Природка-математички факултет Радна загодины загодначких послова на со гасто – хите

UNI VERZI TET U NOVOM SADU
PRIRODNO-MATEMATIČKI FAKULTET
ODSEK ZA FIZIKU

Примљеес	30.00		
Орг јед	Број	IONAS:	Ваедност
03	10/73		

STRUKTURNI FAZNI PRELAZ U MOLEKULSKOM KRISTALU FENANTRENA

MENTOR

PROF. DR AGNEŠ KAPOR

KANDIDAT

JUNGER ROZALIJA

NOVI SAD, JUNA 1992.

ZAHVALJUJEM SE MENTORU PROF. DR. ÁGNEŠU KAPOR ZA SVESRDNU POMOĆ I NA SAVETIMA PRI IZRADI OVOG RADA

÷

ł

i

SADRŽAJ

.

	Surana
UOPŠTENO O FAZNIM PRELAZIMA	1
Kritični indeksi	
Rushbrookova nejednakost	10
FAZNI PRELAZI DRUGOG REDA	11
Fenomenološka teorija faznih prelaza	16
ISTORIJAT ODREĐIVANJA FENANTRENA NA	
SOBNOJ TEMPERATURI	24
Eksperimentalni podaci	28
FAZNI PRELAZ U FENANTRENU	31
ZAKLJUČAK	39
LI TERATURA	41

, .

UOPŠTENO O FAZNIM PRELAZIMA

Definiciju faznih prelaza dao je Ehrenfest. Prema ovoj definiciji neki termodinamički sistem ima fazni prelaz n-tog reda (n = 1,2,3...) za one vrednosti parametara sistema za koje odgovarajući termodinamički potencijal ima n - 1 neprekidnih izvoda, dok n-ti izvod ima skok a (n+1) izvod divergira , tj. teži beskonačnosti.

U prirodi postoje uglavnom fazni prelazi prvog i drugog reda. U fazne prelaze drugog reda spadaju i tzv. kritične pojave i zato možemo izvršiti neku novu podelu faznih prelaza; tako danas govorimo o faznim prelazima prvog reda i o kritičnim pojavama.

Prvo ćemo opisati fazni prelaz prvog reda kod jednokomponentne supstancije. U tom cilju razmotrićemo termomehanički sistem tj. sistem čije je stanje opisano sa temperaturom, pritiskom i zapreminom.

U ravnotežnom stanju odgovarajući sistem je homogen, ali ima slučajeva kad je sistem u ravnoteži a sastoji se iz dva dela, različite homogenosti, među kojima postoji kontakt. Takva stanja supstance koja mogu koegzistirati u termodinamičkoj ravnoteži nazivamo faze.

U slučaju koegzistencije dveju faza one predstavljaju dva podsistema jednog istog termodinamičkog sistema, pri čemu važi jednakost pritiska obeju faza, tj.

$$P_1 = P_2$$

Pored prethodnog uslova važi jednakost temperatura faza, tj.

(1)

$$\Gamma_{1} = T$$
(2)

kao i jednakost hemijskih potencijala

i

 $\mu_{1} = \mu_{2} \tag{3}$

Poznato je da su temperatura i pritisak prirodne promenljive hemijskog potencijala i ako je pritisak i temperatura pri kojima faze koegzistiraju označava sa P i T onda prethodna tri uslova mogu se napisati u obliku

U prostoru (μ ,P,T) funkcija μ_1 (P,T) opisuje jednu a μ_2 (P,T) drugu površinu iznad P,T ravni. Ove dve površine se seku kao što je prikazano na sledećem crtežu:

Slika 1. Linija tačaka faznih prelaza prvog reda

Projekcija linije proseka $\mu(P,T) = \mu_{2}(P,T)$ na ravan P,T određuje tzv. krivu fazne ravnoteže. (Videti na prethodnoj slici.)

I sa jedne i sa druge strane krive fazne ravnoteže sistem je homogen dok za vrednosti pritiska i temperature kojima odgovaraju tačke na ovoj krivoj, sistem je nehomogen - tada koegzistiraju dve faze sistema. Drugim rečima ako sistem učestvuje u nekom reverzibilnom termodinamičkom procesu pri kome se pritisak i temperatura menjaju tako da odgovarajuća kriva u ravni (P,T) seče krivu fazne ravnoteže kaže se da se u sistemu dešava fazni prelaz prvog reda.

Ako se ravnoteža faza prikaže u P-V ravni, tada za datu količinu supstance stanjima u kojima faze koegzistiraju odgovaraće određena oblast u ravni a ne samo jedna kriva.

U toku prelaza specifična zapremina faza se ne menja, tj. bilo koja količina faze 1 i bilo koja količina faze 2 imaju repspektivno specifične zapremine V_1/M i V_2/M gde je M ukupna masa posmatranog sistema. Ako se s x obeležava relativni udeo supstance u fazi 1 onda se dobija sledeća jednačina:

$$\frac{V}{M} = x \frac{V_1}{M} (1-x) \frac{V_2}{M}$$
(5)

iz ove jednačine se dobija odnos količine supstancije u fazi 1 u fazi 2:

$$\frac{x}{1-x} = \frac{\frac{v}{2}-v}{v-v}$$
(6)

Ovaj odnos naziva se još pravilo poluge.

1

Opšte je poznato da supstancije, npr. voda imaju tri agregatna stanja. Postavlja se pitanje pri kojim uslovima će koegzistirati sva tri stanja. Analogno koegzistenciji dve faze dobijaju se sledeći uslovi:

$$P_1 = P_2 = P_3 = P$$
 $T_1 = T_2 = T_3 = T$ $i \mu_1 = \mu_2 = \mu_3$ (7)

Pošto je hemijski potencijal funkcija pritiska i temperature, prethodni uslovi mogu se napisati u sledećem obliku:

$$\mu_{z}(P,T) = \mu_{z}(P,T)$$
 $\mu_{z}(P,T) = \mu_{z}(P,T)$ (8)

Ove su dve jednačine sa dve nepoznate čija rešenja daju izolovane tačke u P-T ravni. To su tzv. trojne tačke, tj. ona tačka u kojoj koegzištiraju sve tri faze. Za vodu trojna tačka ima sledeće vrednosti: p_{TR} = 610 Pa i T_{tr} = 273,16 K.

Postojanje četvrte faze je isključeno jer iz uslova koegzistencije 4 faze dobiju se tri jednačine sa dve nepoznate. U ovom slučaju nemoguće je nači jedinstveno rešenje ovih jednačina.

Pri faznim prelazima prvog reda sistem absorbuje ili predaje okolini izvesnu količinu toplote. To je tzv. latentna toplota.

Količina razmenjene toplote data je sledećim izrazom:

$$Q = T(S_{-}S_{-})$$
(9)

Ako se ovaj izraz podeli sa ukupnim brojem čestica u sistemu, tada se dobija izraz za količinu toplote po jednoj čestici:

3

i

÷

$$q = T(s_{-}s_{-})$$
(10)

Treba još odrediti kada će sistem apsorbovati a kada će predati okolini ovu količinu toplote. Ova analiza može se vršiti na primeru. Pretpostavlja se da faza 1 egzistira na nižoj temperaturi od faze 2, a pošto se fazni prelaz realizuje pri konstantnom pritisku, presek površina hemijskih potencijala sa ravni p = const dat je na slici 3:

Slika 3. Zavisnost hemijskog potencijala od temperature pri konstantnom pritisku koji odgovara faznom prelazu prvog reda

Na osnovu slike može se zaključiti da

$$\left(\begin{array}{c} \frac{\partial \mu_{1}}{\partial T} \end{array}\right)_{p} \left(\begin{array}{c} \frac{\partial \mu_{2}}{\partial T} \end{array}\right)_{p}$$
(11)

Ako se u jednačinu uvrsti izraz koji povezuje entropiju i pracijalni izvod hemijskog potencijala prema kome

$$s = \left(-\frac{\partial \mu}{\partial T}\right)_{P}$$
(12)

$$q = T \left[- \left(\frac{\partial \mu_2}{\partial T} \right)_p + \left(\frac{\partial \mu_4}{\partial T} \right)_p \right]$$
(13)

Na osnovu uslova 13 dobija se da je q > 0.

Iz ovog primera može se zaključiti da će se energija absorbovati kod onih faznih prelaza prvog reda kod kojih sistem prelazi iz faze koja egzistira na nižoj temperaturi u fazu veće temperature.

CLAUSIUS-CLAPEYRONOVA JEDNAČINA I FAZNI DIJAGRAMI

Diferenciranjem jednačine $\mu_1(P,T) = \mu_2(P,T)$ po T dobija se

$$\frac{\partial \mu_{1}}{\partial T} + \frac{\partial \mu_{1}}{\partial P} \cdot \frac{dP}{dT} = \frac{\partial \mu_{2}}{\partial T} + \frac{\partial \mu_{2}}{\partial P} \cdot \frac{dP}{dT} \quad (14)$$

Koristeći relacije s = $-\left(\frac{\partial\mu}{\partial T}\right)$ i v = $\left(\frac{\partial\mu}{\partial P}\right)_{T}$ (15)

$$-\mathbf{s}_{1} + \mathbf{v}_{1} \quad \frac{\mathrm{dP}}{\mathrm{dT}} = -\mathbf{s}_{2} + \mathbf{v}_{2} \quad \frac{\mathrm{dP}}{\mathrm{dT}} \Rightarrow \frac{\mathrm{dP}}{\mathrm{dT}} = \frac{\mathbf{s}_{2}^{-\mathbf{s}_{1}}}{\mathbf{v}_{2}^{-\mathbf{v}_{1}}} \quad (16)$$

odakle sledi

$$\frac{dP}{dT} = \frac{q}{T(\sqrt{2} - \sqrt{1})}$$
(17)

To je poznata Clausius-Clapeyronova jednačina koja određuje nagih krive fazne ravnoteže u (P,T) ravni. Iz ove jednačine sledi da je kriva fazne ravnoteže između tečnog i gasovitog agregatnog stanja neke supstancije tzv. kriva isparavanja ima uvek pozitivan nagih: $\frac{dP}{dT}$ > 0. Zaista zapremina po čestici manja je u tečnom stanju nego u gasovitom (v₁v₂) i pored toga tečno stanje egzistira samostalno na nižim temperaturama od temperatura samostalne egzistencije gasovite faze (q>0).

U opštem slučaju linija tačaka faznih prelaza prvog reda završ tzv. kritičnom tačkom ili prelazi u liniju kritičnih tačaka.

Fazni dijagrami u ravni (P,T) skoro za sve jednokomponentne supstance izgledaju kao na slici gde šrafirana oblast određuje čvrsto-kristalno stanje. Od ovog dijagrama odstupa samo fazni dijagram He, jer se on u blizini apsolutne nule nalazi u tečnom agregatnom stanju.

Slíka 4. Standardni fazni dijagram jednokomponentnih sistema

Oblast egzistencije čvrste faze ograničena je krivom sublimacije (koja se proteže od koordinatnog početka T = O i P = O do trojne tačke) i krivom topljenja.

Kriva topljenja je kriva fazne ravnoteže tečne i čvrste faze. Kriva sublimacije i kriva topljenja sastaju se u trojnoj tački sa krivom isparavanja, koja predstavlja krivu fazne ravnoteže tečne i gasovite faze.

Početak krive isparavanja se naalazi u tački egzistencije sva tri agregatna stanja a završetak u tzv. kritičnoj tački. U blizini ove tačke sistem se ponaša veoma neobično. Iznad temperature T_c (kritična temperatura) i pritiska p_c (kritični pritisak) ne postoje različite faze supstancije, one su identične.

Na sledećoj slici je prikazano nekoliko izotermi koje odgovaraju temperaturama koja su manja od kritične i koje prolaze kroz oblast koegzistencije tečne i gasovite faze. Vidi se da razlika između specifičnih zapremina tečne i gasovite faze smanjuje sa povećanjem temperature. Kada je temperatura jednaka kritičnoj, specifične zapremine tečnosti i gasa postaju jednake, što znači da nestaje razlika među njima.

Slika 5. Shematski prikaz izotermi (T₁,T₂ T₃)koje prolaze kroz oblast koegzistencije tečne i gasovite faze (oblast ograničena krivom K₁CK₂)

Postavlja se pitanje može li se i kriva topljenja završiti kritičnom tačkom. Na ovo pitanje nema još pouzdanog odgovora. Istina da ni pri najvećim pritiscima koji se mogu realizovati u laboratoriji nije primećeno da se kriva topljenja završava kritičnom tačkom.

Na sledećoj slici prikazani su fazni dijagrami He⁴ i He³.

Slika 6. Fazni dijagram He⁴

Slika 7. Fazni dijagram He³

Kritična tačka tečnost-gas za He⁴ ima u ravni (P,T) sledeće koordinate: P =2,24 atm i T =5,19 K. Najinteresantnije je to da levo od tzv. λ linije koja se sa krivom isparavanja sastaje u tački A.: P=0,0497 atm i T=2,172 K a sa krivom topljenja u tački B, P=29,7 atm i T=1763 K pojavljuje tzv. superfluidna faza. Prelazak iz normalne faze (HeI) u superfluidnu fazu (HeII) i obratno praćen je nizom kritičnih pojava. U tom smislu λ -linija predstavlja liniju kritičnih tačaka.

(Faznidijagrami na slikama 6. i 7. predstavljeni su nesrazmerno da se istaknu svi delovi dijagrama.)

Kritična tačka kojom se završava kriva fazne ravnoteže tečnost-gas za He³ leži skoro dva puta niže u ravni (P,T) jer je P_=1,133 atm a T_=3,309 K.

Kriva toljenja za He³ asimptotski seče P osu u tački P=33,87 atm i T=O, što znači da možemo reći da u blizini apsolutne nule He prelazi u čvrsto stanje tek pri pritisku od oko 34 atm. Na sledećoj slici prikazan je deo faznog dijagrama He prema postojećim eksperimentalnim podacima.

Slika 8. Fazni dijagram He³ u blizini apsolutne nule

Na slici su prikazane oblasti A i B koje su odeljene tzv. linijom kritičnih tačaka od oblasti u kojoj se He³ponaša kao Fermijeva tačnost. Oblasti A i B, koje se različito ponašaju u magnetnom polju, razdvojene su linijom faznog prelaza prvog reda. Postojanje ove dve faze otkriveno je 35 godina posle otkrića superfluidne He⁴ faze.

Osim navedene linije kritičnih tačaka kod nekih supstancija postoji u oblasti čvrste faze linija koja ovu oblast deli na dva dela, na deo koji odgovara fermagnetnoj i na deo koji odgovara paramagnetnoj fazi. Vrednosti temperature koje određuju liniju kritičnih tačaka poznate su kao Curie-ove temperature.

Osnovna karakteristika fermoagnetne faze je postojanje spontane magnetizacije kada je spoljašnje magnetno polje jednako nuli. Ako supstancija prelazi u paramagnetnu fazu, spontana polarizacija nestaje, a pri obrnutom prelazu spontana polarizacija se pojavljuje. Feromagnetna i paramagnetna faza razlikuju se u spontanoj magnetizaciji $M_0(T)$ koja teži nuli kada se povećava temperatura, tj. kada T \Rightarrow T_c. Na sličan način konačna razlika specifičnih zapremina V_G/M - V_L/M odnosno razlika gustina $\rho_L - \rho_G = \Delta \rho$ diskriminiše tečnu i gasovitu fazu neke supstance kada temperatura raste i približava se kritičnoj temperaturi odozdo (T - T_c), tada $\Delta \rho \Rightarrow 0$. Ovo je jedna formalna sličnost između kritične tačke kod feromagnetika i kritične tačke tečnost-gas.

KRITIČNI INDEKSI

Ponašanje funkcija odziva opisuje se pomoću tzv. kritičnih indeksa ili kritičnih eksponenata. Prilikom opisivanja termodinamičkih stanja u blizini kritične tačke umesto uobičajenih termodinamičkih parametara uvode se veličine koje pokazuju odstupanje od kritičnih vrednosti parametara, tako za sistem tečnost-gas uzimaju se sledeči paramteri:

$$t = \frac{T - T_{c}}{T_{c}} \qquad P = \frac{P - P_{c}}{P_{c}} \qquad v = \frac{V - V_{c}}{V_{c}} \qquad (18)$$

T_c - kritična temperatura V_c - kritična zapremina P_c - kritični pritisak

Na osnovu eksperimentalnih i teorijskih rezultata razlike u gustini tečne i gasovite faze mogu se opisati pomoću stepene funkcije

$$\frac{\rho_{\rm L}(T) - \rho_{\rm g}(T)}{2\rho_{\rm c}} = \Re (-t)^{\beta} \quad T \to T_{\rm c}^{-}$$
(19)

 $ho_{
ho}$ - kritična gustina +

B - kritična amplituda (pozitivna konstanta)

β - kritični indeks ili kritični eksponent (pozitivna konstanta) 3 za skoro sve tečnosti iznosi 0,35 .

 T_{c}^{-} vrednost kritične temperature sa strane manjih vrednosti

Pretpostavlja se da u blizini kritične tačke gas-tečnost kompresibilnost divergira na sledeći način:

 $\frac{K_{T}}{K_{TO}} = \begin{cases} \xi'(-t)^{-\gamma} & T < T_{c} & \rho = \rho_{L} (T) & \text{ili} & \rho = \rho_{c} (T) \\ \xi t^{-\gamma} & T > T_{c} & \rho = \rho_{c} \end{cases}$ (20)

gde su kritični indeksi γ i γ ' pozitivni i različiti Ko je izotermska kompresibilnost koju bi ista supstanca imala u stanju idealnog gasa kad bi pri kritičnim vrednostima parametara mogla da egzistira kao idealan gas.

Kritične amplitude variraju od supstance do supstance ali zato za skoro sve tečnosti iznosi 1,2, . Postoje indikacije koje ukazuju da je $\gamma \approx \gamma'$.

Promena termodinamičkih parametara duž kritične izoterme opisuje se u slučaju kritične tačke tečnost-gas sledećom relacijom:

$$p = \mathcal{D} \left| \frac{\rho - \rho_{c}}{\rho_{c}} \right| \operatorname{sgn} (\rho - \rho_{c}) \quad T = T_{c} \quad \rho = \rho_{c} \quad (21)$$

Osim kompresibilnosti i susceptibilnosti i toplotni kapaciteti divergiraju, u sistemu tečnost-gas dobija se sledeći izraz:

$$C_{v} = \begin{cases} \mathscr{A}'(-t)^{-\alpha'} & T < T_{c} & \rho = \rho_{L}(T) & \rho = \rho_{G}(T) \\ \mathscr{A}t^{-\alpha} & T > T_{c} & \rho = \rho_{c} \end{cases}$$
(22)

Kritične amplitude \mathscr{A} i \mathscr{A} 'zavise od vrste supstancije. α ' i α su male pozitivne veličine za sistem tečnost-gas, u većini slučajeva $\alpha \approx \alpha' = 0,01$.

Ako neka veličina za neke paramtere postaje beskonačna, postavlja se pitanje kako izmeriti tu veličinu.

Danas u najboljim uslovima kritičnoj tački može se približiti tako da t bude manje od 10^{-6} . Iz ovih eksperimenata može se zaključiti da li su i za manje vrednosti t eksperimentalni podaci koegzistentni sa podacima za veće t i da

RUSHBROOKE-OVA NEJEDNAKOST

Prvu relaciju među kritičnim indeksima magnetnih sistema utvrdio je G. Rushbrooke 1963. godine:

$$\chi_{T} (C_{H} - C_{M}) = T \alpha_{H}^{2}$$
(23)

χ_T - izotermska susceptibilnost C_H - toplotni kapacitet pri konstantnoj jačini magnetnog polja C_M - toplotni kapacitet pri konstantoj magnetizaciji α_H = (∂M/∂T)_H

Ako se uzima da je C nenegativna veličina, dobija se sledeća nejednakost:

$$C_{H} \geq T \alpha_{H}^{2} \chi_{T}^{-1}$$
 (24)

U blizini kritične temperature za $T \rightarrow T_{C}$ ako postoje kritični indeksi onda su tačne sledeće asimptotske relacije:

$$C_{H} \approx (-t)^{-\alpha'} \chi_{T} \approx (-t)^{-\gamma'} \alpha_{H} \approx (-t)^{\beta-1}$$
 (25)

pa prethodna nejednakost može se napisati kao $(-t)^{-\alpha'} \ge (-t)^{2/3-2} (-t)^{\gamma'}$ odakle sledi

$$(-t)^{\alpha'+2\beta+\gamma'-2} \leq 1$$
 (26)

Ova nejednačina može biti tačna za proizvoljno male vrednosti t ako je tačna nejednakost

$$\alpha' + 2\beta + \gamma \ge 2 \tag{27}$$

Ovo je poznata Rushbrookova nejednakost. Ova nejednakost tačna je i za sisteme tečnost-gas.

FAZNI PRELAZI DRUGOG REDA

Prema Ehrenfestovoj definiciji u slučaju faznih prelaza drugog reda prvi izvodi termodinamičkih potencijala su neprekidni, dok drugi izvodi skokovito menjaju svoje vrednosti, tj. entropija i zapremina menjaju se kontinualno, a latentna toplota jednaka je nuli $(S_{1}=S_{2})$. Zato Clausius-Clapeyronovu jednačinu ne možem() primeniti za analizu faznog dijagram tamo gde se neka kriva faze ravnoteže završava tačkom faznog prelaza drugog reda.

Pošto se na desnoj strani relacije (16) pojavljuje odnos =0/0 diferenciranjem brojitelja i imenitelja po T i P dobija se

$$\frac{\mathrm{dP}}{\mathrm{dT}} = \left[\frac{\partial s_2}{\partial T} - \frac{\partial s_1}{\partial T} \right] / \left[\frac{\partial v_2}{\partial T} - \frac{\partial v_1}{\partial T} \right] = \Delta C_p / \left[T\Delta \left(\frac{\partial v}{\partial T} \right)_p \right]$$
(28)

 $\frac{\mathrm{dP}}{\mathrm{dT}} = \left[\frac{\partial \mathrm{sz}}{\partial \mathrm{p}} - \frac{\partial \mathrm{si}}{\partial \mathrm{p}} \right] / \left[\frac{\partial \mathrm{vz}}{\partial \mathrm{p}} - \frac{\partial \mathrm{vi}}{\partial \mathrm{p}} \right] = -\Delta \left(\frac{\partial \mathrm{v}}{\partial \mathrm{T}} \right)_{\mathrm{p}} / \left(\frac{\partial \mathrm{v}}{\partial \mathrm{p}} \right)_{\mathrm{T}}$ (29)

gde Δ označacva skok u drugim izvodima termodinamičkih

potenci jala

$$C_{\mathbf{p}} = -T \left(\frac{\partial^{2}G}{\partial T^{2}} \right)_{\mathbf{p}} \qquad \frac{\partial V}{\partial T} = \frac{\partial^{2}G}{\partial T \partial P}$$
(30)

dobijaju se sledeće relacije:

$$\Delta C_{p} = -T \left(\frac{d}{d} \frac{P}{T}\right)^{2} \Delta \left(\frac{\partial V}{\partial P}\right)_{T}$$
(31)

$$\Delta \left(\frac{\partial V}{\partial T} \right)_{\mathbf{P}} = - \frac{\mathrm{d} P}{\mathrm{d} T} \Delta \left(\frac{\partial V}{\partial P} \right)_{\mathbf{T}}$$
(32)

Prva od zadnje dve jednačine određuje skok toplotnog kapaciteta u funkciji skoka izotermske kompresibilnosti a druga jednačina određuje skok koeficijenta toplotnog širenja u funkciji od skoka izotermske kompresibilnosti u tački faznog prelaza drugog reda.

U nekim kristalima fazni prelaz drugog reda nastaje usled male, neprekidne deformacije kristalne rešetke. Rezultat takve deformacije je promena simetrije kristalne rešetke, tj. kristal u tački faznog prelaza gubi neke elemente simetrije koji su karakteristični za visokotemperaturnu fazu.

Ovi fazni prelazi drugog reda često su praćeni anomalijama različitih fizičkih osobina, npr. anomalijom toplotnog kapaciteta, ~ modula elastičnosti, ~ dielektrične konstante, ~ koeficijenta toplotnog širenja u tački faznog prelaza, o kojima će kasnije biti reči.

Na osnovu toga šta je uzrok promene smetnje kristalne rešetke u faznim prelazima, njih delimo na: fazne prelaze tipa pomeranja atoma i fazne prelaze tipa uređeno - neuređeno.

Ako promena simetrije kristalne rešetke u toku faznog prelaza drugog reda nastaje pomeranjem atoma od svojih ranijih položaja, radi se o faznim prelazima tipa pomeranja. Primer takvog prelaza prikazan je na sledećoj slici.

Slika br. 9 Elementi simetrije

Sa slike 9 se vidi da visokotemperaturna faza poseduje sledeće elemente simetrije: E, 4, 2, 2⁻¹, m₁, m₂, m₃, m₄. Ako pretpostavimo da se pri nekoj temperaturi jedna podrešetka pomera na proizvoljno malo rastojanje u pravcu a u

odnosu na drugu podrešetku, tada kristal ima sledeće elemente simetrije: E i m - dijagonalna ravan simetrije.

Osnovnu nedeformisanu fazu nazivamo simetričnom a deformisanu asimetričnom (nesimetričnom) fazom.

Koordinate čvorova rešetki u kristalografskom sistemu koordinata izmeniće se kao rezultat pomeranja na sledeći način:

za atome 📀

za atome 🔹

 $(n_{1} + \frac{1}{2} + \eta) a_{1}, n_{2}a_{2}$

na, na 11 22

ł

gde je η deo translacije a i naziva se parametrom uređenosti sistema i karakteriše fazni prelaz. Vrednost $\eta = 0$ odgovara simetričnoj, a $\eta \neq 0$ nesimetričnoj fazi.

Sa prethodne slike (br 9) se može videti da se η kontinualno menja sa temperaturom. Ova zavisnost prikazana je na slici br.10.

Slika br. 10 Temperaturna zavisnost parametara uređenosti kod faznih prelaza drugog reda

Pored ovakvog faznog prelaza postoje fazni prelazi prvog reda bliski faznim prelazima drugog reda. U ovom slučaju temperaturna zavisnost parametra uređenosti ima sledeći oblik:

Slika br. 11

i

Temperaturna zavisnost parametara uređenosti kod faznih prelaza bliskih faznim prelazima drugog reda Ovi prelazi prvog reda mogu postati prelazima drugog reda npr. pri povišenju pritiska. Iako postoji takva mogućnost, ona se ne javlja kod svakog strukturnog faznog prelaza prvog reda, npr. ne javlja se pri prelazu γ -gvožđa u α -gvožđe.

Fazni prelaz drugog reda može biti praćen promenom zapremine elementarne ćelije, npr. ako se u susednim redovima elementarnih ćelija (sa prethodnog modela) centralni atomi pomeraju u suprotnim smerovima, dolazi do promene translacione simetrije.

ł

Slika br.12 Povećanje zapremine elementarne ćelije

Očigledno je da su nove elementarne translacije a'=2a i $a_1^2=2a_1$, tj. zapremina elementarne ćelije se udvostručuje.

Promena simetrije kristala može nastati i usled preraspodele verovatnoće nalaženja atoma u različitim položajima u elementarnoj ćeliji, npr. zamislimo da unutrašnji atomi u našem modelu kreću se u potencijalnoj jami koja je predstavljena na slici br.13.

Slika br. 13 Potencijalna jama

1

Pri dovoljno visokim temperaturama verovatnoća nalaženja atoma u obe jame jednaka je 1/2.

Pre snižavanja temperature broj čestica u položajima 1 i 2 sve više razlikuje. A u tački faznog prelaza veličina η postaje različita od nule.

$$\eta = \frac{N_{1} - N_{2}}{N_{1} + N_{2}}$$
(33)

N i N – broj atoma koji se nalaze u položajima 1 i 2.

Strukturni fazni prelazi kod kojih je promena simetrije rezultat preraspodele čestica po ranije jednakoverovatnim položajima, nazivaju se prelazima tipa uređeno-neuređeno.

Treba naglasiti da se ne može povući oštra granica među faznim prelazima pomerajnog tipa i tipa uređeno-neuređeno.

FENOMENOLOŠKA TEORIJA FAZNIH PRELAZA

Fenomenološka teorija faznih prelaza drugog reda polazi od pretpostavke da nesimetričnu fazu možemo predstavljati kao deformisanu simetričnu fazu.

Nadalje ćemo objasniti na koji način je moguće predvideti karakter promene fizičkih osobina kristala, u oblasti temperature koja uključuje i temperaturu faznog prelaza ako je poznata promena simetrije u kristalu.

Termodinamičke osobine ravnotežnog sistemu mogu se analizirati i pomoću termodinamičke funkcije koja zavisi od različitih promenljivih.

Promene uzaviusnosti od temperaturne funkcije definišu rad koji vrše spoljne sile na sistemu.

Elementarni rad jednak je

$$dA = X_{i} d\eta_{i} + d \left(\frac{X_{i}^{2}}{8\Pi}\right)$$
(34)

 η - parametar uređenosti

X_i- parametar sistema

÷

Diferencijal unutrašnje energije

d u (S, V,
$$\eta_i$$
) = T dS + PdV + $X_i d\eta_i$ (35)

a diferencijal Gibbsovog termodinamičkog potencijala

$$d \phi (T, P, \eta_i) = -SdT - VdP - \eta_i dX_i$$
 (36)

S - entropija V - zapremina T - temperatura P - pritisak

$$\eta_{i} = -\left(\frac{\partial \phi}{\partial X_{i}}\right)_{P,T}$$
(37)

a uopštena susceptibilnost

.

$$\chi_{ij}^{\mathbf{P},\mathbf{T}} = \left(\frac{d\eta_i}{dX_i}\right)_{\mathbf{P},\mathbf{T}} = \left(\frac{\partial \phi^2}{\partial X_i X_j}\right)_{\mathbf{P},\mathbf{T}} \quad (38)$$

za toplotni kapacitet pri stalnom pritisku

$$C_{\mathbf{P}, \mathbf{X}} = -T \left(\frac{\partial^2 \phi}{\partial T^2} \right)_{\mathbf{P}, \mathbf{X}}$$
(39)

zapreminska kompresibilnost pri konstantnoj temperaturi

$$\xi_{\mathbf{x},\mathbf{T}} = \left(\frac{\partial^2 \phi}{\partial \mathbf{P}^2}\right)_{\mathbf{x},\mathbf{T}} \tag{40}$$

a koeficijent toplotnog širenja dat je sledećim izrazom:

$$K_{\mathbf{x}} = -\left(\frac{\partial^2 \phi}{\partial P \partial T}\right)_{\mathbf{x}}$$
(41)

Analizirajmo sistem od N uzajamno interagujućih čestica ako je zadata potencijalna energija u funkciji radijus vektora čestica

$$U = U(r_1, r_2, \dots, r_N)$$
(42)

Pri fiksiranom pritisku za T \neq 0 odgovara minimalna vrednost termodinamičkog potencijala ϕ . Verovatnoća da vrednost radijus vektora prve čestice bude između vrednosti r_1 , i $r_1 + dr_1$ a druge česitce između r_2 , i $r_2 + dr_2$ određena je sledećim izrazom:

$$dw = C \exp \{ - U(r_1, r_2, \dots, r_N) / k T \} dr_1, dr_2, \dots dr_N$$
 (43)

Integracijom ove jednačine na levoj strani dobija se 1, odakle C = Z^{-1}

$$Z = \int \exp \left[-U\left(r_{1}, r_{2}, \ldots r_{N}\right) / k T\right] dr_{1}, dr_{2}, \ldots dr_{N}$$
(44)
-\overline{\overline{1}}

Gibbsov termodinamički potencijal dat izrazom

$$\phi (P, T) = -k I u Z$$
(45)

a raspodela verovatnoća ima sledeći oblik

4. A

$$dw = \exp \{ \left[\phi - U \left(r_{1}, r_{2}, \dots r_{N} \right) \right] / k T \} dr_{1}, dr_{2}, \dots dr_{N}$$
(46)

 ϕ – ravnotežni termodinamički potencijal

Neravnotežno stanje sistema opisuje se termodinamičkim potencijalom koji pored promenljivih p i T sadrži i neke druge promenljive.

Umesto vektora položaja čestica pomoću linearnih transformacija uvodimo druge promenljive:

$$r_1, r_2, \ldots, r_N \longrightarrow \xi_1, \xi_2, \ldots, \xi_N$$
 (47)

Ako stavimo da je $\xi_1 = \eta$ (30), verovatnoća da se η nalazi između vrednosti η i η + d η a ξ_2 između ξ_2 i ξ_2 i ξ_2 + d ξ_2 data je sledećim izrazom:

$$dw = \exp\left[-\frac{\phi - U(\eta, \xi_2, \xi_3, \dots, \xi_{3N})}{kT}\right] d\eta d\xi_2 d\xi_3 \dots d\xi_{3N}$$
(51)

Za raspodelu verovatnoće samo jedne promenljive važi sledeće:

$$dw (\eta)' = d\eta fexp \left[\frac{\phi - U(\eta, \xi_2, \dots, \xi_{3N})}{kT} \right] d\xi_2 d\xi_3 \dots d\xi_{3N}$$
(52)

Verovatnoća da se sistem nađe u stanju u kome η leži između vrednosti η i η + d η

$$\phi(\eta) = -k_{B}^{T_{1n}} \int_{-\infty}^{\infty} \left[-\frac{U(\eta, \xi_{2}, \xi_{3} \dots \xi_{3N})}{kT} \right] d\xi_{2} d\xi_{3} \dots d\xi_{3N}$$
(53)
$$dw = \exp\left[\frac{\phi - \phi(\eta)}{kT}\right] d\eta$$
(54)

Iz jednačine imamo da je

$$\phi$$
 (p, T) = $-k_{\rm B}$ T ln $\int_{-\infty}^{\infty} \exp\left[-\frac{\phi(\eta)}{kT}\right] d\eta$ (55)

Neka je η_0 ravnotežna vrednost promenljive η , tj. odgovara minimumu funkcije ϕ (p, T, η).

Ako razložimo funkciju $\phi(\eta)$ u red po stepenima η u okolini tačke $\eta = \eta_0$

$$\phi(\eta) = \phi(\eta_{0}) + \frac{1}{2} A(\eta - \eta_{0})^{2} + \dots = \phi(\eta_{0}) + \Delta \phi(\eta - \eta_{0})$$
(56)

i korišćenjem jednačine (55) dobijamo sledeći izraz:

$$\phi \text{ (p, T)} = \phi(\eta_{o}) - k_{B}T \ln \int_{-\infty}^{\infty} \exp\left\{-\frac{\Delta\phi (\eta - \eta_{o})}{kT}\right\} d\eta \quad (57)$$

Prvi član na desnoj strani predstavlja minimum funkcije $\phi(\eta_o)$, a drugi član daje doprinos termodinamičkom potencijalu usled fluktuacije (odstupanja) parametra η od najverovatnije vrednosti (η_o) .

U poređenju sa prvim članom drugi je zanemarljivo mali, znači možemo pisati

$$\phi(\mathbf{p}, \mathbf{T}) = \phi(\mathbf{p}, \mathbf{T}, \eta)$$
(58)

Dokazano je da strukturu nesimetrične faze možemo dobiti iz simetrične faze malim deformacijama – pomeranjem ili preraspodelom atoma koji se opisuje parametrom uređenosti (η).

Postojanje faznog prelaza možemo opisati na sledeći način: funkcija $\phi(\eta)$ u simetričnoj fazi imaće minimum za $\eta = 0$, a u nesimetričnoj fazi za $\eta \neq 0$, pri čemu treba istaći da u drugom slučaju $\phi(\eta)$ može da ima dva ili više minimuma, a strukturni fazni prelaz opisuje se promenom funkcije

$$\phi = \phi (\mathbf{p}, \mathbf{T}, \eta) \tag{59}$$

pri čemu ona zadovoljava sledeći uslov: potencijal ϕ kao skalarna veličina mora biti invarijantna u odnosu na bilo koje promene simetrične faze, tj.

$$\phi(\eta) = \phi(\eta^*) \tag{60}$$

 η^* - parametar uređenosti izmenjen simetrijskom operacijom

Ako u okolini faznog prelaza drugog reda ograničimo se na analizu malih deformacija rešetke, tada termodinamički potencijal možemo razviti u stepeni red po η:

$$\phi(\eta) = \phi(0) + \phi'\eta + \frac{1}{2}\phi'\eta^2$$
 (61)

pri čemu ϕ (η) zavisi i od pritiska i od temperature.

Pri ovim faznim prelazima zakon transofrmacije parametara uređenosti pomoću simetrijskih operacija u izvesnoj meri predodređuje izmenu fizičkih osobina kristala.

Ako se parametar uređenosti transformiše kao komponenta vektora,u toku faznog prelaza će se pojaviti spontana polarizacija. Pri feroelektričnim faznim prelazima parametar uređenosti proporcionalan je komponenti vektora polarizacije.

Treba napomenuti da u red termodinamičkog potencijala po stepenima η ne ulazi lienaran član, jer on pri simetrijskim operacijama m i 2 menja znak.

Prvi član u razvoju koji se razlikuje od nule biće kvadratni član

A (p, T) η^2 A $\neq 0$ pri čemu je A (p, T) funkcija koja zavisi i od pritiska i od temperature.

Sa jedne strane prelazne tačke T_{κ} [Tminimumu funkcije $\phi_{(\kappa)}$ crtežu br. 18), dok za temperature T(T manji od nule, tj. A(p,, T) < 0 (kriva br 2 na crtežu br. 15).

Slika br. 15. Zavisnost termodinamičkog potencijala od parametara uređenosti: 1 - A(P,T)>0 2 - A(P,T)<0 * odgovara $A(P_{k},T) > 0$ kriva J

Vidi se da imamo neophodan uslov postojanja tačke neprekidnog faznog prelaza, tj.

$$A(P_{\nu}, T_{\nu}) = 0$$
 (62)

Treći član u razvoju ne može postojati, jer menja znak pri operacijama m i 2.

Sledeći član u razvoju je član četvrtog reda. Za koeficijent ovog člana važi B (p_k,T) > 0.

Uslov na P, T dijagramu određuje liniju tačaka faznih prelaza drugog reda.

Termodinamički potencijal na osnovu prethodnih primedbi možemo napisati kao

$$\phi(\mathbf{p}_{\mathbf{k}}, \mathbf{T}, \eta) = \phi_{\mathbf{0}}(\mathbf{p}_{\mathbf{k}}, \mathbf{T}) + A(\mathbf{p}_{\mathbf{k}}, \mathbf{T}) \eta^{2} + B(\mathbf{p}_{\mathbf{k}}, \mathbf{T})\eta^{4}$$
 (63)

Da bi se odigrao fazni prelaz drugog reda na temperaturi T = T_k i pritisku p = p_{κ} sa promenom simetrije 2/m-2, neophodno je da koeficijent A (p_{κ} , T) kontinualno prelazi u nulu.

Slika br.16. Temperaturna zavisnost koeficijenta A

Tačan izgled zavisnosti koeficijenta od temperature i pritiska teško je utvrditi, međutim možemo iskoristiti razvoj u red po stepenima T - T_k. Tada dobijamo sledeće izraze:

$$A (p_{\kappa}, T) = A (p_{\kappa}, T_{\kappa}) + A'(T - T_{\kappa}) + \frac{1}{2} A' (T - T_{\kappa})^{2} + \dots \quad (64)$$

$$B (p_{\kappa}, T) = B (p_{\kappa}, T_{\kappa}) + B'(T - T_{\kappa}) + \frac{1}{2} B' (T - T_{\kappa})^{2} + \dots \quad (65)$$

Koristeći prethodno navedenu osobinu koeficijenata A i B A (p_K, T_K) = 0 i B (p_K, T_K) > 0 i ograničavajući se na prve članove razlaganja dobija se

$$\phi$$
 (p, T, η) = ϕ_{o} (P_K, T) + $\frac{1}{2} \alpha$ (T - T_p) η^{2} + $\frac{1}{4} \beta \eta^{4}$ + (66)
gde je

$$\alpha = 2 \quad \frac{\partial A \quad (p_{\kappa}, T)}{\partial T} \qquad T = T_{\kappa} \qquad \beta = 4 B \qquad (67)$$

Brojevi u prethodnim izrazima olakšavaju dalji račun.

Potencijal ϕ (p, T, η) je nepotpuna termodinamička funkcija koja sadrži promenljivu η , a koju treba isključiti koristeći uslov ravnoteže.

Ravnotežna funkcija data je izrazom

$$\phi (P, T) = \phi (P, T, \eta (P, T))$$
(68)

gde η_o možemo odrediti iz sledećih uslova:

$$\frac{\partial \phi}{\partial \eta} = 0 \qquad \frac{\partial^2 \phi}{\partial \eta^2} > 0 \tag{69}$$

za T > T

Očigledno je da $\eta_{a} = 0$

1

$$\eta_o^2 = -\frac{\alpha (T - T_k)}{\beta} \qquad T < T_k \qquad (70)$$

Zato ravnotežni termodinamički potencijal ima sledeći oblik:

$$\phi (P_{\kappa}, T) = \begin{cases} \phi_{o}(P_{\kappa}, T) & za T > T \\ \phi_{o}(P_{\kappa}, T) - \frac{(\alpha (T - Tk))^{2}}{4\beta} & za T < T_{\kappa} \end{cases}$$
(71)

Fazni prelaz u fenantrenu je tipa uređeno-neuređeno, pri čemu dolazi do rotacije molekula, pa se može uzeti za parametar uređenosti na primer ugao rotacije,ili relativna orijentacija jednog molekula u dnosu na drugi.

ISTORIJAT ODREĐIVANJA STRUKTURE FENANTRENA NA SOBNOJ TEMPERATURI

Fenantren je organsko jedinjenje sa molekularnom masom Mr=178,2 i tačkom topljenja 374K. Pri normalnom pritisku i na sobnoj temperaturi fenantren egzistira u kristalnoj fazi. Monokristal fenantrena je bezbojan i transparentan.

Prvu strukturnu analizu kristala izvršio je Basak 1950. godine pomoću podataka dobijenih filmskom metodom za intenzitete difrakcionih refleksa monokristalnog uzorka. Međutim ovi podaci nisu bili dovoljno precizni za određivanje dužine veze, pa je Trotter 1963. godine ponovio difrakciono snimanje kristala.

Prema njegovim rezultatima monokristal pripada monoklinskoj strukturnoj grupi sa sledećim parametrima ćelije:

a = 8,46 Å b = 6,16 Å c = 9,47 Å $\beta = 97,7^{\circ}$

Iz dužina veza i položaja atoma ugljenika on je zaključio da se molekul sastoji iz tri ugljenikova prstena. Numeracija atoma ugljenika prikazana je na slici br. 17.

Ovi prstenovi nisu sasvim planarni, već postoji mala distorzija među ravnima ovih prstena. Ali ipored ove distorzije molekul poseduje mm2 simetriju.

Da bi objasnili distorziju molekula u kristalu M. I. KAY, Y. OKAYA i D. E. COX izvršili su tačnija difrikaciona merenja. Na osnovu toga i uvođenjem anizotropnog termalnog parametra u račun dali su popravku strukture (popravku položaja ugljenika).

Pošto položaje vodonika sa difrakcije X zračenja nisu mogli tačno odrediti, oni su izvršili difrakciju neutrona na kristalu fenantrena. Iz ovih podataka odredili su položaje atoma vodonika. Relativne koordinate ugljenika i vodonika date su u sledećoj tabeli.

PHENANTREN C14-H10 P21/A

ł

i

Slika 17. Numeracija atoma u molekulu fenantrena

Tabela br. 1. Relativne koordinate ugljenika i vodonika (X, Y, Z)

	X	Y	Z
CC10	0,1676(6)	0,3831(8)	-0,3039(5)
ccap	0,0758(6)	0,2128(8)	-0,3558(5)
CC3D	0,0372(6)	0,0505(8)	-0,2654(5)
CC 40	0,0935(5)	0,0571(7)	-0,1210(5)
C(5)	0,2297(7)	0,0795(7)	0,1806(6)
CC 6)	0,2970(6)	0,1035(8)	0,3289(5)
CC 7)	0,3869(7)	0,2809(9)	0,3758(6)
CC 8)	0,4133(8)	0,4421(8)	0,2815(7)
CC 90	0,3791(5)	0,5925(8)	0,0365(5)
CC10)	0,3222(6)	0,5763(8)	-0,1018(5)
C(11)	0,2267(5)	0,3936(7)	-0,1555(5)
C(12)	0,1908(4)	0,2279(6)	-0,0633(4)
C(13)	0,2554(5)	0,2422(7)	0,0873(4)
CC140	0,3484(5)	0,4245(7)	0,1356(5)
HC1)	0,198(2)	0,516(3)	-0,375(2)
HC SC	0,028(2)	0,197(4)	0,465(2)
HCBD	-0,040(2)	-0,090(5)	-0,304(2)
HC 40	0,061(2)	-0,071(3)	-0,053(1)
HC 50	0,062(2)	-0,068(3)	0,155(1)
HC 60	0,271(2)	0,027(4)	0,404(1)
HC 70	0,432(1)	0,288(4)	0,487(1)
HC 80	0,488(2)	0,584(4)	0,314(2)
HC9)	0,448(1)	0,724(3)	0,079(2)
HC100	0,348(2)	0,701(4)	-0,174(2)

* Koordinate ugljenika izračunate su iz eksperimentalnih podataka difrakcije X zračenja, a koordinate vodonika iz podataka difrakcije neutrona

25

i

÷

Tabela br. 2. Međuatomska rastojanja u molekulu fenantrena

VEZE		Nekorigovana međuatomska rast.(Å)	Korigovana međuatomska rast.(Å)
	C(1) - C(2)	1,357(7)	1,365
	C(2) - C(3)	1,385(7)	1,393
	C(3) - C(4)	1,385(7)	1,391
	C(4) - C(12)	1,400(6)	1,408
	C(12) - C(11)	1,404(6)	1,412
	CC11) - CC1)	1,426(6)	1,433
	C(11) - C(10)	1,438(6)	1,446
	C(10) - C(9)	1,335(7)	1,431
	C(9) - C(14)	1,445(7)	1,453
	C(14) - C(13)	1,412(6)	1,420
	C(13) - C(12)	1,457(5)	1,464
	C(13) - C(5)	1,408(6)	1,416
	C(5) - C(6)	1,400(6)	1,406
	C(6) - C(7)	1,371(7)	1,379
	C(7) - C(8)	1,375(8)	1,382
	C(8) - C(14)	1,418(7)	1,424
	HC1) - CC1)	1,10(2)	1,10
	H(S) - C(S)	1,04(2)	1,05
	HC3) - CC3)	1,10(3)	1,11
	HC40 - CC40	1,06(2)	1,07
	H(5) - C(5)	1,09(2)	1,10
- 1	HC6) - CC6)	1,10(2)	1,10
i	HC7) - CC7)	1,07(2)	1,07
	HC8) - CC8)	1,11(3)	1,11
	HC9) - CC9)	1,04(2)	1,04
r	HC100 - CC100	1,06(2)	1,07

Vrednosti u prvoj koloni su nekorigovane, a u drugoj koloni se nalaze vrednosti korigovane za kruta tela

Iz ovih rezultata se vidi da je rastojanje između atoma H(4) i H(5) iznosi svega 2,04 Å, što je zantno manje od predviđenog Van der Waalsovog rastojanja, koje iznosi 2,4 Å. Ovo smanjenje dovodi do distorzije, tj. do odstupanja od ravanske strukture. Gornji prsten I je savijen oko ose C(2) - C(12) sa atomima C(3), C(4), H(3) i H(4) koji su udaljeni od ravni prstena. Isto to

važi i za III prsten koji je savijen oko C(13) - C(7), ali pokazuje još i dodatno savijanje oko C(13)- C(14).

Atomi u prstenovima I i III su planarni unutar 0,01 Å.

Uglovi između ravni prstenova imaju sledeće vrednosti: među prstenovima I i II 1,2,° među II i III 1.2,°, a među III i I 2,4°Pri objašnjenju uzroka distorzije Coulson i Haigh su pretpostavili da ona nastaje usled defekta H - H odbijanja, međutim razmatranjem različitih mogućih vodonik - vodonik potencijala došli su do zaključka da ovo odbijanje ne prouzrokuje distorziju. Pojava distorzije može se objasniti sa jačim potencijalom od onog koje daju testirane vrednosti i postojanjem izuzetno oštrog pika oko posmatranog H(4) - H(5) rastojanja na 2,04 Å.

Bilo je i takvih nagoveštaja da je H - H odbijanje anizotropno, jer pomeranje ovih atoma vodonika od ravni ne daje značajnije povećanje H-H veze od vrednosti koje dobijamo ako su vodonici u ravni.

Moguće je da član nekvadratne energije kristalnog polja igra važnu ulogu u strukturi molekula.

27

i

EKSPERIMENTALNI PODACI

Monokristal fenantrena na sobnoj temperaturi snimali smoCu zračenjem talasne dužine λ = 1,54178 Å.

Bez izlaganja principa difrakcije X zraka i izvođenja formule za metodu monokristala dobijamo izraz za međuravansko rastojanje kod oscilatorne metode snimanja monokristala.

$$d[nm] = \frac{n\lambda [nm]}{\frac{1}{n} [cm]} \sqrt{R^2 + (cm^2) l_n^2 (cm^2)}$$
(72)

λ - talasna dužina korišćenog zračenja

R – poluprečnik kamere

n – red refleksa

ln - rastojanje između n-tog i nultog nivoa

Rezultati merenja i određivanja parametara elementarne ćelije prikazani su u sledećim tabelama:

Red			
refleksa	ln [cm]	a [Ă]	$\Delta a^2 \cdot [A^2] \cdot 10^{-4}$
1	0,54	8,478	1,44
1	0,541	8,463	7,29
1	0,543	8,433	32,49
1	0,539	8,493	0,09
2	1,139	8,485	0,25
2	1,141	8,472	3,24
2	1,134	8,518	7,84
2	1,138	8,492	0,04
3	1,896	8,493	0,09
3	1,893	8,503	1,69
3	1,894	8,500	· 1
3	1,898	8,497	0,09
4	3,065	8,518	7,84
4	3,085	8,491	0,01
4	3,071	8,509	3,61
4	3,071	8,509	3,61

Tabela 3 Rezultati merenja za osu a

 $\bar{a} = 8,49 \text{ \AA} \pm 0,02 \text{ \AA}$

a = 8,49 Å ± 0,02 A Tabela 4. Rezultati merenja ose b

Red			······································
refleksa	ln [cm]	ыğı	۵ ² [Å] ·10 ⁻⁴
1	0,75	6,132	10.89
1	0,758	6,136	8,41
1.	0,754	6,161	0.16
1	0,757	6,143	4.84
2	1,679	1,186	4.41
2	1,684	6,16	0.25
2	1,677	1,191	6,76
2	1,679	6,186	4.41
3	3,306	6,17	0.25
3	3,282	6,191	6,26
3	3,312	6,166	0,76
3	3,298	6,178	1,69

1

1

 $b = 6,16 \text{ \AA} \pm 0,02 \text{ A}$

Tabela 5 : Rezultati merenja za C osu

Red nivoa	ln [cm]	c[nm]	$\Delta c^{2} [\overset{a}{A}^{2}] \cdot 10^{-4}$
1	0,485	9,41	16
1	0,484	9,428	1,44
1	0,482	9,466	2,56
1	0,482	9,391	29,16
2	1,011	9,425	6,25
2	1,013	9,408	17,64
2	1,008	9,453	0,16
2	1,006	9,466	2,56
3	1,629	9,494	0,36
3	1,633	9,476	6,76
3	1,645	9,423	7,29
3	1,645	9,423	7,29
4	2,51	9,461	15,2
4	2,501	9,48	9
4	2,499	9,485	2,25
4	2,494	9,496	0,16
1			

Određivanje ugla β vrši se sa snimka snimljenog Weisenbergovom metodom, pomoću formule koju nećemo izvoditi, samo ćemo dati u krajnjem obliku.

$$l_{1} : 180 = k : \theta$$
$$\theta = \frac{180 \cdot l_{2}}{l_{1}} \qquad \beta = 180 - \theta \qquad (73)$$

1 [mm] 1	l [mm] z	θ[.]	ß[•]	Δβ ² [∘ ²]
90,12	41,74	83,36	96,64	1,166
89,12	40,82	82,45	97,55	0,029
89,74	40,60	81,44	98,56	0,7056
89,6	40,76	81,88	98,12	0,16

Tabela br.6 Rezultati merenja za eta

$$\bar{\beta} = (97, 7 \pm 0, 5)^{\circ}$$

Dobijene rezultate uporedićemo sa rezultatima PETRIČEKA

Tabela br.7 Upoređivanje naših rezultata sa rezultatima Petričeka

	248 K	295 K	339 K	344 K	Rezultat merenja
a (Å)	8,436(2)	8,441(2)	8,489(2)	8,506(2)	8,49(2)
Ь[Å]	6,127(2)	6,140(1)	6,204(1)	6,215(2)	6,16(2)
c [Å]	9,449(3)	9,438(1)	9,526(2)	9,525(2)	9,45(3)
ß[Å]	98,29(3)	97,96 (1)	98,44 (2)	98,73 (2)	97,7 (5)

Rezultati naših merenja na sobnoj temperaturi (22 oC)=295 K) dobro se slažu sa rezultatom PETRIČEKA.Odstupanja su u granicama standardne devijacije.

Takođe smo izračunali dužine hemijskih veza na osnovu poznatih koordinata atoma i korišćenjem programa MO (Molecular Orbital Calculation)

30

i

VEZE	REZULTATI PETRICEKA O A	REZ. M.O. O A	VEZE	REZULTATI PETRICEKA O A	REZ. M.O. O A
C(1)-C(2)	1,345(7)	1,38	C(7)-C(8)	1,352(8)	1,39
GC 4 9 - GC 4 4 9	4;416(4)	1,42	CC 83-CC 143	1,412(4)	1,42
C(S)-C(3)	1,374(8)	1,41	C(9)-C(10)	1,338(5)	1,36
CC 3) -CC 4)	1,375(4)	1,39	C(9)-C(14)	1,425(7)	1,45
CC 4) -CC 1 2)	1,385(7)	1,42	CC107-CC117	1,419(7)	1,45
C(5)-C(6)	1,378(4)	1,39	C(11)-C(12)	1,406(7)	1,41
C(5)-C(13)	1,399(7)	1,46	C(12)-C(13)	1,454(6)	1,46
CC 6) -C(7)	1,389(9)	1,41	CC13)-CC14)	1,415(7)	1,45

Tabela br. 8. Rezultati dužine veze Petričeka i M.O.

Velika odstupanja u dužini nekih veza javljaju se zbog konstantnih vrednosti kovalentnih poluprečnika atoma uzetih u programu M.o. Za atom ugljenika jednostruke veze $(sp^{3})=1,54\text{\AA}$; C-C $(sp^{2})=1,48$ Å C-C ; C-CCbenzolov prsten)=1,39Å je različita. Pri molekularno mehaničkom proračunu uzeti su u obzir i uticaji π -elektronskih orbitala ugljenika u kondenzovanim prstenovima, koji donekle skraćuju dužinu veze, ali nije uzet u obzir uticaj kristalnog polja.

FAZNI PRELAZ U FENANTRENU

Ispitivanjem temperaturne zavisnosti nekih fizičkih veličina, npr. polarizacije, dielektrične permeabilnosti indeksa dvojnog prelamanja fenantrena, otkriveno je da na temperaturi 72 °C odigrava se fazni prelaz drugog reda.

Temperaturna zavisnost polarizacije prikazana je na slici

Slika br. 18. Temperaturna zavisnost polarizacije u fenantrenu

Oblik ove krive ostaje isti i pri sledećim zagrevanjima i hlađenjima. Merenja polarizacije bez prisustva polja pokazuju da postoji spontana polarizacija u izvrnutoj fazi, znači možemo očekivati dielektričnu anomaliju na T_c . Ali ako tokom hlađenja u okolini temperature T_c uzorak stavimo u dijagonalno električno polje jačine 5 kV/cm, ova temperaturna zavisnost pokazuje nereproducibilne promene između 60 °C i 80°C. Uzrok ovih promena može biti električna provodljivost ili kvazi električno ponašanje u c'pravcu.

Na sobnoj temperaturi za dielektričnu permeabilnost dobijamo sledeće vrednosti: ϵ_{a} = 3,1 ε_{b} = 3,0 ε_{c} = 3,6.

Tokom prvog zagrevanja javljaju se oštri uzani pikovi permeabilnosti u sva tri pravca, ali tokom sledećih zagrevanja ti pikovi nestaju (slika).

Slika 19. . Temperaturna zavisnost dielektrične permeabilnosti fenantrenu

Ako jednom korišćen uzorak ostavimo neko vreme, pikovi će se opet javiti samo prilikom zagrevanja.

Temperaturna zavisnost ε_{a} i ε_{b} data je na sledećoj slici:

Slika br.20. Temperaturna zavisnost dielektrične permeabilnosti u fenantrenu ($\mathcal{E}_{\mathbf{6}_1}, \mathcal{E}_{\mathbf{6}_2}$)

Anomalije su jasno izražene ako uporedimo dobijene krive sa krivom temperaturne zavisnosti $\varepsilon_{\rm b}$ snimljene na 1 kHz. Najinteresantnija karakteristika je skok $\varepsilon_{\rm b}$ -a tokom zagrevanja.

Optičke osobine mogu se izuzetno dobro reprodukovati tokom procesa zagrevanja.

Temeraturna zavisnost ∆n data je na sledećoj slici: ab

Slika 21. Temperaturna zavisnost indeksa dvojnog prelamanja u fenantrenu

Ponašanje Δn(T) pokazuje da na temperaturi 30 K ispod temperature T_c indeks dvojnog prelamanja može se dobro opisati izrazom:

$$\Delta n \approx (T - T)^{\alpha} \qquad \alpha = 0.25 \quad (74)$$

Pošto je $\Delta n \approx \eta^2$, za kritičnu vrednost parametara uređenosti dobija se $\beta = 1,25$. Ako bi prelaz bio bez promene simetrije dobilo bi se:

$$\Delta n \approx \eta \qquad i \quad \beta = 0,25 \qquad (75)$$

Postojanje spontane polarizacije je važna karakteristika feroelektričnog prelaza, znači ako je prelaz u fenantrenu feroelektričan, javiće se Curie-Weisova anomalija ε_{c} na temperaturi T_c, međutim merenja permeabilnosti na frekvencijama 1 kHz i 0,5 Hz ne pokazuju takva svojstva. Izostanak anomalije objašnjava pseudoferoelektrični mehanizam. Prema ovom mehanizmu koeficijent f u članu fP η funkcije slobodne energije, gde je η paramaetar uređenosti, treba da je mali da bi dao malu vrednost P_s \approx f. U isto vreme Curie-Weissova konstanta proporcionalna je sa f², zbog toga je širina anomalije izuzetno uzana i može se

potisnuti termalnim fluktuacijama.

ł

Oblik krive f_a (T)na slici br. 22. pokazuje da dodatak efektivnoj longitudinalnoj elastičnoj konstanti u c'pravcu od interakcionog člana $x_1 \eta^2$ parametara uređenosti sa deformacijom x_1 nije opažen. Totalni efekat faznog prelaza na ukupno širenje je slab i treba ga pripisati višim stepenima interakcionog člana koji je proporcionalan sa $x_1^2 \eta^2$ ili nelinearnom članu elastičnosti koji je proporcionalan sa $x_1 x_1 x_k$.

f_a=v n_b ↓2/λ

f_a - Brillouinova frekvencija n_b = 1,724

= brzina zvuka u smeši vode i glicerola (3530 m/sec)

Slika br. 22.Temperaturna zavisnost funkcije f (nije uzeta u obzir temperaturna zavisnost n_)

Prikaz *ɛ*-a koji se javljaju tokom prvog zagrevanja u sva tri pravca povezani su sa spoljašnjom kompenzacijom energije koja se ostvaruje na T_{_}.

Možemo zaključiti da je fazni prelaz u fenantrenu kontinualan uređeno-neuređene prirode. Visoka temperaturna, orijentaciono neuređena faza je verovatno centrosimetrična (grupa P2/a), a promena simetrije tokom faznog prelaza je 2/m-2, a pošto je Z=2, za obe faze prelaz je feroelektričan ili pseudoferoelektričan.

Dielektrično ponašanje bez Curie-Weissove anomalije čak i na O,5 Hz može se objasniti izuzetno malom vrednošću Kirijeve konstante koja je posledica jako slabe međusobne interakcije polarizacije sa parametrom uređenosti tokom pseudoferoelektričnog faznog prelaza. Sa druge strane to može značiti da prelaz nije feroelektričan, tj. visoka temperaturna faza nije sasvim centrosimetrična. Ipak fazni prelaz bez promene simetrije čini se manje verovatnim.

Da bi objasnili strukturni fazni prelaz u fenantrenu, Petriček i njegovi saradnici izmerili su intenzitete refleksa na snimku praha za 4 različite temperature za 248 K, 295 K, 339 K i 344 K. Merenja su pokazala da je intenzitet refleksa 102 najosetljiviji na promene temperature

$$I_{249K}^{(10\bar{2})} = 0,41 \times I_{295}^{(10\bar{2})}$$

$$I_{344}^{(10\bar{2})} = 0,006 \times I_{295}^{(10\bar{2})}$$

$$I_{249K}^{(10\bar{2})} = 0,015 \times I_{295}^{(10\bar{2})}.$$

1

Pored toga odredili su i parametre elementarne ćelije na različitim temperaturama. Rezultati su dati u tabeli br.7.

Iz tabele se vidi da promena parametara elementarne ćelije u toku faznog prelaza nije značajna.

Intenzitet refleksa koji je direktno povezan sa elektronskom gustinom - na višim temperaturama od sobne - pokazuje drugi položaj molekula od položaja na sobnoj temperaturi. Ova dva položaja međusobno su povezana centrom inverzije (0,25; 0,0).

Zavisnost okupacionog faktora položaja od temperature prikazana je u sledećoj tabeli:

Tabela 9.	Temperaturr	na zavisnost	okupacionog	faktora	položaja
-----------	-------------	--------------	-------------	---------	----------

	Τ[Κ]	p	1-p*	
	244	0,611(3)	0,389	
	295	1,000	0,00	
	339	0,842(5)	0,158	
1 2 1	344	0,554(3)	0,446	

* Okupacioni faktor drugog mogućeg položaja molekula

Iz tabele se vidi da sa povećanjem temperature sve je veći broj onih molekula koji zauzimaju drugi položaj. Pri temperaturi 344 K otprilike polvina molekula nalazi se u prvom položaju a polovina u drugom. Ova dva položaja međusobno su povezana centrom inverzije na mestu (0,25; 0,0).

Izjednačavanje okupacionog faktora sa ova dva položaja vodi ka pojavljivanju centrosimetrične prostorne grupe. P2/a, tj. do pojave ogledalske ravni a. Tada dolazi do promene prostorne grupe, od P2 nastaje P2/a prostorna grupa.

Iako merenja intenziteta ukazuju na drastično smanjenje intenziteta refleksa 102, mi ipak nemamo kompletan dokaz o postojanju prostorne grupe P2, a, jer ne možemo snimiti kristal na temperaturama većim od 344 K, pošto na tim temperaturama može da se ošteti kristal, može doći do istapanja ili do njegove sublimacije, međutim brzi test refleksa na ovim temperaturama pokazuje odsustvo 102 refleksa.

Pre nego što prikazujemo pakovanje nisko- i visokotemperaturne faze upoznajmo se sa prostornim grupama ovih faza. Niskotemperaturna faza pripada prostornoj grupi $P2_1$. Ona je asimetrična porsotorna grupa, tj. nema centar inverzije.

> Simetrijski položaj: x, y, z \overline{x} , y+ $\frac{1}{2}$, \overline{z}

Uslovi pogašenja refleksa za ovu prostornu grupu:

hkl: nema uslova hOl: nema uslova OkO: 2n+1

Visokotemperaturna faza pripada primitivnoj simetričnoj prostornoj grupi P2 ⁄a. Simetrijski položaji su:

x, y, z; $\frac{1}{2} - x$, $\frac{1}{2} + y$, \overline{z} $\frac{1}{2} - x$, $\frac{1}{2} - y$, \overline{z} ;

Uslovi pogašenja za ovu prostornu grupu:

hkl: nema uslova hOl: 2n+1 OkO: 2n+1 hOO: 2n+1

Na slici 23 prikazano je pakovanje niksotemperaturne faze u slučaju da se koordinata y bira tako da je jednaka O (ili 1) za atom C(1), kao odgovarajući izbor koordinatnog početka za prostornu grupu P2. U tom slučaju podaci za sobnu temperaturu pokazuju da je drugi mogući položaj molekula povezan sa prvim preko centra inverzije u polžaju (0,25; 0; 0).

PHENANTHRENE C14-H10 P21/A

Slika 23. Pakovanje niksotemperaturne faze

Prisustvo centra simetrije dovodi do približno istog okupacionog faktora dva molekula koji odgovaraju centrosimetričnoj prostornoj grupi P2/a.

ł

Slika br. 24. Pakovanje viskoktemperaturne faze fenantrena

Na slikama 24.a, b, c prikazano je pakovanje visokotemperaturne faze. Projekcija ove faze prikazano je duž osa a, b i c.

Slika br. 24. Pakovanje viskoktemperaturne faze fenantrena

Na slikama 24.a, b, c prikazano je pakovanje visokotemperaturne faze. Projekcija ove faze prikazano je duž osa a, b i c.

Slika br. 24. Pakovanje viskoktemperaturne faze fenantrena

Na slikama 24.a, b, c prikazano je pakovanje visokotemperaturne faze. Projekcija ove faze prikazano je duž osa a, b i c.

38

PHENANTHRENE C14-H10 P21/A

ZAKLJUČAK

U ovom radu je proučena struktura organskog kristala fenantrena na sobnoj temperaturi i opisane su njene promene na povišenoj temperaturi.Iz literature i drugih naučnih radova (J. Kroupa i drugi, Solid State Communications 66/10, 1988.) bilo je poznato da kristal pokazuje strukturni fazn prelaz na oko 71 oC.

U uvodnom delu rada dat je teorijski opis faznih prelaza kao i fenomenološki model faznih prelaza drugog reda, u koje spada i ovaj.U eksperimentalnom delu dati su rezultati određivanja parametara elementarne čelije kristala fenantrena na sobnoj temperaturi (295 K) metodom difrakcije X zraka na monokristalu. Iz oscilatornih i Weisenbergovih snimaka dobijeni su sledeći parametri:

a = 8,49±0,02 Å b = 6,16±0,02 Å C = 9,45±0,03 Å
$$\beta$$
 = 97,7°

koji se dobro slažu sa vrednostima datim u ranijem radu o fenantrenu (M. I. Kay Acta Cryst., 1971., B27).

Pojava faznog prelaza kod fenantrena uočena je na osnovu merenja spontane polarizacije i dielektrične permeabilnosti na temperaturama iznad sobne (Kroupa). Na osnovu ovih rezultata rešena je i kristalna struktura fenantrena na povišenim temperaturama (Petriček i drugi, Acta Cryst., 1990., B46) i nađeno je da se radi o promeni simetrije prostorne grupe sa P2 na P2 $_1$, koja se može objasniti uvođenjem centra inverzije u okolini tačke (0,25%; 0; 0). Centar inverzije sve više je definisan ako se temperatura uzorka povećava. Može se reći da je na temperaturi 71 °C (344 K) podjednako verovatan položaj molekula dobijen rešavanjem na sobnoj temperaturi kao i položaj drugog molekula koji je sa prvim povezan datim centrom inverzije, što je opisano promenom okupacionog faktora (tabela 9.).

U završnom delu rada nacrtano je pakovanje molekula u prostornoj grupi P2 i P2 ⁄a korišćenjem programa Pluto.

Na osnovu teorijskog opisa strukturnog faznog prelaza i na osnovu rezultata difrakcionih merenja, posebno rezultata rešavanja struktura kristala na povišenoj temperaturi datih u radu Petriček, može se sa sigurnošću tvrditi da se u slučaju kristala fenantrena na temperaturi 344 K radi o faznom prelazu tipa uređeno-neuređeno.

40

ł

LITERATURA

J. Trotter, Acta Cryst. 1963/16, 605-608 str.

M. Kay i drugi, Acta Cryst. 1971. B27, 26-33. str.

J. Kroupa i drugi, Solid State Communications. 1988. 66/10 1003-1006 str.

V. Petriček i drugi, Acta Cryst. 1990. B46 830-832 str.

International Tables for X-Ray Crystallography. Vol. I, Kynoch Press, Birmingham, 1969.

- Sava Milošević, Osnovi fenomenološke termodinamike. UNiverzitet u Beogradu, 1979.
- Б. А. Струков, А. П. Леваняк, Физические основы сегнетоэлектрических явлений в кристаллах. Наука, Москва, 1983.
- L. D. Landau E. M. Lifsic, Statisztikus fizika I. Tankonyvkiado, Budapest, 1981.
- Charles Kittel, Uvod u fiziku čvrstog stanja. Savremena administracija, Beograd, 1970.