 2.82 (10) % na E =
4592.96 (18)		4594.00 (20) keV): ⁹³ Nb (n _y =
		1.48 (6) % na E = 4594.44
		(15) keV): 57 Fe (p _y = 0.5 (3) %
4394.5 (4) 4403.8 (3) 4431.96 (24) 4502.2 (3) 4522.8 (3) 4592.96 (18)		$(21) \text{ keV}, \text{ Th } (p_{\gamma} = 0.01 \text{ (4)})$ $\% \text{ na } E = 4280.37 \text{ (10) keV})$ $^{93}\text{ Nb } (p_{\gamma} = 1.38 \text{ (3) }\% \text{ na } E = 4395.05 \text{ (16) keV}); ^{70}\text{ Ge } (p_{\gamma} = 6.0 \text{ (4) }\% \text{ na } E = 4391.70 \text{ keV})$ $^{93}\text{ Nb } (p_{\gamma} = 0.340 \text{ (10) }\% \text{ na } E = 4403.27 \text{ (23) keV}; p_{\gamma} = 0.590 \text{ (10) }\% \text{ na } E = 4406.65 \text{ (18)}$ $\text{keV}; ^{65}\text{Cu } (p_{\gamma} = 2.5 \text{ (3) }\% \text{ na}$ $E = 4401.7 \text{ (3) keV}; ^{60}\text{Ni } (p_{\gamma} = 1.31 \text{ (4) }\% \text{ na } E = 4404.82 \text{ (5) keV})$ $^{93}\text{ Nb } (p_{\gamma} = 1.63 \text{ (6) }\% \text{ na } E = 4431.96 \text{ (16) keV}; ^{27}\text{ Al } (p_{\gamma} = 2.90 \text{ (14) }\% \text{ na } E = 4428.410 \text{ (10) keV})$ $^{93}\text{ Nb } (p_{\gamma} = 1.48 \text{ (6) }\% \text{ na } E = 4501.41 \text{ (16) keV}; ^{74}\text{ Ge } (p_{\gamma} = 2.4 \text{ (4) }\% \text{ na } E = 4501.58 \text{ (12)} \text{ keV}; ^{63}\text{Cu } (p_{\gamma} = 1.48 \text{ (7) }\% \text{ na} E = 4504.04 \text{ (11) keV})$ $^{57}\text{Fe } (p_{\gamma} = 1.2 \text{ (3) }\% \text{ na } E = 4521.0 \text{ (6) keV}; ^{93}\text{ Nb } (p_{\gamma} = 1.030 \text{ (20) }\% \text{ na } E = 4524.09 \text{ (16) keV}$ $^{72}\text{Ge } (p_{\gamma} = 2.82 \text{ (10) }\% \text{ na } E = 4594.00 \text{ (20) keV}; ^{93}\text{ Nb } (p_{\gamma} = 1.48 \text{ (6) }\% \text{ na } E = 4594.44 \text{ (15) keV}; ^{57}\text{Fe } (p_{\gamma} = 0.5 \text{ (3) }\%$

		na E = 4592 (3) keV); 35 Cl (p _γ
		= 0.41 (11) % na E = 4593.450
		(20) keV)
4671.25 (17)	4672.15 (15)	93 Nb (p _{γ} = 1.92 (6) %)
		93 Nb (p _γ = 1.92 (6) % na E =
4711 75 (21)		4711.62 (14) keV); ⁷⁴ Ge ($p_{\gamma} =$
4/11.75 (21)		26 (5) % na E = 4707.51 (10)
		keV)
		93 Nb (p _γ = 5.27 (14) % na E =
4739 59 (13)		4738.97 (14) keV); 27 Al (p _γ =
4737.37 (13)		19.7 (1.1) % na E = 4735.85
		(10) keV)
		93 Nb (p _{γ} = 1.18 (5) % na E =
4757 42 (22)		4756.27 (15) keV); 19 F (p _γ =
(13).12 (22)		5.3 (3) % na E = 4757.02 (5)
		keV)
4827.64 (16)	4827.62 (14)	93 Nb (p _γ = 2.32 (7) %)
4913.68 (16)	4913.62 (13)	93 Nb (p _γ = 2.61 (7) %)
		⁹⁵ Nb ($p_{\gamma} = 1.43$ (6) % na E =
4986 49 (21)		4982.50 (13) keV); ⁷⁴ Ge ($p_{\gamma} =$
		7.9 (1.4) % na E = 4990.92
		(11) keV)
		⁹⁵ Nb ($p_{\gamma} = 1.97$ (6) % na E =
5032.7 (3)		5032.07 (13) keV; ¹⁹ F (p _γ =
		17.2 (1.0) % na E = 5033.50
50 (50 (0))		(4) keV
5065.3 (24)	5065.65 (13)	1000000000000000000000000000000000000
5070.23 (17)	50/0.26 (12)	1000000000000000000000000000000000000
5103.73 (14)	5103.33 (12)	1000000000000000000000000000000000000
5180.10 (17)	5179.99 (12)	1000000000000000000000000000000000000
5193.67 (16)	5193.37 (12)	$p_{\gamma} = 4.19(10)\%$
5208.16 (18)	5207.94 (12)	1000000000000000000000000000000000000
5252.59 (17)	5252.51 (12)	1000000000000000000000000000000000000
5348.34 (18)	5348.56 (11)	3 Nb (p _{γ} = 2.41 (7) %)
5363.78 (19)	5363.80 (11)	93 Nb (p _{γ} = 2.22 (7) %)
5368.80 (19)	5368.98 (11)	93 Nb ($p_{\gamma} = 1.48$ (6) %)
5451.74 (15)	5450.98 (11)	93 Nb ($p_{\gamma} = 2.42$ (6) %)
5495.81 (17)	5496.15 (10)	93 Nb ($p_{\gamma} = 6.75 (17) \%$)
5591.04 (18)	5591.32 (10)	93 Nb (p _γ = 2.56 (7) %)
5606.5 (4)	5607.30 (11)	93 Nb (p _{γ} = 1.080 (20) %)
		⁹³ Nb ($p_{\gamma} = 1.87 (06)_{27}$ % na E =
		5769.77 (9) keV); ²⁷ Al ($p_{\gamma} =$
5769.25 (24)		1.36 (7) % na $E = 5766.250$
		(20) keV); ^{os} Cu ($p_{\gamma} = 1.54$ (7)
		% na $E = 5771.48 (13) \text{ keV}$
5894.40 (17)	5894.93 (8)	⁵⁵ Nb ($p_{\gamma} = 6.16$ (16) %)

5947.2 (3)		⁹³ Nb ($p_{\gamma} = 1.43$ (6) % na E = 5946.33 (9) keV); ⁴⁰ K ($p_{\gamma} = 1.6$ (4) % na E = 5948.69 (11)
6292 14 (22)	6292 19 (7)	$\frac{KeV}{9^3}$ Nb (p = 1.38 (6) %)
0292.14 (22)	0292.19(7)	$100 (p_{\gamma} - 1.38 (0) 70)$
		93 Nb (p _{γ} = 1.130 (20) % na E =
6331 9 (3)		$6551.74(7) \text{ KeV}$; K ($p_{\gamma} =$
0551.7 (5)		4.4 (1.1) % na E = 6333.24 (9)
		keV)
		63 Cu (p _γ = 1.90 (7) % na E =
6595 5 (3)		6595.63 (11) keV); 93 Nb (p _γ =
0375.5 (5)		0.890 (20) % na E = 6595.97
		(6) keV)
6831.23 (23)	6831.18 (4)	93 Nb (p _{γ} = 6.01 (15) %)
		93 Nb (p _γ = 1.33 (6) % na E =
6915.9 (3)		6915.73 (4) keV); 70 Ge (p _γ =
		15.3 (1.3) % na E = 6915.68
		(4) keV)
7186.11 (24)	7186.540 (20)	93 Nb (p _{γ} = 3.35 (8) %)

6.3. Rezultati merenja promptne neutronske aktivacije ⁹³Nb kada je izvršeno komptonsko suzbijanje

6.3.1. Identifikovani fonski γ pikovi

U spektru neutronski aktiviranog ⁹³Nb u reakciji ⁹³Nb (n, γ) ⁹⁴Nb kod koga je izvršeno Komptonsko suzbijanje (spektar sa Slike 6.5.) identifikovani su sledeći γ fonski pikovi koji su predstavljeni u Tabeli 6.9. [6]

Tabela 6.9. – fonski γ pikovi koji su identifikovani u spektru ⁹⁴Nb u spektru koji je dobijen kada je izvršeno komptonsko suzbijanje

E [keV]	Referentna energija (E _r) [keV]	Identifikacija
53.55		⁷² Ge ($p_{\gamma} = 17.3$ (6) % na E = 53.47 (5) keV); ⁷⁴ Ge ($p_{\gamma} = 11.0$ (2.0) % na E = 52.50 (10) keV)
139.84 (4)	139.81 (10)	74 Ge (p _γ = 36 (6) %)
174.56 (18)	175.05 (3)	70 Ge (p _y = 100 (10) %)
198.34 (5)		76 Ge (p _γ = 1.25 (22) % na E =

		197.2 (3) keV); 37 Cl (p _y =
		0.690 (10) % na E = 196.4
		keV)
510.97 (14)	511	Anihilacioni pik
600.10 (9)	595.85 (15)	73 Ge (p _y = 100.0 (1.1) %)
608.34 (11)	609.31 (7)	214 Bi (p _y = 46.10 (5) %)
867.16 (9)	867.900 (10)	73 Ge (p _y = 59.1 (6) %)
969.23 (24)	968.71 (15)	27 Al ($p_{\gamma} = 1.51$ (22) %)
976.7 (3)	975.9 (4)	72 Ge (p _y = 7.8 (2.1) %)
		65 Cu (p _y = 0.56 (7) % na E =
1014 2 (2)		1014.07 (7) keV); 40 K (p _γ =
1014.2 (3)		0.8 (3) % na E = 1014.500
		(20) keV)
		63 Cu (p _γ = 0.97 (3) % na E =
1070 2 (5)		1081.74 (3) keV); 65 Cu (p _γ =
1079.3 (3)		0.29 (4) % na E = 1081.95
		(12) keV)
		73 Ge (p _{γ} = 1.00 (6) % na E =
		1138.79 (6) keV); 63 Cu (p _γ =
1138.5 (4)		2.48 (8) % na $E = 1138.820$
		(2) keV); 70 Ge (p _{γ} = 26 (3) %
		na E = 1139.19 (4) keV
1166.44 (11)	1164.86	35 Cl (p _{γ} = 100.0 (6) %)
1172.97 (22)	1172.80 (10)	⁶¹ Ni ($p_{\gamma} = 100$ (29) %)
1282.11 (7)	1283.54 (7)	27 Al (p _γ = 3.9 (4) %)
1365.10 (24)	1364.99 (20)	27 Al (p _γ = 1.36 (22) %)
1379.66 (18)	1378.66 (7)	70 Ge (p _{γ} = 8.6 (1.0) %)
		65 Cu (p _{γ} = 0.17 (3) % na E =
1401 88 (21)		1401.26 (21) keV); 03 Cu (p _γ =
1101.00 (21)		0.24 (3) % na E = 1401.76
		(19) keV)
		63 Cu (p _{γ} = 1.85 (25) % na E =
		1428.18 (5) keV); ⁷⁴ Ge ($p_{\gamma} =$
1429.07 (12)		1.06 (21) % na E = 1428.67
		(12) keV); ³⁹ Ni ($p_{\gamma} = 1.11$ (3)
		% na E = 1429.10 (3) keV)
1449.42 (12)	1448.14 (13)	70 Ge (p _γ = 1.14 (24) %)
		⁵ Fe ($p_{\gamma} = 0.67 (15) \%$ na E =
1466.52 (14)		1467.70 (5) keV); $^{+6}$ K (p _{γ} = 8
		(3) % na E = 1468.090 (10)
		keV); ⁶⁵ Cu ($p_{\gamma} = 1.27$ (18) %
1 100 0 4 100		na E = 1468.56 (12) keV
1492.86 (12)	1492.4 (4)	$\frac{0.2 \text{Cu} (p_{\gamma} = 0.21 (5) \%)}{73 \text{Cu} (p_{\gamma} = 0.21 (5) \%)}$
1508.98 (15)	1509.73 (5)	$\frac{^{75}\text{Ge} (p_{\gamma} = 5.0 (1.0) \%)}{^{35}\text{Gl}}$
1527.82 (17)	1528.35 (5)	$\frac{55 \text{Cl} (p_{\gamma} = 0.41 (15) \%)}{63 \pi}$
1541.3 (3)		⁵⁵ Cu ($p_{\gamma} = 0.15$ (3) % na E =

		$1541.56(17)$ keV): 40 K (n -
		0.15(5)% na E $- 1542.19$
		(21) keV: ⁶⁰ Ni (n = 0.21 %
		$p_{\gamma} = 0.217$ keV); $r_{10} = 0.217$ /s
		$(n - 7.6(5) \% n_2 F - 1542.50)$
		$(p_{\gamma} - 7.0 \text{ (5)}) \approx 1042.50$
		74Ge (n = 6.78 % no E =
		$Ge (p_{\gamma} = 0.78 \% \text{ ha E} = 1545 \text{ 06 keV})$: ¹⁹ E (p = 0.37%
1547.27 (22)		1545.00 KeV , $1^{\circ}(p_{\gamma} = 0.57\%)$
		-0.66.04 pp E -1548 koV)
		= 0.00 % Ha $E = 1.048$ KeV)
		-1557.40 (0.70) trad
1557.3 (4)		= 1557.40 (0.70) KeV, Ge
		$(p_{\gamma} = 9.22 (1.37) \%$ lia E = 1558 48 (0.10) koW
		$\frac{1338.48(0.10) \text{ KeV}}{58 \text{Ee}}$
		Fe ($p_{\gamma} = 1.19 (0.09)$ % na E 15 (0.08) (0.09) $t_{\gamma} = 27 \text{ A}$
1568.90 (24)		= 1509.88 (0.08) keV; AI
		$(p_{\gamma} = 0.68 (0.22) \% \text{ na E} = 1570.24 \text{ keV})$
		15/0.24 KeV
		Ge ($p_{\gamma} = 1.50 (0.06)$ % na E 1572 75 (0.00) $h_{\sigma} V$); ${}^{40}V$ (r
		$= 1373.73 (0.09) \text{ KeV}$, K (p_{γ}
1577.16 (20)		= 9.02 (2.41) % lia E = 1581.08 (0.04) koV); ⁶⁵ Cu (p
		-2.00(0.51) % $-2.00(0.51)$ % $-2.00(0.51)$
		$= 5.90 (0.51) \%$ lia E = 1582 51 (0.02) $t_{re}W$
		1382.51(0.03) KeV
		AI $(p_{\gamma} = 1.29 (0.16) \%$ lia E = 1502 20 (0.12) koV); ⁵⁹ N;
		= 1392.29 (0.12) KeV, NI (n = 0.00 (0.02) % no E =
1591.97 (22)		$(p_{\gamma} = 0.99 (0.03) \%$ fin $E = 1502.53 (0.04) k_0 V$; ^{40}V (p =
		$1392.33 (0.04) \text{ KeV}$, K ($p_{\gamma} = 0.74 (0.20) \%$ no E = 1503.40
		(0.74 (0.20) % lia E = 1393.40
		(0.50) KeV
		K ($p_{\gamma} = 0.40$ (0.12) % lia E = 1606.05 (0.08) keV); ⁷⁴ Ce (n
		-0.07(0.25) % no E -
		= 0.97 (0.23) % ha E = 1606 80 (0.40) keV); ^{41}K (p =
		$1000.80 (0.40) \text{ KeV}$, K ($p_{\gamma} = 0.24 (0.03) \%$ no E = 1606.05
1606.7 (3)		(0.06) koV: ⁶⁵ Cu (p = 0.27)
		$(0.00) \text{ KeV}$, $Cu (p_{\gamma} = 0.27)$ (0.14) % no $E = 1607.34$
		(0.14) % lia E = 1007.34 (0.18) keV): ⁷⁶ Ce (n = 0.50
		$(0.18) \text{ KeV}$; Ge $(p_{\gamma} = 0.39)$
		(0.14) % lia E = 1008.70 (0.20) keV)
1612 04 (24)	1612 780 (20)	$\frac{(0.30) \text{ KeV}}{^{56}\text{Ee}(p_{1} - 10(4))}$
1613.04 (24)	1012.700 (20)	$\frac{16 (p_{\gamma} - 19 (4) \%)}{27 \Lambda 1 (p_{\gamma} - 16 5 (1.9) \%)}$
1020.3 (4)	1022.87 (0)	$\frac{A1 (p_{\gamma} - 10.3 (1.6) \%)}{^{70}Co (p_{\gamma} - 10.1 (1.0) \% p_{\gamma} E - 10.1 (1.0) \%}$
		1632.0 (5) keV = 65Cy (n = -
1633.07 (13)		$1032.0 (3) \text{ KeV}$, $\text{Cu} (\text{p}_{\gamma} = 2.7 (4) \% \text{ ps} \text{ E} = 1622.80 (6)$
		2.7 (4) % lia $E = 1055.69 (0)$
		$(p_{\gamma} = 2.2 (\delta) \% na)$

		E = 1635.50 (14) keV
		35 Cl (p _y = 1.79 (19) % na E =
		1640.09 keV); 73 Ge (p _y = 1.6
		(6) % na $E = 1640.66$ (14)
1642.6 (4)		keV); 76 Ge (p _y = 5.76 (1.0) %
		$na E = 1641.85 (23) keV);^{27}Al$
		$(p_{\gamma} = 1.08 (18) \% \text{ na E} =$
		1642.35 (10) keV)
1649.9 (3)	1648.30	35 Cl (p _{γ} = 1.94 (8) %)
1655.650 (10)	1654.28 (20)	37 Cl ($p_{\gamma} = 5.5$ (7) %)
		76 Ge (p _y = 3.2 (7) % na E =
1671 57 (11)		1673.22 (15) keV; ²⁷ Al (p _γ =
10/1.37 (11)		0.82 (11) % na E = 1673.43
		(11) keV)
		37 Cl (p _{γ} = 1.72 (1.4) % na E =
1702 12 (24)		1701 (3) keV); 27 Al (p _γ = 1.40
1705.15 (24)		(18) % na E = 1705.38 (8)
		keV)
		⁵⁹ Ni ($p_{\gamma} = 1.67$ (5) % na E =
1713 40 (20)		1712.30 (9) keV); ⁷³ Ge ($p_{\gamma} =$
1/13.40 (20)		1.44 (8) % na E = 1712.96
		(12) keV)
1721.79 (16)	1722.40 (12)	56 Fe (p _γ = 1.14 (24) %)
1726.50 (12)	1725.29 (3)	⁵⁶ Fe ($p_{\gamma} = 22$ (4) %)
		41 K (p _γ = 0.82 (12) % na E =
		1735.05 (3) keV); 40 K (p _γ =
1736.9 (3)		0.65 (18)% na E = 1739.14
		(7) keV); ⁷³ Ge ($p_{\gamma} = 0.42$ (10)
		% na E = 1739.20 (6) keV)
1744.9 (3)	1745.31 (17)	37 Cl (p _γ = 20.7 (8) %)
1767.42 (23)	1766.26 (3)	$\frac{^{41}\text{K} (p_{\gamma} = 1.48 (21) \%)}{70}$
1778.58 (5)	1777.80	70 Ge (p _γ = 1.60 (12) %)
1787.35 (24)	1787.80 (5)	35 Cl (p _{γ} = 1.98 (8) %)
		41 K (p _γ = 0.21% na E =
1811 9 (3)		1810.51 keV); 50 Fe (p _{γ} = 0.86
1011.9 (5)		(18) % na E = 1810.51 (16)
		keV)
		65 Cu (p _{γ} = 2.27 (3) % na E =
1821.60 (18)		1820.21 (6) keV); 37 Cl (p _γ =
		3.1 (7) % na E = 1820.8 (3)
		keV); 41 K (p _γ = 1.03 (15) % na
		E = 1823.18 (3) keV
		$^{\prime 3}$ Ge (p _{γ} = 0.62 (6) % na E =
1830.0 (5)		1829.90 (10) keV); 41 K (p _{γ} =
1650.0 (5)		0.48 (6) % na $E = 1830.42$
		(23) keV); $^{\circ 5}$ Cu ($p_{\gamma} = 2.98$ (4)

		% na E = 1832.39 (3) keV)
1848.1 (4)	1848.82 (4)	40 K (p _γ = 8.6 (2.3) %)
		⁵⁹ Ni ($p_{\gamma} = 3.01$ (9) % na E =
		1861.33 (3) keV); 41 K (p _γ =
1859.44 (22)		10.3 (1.5) % na E = 1861.850
		(20) keV); 57 Fe (p _y = 2.4 (3) %
		na E = 1862.5 (5) keV
		41 K (p _y = 1.12 (18) % na E =
1070 ((14))		1881.10 (3) keV); 76 Ge (p _y =
18/8.66 (14)		1.8 (3) % na $E = 1877.02 (11)$
		keV)
1901.5 (4)	1903.55 (18)	76 Ge (p _y = 3.2 (1.2) %)
		54 Fe (p _{γ} = 3.2 (1.7) % na E =
		1918.0 (2.0) keV); ⁵⁸ Fe ($p_{\gamma} =$
1917.79 (21)		9.6 (6) % na E = 1918.71 (8)
		keV); 40 K (p _y = 5.1 (1.3) % na
		E = 1920.0 (1.3) keV
		27 Al (p _y = 4.30 (0.72) % na E
1028 20 (22)		= 1927.87 (0.16) keV; ³⁹ K (p _y)
1928.30 (22)		= 2.09 (0.35) % na E =
		1929.34 (0.10) keV)
1951.2 (3)	1951.13	35 Cl (p _y = 71.0 (6) %)
1958.93 (13)	1959.34	$^{35}Cl (p_{\gamma} = 46.0 (4) \%)$
		70 Ge (p _y = 4.0 (3) % na E =
		1965.3 (7) keV); 41 K (p _y =
1966.0 (3)		1.45 (21) % na E = 1965.10
		(3) keV); 56 Fe (p _y = 1.00 (22)
		% na E = 1965.10 (20) keV)
1975.91 (15)	1975.37 (4)	35 Cl (p _γ = 2.4 (3) %)
		27 Al (p _y = 3.9 (4) % na E =
		1983.99 (20) keV); 61 Ni (p _y =
1985.1 (3)		5.4 (1.8) % na $E = 1985.1$ (3)
		keV); ⁵⁹ Ni ($p_{\gamma} = 8.18$ (22) %
		na E = 1985.20 (3) keV
2001.17 (19)	1999.68 (3)	14 N (p _y = 13.76 (22) %)
		57 Fe (p _{γ} = 9.6 (9) % na E =
2065.26 (24)		2065.5 (3) keV); ⁵⁶ Fe ($p_{\gamma} = 1.7$
		(4) % na $E = 2066.17$ (11)
		keV)
		76Ge (p _γ = 0.67 (14) % na E =
		2102.59 (15) keV); 35 Cl (p _{γ} =
2104.67 (11)		1.19 (7) % na $E = 2104$ (5)
		keV); ⁵⁶ Fe ($p_{\gamma} = 0.48$ (13) %
		na E = 2104.5 (5) keV); ⁶¹ Ni
		$(p_{\gamma} = 1.2 (5) \% \text{ na } E = 2104.7$
		(7) keV)

		37 01 (10.0 (7).0 ()
		57 Cl (p _{γ} = 10.0 (7) % na E =
		2133.40 (20) keV); ⁵⁷ Fe ($p_{\gamma} =$
		1.1 (3) % na $E = 2137.6$ (7)
2136.8 (3)		keV); 40 K (p _{γ} = 2.5 (7) % na E
		= 2138.12 (4) keV); ²⁷ Al (p_{γ} =
		7.9 (4) % na E = 2138.830
		(20) keV)
		27 Al (p _{γ} = 1.61 (11) % na E =
2169 1 (3)		2170.70 (3) keV); 40 K (p _γ =
2109.1 (5)		1.1 (3) % na E = 2171.01 (6)
		keV)
		19 F (p _{γ} = 2.54 (19) % na E =
21784(8)		2179.09 (4) keV); ³⁵ Cl ($p_{\gamma} =$
2170.4 (0)		1.3 (6) % na E = 2179.510
		(20) keV)
2204.72 (24)	2205.1 (4)	37 Cl (p _γ = 4.1 (7) %)
2223.172 (19)	2223	${}^{1}\text{H} (p_{\gamma} = 100 \%)$
2259.9 (5)	2259.28 (4)	41 K (p _γ = 6.5 (6) %)
2284.19 (19)	2282.770 (10)	²⁷ Al ($p_{\gamma} = 16.9$ (7) %)
		35 Cl (p _{γ} = 3.9 (1.1) % na E =
2313 49 (14)		2311.490 (20) keV); 73 Ge (p _γ
2313.49 (14)		= 1.4 (4) % na E = 2313.59
		(13) keV)
		40 K (p _γ = 3.3 (9) % na E =
2221 1 (2)		2319.27 (5) keV); ⁷⁶ Ge ($p_{\gamma} =$
2321.1 (3)		1.6 (5) % na E = 2321.6 (7)
		keV)
		76 Ge (p _γ = 0.90 (22) % na E =
		2377.3 (4) keV); ²⁷ Al ($p_{\gamma} =$
2379.0 (4)		0.75 (4)% na E = 2380.34 (5)
		keV); 65 Cu (p _γ = 0.51 (10) %
		na E = 2380.34 (18) keV
		41 K (p _γ = 1.00 (3) % na E =
2204.6(2)		2392.14 (6) keV); 35 Cl (p _{γ} =
2394.0 (3)		0.60(4)% na E = 2394.70(5)
		keV)
2403.8 (4)		65 Cu (p _γ = 0.54 (10) % na E =
		2402.83 (24) keV); 63 Ni (p _γ =
		0.95 (9) % na E = 2403.25 (7)
		keV); 41 K (p _γ = 0.55 (6) % na
		E = 2403.84 (7) keV
		65 Cu (p _γ = 0.88 (13) % na E =
		2411.58 (12) keV); 63 Cu (p _γ =
2412.8 (3)		0.24 (3) % na E = 2413.70
		(24) keV); ⁵⁸ Ni ($p_{\gamma} = 0.870$ (2)
		% na $E = 2414.86$ (4) keV);

		40 K (p _y = 1.2 (3) % na E =
		2414.92 (7) keV); 56 Fe (p _y =
		0.55 (14) % na E = 2415.1 (3)
		keV)
		35 Cl (p _y = 0.82 (11) % na E =
		2430.70 (4) keV); 40 K (p _γ =
2430.6 (4)		0.71 (19) % na E = 2433.16
		(21) keV); 57 Fe (p _{γ} = 3.0 (5) %
		na E = 2433.5 (5) keV
		54 Fe (p _{γ} = 6 (3) % na E =
2470 7 (3)		2470.0 (1.0) keV); 33 Cl (p _γ =
21/01/(3)		2.7 (4) % na E = 2470.010
		(20) keV)
		40 K (p _γ = 3.74 (4) % na E =
		2487.3 (1.0) keV); ⁶⁵ Cu (p _γ =
2499.5 (4)		0.59 (14) % na E = 2488.4 (4)
2488.5 (4)		keV); 10 Cl (p _{γ} = 1.5/(/) % na
		$E = 2489.80 (4) \text{ keV}$; Fe (p_{γ}
		= 1.1 (3) % na $E = 2490.6$
		$\frac{(1.5) \text{ KeV}}{5^7 \text{Ee} (n - 2.4 (5))^6 (n - 10.5)}$
		$Fe (p_{\gamma} = 2.4 (3) \% IIa E = 2513.5 (1.0) keV); {}^{40}V (p_{\gamma} = -100)$
2514.0 (5)		$2515.5 (1.0) \text{ KeV}$, K ($p_{\gamma} = 0.62 (17) \%$ pp E = 2513.88
2314.9 (3)		$(12) k_0 V$; ³¹ P (p = 2.4 (4) %
		(12) KeV), $F(p_{\gamma} = 2.4 (4) \%$
		14N (n = 187 (4) % na E =
2521.6 (4)	2520.44	$(p_{\gamma} = 10.7 (4) \text{ //} /$
		$^{35}Cl (p_{\gamma} = 1.53 (15) \% na E =$
		2537.25 (3) keV); ⁵⁹ Ni (p _y =
2537.5 (3)		1.01 (3) % na $E = 2538.53$ (4)
		keV)
2559.03 (12)	2559.48 (15)	76 Ge (p _γ = 3.1 (5) %)
2579.3 (4)	2577.730 (20)	$\frac{27}{\text{Al}} (p_{\gamma} = 7.9 (4) \%)$
2590.38 (16)	2590.240 (10)	²⁷ Al ($p_{\gamma} = 15.1$ (7) %)
2667.2 (3)	2668.55 (10)	40 K (p _γ = 2.9 (8) %)
2673.1 (3)	2673.86 (4)	39 Ni (p _{γ} = 3.59 (10) %)
2700.8 (4)	2700.26 (10)	$^{0.5}$ Cu ($p_{\gamma} = 1.76 (24) \%$)
2709.8 (3)	2709.670 (20)	$^{2'}$ Al (p _γ = 2.470 (20) %)
2719.32 (22)	2721.17 (6)	³⁰ Fe ($p_{\gamma} = 4.7 (1.0) \%$)
		$^{2'}$ Al (p _γ = 1.36 (7) % na E =
		2/33.64 (3) keV); ¹⁰ K (p _γ =
0724.0 (4)		1.4 (4) % na E = $2/33.90$ (7)
2/34.0 (4)		kev); The ($p_{\gamma} = 0.52$ (14) %
		na $E = 2/34.2$ (3) keV); K
		$(p_{\gamma} = 0.97 (6) \% \text{ na E} = 2726 (07 (6) h W)$
		2/36.0/ (9) keV)

2742.37 (21)	2743.1 (5)	37 Cl (p _γ = 5.2 (7) %)
		40 K (p _γ = 6.6 (1.8) % na E =
		2756.68 (4) keV); 39 K (p _γ =
		2.24 (12) % na E = 2756.81
2758.36 (21)		(7) keV); 35 Cl ($p_{\gamma} = 0.56$ (11)
		% na E = 2757.46 (4) keV);
		65 Cu (p _{γ} = 0.37 (11) % na E =
		2758.8 (5) keV)
		76 Ge (p _{γ} = 1.29 (0.25) % na E
		= 2785.11 (0.15) keV; ⁷³ Ge
2787 60 (14)		$(p_{\gamma} = 1.38 (0.14) \%$ na E =
2787.00 (14)		2785.83 (0.05) keV); 41 K (p _γ =
		0.52 (0.06) % na E = 2787.39
		(0.07) keV)
		54 Fe (p _{γ} = 1.06 (0.61) % na E
2793 2 (5)		$= 2791.00 (5.00) \text{ keV};^{40} \text{K} (p_{\gamma})$
2193.2 (3)		= 0.65 (0.24) % na E =
		2794.04 (0.20) keV)
2865.5 (4)	2863.810 (10)	35 Cl (p _{γ} = 20.40 (14) %)
		35 Cl (p _{γ} = 1.64 (7) % na E =
2897.78 (23)		2896.2 (3) keV); 40 K (p _γ = 1.9
		(5) % na $E = 2899.77$ (6) keV)
		76 Ge (p _γ = 0.7 (3) % na E =
2022 8 (3)		2921.1 (3) keV); 27 Al (p _γ =
2322.8 (3)		1.00 (4) % na E = 2921.84 (3)
		keV)
		39 K (p _γ = 0.78 (5) % na E =
		2938.32 (9) keV); 41 K (p _γ =
2940.7 (4)		0.58~(6)% na E = 2938.38(6)
		keV); 76 Ge (p _γ = 1.1 (3) % na
		E = 2941.2 (3) keV
		41 K (p _{γ} = 1.09 (12) % na E =
2959 76 (12)		2957.39 (5) keV); ⁶¹ Ni ($p_{\gamma} =$
2)3).70(12)		0.79 (4) % na E = 2961.0 (2.0)
		keV)
		40 K (p _{γ} = 0.74 (20) % na E =
		3024.88 (21) keV); ⁵⁸ Ni (p_{γ} =
3025.2 (6)		0.850 (10)% na E = 3025.63
		(5) keV); 65 Cu (p _γ = 1.15 (16)
		% na E = 3025.77 (12) keV)
3034.42 (16)	3033.890 (10)	27 Al (p _{γ} = 31.5 (1.4) %)
3070.44 (10)	3071.0 (2.0)	⁵⁷ Fe ($p_{\gamma} = 2.4$ (5) %)
		40 K (p _γ = 2.8 (7) % na E =
3075.1 (3)		3073.97 (9) keV); ¹⁹ F ($p_{\gamma} = 5.3$
		(3) % na $E = 3074.81$ (6) keV)
3129.4 (5)		²⁷ Al ($p_{\gamma} = 0.86$ (4) % na E =

		3128.51 (4) keV); 65 Cu (p _γ =
		0.41 (7) % na E = 3129.59
		(25) keV)
3153.6 (4)	3153.68 (7)	⁶³ Ni ($p_{\gamma} = 1.93$ (10) %)
3187.44 (22)	3186.00 (20)	56 Fe (p _{γ} = 2.3 (5) %)
3194.76 (12)	3193.77 (4)	⁵⁹ Ni ($p_{\gamma} = 1.35$ (3) %)
3465.23 (11)	3465.070 (10)	27 Al (p _y = 25.1 (1.4) %)
3590.00 (12)	3591.21 (25)	27 Al (p _γ = 22 (3) %)
3677.07 (11)	3677.740 (20)	14 N (p _y = 48.6 (7) %)
		37 Cl (p _{γ} = 16.2 (1.8) % na E =
4362 20 (14)		4361.8 (3) keV); ⁷² Ge (p_{γ} =
4302.20 (14)		3.17 (11) % na E = 4363.5
		(1.5) keV)
4691.06 (13)		27 Al (p _γ = 16.5 (7) % na E =
4091.00 (13)		4690.680 (10) keV)
5087 61 (14)		$^{/4}$ Ge (p _γ = 15 (3) % na E =
5007.01 (14)		5089.21 (11) keV)
5269.17 (8)	5269.160 (20)	¹⁴ N ($p_{\gamma} = 100.0 (1.4) \%$)
5383.42 (13)	5383.88 (9)	70 Ge (p _{γ} = 6.5 (5) %)
5410.28 (19)	5411.070 (10)	²⁷ Al ($p_{\gamma} = 7.2$ (4) %)
5561.19 (17)	5562.060 (20)	$^{14}N (p_{\gamma} = 35.8 (5) \%)$
5809.19 (24)	5810.00 (12)	41 K (p _{γ} = 1.91 (9) %)
5920.87 (19)	5920.35 (7)	56 Fe (p _{γ} = 33 (7) %)
6018.11 (12)	6018.42 (7)	⁵⁶ Fe ($p_{\gamma} = 34$ (7) %)
6101.69 (22)	6101.40 (5)	²⁷ Al ($p_{\gamma} = 9.0$ (4) %)
6111.29 (24)	6110.98	$^{35}Cl (p_{\gamma} = 74.0 (8) \%)$
6166.13 (23)	6162.7 (6)	⁵⁷ Fe ($p_{\gamma} = 5.0 (5) \%$)
		70 Ge (p _γ = 7.4 (6) % na E =
6321 52 (13)		6319.99 (4) keV); ⁶² Ni ($p_{\gamma} =$
0021.02 (10)		4.8 (5) % na $E = 6320.3$ (3)
		keV)
6417.10 (20)	6418.60 (4)	72 Ge (p _γ = 34 (3) %)
		$^{\prime -}$ Ge (p _{γ} = 9.5 (1.7) % na E =
6505.82 (22)		6505.40 (11) keV); ⁵⁷ Fe ($p_{\gamma} =$
		10.3 (1.3) % na E = 6506.0 (7)
		keV)
		$c_{C1}(p_{\gamma} = 28.4 (3) \% \text{ na E} = 6610 (720) (10) 1 \text{ M} = 630 (10) 1 \text{ M}$
((2) 4 (5)		$6619.730(10) \text{ keV}$; $^{40}\text{Cu}(p_{\gamma})$
6621.4 (5)		= 3.41 (11) % na E = 0018.15 (8) $\ln V$; $\ln C$ = 2.2 (8) %
		(8) keV); N1 ($p_{\gamma} = 2.2$ (8) %
((75.20.(12)	((74.95.(6)	$\frac{1}{6^3 C_{\rm P}} \left(c_{\rm P} = 6023.0 (2.0) \text{KeV} \right)$
$\begin{array}{c} 00/3.20(12) \\ 6726(19(17)) \end{array}$	00/4.83(0)	$\frac{\text{Cu}(p_{\gamma} = 0.01 (14) \%)}{6^{61} \text{Ni}(p_{\gamma} = 1.6 (5) \%)}$
0/30.18 (1/) 6770 15 (12)	$0/3\delta(3)$	$\frac{1 \text{NI} (p_{\gamma} = 1.0 (3) \%)}{9 \text{Li} (p_{\gamma} = 61 (4) \%)}$
$\begin{array}{c} 0//0.15(12) \\ 6902(0.(2)) \end{array}$	0/08.81 (3)	$\frac{\text{L1}(p_{\gamma} = 61 (4) \%)}{4^{1} W (r_{\gamma} = 2.70 (10) \%)}$
0892.9 (3)	0894.52 (14)	$\frac{K(p_{\gamma} = 3./9(18)\%)}{100(52.0)}$
1247.27 (9)	7245.91 (5)	[°] L1 ($p_{\gamma} = 100 (5) \%$)

7279.07 (19)	7278.82 (9)	56 Fe (p _γ = 21 (5) %)
7299.44 (19)	7298.98 (3)	14 N (p _γ = 31.5 (5) %)
7368.17 (11)		⁵⁹ Ni ($p_{\gamma} = 4.38$ (15) %)
7415.20 (21)		³⁵ Cl ($p_{\gamma} = 36.9$ (6) % na E = 7414.090 (10) keV); ⁷⁰ Ge (p_{γ} = 7.8 (7) % pa E = 7415.58 (4)
		= 7.8(7)% If $E = 7415.38(4)$ keV)
7631.20 (12)	7631.18 (10)	56 Fe (p _{γ} = 100 (24) %)
7645.45 (12)	7645.58 (10)	56 Fe (p _{γ} = 86 (20) %)
7693.07 (16)	7693.400 (10)	²⁷ Al ($p_{\gamma} = 11.8$ (7) %)
7723.85 (10)	7724.030 (10)	²⁷ Al ($p_{\gamma} = 96.1$ (4) %)
7790.8 (5)	7790.450 (10)	35 Cl (p _γ = 29.9 (4) %)
7915.2 (3)	7916.70 (8)	63 Cu (p _{γ} = 100.0 (4) %)
8310.5 (3)	8310.16 (4)	14 N (p _y = 13.8 (3) %)
9297.7 (3)	9297.8 (1.0)	54 Fe (p _{γ} = 100 (9) %)
10829.55 (23)	10829.11 (6)	¹⁴ N ($p_{\gamma} = 47.9 (2.1) \%$)

6.3.2. Identifikovani γ pikovi ⁹⁴Nb

U spektru ⁹⁴Nb kod koga je izvršeno Komptonsko suzbijanje (spektar sa Slike 6.5.) identifikovani su sledeći γ pikovi niobijuma koji su prikazani u Tabeli 6.10. [6]

Tabela 6.10. – identifikovani γ pikovi ⁹⁴ Nb u spektru koji je dobijen kada je u eksperimentaln	ıoj
postavci bio BGO	

E [keV]	Referentna energija (E _r) [keV]	Identifikacija
78.16 (8)	78.67	93 Nb (p _{γ} = 11.9 (5) %)
99.35 (3)	99.41	93 Nb (p _y = 100 (3) %)
113.35 (3)	113.40	93 Nb (p _γ = 52.5 (1.6) %)
161.25 (3)	161.26	93 Nb (p _γ = 6.5 (4) %)
253.10 (21)	253.11	⁹³ Nb ($p_{\gamma} = 45.6 (1.0) \%$)
255.90 (12)	255.93	93 Nb (p _γ = 61.1 (2.3) %)
293.21 (3)	293.20	93 Nb (p _{γ} = 22.1 (9) %)
309.887 (23)	309.910 (10)	93 Nb (p _y = 22.9 (5) %)
329.06 (4)		
337.55 (3)	337.530 (10)	93 Nb (p _γ = 20.2 (8) %)
451.37 (17)	451.04 (15)	93 Nb (p _{γ} = 0.99 (5) %)

454.4 (3)	454.3 (5)	93 Nb (p _γ = 0.89 (5) %)
458.48 (3)	458.460 (10)	93 Nb ($p_{\gamma} = 8.1$ (3) %)
484.22 (7)		⁹³ Nb ($p_{\gamma} = 2.2$ (3) % na E = 484.36 (3) keV); ⁷² Ge ($p_{\gamma} = 20.4$ (7) % na E = 485.3 (1.0) keV)
499 478 (24)	499 430 (10)	93 Nh (n; = 21.8 (6) %)
518.13 (3)	518.120 (10)	93 Nb (p ₄ = 20.1 (8) %)
526.03 (10)	525.77 (5)	93 Nb (p ₂ = 2.8 (3) %)
527.883 (23)	527.57 (20)	93 Nb (p _y = 4.2 (3) %)
562.35 (3)	562.340 (10)	93 Nb (p _y = 9.85 (22) %)
590.64 (3)	590.60 (5)	93 Nb (p _y = 3.10 (21) %)
636.66 (11)		$\begin{array}{c} {}^{93}\text{Nb} \ (p_{\gamma} = 2.17 \ (4) \ \% \ na \ E = \\ 635.99 \ (4) \ keV); \ {}^{37}\text{Cl} \ (p_{\gamma} = \\ 39.7 \ (1.1) \ \% \ na \ E = 637.680 \\ (20) \ keV) \end{array}$
640.00 (8)		$\begin{array}{c} {}^{93}\text{Nb} \ (p_{\gamma}=1.67 \ (6) \ \% \ na \ E= \\ 641.05 \ (6) \ keV); \ {}^{70}\text{Ge} \ (p_{\gamma}= \\ 3.7 \ (5) \ \% \ na \ E= 639.40 \ (20) \\ keV) \end{array}$
682.64 (6)		⁹³ Nb ($p_{\gamma} = 1.72$ (15) % na E = 683.03 (22) keV); ⁴¹ K ($p_{\gamma} = 47$ (7) % na E = 681.930 (10) keV)
689.82 (4)	689.910 (20)	93 Nb (p _y = 6.1 (3) %)
693.5 (9)	693.76 (5)	93 Nb (p _y = 3.00 (6) %)
696.5 (5)	696.2 (3)	93 Nb (p _y = 0.49 (5) %)
751.7 (3)	751.78 (7)	93 Nb (p _γ = 4.58 (10) %)
755.20 (21)	755.28 (7)	93 Nb ($p_{\gamma} = 4.2$ (3) %)
775.57 (3)	775.99 (6)	93 Nb ($p_{\gamma} = 5.4$ (4) %)
782.52 (7)	782.6 (3)	93 Nb (p _{γ} = 2.12 (20) %)
812.49 (11)	812.46 (13)	93 Nb (p _{γ} = 2.9 (3) %)
835.560 (23)	835.72 (3)	93 Nb (p _γ = 12.7 (7) %)
878.55 (10)	878.85 (10)	93 Nb (p _y = 6.7 (4) %)
883.57 (4)	883.8 (6)	93 Nb (p _y = 6.6 (4) %)
894.13 (13)	894.24 (5)	93 Nb (p _y = 6.5 (4) %)
896.82 (8)	897.00 (10)	93 Nb (p _{γ} = 4.9 (3) %)
911.46 (3)	911.56 (9)	93 Nb ($p_{\gamma} = 6.1$ (4) %)
935.2 (4)		⁹³ Nb ($p_{\gamma} = 1.43$ (15) % na E = 935.9 (5) keV); ⁷⁰ Ge ($p_{\gamma} = 4.3$ (6) % na E = 935.38 (11) keV); ⁷⁶ Ge ($p_{\gamma} = 2.7$ (5) % na E = 935.80 (10) keV)
946.61 (3)	946.84 (3)	93 Nb (p _γ = 16.2 (9) %)
957.145 (23)	957.34 (5)	93 Nb ($p_{\gamma} = 8.8$ (5) %)
983.92 (25)		⁹³ Nb ($p_{\gamma} = 0.49 (15)$ % na E =

		982.39 (10) keV; $p_{\gamma} = 1.03$
		(15) % na $E = 984.7$ (5) keV);
		27 Al (p _y = 15.8 (1.8) % na E =
		983.020 (20) keV)
1001.21 (19)	1001.75 (15)	93 Nb (p _y = 1.23 (20) %)
1007.25 (11)	1007.8 (5)	93 Nb (p _y = 2.3 (3) %)
		93 Nb (p _y = 0.94 (10) % na E =
		$1019.6 (4) \text{ keV}$; $56666 \text{Fe} (p_{\gamma} = 10000 \text{ keV})$;
		6.00(1.2) % na E = 1019.020
		(20) keV), 65 Cu (p _y = 0.98 (13)
1020.4 (3)		% na $E = 1019.46$ (5) keV),
		63 Cu (p _y = 1.18 (4) % na E =
		1019.59 (3) keV, ⁷⁰ Ge (p _r =
		2.40(19)% na E = 1020.00
		keV)
1052.53 (6)	1052.9 (5)	93 Nb (p _y = 2.2 (3) %)
1055.89 (19)	1056.39 (15)	93 Nb ($p_{\gamma} = 0.54$ (20) %)
1100.48 (19)	1100.11 (15)	93 Nb (p ₄ = 2.9 (3) %)
		93 Nb (p _y = 2.9 (3) % na E =
		$1107 4 (3) \text{ keV}$: ⁷³ Ge ($p_r =$
1107 0 (5)		8.26(12)% na E = 1105.560
1107.0 (0)		(10) keV: ⁶⁴ Ni (n ₂ = 5.4 (3) %
		na E = 1107 40 keV
1119.78 (8)	1119.1 (4)	93 Nb (p _y = 11 (3) %)
		93 Nb (p ₂ = 5.5 (4) % na E =
		$1129.0(3) \text{ keV}$: ³⁵ Cl ($p_{y} =$
1129.54		7.01(5) % na E = 1131.24
		keV)
1151.49	1151.5 (5)	93 Nb (p _y = 1.97 (0.35) %)
		93 Nb (p _y = 2.3 (3) % na E =
		$1160.0(5) \text{ keV}$; 63 Cu (p _y =
		2.27(7)% na E = 1158.830
1159.97 (10)		(10) keV); 41 K (p _v = 9.1 (9) %
		na E = 1158.900 (20) keV;
		35 Cl (p _y = 8.5 (3) % na E =
		1162.73 keV)
		93 Nb (p _y = 1.53 (10) % na E =
		$1185.1(3)$ keV: $p_{\gamma} = 2.02(15)$
		% na $E = 1188.3$ (4) keV):
1186.27 (9)		60 Ni (p ₄ = 4.26 (8) % na E =
		1185.29 (4) keV): 61 Ni (p _y =
		3.3(1.1) % na E = 1185.9(4)
		keV)
1191.86 (10)	1192.2 (5)	93 Nb (p _y = 4.3 (4) %)
		93 Nb (p _y = 7.5 (5) % na E =
1206.26 (8)		1206.52 (24) keV); ⁷³ Ge ($p_{\gamma} =$

		10.08 (16) % na E = 1204.210
		(10) keV)
		93 Nb (p _γ = 1.6 (3) % na E =
1215.34 (10)		1214.6 (5) keV; $p_{\gamma} = 1.08$ (20)
		% na E = 1216.5 (5) keV)
1222.76 (7)	1222.98 (12)	${}^{93}\text{Nb} (p_{\gamma} = 3.6 (4) \%)$
1228.83 (5)	1228.21 (11)	93 Nb (p _γ = 3.3 (4) %)
1239.40 (6)	1239.4 (3)	93 Nb (p _γ = 3.0 (4) %)
1257.30 (10)	1257.03 (14)	93 Nb (p _{γ} = 1.9 (3) %)
1273.47 (6)	1273.4 (5)	93 Nb (p _{γ} = 1.9 (3) %)
1291.30 (6)	1291.3 (5)	93 Nb (p _γ = 3.6 (3) %)
1299.86 (22)	1300.5 (5)	93 Nb (p _{γ} = 0.54 (10) %)
1308.24 (6)	1308.1 (4)	93 Nb (p _{γ} = 2.22 (20) %)
1334.53 (6)	1334.60 (5)	93 Nb (p _{γ} = 1.92 (20) %)
		93 Nb (p _{γ} = 6.11 (12) % na E =
1419 29 (10)		1419.6 (1.3) keV); 40 K (p _γ = 8
1419.29 (10)		(3) % na $E = 1418.970$ (20)
		keV)
		93 Nb (p _{γ} = 3.45 (7) % na E =
1440 68 (7)		1441.2 (1.5) keV); 65 Cu (p _γ =
1440.00 (7)		4.6 (6) % na E = 1439.37 (3)
		keV)
		⁹³ Nb ($p_{\gamma} = 4.93 (10) \%$ na E =
1459.96 (6)		1459.6 (1.4) keV); 70 Ge (p _{γ} =
		17 (3) % na E = 1457.84 (10)
		keV)
1484.9 (4)	1484.9 (1.5)	93 Nb (p _γ = 1.97 (4) %)
		⁹⁵ Nb ($p_{\gamma} = 1.67$ (6) % na E =
		3879.10 (20) keV; ²⁷ Al (p _γ =
3878.14 (11)		9.7 (4) % na E = $38/5.480$
		(10) keV); 6 Ge (p _{γ} = 4.7 (8) %
		$\frac{\text{na E} = 38/5.48 (15) \text{ keV}}{1.02 (5) \text{ keV}}$
		Nb ($p_{\gamma} = 1.03$ (5) % na E =
		$5888.70(20) \text{ KeV}; p_{\gamma} = 1.05$
2801.08 (24)		(5) % fla E = $3892.80(20)$ keV); 63 N; (n = 1.58(0) % ne
3891.08 (24)		$E = 2888.07.(8) \log(9) \%$ find $E = 2888.07.(8) \log(9) \%$ ind $E = 2888.07.(8) \log(9) (9) \log(9) \%$ ind $E = 2888.07.(8) \log(9) \log(9) (9) \log(9) (9) \log(9) (9) (9) \log(9) (9) \log(9) (9) \log(9) (9) (9) \log(9) (9) (9) \log(9) (9) (9) (9) (9) (9) (9) (9) (9) (9) $
		$E = 3888.97$ (8) KeV); AI (p_{γ}
		= 0.82 (4) % lia E = 5889.75
		(0) KeV
		$100 (p_{\gamma} - 1.55 (0) 70 \text{ IIa E} - 3010 60 (20) \text{ keV}) \cdot \frac{56}{2} \text{ Eq. (n - 1)}$
3919.70 (12)		4.6(1.0) % na E = 3921.5(7)
		$\frac{1.0(1.0)}{\text{keV}}$
		93 Nh (n. = 1 180 (20) % na E -
3935.70 (0.16)		3936.70 (20) keV: ²⁷ Al (n. =
		1.18 (7) % na E = 3935.280
		1.10(7) / 0 Int $L = 3733.200$

		(20) keV)
4015.55 (9)	4015.90 (20)	93 Nb (p _γ = 2.41 (7) %)
		93 Nb (p _y = 2.02 (6) % na E =
4131.26 (12)		4130.30 (20) keV); 27 Al (p _γ =
4131.20 (12)		24.7 (1.1) % na E = 4133.410
		(10) keV)
		93 Nb (p _{γ} = 1.38 (6) % na
4260.07 (6)		4260.77 (17) keV); 27 Al (p _γ =
4200.07 (0)		24.4 (1.1) % na E = 4259.540
		(10) keV)
		65 Cu (p _{γ} = 1.44 (18) % na E =
		4276.58 (10) keV); 93 Nb (p _γ =
4276.43 (21)		0.440 (10) % na E = 4277.61
		(21) keV); 27 Al (p _{γ} = 0.61 (4)
		% na E = 4280.37 (10) keV)
		93 Nb (p _γ = 1.38 (3) % na E =
4394.94 (17)		4395.05 (16) keV); 70 Ge (p _γ =
		6.0 (4) % na E = 4391.70 keV)
		93 Nb (p _{γ} = 0.340 (10) % na E =
		4403.27 (23) keV; $p_{\gamma} = 0.590$
		(10) % na $E = 4406.65$ (18)
4405.05 (24)		keV); 65 Cu ($p_{\gamma} = 2.5$ (3) % na
		E = 4401.7 (3) keV; ⁶⁰ Ni (p _γ
		= 1.31 (4) % na E = 4404.82
		(5) keV)
		93 Nb (p _y = 1.63 (6) % na E =
4431 03 (14)		4431.96 (16) keV); 27 Al (p _γ =
4451.55 (14)		2.90 (14) % na E = 4428.410
		(10) keV)
		93 Nb (p _γ = 1.48 (6) % na E =
		4501.41 (16) keV); ⁷⁴ Ge ($p_{\gamma} =$
4501.61 (15)		2.4 (4) % na E = 4501.58 (12)
		keV); 63 Cu (p _{γ} = 1.48 (7) % na
		E = 4504.04 (11) keV
4523.73 (16)		57 Fe (p _{γ} = 1.2 (3) % na E =
		4521.0 (6) keV); 93 Nb (p _γ =
		1.030 (20) % na E = 4524.09
		(16) keV)
		72 Ge (p _γ = 2.82 (10) % na E =
		4594.00 (20) keV); 93 Nb (p _γ =
		1.48 (6) % na $E = 4594.44$
4593.68 (11)		(15) keV); ⁵⁷ Fe ($p_{\gamma} = 0.5_{25}$ (3) %
		na E = 4592 (3) keV); ³⁵ Cl (p_{γ}
		= 0.41 (11) % na E = 4593.450
		(20) keV)
4672.41	4672.15 (15)	⁹³ Nb ($p_{\gamma} = 1.92$ (6) %)

		93 Nb (p _y = 1.92 (6) % na E =
4711 72 (12)		4711.62(14) keV; ⁷⁴ Ge (p _y =
4/11./2(13)		26 (5) % na $E = 4707.51$ (10)
		keV)
		93 Nb (p _y = 5.27 (14) % na E =
4720.02.(0)		$4738.97 (14) \text{ keV};^{27} \text{Al} (p_{\gamma} =$
4739.03 (8)		19.7 (1.1) % na $E = 4735.85$
		(10) keV)
		93 Nb (p _y = 1.18 (5) % na E =
1756 55 (19)		4756.27 (15) keV); 19 F (p _γ =
4736.33 (18)		5.3 (3) % na $E = 4757.02$ (5)
		keV)
4827.54 (14)	4827.62 (14)	⁹³ Nb ($p_{\gamma} = 2.32$ (7) %)
4913.63 (6)	4913.62 (13)	93 Nb (p _{γ} = 2.61 (7) %)
		93 Nb (p _{γ} = 1.43 (6) % na E =
4082 64 (23)	4082 50 (12)	4982.50 (13) keV); ⁷⁴ Ge ($p_{\gamma} =$
4982.04 (23)	4982.30 (13)	7.9 (1.4) % na E = 4990.92
		(11) keV)
		93 Nb (p _γ = 1.97 (6) % na E =
5032 22 (10)	5032.07 (13)	5032.07 (13) keV); 19 F (p _γ =
5032.22 (10)	5052.07 (15)	17.2 (1.0) % na E = 5033.50
		(4) keV)
5065.21 (17)	5065.65 (13)	93 Nb (p _{γ} = 1.23 (5) %)
5070.20 (7)	5070.26 (12)	93 Nb (p _{γ} = 2.96 (8) %)
5103.42 (8)	5103.33 (12)	93 Nb ($p_{\gamma} = 7.68 (21) \%$)
		93 Nb (p _γ = 1.23 (5) % na E =
5129 12 (13)		5129.15 (13) keV); 41 K (p _γ =
5129.12 (13)		11.2 (6) % na E = 5131.64
		(10) keV)
5180.00 (7)	5179.99 (12)	93 Nb (p _γ = 2.66 (7) %)
5193.36 (6)	5193.37 (12)	93 Nb ($p_{\gamma} = 4.19 (10) \%$)
5208.07 (7)	5207.94 (12)	93 Nb (p _γ = 2.41 (7) %)
5252.47 (7)	5252.51 (12)	93 Nb (p _{γ} = 2.96 (8) %)
5348.15 (15)	5348.56 (11)	93 Nb (p _γ = 2.41 (7) %)
5363.78 (8)	5363.80 (11)	93 Nb (p _γ = 2.22 (7) %)
5368.67 (11)	5368.98 (11)	93 Nb (p _{γ} = 1.48 (6) %)
5451.5 (3)	5450.98 (11)	93 Nb (p _γ = 1.58 (6) %)
5495.63 (10)	5496.15 (10)	93 Nb ($p_{\gamma} = 6.75 (17) \%$)
5590.74 (9)	5591.32 (10)	93 Nb ($p_{\gamma} = 2.56$ (7) %)
		93 Nb (p _{γ} = 1.87 (6) % na E =
		5769.77 (9) keV); ²⁷ Al ($p_{\gamma} =$
5769.29 (11)		1.36(7) % na E = 5766.250
		(20) keV); ${}^{65}Cu (p_{\gamma} = 1.54 (7))$
		% na E = 5771.48 (13) keV)
5894.40 (8)	5894.93 (8)	53 Nb ($p_{\gamma} = 6.16 (16) \%$)
5945.75 (14)	5946.33 (9)	³³ Nb ($p_{\gamma} = 1.43$ (6) % na E =

		$5946.33(9)$ keV): 40 K (n -
		1.6 (A) % na E - 5948.69 (11)
		1.0(4) / 0 ha $L = 5740.07(11)$
		NC V)
6292.15 (16)	6292.19 (7)	93 Nb (p _{γ} = 1.38 (6) %)
		93 Nb (p _γ = 1.130 (20) % na E =
6331 40 (14)		6331.74 (7) keV); 40 K (p _γ =
0551.40 (14)		4.4 (1.1) % na E = 6333.24 (9)
		keV)
		63 Cu ($p_{\gamma} = 1.90$ (7) % na E =
6506 46 (10)		6595.63 (11) keV); 93 Nb (p _γ =
0390.40 (19)		0.890 (20) % na E = 6595.97
		(6) keV)
6830.97 (8)	6831.18 (4)	93 Nb (p _γ = 6.01 (15) %)
		⁹³ Nb ($p_{\gamma} = 1.33$ (6) % na E =
6915.36 (11)		6915.73 (4) keV); ⁷⁰ Ge ($p_{\gamma} =$
		15.3 (1.3) % na E = 6915.68
		(4) keV)
7186.23 (11)	7186.540 (20)	93 Nb (p _γ = 3.35 (8) %)

6.4. Određivanje relativnog intenziteta γ pikova ⁹⁴Nb detektovanih nakon zahvata neutrona na ⁹³Nb

Kao meta u eksperimentu promptne neutronske aktivacione analize prvo je postavljen ³⁵Cl. Iz ovog dela eksperimenta su dobijeni podaci koji su se koristili kako bi se odredila relativna efikasnost detektora preko formule:

$$\epsilon_{\rm rel} = \frac{N}{p_{\gamma}}$$

N je broj detektovanih događaja gama pikova 36 Cl, p_{γ} je relativni intenzitet γ pikova 36 Cl.

Relativna efikasnost se može predstaviti i sledećom formulom:

$$\varepsilon_{\rm rel} = A \cdot \varepsilon$$

A je aktivnost izvora 36 Cl, ϵ je efikasnost detektora.

Iz ovih formula sledi:

$$p_{\gamma} = \frac{N}{A \cdot \epsilon}$$

Relativni intenzitet γ pikova ⁹⁴Nb se može odrediti iz formule:

$$p_{\gamma} = \frac{N_{Nb}}{\epsilon_{rel}}$$

 ε_{rel} predstavlja relativnu efikasnost koja je izračunata za ³⁶Cl, a N_{Nb} je odbroj u pikovima ⁹⁴Nb. S obzirom na to da aktivnosti ³⁶Cl i ⁹⁴Nb nisu iste, potrebno je izvršiti normiranje vrednosti p_γ. Normiranje je vršeno u odnosu na vrednost p_γ za pik energije 293.20 keV, čija je referentna vrednost 22.07 %.

Eksperimentalni podaci za γ pikove iz spektra koji nastaje deekscitacijom ⁹⁴Nb dobijenog u reakciji ⁹³Nb (n, γ) ⁹⁴Nb (spektar sa Slike 6.3.) dati su u Tabeli 6.11. U tabeli su predstavljeni izračunati i referentni relativni intenziteti, kao i relativna greška između ove dve vrednosti (ϵ_{rel} je relativna efikasnost, p_{γ exp} je eksperimentalno određen relativni intenzitet γ pikova, p_{γ exp} predstavlja normirani relativni intenzitet, p^R_{γ} je referentni relativni intenzitet, dok je δ relativna greška referentne i izračunate vrednosti relativnog intenziteta).

E _{exp} [keV]	ε _{rel}	р _{үехр}	$p_{\gamma_{exp}^{N}}$ [%]	p^R_γ [%]	δ [%]
77.26	2.0360	324603.40	20.53	13.16	55.97
99.37	1.9875	678644.35	42.91	100	57.09
113.35	1.9195	459104.46	29.03	52.46	44.66
161.21	1.6569	89063.88	5.63	6.6	14.67
253.1	1.2772	692241.88	43.77	45.57	3.95
255.9	1.2683	919253.59	58.13	61.08	4.84
293.3	1.1624	349030.82	22.07	22.07	0
309.98	1.1215	372768.17	23.57	22.86	3.11
337.57	1.0606	338278.42	21.39	21.28	0.52
451.3	0.8765	16462.40	1.04	0.99	5.15
454.4	0.8726	15448.89	0.98	0.89	9.76
458.5	0.8675	136521.04	8.63	8.08	6.84
499.52	0.8202	363796.44	23.00	21.77	5.67
518.15	0.8006	311168.20	19.68	20.05	1.87
525.8	0.7933	39686.48	2.51	2.76	9.08
527.7	0.7915	54214.44	3.43	4.19	18.18
562.37	0.7594	150574.61	9.52	10.98	13.29
590.62	0.7357	44059.32	2.79	3.1	10.13
689.84	0.6662	85114.75	5.38	6.06	11.19
693.5	0.6637	48949.81	3.10	3	3.17
696.5	0.6602	7031.06	0.44	0.49	9.27
748	0.6328	15179.79	0.96	1.08	11.12
751.64	0.6309	70000.83	4.43	4.58	3.36

Tabela 6.11. – Relativni intenziteti γ pikova iz spektra ⁹⁴Nb koji je dobijen kada nije bilo komptonskog suzbijanja

755.2	0.6290	68758.33	4.35	4.19	3.76
775.61	0.6185	78756.65	4.98	5.42	8.12
782.5	0.6149	31700.17	2.00	2.12	5.45
812.51	0.6005	48891.30	3.09	2.91	6.24
835.66	0.5900	203219.03	12.85	12.71	1.10
878.73	0.5717	172493.08	10.91	11.67	6.54
883.66	0.5696	108129.03	6.84	6.6	3.59
893.99	0.5654	98592.26	6.23	6.5	4.09
896.87	0.5643	83071.62	5.25	4.88	7.64
911.55	0.5585	92929.00	5.88	6.06	3.03
946.66	0.5454	230037.75	14.55	16.16	9.99
957.18	0.5416	120549.69	7.62	8.82	13.58
1001.55	0.5264	20836.10	1.32	1.23	7.11
1007.27	0.5244	34784.59	2.20	2.27	3.11
1052.82	0.5101	36596.02	2.31	2.22	4.24
1056.1	0.5090	7799.84	0.49	0.54	8.67
1100.19	0.4959	46300.52	2.93	2.86	2.37
1118.54	0.4908	78418.73	4.96	4.09	21.24
1151.51	0.4817	30912.54	1.95	1.97	0.78
1191.88	0.4713	68924.25	4.36	4.33	0.65
1222.77	0.4637	88449.68	5.59	5.32	5.13
1228.79	0.4621	99929.43	6.32	6.6	4.26
1239.45	0.4596	49535.79	3.13	3	4.41
1257.11	0.4554	31954.36	2.02	1.87	8.05
1273.73	0.4515	30818.43	1.95	1.92	1.50
1291.31	0.4475	54679.25	3.46	3.6	3.96
1308.26	0.4437	37549.57	2.37	2.56	7.25
1334.64	0.4380	31817.95	2.01	1.92	4.79
4015.48	0.1728	54958.02	3.48	3.45	0.73
4671.25	0.1427	31380.19	1.98	1.92	3.35
4827.64	0.1365	29558.38	1.87	2.32	19.44
4913.68	0.1332	44478.65	2.81	3.1	9.27
5065.3	0.1276	17340.90	1.10	1.23	10.85
5070.23	0.1274	48971.97	3.10	2.96	4.62
5103.73	0.1262	123679.63	7.82	7.68	1.83
5180.10	0.1235	43149.23	2.73	2.66	2.57
5193.67	0.1230	64063.88	4.05	4.19	3.32
5208.16	0.1225	33663.78	2.13	2.41	11.67
5252.59	0.1210	43263.10	2.74	2.96	7.58
5348.34	0.1178	43146.52	2.73	2.85	4.27
5363.78	0.1172	28614.16	1.81	2.22	18.50
5368.8	0.1171	27516.92	1.74	1.48	17.56
5451.74	0.1144	33130.95	2.09	2.42	13.43
5495.81	0.1130	97643.98	6.17	6.75	8.53
5591.04	0.1100	48144.74	3.04	2.9	4.98

5894.4	0.1011	99586.51	6.30	6.16	2.23
6292.14	0.0906	20118.76	1.27	1.38	7.81
6831.23	0.0782	89062.77	5.63	6.01	6.30
7186.11	0.0711	49623.60	3.14	3.35	6.33

Eksperimentalni podaci za γ pikove iz spektra ⁹⁴Nb kod koga je izvršeno komptonsko suzbijanje (spektar sa Slike 6.5.) [6] dati su u Tabeli 6.12. U tabeli su predstavljeni izračunati i referentni relativni intenziteti, kao i relativna greška između ove dve vrednosti (ϵ_{rel} je relativna efikasnost, p $_{\gamma exp}$ je eksperimentalno određen relativni intenzitet γ pikova, p $_{\gamma exp}^{N}$ predstavlja normirani relativni intenzitet, p $_{\gamma}^{R}$ je referentni relativni intenzitet, dok je δ relativna greška referentne i izračunate vrednosti relativnog intenziteta).

E _{exp} [keV]	ε _{rel}	p _{γexp}	$p_{\gamma_{exp}}^{N}$ [%]	p^R_γ [%]	δ [%]
78.16	2.0353	160830.53	11.39	13.16	13.45
99.35	1.9875	652863.75	46.24	100	53.76
113.35	1.9195	434015.90	30.74	54.09	43.17
161.25	1.6569	90797.84	6.43	6.6	2.57
253.1	1.2772	651493.95	46.14	45.57	1.25
255.9	1.2683	871955.83	61.75	61.08	1.10
293.21	1.1625	311637.62	22.07	22.07	0.00
309.887	1.1215	329118.12	23.31	22.86	1.96
337.55	1.0606	299407.17	21.20	21.28	0.36
451.37	0.8768	14019.20	0.99	0.99	0.29
454.4	0.8724	12889.06	0.91	0.88	3.73
458.48	0.8675	118734.29	8.41	8.08	4.07
499.478	0.8203	318838.96	22.58	21.77	3.72
518.13	0.8010	283797.37	20.10	20.05	0.24
526.03	0.7931	41966.99	2.97	2.76	7.68
527.883	0.7913	54115.31	3.83	4.19	8.53
562.35	0.7594	145998.73	10.34	10.98	5.83
590.64	0.7357	41267.84	2.92	3.1	5.72
689.82	0.6663	79450.21	5.63	6.06	7.15
693.5	0.6640	41767.30	2.96	3	1.40
695.5	0.6629	7517.32	0.53	0.49	8.65
751.7	0.6308	64976.93	4.60	4.58	0.47
755.2	0.6290	60347.96	4.27	4.19	2.00
775.57	0.6185	73209.02	5.18	5.42	4.34

Tabela 6.12. – Relativni intenziteti γ pikova iz spektra ⁹⁴Nb koji je dobijen kada je u eksperimentalnoj postavci bio uključen i BGO detektor
782.52	0.6149	29002.25	2.05	2.12	3.12
812.49	0.6005	38739.31	2.74	2.91	5.72
835.56	0.5900	181259.42	12.84	12.71	1.00
878.55	0.5716	156603.27	11.09	11.67	4.97
883.57	0.5696	96437.74	6.83	6.6	3.48
894.13	0.5653	89016.38	6.30	6.5	3.01
896.82	0.5643	68466.95	4.85	4.88	0.64
911.46	0.5585	84145.36	5.96	6.06	1.66
946.61	0.5454	215744.04	15.28	16.16	5.45
957.145	0.5416	116180.77	8.23	8.82	6.71
1001.21	0.5263	17329.62	1.23	1.23	0.22
1007.25	0.5244	32907.38	2.33	2.27	2.66
1052.53	0.5101	31965.15	2.26	2.22	1.97
1055.89	0.5091	7780.30	0.55	0.54	2.04
1100.48	0.4959	39801.97	2.82	2.86	1.44
1117	0.4909	55099.13	3.90	4.09	4.59
1151.49	0.4818	31324.23	2.22	1.97	12.61
1191.86	0.4713	67614.25	4.79	4.33	10.59
1222.76	0.4637	74224.59	5.26	5.32	1.19
1228.83	0.4621	91049.77	6.45	6.6	2.30
1239.4	0.4596	42665.83	3.02	3	0.72
1257.3	0.4555	24392.82	1.73	1.84	6.11
1273.47	0.4515	26979.81	1.91	1.92	0.48
1291.3	0.4475	49700.94	3.52	3.6	2.23
1308.24	0.4437	36679.97	2.60	2.56	1.47
1334.53	0.4380	26698.13	1.89	1.92	1.52
4015.55	0.1728	46010.85	3.26	3.25	0.26
4672.41	0.1427	27098.01	1.92	1.92	0.05
4827.44	0.1365	32049.67	2.27	2.32	2.17
4913.63	0.1332	36623.95	2.59	2.61	0.63
5065.21	0.1276	15953.32	1.13	1.23	8.15
5070.2	0.1274	46327.63	3.28	2.96	10.84
5103.42	0.1262	109509.55	7.76	7.68	0.98
5180	0.1235	37059.62	2.62	2.66	1.33
5193.36	0.1230	57608.06	4.08	4.19	2.63
5208.07	0.1225	33124.09	2.35	2.41	2.66
5252.47	0.1210	41468.26	2.94	2.96	0.79
5348.15	0.1178	41717.56	2.95	2.85	3.66
5363.78	0.1173	32894.70	2.33	2.22	4.94
5368.67	0.1171	22016.95	1.56	1.48	5.35
5451.45	0.1144	35305.87	2.50	2.42	3.32
5495.63	0.1130	91792.97	6.50	6.75	3.69
5590.74	0.1100	42605.46	3.02	2.9	4.04
5895.4	0.1011	88662.52	6.28	6.16	1.93
6292.15	0.0906	19225.74	1.36	1.38	1.34

6830.97	0.0782	83259.28	5.90	6.01	1.89
7186.23	0.0711	46856.30	3.32	3.35	0.95

Ako se grafički predstave relativne greške relativnih intenziteta γ pikova niobijuma kada nije izvršeno komtonsko suzbijanje i kada je ono izvršeno, primećuje se da su relativne greške manje kada se koristi BGO u toku snimanja promptnog gama zračenja neutronski aktiviranog ⁹³Nb. Prosečna relativna greška kada se pri snimanju spektra ⁹⁴Nb koristi BGO je 9.61%, dok je prosečna relativna greška relativnih intenziteta γ pikova ⁹⁴Nb kada je izvršeno komptonsko suzbijanje 4.73%. Greške većih vrednosti se javljaju kod γ pikova čije su energije 78.67 keV, 99.41 keV i 113.4 keV jer je kriva relativne efikasnosti u tom regionu energija određena sa većom neodređenošću.

Slika 6.8. – Relativna greška relativnih intenziteta sa i bez BGO

Zaključak

U radu je predstavljena analiza spektara promptnog gama zračenja snimljenih HPGe detektorom. Na snop neutrona postavljene su mete od ³⁵Cl i ⁹³Nb. Ovi izotopi, kada bivaju bombardovani neutronima, zahvataju iste, pobuđuju se i prilikom deekscitacije emituju promptno gama zračenje. Prilikom analize promptnog gama zračenja neutronski aktiviranih meta, izvršena je detaljna identifikacija γ pikova koji su se pojavili u dobijenim spektrima.

Pošlo se od činjenice da su relativni intenziteti (p_{γ}) neutronski aktiviranog ³⁵Cl u reakciji ³⁵Cl (n, γ) ³⁶Cl poznati podaci na osnovu kojih se odredila relativna efikasnost detektora. To je urađeno uz pomoć programa HYPER–PC na osnovu odbroja u γ pikovima hlora i njihovih odgovarajućih relativnih inteziteta.

Pomoću dobijene krive relativne efikasnosti detektora, mogu se odrediti relativni intenziteti neutronski aktivirane mete sačinjene od nekog drugog materijala. U radu je ovo konkretno urađeno kako bi se dobili relativni intenziteti neutronski aktiviranog ⁹³Nb u reakciji ⁹³Nb (n, γ) ⁹⁴Nb.

Energetski opseg u kojem se javljaju γ linije ⁹⁴Nb je širi u odnosu na opseg u kojem se nalaze γ pikovi neutronski aktiviranog ³⁵Cl. S obzirom na ovu činjenicu, ne može se napraviti kriva relativne efikasnosti samo na osnovu hlora kao kalibracionog izvora. Ovaj problem je izražen na niskim energijama, gde se γ linije ³⁶Cl ne javljaju. Kako bi se napravila kriva relativne efikasnosti u celom opsegu energija od interesa, u radu se kao dodatan izvor koristio ¹³³Ba, čije se gama linije nalaze na niskim energijama.

Relativni intenzitet γ pika niobijuma se dobija kao količnik odbroja u tom piku i vrednosti relativne efikasnosti detektora na energiji tog pika. Relativna efikasnost detektora predstavlja proizvod aktivnosti izvora zračenja i efikasnosti detektora. U radu ona je dobijena na osnovu hlora kao izvora zračenja. Kako p_{γ} pikova niobijuma ne bi zavisili od aktivnosti ³⁶Cl, potrebno je izvršiti normalizaciju vrednosti p_{γ} u odnosu na referentnu vrednost p_{γ} za najintenzivniji pik niobijuma. Najintenzivniji γ pik u spektru ⁹⁴Nb je na energiji 99.41 keV. Referentna vrednost njegovog relativnog intenziteta je 100%. Međutim, u radu nije izvršena normalizacija u odnosu na ovaj pik, već u odnosu na γ pik energije 293.20 keV, čija je referentna vrednost relativnog intenziteta 22.07 %. To je urađeno zato što ne postoje γ linije pomenuta dva kalibraciona izvora u energetskom regionu od 70 keV do 160 keV i samim tim, kriva relativne efikasnosti detektora je u predelu najintenzivnije gama linije niobijuma interpolirana sa većom greškom.

Spektri promptnog γ zračenja neutronski aktiviranog niobijuma su snimani u dve eksperimentalne postavke – sa i bez BGO detektora koji služi za suzbijanje Komptonskog kontinuuma. Ovo je urađeno da bi se proverilo da li i na koji način komptonsko suzbijanje utiče na preciznost određivanja relativnih intenziteta niobijumskih γ linija. Dobija se manje odstupanje

izračunatih relativnih intenziteta od referentnih kod spektra neutronski aktiviranog ⁹³Nb sa komptonskim suzbijanjem nego kod spektra koji je sniman bez BGO.

Bibliografija

- [1] Danyal Turkoglu, *Evaluation of prompt gamma-ray data and nuclear structure od niobium-*94 with statistical model calculations, The Ohio State University (2014.)
- [2] James E. Turner, *Atoms, Radiation, and Radiation Protection*, WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim (2007.)
- [3] N. Jovančević, Analiza neutronima generisane aktivnosti u niskofonskim gama spektroskopskim sistemima, Doktorska disertacija, Departman za fiziku, Prirodnomatematički fakultet u Novom Sadu (2010.)
- [4] Gordon R. Gilmore, Practical Gamma-ray Spectrometry, John Wiley & Sons, Ltd. (2008.)
- [5] Zsolt Révay, Tamás Belgya (auth.), Gábor L. Molnár (eds.), *Handbook of Prompt Gamma Activation Analysis with Neutron Beams*, Kluwer Academic Publishers (2004.)
- [6] <u>https://www.nndc.bnl.gov/</u>
- [7] Hypermet–PC User's Manual, Institute of Isotopes, Budapest, Hungary (1997.)
- [8] Zahn, Guilherme & Genezini, Frederico & Moralles, Maurício. *Evaluation of Peak-Fitting* Software for Gamma Spectrum Analysis (2015.)

<u>Biografija</u>

Selena Ilić je rođena 15.09.1992. godine u Subotici. U Bačkoj Topoli završava osnovnu školu "Čaki Lajoš" i gimnaziju "Dositej Obradović". Godine 2011. upisuje Prirodno–matematički fakultet u Novom Sadu koji završava 2015. godine, nakon čega na istom departmanu upisuje master studije iz oblasti nuklearne fizike.

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET

KLJUČNA DOKUMENTACIJSKA INFORMACIJA

Redni broj:

RBR	
Identifikacioni broj:	
IBR	
Tip dokumentacije:	Monografska dokumentacija
TD	
Tip zapisa:	Tekstualni štampani materijal
TZ	
Vrsta rada:	Master rad
VR	
Autor:	Selena Ilić
AU	
Mentor:	Dr Nikola Jovančević
MN	
Naslov rada:	Promptno gama spektroskopsko merenje emisije nakon zahvata neutrona na
NR	Nb
Jezik publikacije:	srpski (latinica)
JP	
Jezik izvoda:	srpski/engleski
JI	
Zemlja publikovanja:	Srbija
ZP	
Uže geografsko područje:	Vojvodina

UGP		
Godina:	2017	
GO		
Izdavač:	Autorski reprint	
IZ		
Mesto i adresa:	Prirodno-matematički fakultet, Trg Dositeja Obradovića 4, Novi Sad	
MA		
Fizički opis rada:	(poglavlja/strana/citata/tabela/grafika/dodataka)	
FO	(6/84/0/12/2/0)	
Naučna oblast:	Fizika	
NO		
Naučna disciplina:	Nuklearna fizika	
ND Predmetna odrednica/kliučne reči:	Promptna gama neutronska aktivaciona analiza, HPGe detektori, efikasnost u piku potpune apsorpcije	
PO		
UDK		
Čuva se:	Biblioteka departmana za fiziku, PMF-a u Novom Sadu	
ČU		
Važna napomena:	Nema	
VN		
Izvod:	Ovaj rad analizira spektre aktiviranog ⁹⁴ Nb u cilju određivanja relativnih intenziteta koji se upoređuju sa referentnim vrednostima.	
IZ		

Datum prihvatanja teme od NN veća:

DP

Datum odbrane:

DO

Članovi komisije:

КО

Predsednik:

član:

član:

Dr Miodarg Krmar Dr Nikola Jovančević Dr Miroslav Cvetinov

UNIVERSITY OF NOVI SAD

FACULTY OF SCIENCE AND MATHEMATICS

KEY WORDS DOCUMENTATION

Accession number:	
ANO	
Identification number:	
INO	
Document type:	Monograph publication
DT	
Type of record:	Textual printed material
TR	
Content code:	Final paper
сс	
Author:	Selena Ilić
AU	
Mentor/comentor:	Dr Nikola Jovančević
MN	
Title:	Prompt gamma spectroscopic measurement following neutron captures od
TI	Nb
Language of text:	Serbian (Latin)
LT	
Language of abstract:	English
LA	
Country of publication:	Serbia
СР	

Locality of publication:	Vojvodina	
LP		
Publication year:	2017	
PY		
Publisher:	Author's reprint	
PU		
Publication place:	Faculty of Science and Mathematics, Trg Dositeja Obradovića 4, Novi Sad	
РР		
Physical description:	(6/84/0/12/2/0)	
Scientific field:	Physics	
SF		
Scientific discipline:	Nuclear Physics	
SD		
Subject/ Key words:	Prompt gamma neutron activation analysis, HPGe detectors, full-energy peak efficiency	
SKW		
UC		
Holding data:	Library of Department of Physics, Trg Dositeja Obradovića 4	
HD		
Note:	None	
Ν		
Abstract:	This paper analyzes the spectra of activated ⁹⁴ Nb in order to determine the relative intensities that are compared with the reference values.	
AB		

Accepted by the Scientific Board:

ASB

Defended on:

DE

Thesis defend board:

DB

President:

Member:

Member:

Dr Miodrag Krmar Dr Nikola Jovančević Dr Miroslav Cvetinov