

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA FIZIKU

	LI MANGOM OPHIN PERGECOMINE OARVITET
TF340	1 4 CEII 2004
OPTAmme activ	5101
0603	9/408

Nemanja Manojlović

MOGUĆA EKSITONSKA STANJA MONOMOLEKULSKIH KRISTALNIH FILMOVA

- diplomski rad -

Novi Sad, 2004.

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET INSTITUT ZA FIZIKU

.

.

- DIPLOMSKI RAD -

MOGUĆA EKSITONSKA STANJA MONOMOLEKULSKIH KRISTALNIH FILMOVA

MENTOR

PROF.DR JOVAN ŠETRAJČIĆ

KANDIDAT

NEMANJA MANOJLOVIĆ

NOVI SAD, 2004. godine

Predgovor

Pored mehaničkih, električnih i magnetnih svojstava, supstancije se odlikuju i posebnim optičkim osobinama. Nauka o materijalima definiše specifična elementarna pobudjenja u kondenzovanom stanju — eksitone, kao nosioce dielektričnih, optičkih (apsorpcija, disperzija svetlosti, luminescencija), fotoelektričnih i drugih karakteristika (uglavnom) molekulskih kristala.

Savremena nauka istražuje mogućnost "pojačavanja" odredjenih (potrebnih) i "prigušivanje" drugih (nepotrebnih) fizičkih osobina. U tu svrhu su posebno ispitivani niskodimenzioni kristalni sistemi (ultratanki filmovi, superrešetke,te kvantne žice i tačke).

Današnji razvoj tehnike i tehnologije omogućava pravljenje ovakvih kvantnih sistema, ekperimentalni rezultati su prisutni i merna oprema može da ih prati, ali se u domenu teorijskih razmatranja (modelovanja i analitičkog rešavanja) veoma malo uradilo.

Najveća poteškoća je upravo u slabo i neadekvatno primenljivom matematičkom aparatu. U ovom radu se pokazuje da se metode diferencnog računa uz odgovarajuću podršku numeričkih proračuna mogu uspešno primeniti na iznalaženje zakona disperzije i analizu mogućih stanja Frenkelovih eksitona u molekulskim filmovima sa prostom kristalnom rešetkom.

Ovaj diplomski rad je uradjen pod mentorstvom prof. dr Jovana Šetrajčića.

Novi Sad, 06.09.2004.

Nemanja Manojlović

,

,

Sadržaj

1	Uvo	od	4
2	Eks	itoni u balku	5
	2.1	Grinove funkcije sistema	5
	2.2	Zakon disperzije	8
3	Eks	itoni u tankim filmovima	10
	3.1	Model monomolekulskog filma	10
	3.2	Zakon disperzije	12
	3.3	Spektralne težine eksitonskih stanja	14
4	Zak	ljučak	19
5	Doc	latak: Eksitoni u molekulskim kristalima	20
	5.1	Eksitoni u kristalima	20
	5.2	Frenkelovi eksitoni	22
6	Lite	pratura	24

1 Uvod

Interes za izučavanjem eksitonskog podsistema javio se zbog činjenice da su upravo eksitoni odgovorni za dielektrična, optička (apsorpcija, disperzija svetlosti, luminescencija), fotoelektrična i druga svojstva kristala. Proučavanje ponašanja eksitona u kristalnim sistemima kulminiralo je otkrićem lasera.

Poslednjih godina veoma su intenzivna teorijska istraživanja kvazidvodimenzionih eksitonskih sistema (nanostrukture), naročito tankih filmova¹, ne samo zbog fundamentalne informacije o dielektričnim osobinama materijala već i zbog njihove široke praktične primene (nanoelektronika i optoelektronika). Posebnost ovih struktura ogleda se u tome što prisustvo graničnih površina i pojava specijalnih perturbacionih uslova na tim granicama dovode do izmenjenih osobina ovih materijala i specifičnih pojava u odnosu na odgovarajuće masivne uzorke.

U ovom radu analiziran je uticaj prisustva granica film-strukture složene kristalne gradje na energetski spektar eksitona (eksitonski zakon disperzije). Posebna pažnja posvećena je pojavi lokalizovanih eksitonskih stanja. Dobijeni rezultati poredjeni su sa odgovarajućim rezultatima za idealne beskonačne kristale, da bi se na osnovu toga uočile najbitnije razlike ova dva sistema.

Pomenuta analiza vršena je korišćenjem metoda dvovremenskih temperaturski zavisnih Grinovih funkcija² koji se danas veoma često koristi u kvantnoj teoriji čvrstog stanja. Zahvaljujući ugradjenoj statistici, taj metod se uspešno primenjuje kod izračunavanja kako mikroskopskih tako i makroskopskih, ravnotežnih i neravnotežnih svojstava kristala. Primenjeni metod je odabran zbog pogodnosti koje nam nudi definicija polova Grinovih funkcija³.

Ovde je najpre vršena analiza idealnih beskonačnih kristalnih struktura sa primitivnom rešetkom, a zatim isti metod primenjen na film-strukture sa identičnom rešetkom.

¹Filmovi predstavljaju beskonačne strukture u svim kristalnim ravnima paralelnim dvema graničnim površima, koje su normalne na jedan prioritetan pravac, duž koga je posmatrani sistem ograničen.

²Postoje i drugi metodi pomoću kojih se ovaj problem može tretirati: metod Hajzenbergovih jednačina kretanja, metod malih perturbacija, metod talasnih funkcija i sl.

³Realni delovi polova Grinovih funkcija definišu energije elementarnih ekscitacija (pobudjenja) koje se javljaju u sistemu (odakle se dobija njihov zakon disperzije), dok su imaginarni delovi proporcioni recipročnim vrednostima vremena života tih ekscitacija.

2 Eksitoni u balku

Razmatramo svojstva eksitonskog podsistema idealnog beskonačnog kubnog kristala polazeći od standardnog eksitonskog hamiltonijana koji u konfiguracionom prostoru ima oblik:

$$H = H_0 + \sum_{\vec{n}} \Delta_{\vec{n}} P_{\vec{n}}^+ P_{\vec{n}} + \sum_{\vec{n},\vec{m}} X_{\vec{n}\vec{m}} P_{\vec{n}}^+ P_{\vec{m}} + \sum_{\vec{n},\vec{m}} Y_{\vec{n}\vec{m}} P_{\vec{n}}^+ P_{\vec{n}} P_{\vec{m}}^+ P_{\vec{m}} , \qquad (2.1)$$

gde su $P_{\vec{n}}^+$ i $P_{\vec{n}}$ - kreacioni i anihilacioni operatori eksitona na čvoru \vec{n} kristalne rešetke. Veličina $\Delta_{\vec{n}}$ - predstavlja energiju eksitona lokalizovanog na čvoru \vec{n} , a veličine $X_{\vec{n},\vec{m}}$ i $Y_{\vec{n},\vec{m}}$ - su matrični elementi eksitonskog transfera sa čvora \vec{n} na čvor \vec{m} .

2.1 Grinove funkcije sistema

Svojstva posmatranog eksitonskog sistema analiziraćemo pomoću komutatorske paulionske Grinove funkcije:

$$\Gamma_{\vec{n}\vec{m}}(t) = \left\langle \left\langle P_{\vec{n}}(t) \mid P_{\vec{m}}^+(0) \right\rangle \right\rangle = \Theta(t) \left\langle \left[P_{\vec{n}}(t) , P_{\vec{m}}^+(0) \right] \right\rangle , \qquad (2.2)$$

koja zadovoljava jednačinu kretanja:

$$i\hbar \frac{d}{dt} \Gamma_{\vec{n}\vec{m}}(t) = i\hbar \,\delta(t) \,\langle \left[P_{\vec{n}}(t) \,, \, P_{\vec{m}}^+(0) \right] \rangle + \\ + \,\Theta(t) \langle \left[P_{\vec{n}}(t) \,, H \right] \, P_{\vec{m}}^+(0) - P_{\vec{m}}^+(0) \left[P_{\vec{n}}(t) \,, H \right] \rangle \,.$$
(2.3)

Korišćenjem komutatorskih relacija za Pauli-operatore:

$$\begin{bmatrix} P_{\vec{n}}, P_{\vec{m}}^+ \end{bmatrix} = \begin{pmatrix} 1 - 2P_{\vec{n}}^+ P_{\vec{n}} \end{pmatrix} \, \delta_{\vec{n}\vec{m}} \, ; \quad \begin{bmatrix} P_{\vec{n}}, P_{\vec{m}} \end{bmatrix} = \begin{bmatrix} P_{\vec{n}}^+, P_{\vec{m}}^+ \end{bmatrix} = 0 \, ; \quad P_{\vec{n}}^2 = \begin{pmatrix} P_{\vec{n}}^+ \end{pmatrix}^2 = 0 \, , \quad (2.4)$$

dobijamo:

$$i\hbar \frac{d}{dt} \Gamma_{\vec{n}\vec{m}}(t) = i\hbar\delta(t)\delta_{\vec{n}\vec{m}} \left(1 - 2\langle P_{\vec{n}}^+ P_{\vec{n}}\rangle\right) + F_{\vec{n}} , \qquad (2.5)$$

gde su:

$$F_{\vec{n}} = \Theta(t) \langle \left[K_{\vec{n}}, P_{\vec{m}}^+(0) \right] \rangle = \sum_{i=0}^3 F_i(\vec{n}) ; \quad K_{\vec{n}} = \left[P_{\vec{n}}(t), H \right] = \sum_{i=0}^3 K_i(\vec{n}) .$$
 (2.6)

Pokazaćemo postupak izračunavanja gornjih veličina za, naprimer, i = 2 (ostali članovi sume dobijaju se analognim računanjem).

$$K_{2}(\vec{n}) = \left[P_{\vec{n}}(t), \sum_{\vec{k}\vec{l}} X_{\vec{k}\vec{l}} P_{\vec{k}}^{+} P_{\vec{l}} \right] = \sum_{\vec{k}\vec{l}} X_{\vec{k}\vec{l}} \left[P_{\vec{n}}, P_{\vec{k}}^{+} \right] P_{\vec{l}} = \sum_{\vec{k}\vec{l}} X_{\vec{k}\vec{l}} \left(1 - 2P_{\vec{n}}^{+} P_{\vec{n}} \right) \delta_{\vec{n}\vec{k}} P_{\vec{l}} = \sum_{\vec{l}} X_{\vec{n}\vec{l}} \left(1 - 2P_{\vec{n}}^{+} P_{\vec{n}} \right) P_{\vec{l}}.$$

Na osnovu toga računamo:

$$F_{2}(\vec{n}) = \Theta(t) \left\langle \left[\sum_{\vec{l}} X_{\vec{n}\vec{l}} \left(1 - 2P_{\vec{n}}^{+} P_{\vec{n}} \right) P_{\vec{l}}, P_{\vec{m}}^{+}(0) \right] \right\rangle = \sum_{\vec{l}} X_{\vec{n}\vec{l}} \Theta(t) \left(\left\langle \left[P_{\vec{l}}, P_{\vec{m}}^{+} \right] \right\rangle - 2 \left\langle \left[P_{\vec{n}}^{+} P_{\vec{n}} P_{\vec{l}}, P_{\vec{m}}^{+} \right] \right\rangle \right) = \sum_{\vec{l}} X_{\vec{n}\vec{l}} \Gamma_{\vec{l}\vec{m}}(t) - 2 \sum_{\vec{l}} X_{\vec{n}\vec{l}} T_{\vec{n}\vec{n}\vec{l}\vec{m}} ,$$

gde je $\mathcal{T}_{\vec{n}\vec{n}\vec{l}\vec{m}}(t) = \langle \langle P_{\vec{n}}^+(t)P_{\vec{n}}(t)P_{\vec{l}}(t) | P_{\vec{m}}^+(0) \rangle \rangle$ - paulionska Grinova funkcija višeg reda. Zamenom izračunatih veličina u (2.5) konačno dobijamo jednačinu kretanja za paulionsku Grinovu funkciju:

$$i\hbar \frac{d}{dt} \Gamma_{\vec{n}\vec{m}}(t) = i\hbar\delta(t)\delta_{\vec{n}\vec{m}} \left(1 - 2\langle P_{\vec{n}}^+ P_{\vec{n}}\rangle\right) + \Delta_{\vec{n}} \Gamma_{\vec{n}\vec{m}}(t) + \sum_{\vec{l}} X_{\vec{n}\vec{l}} \Gamma_{\vec{l}\vec{m}}(t) - 2\sum_{\vec{l}} X_{\vec{n}\vec{l}} \mathcal{T}_{\vec{n}\vec{n}\vec{l}\vec{m}}(t) + 2\sum_{\vec{l}} Y_{\vec{n}\vec{l}} \mathcal{T}_{\vec{l}\vec{l}\vec{n}\vec{m}}(t) .$$
(2.7)

Osnovnu teškoću teorije eksitona predstavlja činjenica da Pauli-operatori P^+ i P nisu ni Boze ni Fermi operatori, nego nekakav hibrid jednih i drugih sa kinematikom (2.4), koja je za jedan čvor fermionska, a za različite čvorove bozonska. Za precizne analize eksitonskih sistema, koje obuhvataju efekte medjueksitonske interakcije nije dovoljno samo zameniti Pauli-operatore sa Boze-operatorima. Zbog toga se u hamiltonijanu (2.1), Paulioperatori zamenjuju svojim egzaktnim bozonskim reprezentima:

$$P = \left[\sum_{\nu=0}^{\infty} \frac{(-2)^{\nu}}{(1+\nu)!} (B^{+})^{\nu} B^{\nu}\right]^{\frac{1}{2}} B ; \quad P^{+} = B^{+} \left[\sum_{\nu=0}^{\infty} \frac{(-2)^{\nu}}{(1+\nu)!} (B^{+})^{\nu} B^{\nu}\right]^{\frac{1}{2}} ;$$
$$P^{+} P = \sum_{\nu=0}^{\infty} \frac{(-2)^{\nu}}{(1+\nu)!} (B^{+})^{\nu+1} B^{\nu+1} . \tag{2.8}$$

Paulionske Grinove funkcije iz jednačine (2.7) mogu se izraziti preko odgovarajućih bozonskih Grinovih funkcija na osnovu aproksimativnih izraza koji slede iz (2.8):

$$P \approx B - B^+ BB$$
; $P^+ \approx B^+ - B^+ B^+ B$; $P^+ P \approx B^+ B - B^+ B^+ BB$. (2.9)

Na taj način dobijamo:

$$\Gamma_{\vec{n}\vec{m}}(t) = \langle \langle P_{\vec{n}}(t) | P_{\vec{m}}^{+}(0) \rangle \rangle = \\
= \langle \langle B_{\vec{n}}(t) | B_{\vec{m}}^{+}(0) \rangle \rangle - \langle \langle B_{\vec{n}}(t) | B_{\vec{m}}^{+}(0) B_{\vec{m}}^{+}(0) B_{\vec{m}}(0) \rangle \rangle - (2.10) \\
- \langle \langle B_{\vec{n}}^{+}(t) B_{\vec{n}}(t) B_{\vec{n}}(t) | B_{\vec{m}}^{+}(0) \rangle \rangle + \langle \langle B_{\vec{n}}^{+}(t) B_{\vec{n}}(t) B_{\vec{n}}(t) | B_{\vec{m}}^{+}(0) B_{\vec{m}}^{+}(0) B_{\vec{m}}(0) \rangle \rangle .$$

Dekuplovanjem viših Grinovih funkcija pomoću poznatih Boze-komutacionih relacija:

$$\left[B_{\vec{k}}, B_{\vec{l}}^{+}\right] = \delta_{\vec{k}\vec{l}}; \quad \left[B_{\vec{k}}, B_{\vec{l}}\right] = \left[B_{\vec{k}}^{+}, B_{\vec{l}}^{+}\right] = 0, \qquad (2.11)$$

članovi u izrazu (2.10) postaju:

- prvi član
$$\langle \langle B_{\vec{n}}(t) | B^+_{\vec{m}}(0) \rangle \rangle = G_{\vec{n}\vec{m}}(t) ,$$
 (2.12)

gde je $G_{\vec{n}\vec{m}}(t)$ retardovana Grinova funkcija, - drugi član $\langle \langle B_{\vec{n}}(t) | B_{\vec{m}}^+(0) B_{\vec{m}}^+(0) B_{\vec{m}}(0) \rangle \rangle = \Theta(t) \langle \left[B_{\vec{n}}, B_{\vec{m}}^+ B_{\vec{m}}^+ B_{\vec{m}} \right] \rangle =$ (2.13) $= \Theta(t) \left(\langle \left(\delta_{\vec{n}\vec{m}} + B_{\vec{m}}^+ B_{\vec{n}} \right) B_{\vec{m}}^+ B_{\vec{m}} \rangle - \langle B_{\vec{m}}^+ B_{\vec{m}}^+ B_{\vec{m}} B_{\vec{n}} \rangle \right) = 2G_{\vec{n}\vec{m}}(t) \mathcal{N}_0 ,$

gde \mathcal{N}_0 predstavlja koncetraciju eksitona:

$$\mathcal{N}_0 = \langle B^+ B \rangle = \frac{1}{N} \sum_{\vec{k}} \left(e^{\frac{\hbar \omega_0(\vec{k})}{\theta}} - 1 \right)^{-1} , \qquad (2.14)$$

- treći član
$$\langle \langle B_{\vec{n}}^+(t)B_{\vec{n}}(t)|B_{\vec{n}}^+(0)\rangle \rangle = 2G_{\vec{n}\vec{m}}(t)\mathcal{N}_0$$
, (2.15)

- četvrti član
$$\langle \langle B_{\vec{n}}^+(t)B_{\vec{n}}(t)B_{\vec{n}}(t) | B_{\vec{m}}^+(0)B_{\vec{m}}^+(0)B_{\vec{m}}(0) \rangle \rangle = 2R_{\vec{n}\vec{m}}(t) G_{\vec{n}\vec{m}}^2(t) ,$$
 (2.16)

gde je $R_{\vec{n}\vec{m}}(t)$ avansovana Grinova funkcija:

$$R_{\vec{n}\vec{m}}(t) = \langle \langle B_{\vec{n}}^+(t) \mid B_{\vec{m}}(0) \rangle \rangle .$$
(2.17)

Kada izraze (2.12), (2.13), (2.15) i (2.16) zamenimo u izraz (2.10) dobijamo konačan izraz za paulionsku Grinovu funkciju izraženu preko bozonskih Grinovih funkcija:

$$\Gamma_{\vec{n}\vec{m}}(t) = (1 - 4 \mathcal{N}_0) G_{\vec{n}\vec{m}}(t) + 2R_{\vec{n}\vec{m}}(t)G_{\vec{n}\vec{m}}^2(t) + O(\mathcal{N}^2) .$$
(2.18)

Za paulionske Grinove funkcije višeg reda $(\mathcal{T}_{\vec{a}\vec{a}\vec{b}\vec{c}})$ na levoj strani Grinove funkcije prosto zamenimo Pauli operatore sa Boze-operatorima, a na desnoj strani se izvrši aproksimacija (2.9). Na taj način sledi:

$$\begin{aligned} \mathcal{T}_{\vec{a}\vec{a}\vec{b}\vec{c}} &= \langle \langle P_{\vec{a}}^{+}(t)P_{\vec{a}}(t)P_{\vec{b}}(t) \mid P_{\vec{c}}^{+}(0) \rangle \rangle = \langle \langle B_{\vec{a}}^{+}(t)B_{\vec{a}}(t)B_{\vec{b}}(t) \mid B_{\vec{c}}^{+}(0) \rangle \rangle - \\ &- \langle \langle B_{\vec{a}}^{+}(t)B_{\vec{a}}(t)B_{\vec{b}}(t) \mid B_{\vec{c}}^{+}(0)B_{\vec{c}}^{+}(0)B_{\vec{c}}(0) \rangle \rangle = \\ &= \mathcal{N}_{0}G_{\vec{b}\vec{c}}(t) + \mathcal{N}_{\vec{b}\vec{a}}G_{\vec{a}\vec{c}}(t) - 2R_{\vec{a}\vec{c}}(t)G_{\vec{b}\vec{c}}(t)G_{\vec{a}\vec{c}}(t) + O(\mathcal{N}_{0}^{2}) . \end{aligned}$$
(2.19)

Izraze za $\Gamma_{\vec{n}\vec{m}}$, $\mathcal{T}_{\vec{n}\vec{n}\vec{l}\vec{m}}$, $\mathcal{T}_{\vec{l}\vec{l}\vec{n}\vec{m}}$, koji su izraženi preko bozonskih Grinovih funkcija, ubacimo u jednačinu kretanja za paulionsku Grinovu funkciju (2.7):

$$i\hbar \frac{d}{dt} \left[(1 - 4 \mathcal{N}_{0}) G_{\vec{n}\vec{m}}(t) + 2R_{\vec{n}\vec{m}}(t)G_{\vec{n}\vec{m}}^{2}(t) \right] = i\hbar\delta(t)\delta_{\vec{n}\vec{m}} \left(1 - 2\langle P_{\vec{n}}^{+}P_{\vec{n}} \rangle \right) + + \Delta_{\vec{n}} \left[(1 - 4\mathcal{N}_{0})G_{\vec{n}\vec{m}}(t) + 2R_{\vec{n}\vec{m}}(t)G_{\vec{n}\vec{m}}^{2}(t) \right] + + \sum_{\vec{l}} X_{\vec{n}\vec{l}} \left[(1 - 4\mathcal{N}_{0})G_{\vec{l}\vec{m}}(t) + 2R_{\vec{l}\vec{m}}(t)G_{\vec{l}\vec{m}}^{2}(t) \right] -$$
(2.20)
$$- 2\sum_{\vec{l}} X_{\vec{n}\vec{l}} \left[\mathcal{N}_{0}G_{\vec{l}\vec{m}}(t) + \mathcal{N}_{\vec{l}\vec{n}}G_{\vec{n}\vec{m}}(t) - 2R_{\vec{n}\vec{m}}(t)G_{\vec{l}\vec{m}}(t)G_{\vec{n}\vec{m}}(t) \right] + + 2\sum_{\vec{l}} Y_{\vec{n}\vec{l}} \left[\mathcal{N}_{0}G_{\vec{n}\vec{m}}(t) + \mathcal{N}_{\vec{n}\vec{l}}G_{\vec{l}\vec{m}}(t) - 2R_{\vec{l}\vec{m}}(t)G_{\vec{n}\vec{m}}(t)G_{\vec{l}\vec{m}}(t) \right] .$$

Gornju jednačinu ćemo rešavati u najnižoj aproksimaciji:

$$\mathcal{N}_0 \approx 0$$
; $\mathcal{N}_{\vec{a}\vec{b}} \approx 0$; $P \approx B$; $P^+ \approx B^+$; $P^+P \approx B^+B$,

takodje je:

$$\langle P_{\vec{n}}^+ P_{\vec{n}} \rangle \approx \langle B_{\vec{n}}^+ B_{\vec{n}} \rangle = \mathcal{N}_0 \approx 0$$

i proizvodi Grinovih funkcija:

$$G\cdot G\approx 0\;;\quad G\cdot R\approx 0\;.$$

Dekuplovana jednačina je tada:

$$i\hbar \frac{d}{dt}G_{\vec{n}\vec{m}}(t) = i\hbar\delta(t)\delta_{\vec{n}\vec{m}} + \Delta_{\vec{n}}G_{\vec{n}\vec{m}}(t) + \sum_{\vec{l}}X_{\vec{n}\vec{l}}G_{\vec{l}\vec{m}}(t) . \qquad (2.21)$$

2.2 Zakon disperzije

Vršimo vremenske Furije transformacije tipa:

$$\delta(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\omega \ e^{-i\omega t} ; \quad f_{\vec{a}\vec{b}}(t) = \int_{-\infty}^{+\infty} d\omega f_{\vec{a}\vec{b}}(\omega) \ e^{-i\omega t} , \qquad (2.22)$$

nakon čega dobijamo:

$$\hbar\omega G_{\vec{n}\vec{m}}(\omega) = \frac{i\hbar}{2\pi} \delta_{\vec{n}\vec{m}} + \Delta_{\vec{n}} G_{\vec{n}\vec{m}}(\omega) + \sum_{\vec{l}} X_{\vec{n}\vec{l}} G_{\vec{l}\vec{m}}(\omega) . \qquad (2.23)$$

Korišćenjem aproksimacije najbližih suseda ($\vec{l} \rightarrow \vec{n} \pm \vec{\lambda}_i$):

 $\vec{n} \pm \vec{\lambda}_1 = n_x \pm 1, n_y, n_z$; $\vec{n} \pm \vec{\lambda}_2 = n_x, n_y \pm 1, n_z$; $\vec{n} \pm \vec{\lambda}_3 = n_x, n_y, n_z \pm 1$, gornja jednačina prelazi u:

$$\hbar\omega G_{n_x n_y n_z, m_x m_y m_z}(\omega) = \frac{i\hbar}{2\pi} \delta_{n_x n_y n_z, m_x m_y m_z} + \Delta_{n_x n_y n_z} G_{n_x n_y n_z, m_x m_y m_z}(\omega) + \qquad (2.24)$$

$$+ \left[X_{n_{x}n_{y}n_{z};n_{x}+1,n_{y}n_{z}}G_{n_{x}+1,n_{y}n_{z};m_{x}m_{y}m_{z}}(\omega) + X_{n_{x}n_{y}n_{z};n_{x}-1,n_{y}n_{z}}G_{n_{x}-1,n_{y}n_{z};m_{x}m_{y}m_{z}}(\omega) + X_{n_{x}n_{y}n_{z};n_{x}n_{y}-1,n_{z}}G_{n_{x}n_{y}-1,n_{z};m_{x}m_{y}m_{z}}(\omega) + X_{n_{x}n_{y}n_{z};n_{x}n_{y}-1,n_{z};m_{x}m_{y}m_{z}}(\omega) + X_{n_{x}n_{y}n_{y}n_{z};n_{x}n_{y}n_{z};n_{x}n_{y}m_{z}}(\omega) + X_{n_{x}n_{y}n_{y}n_{z};n_{x}n_{y}n_{y}n_{z};n_{x}n_{y}m_{z}}(\omega) + X_{n_{x}n_{y}n_{x};n_{x}n_{y}n_{y}n_{z};n_{x}n_{y}n_{y}n_{z};n_{x}n_{y}n_{y}n_{z};n_{x}n_{y}n_{y}n_{z};n_{x}n_{y}n_{y}n_{z};n_{x}n_{y}n_{y}n_{z};n_{x}n_{y}n_{y}n_{z};n_{x}n_{y}n_{y}n_{z};n_{x}n_{y}n_{y}n_{z};n_{x}n_{y}n_{y}n_{z}$$

+
$$X_{n_x n_y n_z; n_x n_y n_z + 1} G_{n_x n_y n_z + 1; m_x m_y m_z}(\omega) + X_{n_x n_y n_z; n_x n_y n_z - 1} G_{n_x n_y n_z - 1; m_x m_y m_z}(\omega)$$

Pošto je u pitanju neograničen kristal koristimo potpunu prostornu Furije-transformaciju:

$$\delta_{\vec{a}\vec{b}} = \frac{1}{N} \sum_{\vec{k}} e^{i\vec{k}(\vec{a}-\vec{b})}; \quad f_{\vec{a}\vec{b}}(\omega) = \frac{1}{N} \sum_{\vec{k}} f_{\vec{k}}(\omega) e^{i\vec{k}(\vec{a}-\vec{b})}$$
(2.25)

i uzimajući u obzir da posmatramo idealnu kubnu strukturu gde je energija eksitona na svakom čvoru ista, kao što je i transfer energije medju susedima isti:

$$\Delta_{ec{a}} \equiv \Delta \; ; \quad X_{ec{a}, ec{a} \pm ec{\lambda}_{et{i}}} \equiv X_{et{i}} \; ; \quad et{i} \in \{x, y, z\} \; ,$$

jednačina (2.24) prelazi u:

$$\begin{split} &\hbar\omega\frac{1}{N}\sum_{\vec{k}}G_{\vec{k}}(\omega)\ \mathrm{e}^{i\vec{k}(\vec{n}-\vec{m})} = \frac{i\hbar}{2\pi}\frac{1}{N}\sum_{\vec{k}}\ \mathrm{e}^{i\vec{k}(\vec{n}-\vec{m})} + \Delta\frac{1}{N}\sum_{\vec{k}}G_{\vec{k}}(\omega)\ \mathrm{e}^{i\vec{k}(\vec{n}-\vec{m})} + \\ &+ \left[X_x\frac{1}{N}\sum_{\vec{k}}G_{\vec{k}}(\omega)\ \mathrm{e}^{i(k_x\vec{e}_x+k_y\vec{e}_y+k_z\vec{e}_z)\{a_x[(n_x+1)-m_x]\vec{e}_x+a_y(n_y-m_y)\vec{e}_y+a_z(n_z-m_z)\vec{e}_z\}} + \\ &+ X_x\frac{1}{N}\sum_{\vec{k}}G_{\vec{k}}(\omega)\ \mathrm{e}^{i(k_x\vec{e}_x+k_y\vec{e}_y+k_z\vec{e}_z)\{a_x[(n_x-1)-m_x]\vec{e}_x+a_y(n_y-m_y)\vec{e}_y+a_z(n_z-m_z)\vec{e}_z\}} + \\ &+ X_y\frac{1}{N}\sum_{\vec{k}}G_{\vec{k}}(\omega)\ \mathrm{e}^{i(k_x\vec{e}_x+k_y\vec{e}_y+k_z\vec{e}_z)\{a_x(n_x-m_x)\vec{e}_x+a_y[(n_y+1)-m_y]\vec{e}_y+a_z(n_z-m_z)\vec{e}_z\}} + \\ &+ X_y\frac{1}{N}\sum_{\vec{k}}G_{\vec{k}}(\omega)\ \mathrm{e}^{i(k_x\vec{e}_x+k_y\vec{e}_y+k_z\vec{e}_z)\{a_x(n_x-m_x)\vec{e}_x+a_y[(n_y-1)-m_y]\vec{e}_y+a_z(n_z-m_z)\vec{e}_z\}} + \\ &+ X_z\frac{1}{N}\sum_{\vec{k}}G_{\vec{k}}(\omega)\ \mathrm{e}^{i(k_x\vec{e}_x+k_y\vec{e}_y+k_z\vec{e}_z)\{a_x(n_x-m_x)\vec{e}_x+a_y(n_y-m_y)\vec{e}_y+a_z[(n_z+1)-m_z]\vec{e}_z\}} + \\ &+ X_z\frac{1}{N}\sum_{\vec{k}}G_{\vec{k}}(\omega)\ \mathrm{e}^{i(k_x\vec{e}_x+k_y\vec{e}_y+k_z\vec{e}_z)\{a_x(n_x-m_x)\vec{e}_x+a_y(n_y-m_y)\vec{e}_y+a_z[(n_z-1)-m_z]\vec{e}_z\}} + \\ &+ X_z\frac{1}{N}\sum_{\vec{k}}G_{\vec{k}}(\omega)\ \mathrm{e}^{i(k_x\vec{e}_x+k_y\vec{e}_y+k_z\vec{e}_z)\{a_x(n_x-m_x)\vec{e}_x+a_y(n_y-m_y)\vec{e}_y+a_z[(n_z-1)-m_z]\vec{e}_z\}} + \\ &+ X_z\frac{1}{N}\sum_{\vec{k}}G_{\vec{k}}(\omega)\ \mathrm{e}^{i(k_x\vec{e}_x+k_y\vec{e}_y+k_z\vec{e}_z)\{a_x(n_x-m_x)\vec{e}_x+a_y(n_y-m_y)\vec{e}_y+a_z[(n_z-1)-m_z]\vec{e}_z\}} \end{bmatrix} \end{split}$$

Sredjivanjem gornje jednačine dobijamo:

$$\hbar\omega G_{\vec{k}}(\omega) = \frac{i\hbar}{2\pi} + \Delta G_{\vec{k}}(\omega) + 2\left[X_x \cos a_x k_x + X_y \cos a_y k_y + X_z \cos a_z k_z\right] G_{\vec{k}}(\omega) . \quad (2.27)$$

Iz ove jednačine možemo izraziti Grinovu funkciju:

$$G_{\vec{k}}(\omega) = \frac{i\hbar}{2\pi} \frac{1}{\hbar\omega - \Delta - 2\left[X_x \cos a_x k_x + X_y \cos a_y k_y + X_z \cos a_z k_z\right]} . \tag{2.28}$$

Energiju eksitona u balku dobijamo ako izračunamo realni deo pola Grinove funkcije:

$$\hbar\omega = \Delta + 2\left[X_x \cos a_x k_x + X_y \cos a_y k_y + X_z \cos a_z k_z\right] . \tag{2.29}$$

Radi lakšeg poredenja sa zakonom disperzije eksitona u filmu, ovaj izraz ćemo napisati u jednostavnijoj ($X_x = X_y = X_z \equiv -|X|$; $a_x = a_y = a_z \equiv a$) i bezdimenzionoj formi:

$$\mathcal{E}_{\vec{k}} \equiv \frac{\hbar\omega - \Delta}{|X|} = \mathcal{F}_{xy} + \mathcal{G}_z , \qquad (2.30)$$

$$\mathcal{F}_{xy} = -2\left(\cos ak_x + \cos ak_y\right) ; \quad \mathcal{G}_z = -2\cos ak_z .$$

Ovaj zakon disperzije prikazan je na (slika 2.1), u stručnoj literaturi, uobičajen način:

$$\mathcal{E}_{ec{k}} = \mathcal{E}_{z}\left(\mathcal{F}_{xy}
ight) \; ,$$

dakle u funkciji dvodimenzione (xy) veličine \mathcal{F} . Vidi se da za $ak_i \in [0, +\pi], i = x, y, z$ (prva Briluenova zona), ove veličine leže u intervalima:

$$\mathcal{F}_{xy} \in [-4, +4]; \quad \mathcal{G}_z \in [-2, +2],$$

pa je $\mathcal{E}_{\vec{k}} \in [-6, +6].$

Uočljivo je postojanje zone dozvoljenih (kontinualnih) energetskih nivoa.

U prethodnoj glavi izračunate su energije eksitona, odnosno njihov zakon disperzije u neograničenim kristalnim strukturama. Primenjujući isti pristup ovde ćemo odrediti iste karakteristike ovih pobudjenja, ali u kristalnim film-strukturama.

Za razliku od idealnih beskonačnih struktura, realni kristali ne poseduju osobinu translacione invarijantnosti. Postojanje izvesnih graničnih uslova, jedan je od uzroka narušenja simetrije. Sistemi koji imaju dve paralelne granične površine nazivaju se filmovima. Posmatra se idealni tanki film kubne kristalne strukture, načinjen na substratu nekim tehnološkim postupkom (naparavanjem, raspršivanjem i sl.). Pojam idealni ovde se koristi u smislu nepostojanja narušenja unutrašnje kristalne strukture (bez prisustva defekata, primesa i sl.), a ne u smislu prostorne neograničenosti i nepostojanja narušenja translacione invarijantnosti relevantnih energetskih parametara sistema. Dimenzije filma su takve da je on u XY ravnima beskonačan, a u z-pravcima ima konačnu debljinu (L). Znači da ovaj film poseduje dve beskonačne granične površi paralelne XY-ravnima i to za: z = 0 i z = L

3.1 Model monomolekulskog filma

Film-struktura sa primitivnom kristalnom rešetkom (jedan molekul po elementarnoj ćeliji) sa naznačenim graničnim parametrima prikazana je na slici 3.1.

Slika 3.1: Presek modela monomolekulskog kristalnog filma u X(Y)Z ravni

Za izračunavanje eksitonskih energija u ovom filmu polazimo od jednačine (2.24) gde, zbog izmenjenih uslova na granicama posmatrane strukture, uzimamo da su perturbacione energije eksitona u graničnim $(n_z = 0; n_z = N)$ i njima susednim ravnima $(n_z = 1; n_z = N - 1)$:

$$\Delta_{\vec{n}} \equiv \Delta \left(1 + \epsilon_0 \delta_{n_z,0} + \epsilon_N \delta_{n_z,N}\right) ;$$

$$X_{\vec{n},\vec{n}+\vec{\lambda}_z} \equiv X_z \left(1 + x_0 \delta_{n_z,0} + x_N \delta_{n_z,N-1}\right) ;$$

$$X_{\vec{n},\vec{n}-\vec{\lambda}_z} \equiv X_z \left(1 + x_0 \delta_{n_z,1} + x_N \delta_{n_z,N}\right) .$$
(3.1)

Veličine parametara ϵ definišu promenu energije izolovanog molekula na graničnim površima, a x perturbaciju, odnosno promenu energije transfera eksitona iz prvih unutrašnjih ka graničnim površima, tj. u graničnim slojevima duž z-pravca.

Pošto su granične površi filma uzete normalno na z-pravac, indeks sloja n_z u (3.1) uzima vrednosti $n_z = 0, 1, 2, \ldots, N$, gde je $N \in [2, 20]$ kod ultratankih filmova. Indeksi n_x i n_y , koji odredjuju položaj molekula u svakom sloju mogu imati proizvoljne celobrojne vrednosti (praktično, od $-\infty$, do $+\infty$).

Zbog prostorne ograničenosti filma u z-pravcu može da se koristi samo delimična prostorna Furije-transformacija:

$$\delta_{\vec{n}\vec{m}} = \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x - m_x)} e^{ik_y a_y (n_y - m_y)} \delta_{n_z m_z} ;$$

$$f_{\vec{n}\vec{m}}(\omega) = \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x - m_x)} e^{ik_y a_y (n_y - m_y)} f_{n_z m_z} (k_x, k_y, \omega) .$$
(3.2)

Prilikom delimične Furije-transformacije jednačine (2.24), radi kraćeg pisanja zgodno je uvesti oznake $G_{n_z m_z}(k_x, k_y, \omega) \equiv G_{n_z m_z}$. Na taj način se dobija:

$$\begin{split} &\hbar\omega \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x - m_x)} e^{ik_y a_y (n_y - m_y)} G_{n_z m_z} = \\ &= \frac{i\hbar}{2\pi} \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x - m_x)} e^{ik_y a_y (n_y - m_y)} \delta_{n_z m_z} + \\ &+ \Delta \left(1 + \epsilon_0 \delta_{n_z,0} + \epsilon_N \delta_{n_z,N} \right) \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x - m_x)} e^{ik_y a_y (n_y - m_y)} G_{n_z, m_z} + \\ &+ X_x \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x + 1 - m_x)} e^{ik_y a_y (n_y - m_y)} G_{n_z, m_z} + \\ &+ X_x \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x - 1 - m_x)} e^{ik_y a_y (n_y - m_y)} G_{n_z, m_z} + \\ &+ X_y \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x - 1 - m_x)} e^{ik_y a_y (n_y - m_y)} G_{n_z, m_z} + \\ &+ X_y \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x - 1 - m_x)} e^{ik_y a_y (n_y - 1 - m_y)} G_{n_z, m_z} + \\ &+ X_y \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x - m_x)} e^{ik_y a_y (n_y - 1 - m_y)} G_{n_z, m_z} + \\ &+ X_z \left(1 + x_0 \delta_{n_z,0} + x_N \delta_{n_z,N-1} \right) \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x - m_x)} e^{ik_y a_y (n_y - 1 - m_y)} G_{n_z, m_z} + \\ &+ X_z \left(1 + x_0 \delta_{n_z,0} + x_N \delta_{n_z,N-1} \right) \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x - m_x)} e^{ik_y a_y (n_y - 1 - m_y)} G_{n_z, m_z} + \\ &+ X_z \left(1 + x_0 \delta_{n_z,0} + x_N \delta_{n_z,N-1} \right) \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x - m_x)} e^{ik_y a_y (n_y - m_y)} G_{n_z - 1, m_z} + \\ &+ X_z \left(1 + x_0 \delta_{n_z,1} + x_N \delta_{n_z,N} \right) \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x - m_x)} e^{ik_y a_y (n_y - m_y)} G_{n_z - 1, m_z} + \\ &+ X_z \left(1 + x_0 \delta_{n_z,1} + x_N \delta_{n_z,N} \right) \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x - m_x)} e^{ik_y a_y (n_y - m_y)} G_{n_z - 1, m_z} + \\ &+ X_z \left(1 + x_0 \delta_{n_z,1} + x_N \delta_{n_z,N} \right) \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x - m_x)} e^{ik_y a_y (n_y - m_y)} G_{n_z - 1, m_z} + \\ &+ X_z \left(1 + x_0 \delta_{n_z,1} + x_N \delta_{n_z,N} \right) \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x - m_x)} e^{ik_y a_y (n_y - m_y)} G_{n_z - 1, m_z} + \\ &+ X_z \left(1 + x_0 \delta_{n_z,1} + x_N \delta_{n_z,N} \right) \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x - m_x)} e^{ik_x a_x (n_x - m_x)} e^{ik_y a_y (n_y - m_y)} G_{n_z - 1, m_z}$$

Daljim sredjivanjem se dobija:

$$G_{n_{z}m_{z}}\left[-\frac{\hbar\omega - \Delta - 2\left(X_{x}\cos a_{x}k_{x} + X_{y}\cos a_{y}k_{y}\right)}{X_{z}} + \frac{\Delta}{X_{z}}\left(\epsilon_{0}\delta_{n_{z},0} + \epsilon_{N}\delta_{n_{z},N}\right)\right] + G_{n_{z}+1,m_{z}}\left(1 + x_{0}\delta_{n_{z},0} + x_{N}\delta_{n_{z},N-1}\right) + G_{n_{z}-1,m_{z}}\left(1 + x_{0}\delta_{n_{z},1} + x_{N}\delta_{n_{z},N}\right) = -\frac{i\hbar}{2\pi X_{z}}\delta_{n_{z},m_{z}},$$
(3.4)

a uz $X_x = X_y = X_z \equiv -|X|$ i $a_x = a_y = a_z \equiv a$:

$$\begin{array}{lll}
G_{n_{z}m_{z}}\left[\varrho - \frac{\Delta}{|X|} \left(\epsilon_{0}\delta_{n_{z},0} + \epsilon_{N}\delta_{n_{z},N}\right)\right] & + \\
+G_{n_{z}+1,m_{z}} \left(1 + x_{0}\delta_{n_{z},0} + x_{N}\delta_{n_{z},N-1}\right) & + \\
+G_{n_{z}-1,m_{z}} \left(1 + x_{0}\delta_{n_{z},1} + x_{N}\delta_{n_{z},N}\right) &= \frac{i\hbar}{2\pi |X|}\delta_{n_{z},m_{z}},
\end{array}$$
(3.5)

gde je uvedena smena:

$$\varrho = \frac{\hbar\omega - \Delta}{|X|} + 2\left(\cos ak_x + \cos ak_y\right) . \tag{3.6}$$

Jednačina (3.5) predstavlja ustvari sistem od N + 1 nehomogenih algebarsko-diferencnih jednačina sa (početno-graničnim) uslovima: $G_{n_z,m_z} = 0$, za $n_z < 0$ i $n_z > N + 1$.

3.2 Zakon disperzije

U cilju nalaženja eksitonskih energija potrebni su nam polovi Grinovih funkcija, koji se dobijaju kada iste teže beskonačnosti, što znači da mora biti:

$$\mathcal{D}_{N+1} \equiv 0 , \qquad (3.7)$$

gde je determinanta sistema (3.5) data u sledećem obliku:

$$\mathcal{D}_{N+1}(\varrho) = \begin{vmatrix} \varrho - \frac{\Delta}{|X|} \epsilon_0 & 1 + x_0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 1 + x_0 & \varrho & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 1 & \varrho & 1 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & \varrho & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & \varrho & 1 + x_N \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 + x_N & \varrho - \frac{\Delta}{|X|} \epsilon_N \end{vmatrix}$$
(3.8)

Uslov (3.7) rešavaćemo za slučaj perturbovanog monomolekulskog filma sa pet kristalnih ravni duž z-pravca (N = 4). Granični parametri će biti menjani u sledećim intervalima: { ϵ_0, ϵ_N } $\in [-0.3, +0.3]$ (promena energije Δ na graničnim ravnima – do 30 % i to na manje i na više), { x_0, x_N } $\in [-0.8, +2.0]$ (promena energije transfera X u graničnim slojevima – do 80 % naniže i do 200 % naviše)⁴.

⁴Energije transfera u graničnim slojevima (X) ne mogu se smanjiti više od 99,99 %, jer i u tom sličaju praktično ne postoje interakcije molekula sa graničnih i njima susednih unutar-filmskih ravni. Ukoliko bi se uzelo $\{x_0, x_N\} \leq -1$, onda bi se karakter medjumolekulske interakcije promenio (privlacna \Leftrightarrow odbojna). Ukoliko bi se uzelo $\{x_0, x_N\} \geq 2$, onda bi se jako narušio odnos velivina Δ i X, a to bi značilo da se promenio i tip molekulskog kristala u kome se formiraju Frenkelovi eksitoni i koji se ovde razmatraju.

13

Proračuni su, zbog nemogućnosti nalaženja analitičkog rešenja, radjeni uz pomoć programskog paketa MATHEMATICA 4.0, a grafički obradjeni pomoću COREL 9.0 i tekstualno sredjeni u MIKTEX 2e. Rezultati ovih proračuna su prikazani na slikama 3.2 i 3.3. Kao i kod odgovarajućih balk-kristalnih struktura, i ovde se na ordinatama nalaze vrednosti redukovanih energija $\mathcal{E}_{\nu}^{*} = \frac{\hbar\omega - \Delta}{|X|} \equiv \varrho_{\nu} - \mathcal{F}_{xy}^{*}; \quad \nu = 1, 2, 3 \dots, N+1;$ u zavisnosti od bezdimenzione funkcije $\mathcal{F}_{xy}^{*} \equiv 2 (\cos ak_{x} + \cos ak_{y})$ na apscisama grafika.

Slika 3.2: Eksitonske energije monomolekulskog filma

Na slici 3.2 prikazane su redukovane energije eksitona petoslojnog monomolekulskog filma (punim linijama) u zavisnosti od dvodimenzione funkcije pri čemu se menja energetska perturbacija x energetskog transfera molekula X u graničnom sloju – kada se molekul prebacuje iz graničnih ravni ($n_z = 0$ i $n_z = N$) u njima susedne ($n_z = 1$ i $n_z = N - 1$), tj. $X_{0,N} = (1 + x_{0,N}) X$. Pošto je promena ovih spektara izmenom parametra x_0 ista kao i izmenom x_N ovde je data samo zavisnost od x_0 . Ostali granični perturbacioni parametri su bili nepromenljivi (nulte vrednosti) da bi se utvrdio uticaj samo posmatranog parametra.

Analizom ovih grafika može se zaključiti da se povećanjem parametra x, spektar mogućih eksitonskih energija simetrično širi i to jednakim pomeranjem ka višim i nižim energijama. Ovo širenje se dešava tako da se istovremeno dva energetska nivoa "izbacuju" van balkovske zone (označene isprekidanim linijama). Ovakva izdvojena stanja su poznata pod nazivom tamovska ili lokalizovana stanja. Ovi nivoi — lokalizovana stanja su udaljenija od balkovske zone što je perturbacija veća, odnosno, što je parametar x veći. I ovde se vidi je da se ova stanja javljaju i da su ona dislocirana iz zone dozvoljenih energija eksitona u neograničenim strukturama, ali se ne može tvrditi kolika je verovatnoća njihovog nalaženja niti gde se ona mogu pojaviti. Zbog toga će i ova analiza biti posebno urađena u sledećem paragrafu.

Iz svih prikazanih grafika je uočljiva diskretnost energetskih stanja eksitona u filmovima. Za razliku od kontinualne balkovske zone ovde se može javiti onoliko energetskih nivoa koliko ima dvodimenzionih stanja, a mi smo razmatrali slučaj petoslojnog filma, dakle sa pet mogućih energetskih nivoa.

Prva (gornja) dva grafika predstavljaju moguće energije eksitona neperturbovanog monomolekulskog filma. U literaturi ovakva film-struktura naziva se idealan film. Ove strukture su zanimljive zbog toga što se tu energetski spektri elementarnih pobudjenja mogu izraziti u analitičkom obliku.

3.3 Spektralne težine eksitonskih stanja

U cilju analize prostorne raspodele eksitona, tj. verovatnoća nalaženja eksitona sa odredjenim energijama na pojedinim slojevima kristalnog filma, potrebno je izračunati spektralne težine pojedinih Grinovih funkcija. Polazi se od sistema jednačina za eksitonske Grinove funkcije, koji je sad najpogodnije predstaviti u matričnom obliku:

$$\hat{\mathcal{D}}_{N+1}\tilde{\mathcal{G}}_{N+1} = \tilde{\mathcal{K}}_{N+1} , \qquad (3.9)$$

gde su: $\hat{\mathcal{D}}_{N+1}$ – matrica koja odgovara determinanti sistema \mathcal{D}_{N+1} , a $\tilde{\mathcal{G}}_{N+1}$ i $\tilde{\mathcal{K}}_{N+1}$ – vektori Grinovih funkcija i Kronekerovih delti:

$$\tilde{\mathcal{G}}_{N+1} = \begin{pmatrix} G_{0,m_z} \\ G_{1,m_z} \\ & &$$

Dejstvom inverzne matrice $\hat{\mathcal{D}}_{N+1}^{-1}$, s leve strane, na jednačinu (3.9) sledi:

$$\tilde{\mathcal{G}}_{N+1} = \hat{\mathcal{D}}_{N+1}^{-1} \tilde{\mathcal{K}}_{N+1} .$$
(3.10)

Kako se inverzna matrica može izraziti preko adjugovane, čiji su članovi D_{ik} kofaktori elementa d_{ik} direktne matrice, može se pisati:

$$G_{n_z,m_z} = \frac{1}{\mathcal{D}_{N+1}} \sum_q D_{n_z,q} K_{q,m_z} = -\frac{1}{\mathcal{D}_{N+1}} \frac{i\hbar}{2\pi |X|} \sum_q D_{n_z,q} \delta_{q,m_z} = -\frac{i\hbar}{2\pi |X|} \frac{D_{n_z,m_z}}{\mathcal{D}_{N+1}} \,.$$
(3.11)

Kofaktori D_{n_z,m_z} se izračunavaju na osnovu poznavanja determinante sistema D_{N+1} .

Kako su za ravnotežne procese u sistemu bitne samo dijagonalne Grinove funkcije $G_{n_z;n_z} \equiv G_{n_z}$, izračunavanje kofaktora $D_{n_z,m_z} \equiv D_{n_z}$ se znatno pojednostavljuje. Dobija se da su jednaki proizvodu dve pomoćne determinante:

$$D_{n_z} = B_{n_z} B_{N-n_z} , (3.12)$$

gde su:

$$B_{n_{z}}(\varrho) = \begin{vmatrix} \varrho - \frac{\Delta}{|X|} \epsilon_{0} & 1 + x_{0} & 0 & \cdots & 0 & 0 & 0 \\ 1 + x_{o} & \varrho & 1 & \cdots & 0 & 0 & 0 \\ 0 & 1 & \varrho & \cdots & 0 & 0 & 0 \\ 0 & 1 & \varrho & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & \varrho & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & \varrho \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \varrho & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 + x_{N} & \varrho - \frac{\Delta}{|X|} \epsilon_{N} \end{vmatrix}_{N-n_{z}}$$
(3.14)

s tim da je $B_0 = B_{N-N} = 1$.

U opštem slučaju, vrednost pomoćnih determinanti se može naći numerički, dok su Grinove funkcije perturbovanog filma:

$$G_{n_z} = -\frac{i\hbar}{2\pi|X|} \frac{B_{n_z}B_{N-n_z}}{\mathcal{D}_{N+1}} .$$
(3.15)

Grinove funkcije su multipolne, jer se u imeniocu nalazi polinom \mathcal{D}_{N+1} reda N + 1. Stoga se mora pribeći faktorizaciji na proste polove:

$$G_{n_z} = -\frac{i\hbar}{2\pi|X|} \sum_{\nu=1}^{N+1} \frac{g_{n_z;n_z}(\varrho_\nu)}{\varrho - \varrho_\nu} .$$
(3.16)

Spektralne težine $g_{n_z;n_z}(\varrho_{\nu}) \equiv g_{n_z}^{\nu}$ se onda mogu izraziti preko:

$$g_{n_z}^{\nu} = \frac{B_{n_z}(\varrho_{\nu})B_{N-n_z}(\varrho_{\nu})}{\left.\frac{d}{d\varrho}D_{N+1}(\varrho)\right|_{\varrho=\varrho(\nu)}}.$$
(3.17)

Spektralne težine Grinovih funkcija predstavljaju kvadrat modula talasne funkcije eksitona i omogućuju odredjivanje prostorne distribucije, tj. verovatnoće nalaženja eksitona sa odredjenim energijama po slojevima kristalnog filma. To je zapravo prostorna distribucija verovatnoće pojavljivanja odredjenih energetskih stanja eksitona.

U sledećim tabelama su predstavljene vrednosti redukovanih energija i njima odgovarajućih spektralnih funkcija (prostorna raspodela verovatnoća) za petoslojni film. U slučaju perturbovanog filma, spektralne težine za date eksitonske energije se mogu naći samo numeričkim metodama. Rezultati dobijeni za razne vrednosti perturbovanih parametara filma dati su u tabelama 3.1-3.3 (pri čemu je $k_x = k_y = 0$).

Tabela 3.1 daje prostornu distribuciju verovatnoća javljanja eksitonskih energija u idealnom monomolekulskom filmu.

Redukovana relativna		$\epsilon_0 = 0.0; \ \epsilon_N$	$x = 0.0; x_0 = 0$	$0.0; \ x_N = 0.0$	
ENERGIJA	1. sloj	2. sloj	3. sloj	4. sloj	5. sloj
-1.73205	0.08333	0.25000	0.33333	0.25000	0.08333
-1.00000	0.25000	0.25000	0.00000	0.25000	0.25000
0.00000	0.33333	0.00000	0.33333	0.00000	0.33333
1.00000	0.25000	0.25000	0.00000	0.25000	0.25000
1.73205	0.08333	0.25000	0.33333	0.25000	0.08333

Tabela 3.1: Verovatnoće nalaženja eksitona u idealnom petoslojnom filmu

Iz ove tabele se uočava da se za jednu odredjenu energiju verovatnća pojavljivanja eksitona po svim slojevima jednaka jedinici, kao i da je verovatnća po jednom sloju za sve energije takodje jednaka jedinici, tj:

$$\sum_{n_z=0}^{N} g_{n_z}^{\nu} = 1 ; \qquad \sum_{\nu=1}^{N+1} g_{n_z}^{\nu} = 1 .$$
(3.18)

U tabelama 3.2 i 3.3 prikazane su prostorne verovatnoće nalaženja eksitona u petoslojnom monomolekulskom filmu i to za slučaj kada se menjaju samo parametari x_0 ili x_N , dok su ostali perturbacioni parametri jednaki nuli. Energije čije vrednosti se nalaze izvan balkovske zone (tj. lokalizovana eksitonska stanja), kao i najveće vrednosti verovatnoća (po slojevima filma) za te energije, su prikazani podebljanim brojevima. Pri vrednostima parametra x_0 ili x_N većim od 50 % javljaju se dva lokalizovana eksitonska stanja sa najvećim verovatnoćama nalaženja eksitona koje su "približno" ravnomerno⁵ rasporedene između graničnog sloja (prvog ili poslednjeg) i njemu susednog sloja (drugog ili predzadnjeg).

Redukovana			0.0		
relativna	,	$\epsilon_0 = 0.0; \ \epsilon_N =$	$= 0.0; x_0 = 0.3$	b; $x_N = 0.0$	
ENERGIJA	1. sloj	2. sloj	3. sloj	4. sloj	5. sloj
-1.95045	0.22623	0.38350	0.24289	0.11750	0.03089
-1.20239	0.18286	0.11750	0.05257	0.38250	0.26457
0.00000	0.18182	0.00000	0.40909	0.00000	0.40909
0.120239	0.18286	0.11750	0.05257	0.3825	0.26457
1.95045	0.22623	0.38350	0.24289	0.11750	0.03089
Redukovana					
relativna		$\epsilon_0 = 0.0; \ \epsilon_N =$	$= 0.0; x_0 = 1.0$	$x_N = 0.0$	
ENERGIJA	1. sloj	2. sloj	3. sloj	4. sloj	5. sloj
-2.30278	0.34549	0.45801	0.14659	0.04199	0.00792
-1.30278	0.09896	0.04199	0.13118	0.45801	0.26986
0.00000	0.11111	0.00000	0.44444	0.00000	0.44444
1.30278	0.09896	0.04199	0.13118	0.45801	0.26986
2.30278	0.34549	0.45801	0.14659	0.04199	0.00792
Redukovana			0.0 1.0		1
Redukovana relativna		$\epsilon_0 = 0.0; \ \epsilon_N =$	$= 0.0; x_0 = 1.5$	$x_N = 0.0$	
Redukovana relativna ENERGIJA	1. sloj -	$\epsilon_0 = 0.0; \ \epsilon_N =$ 2. sloj	= 0.0; $x_0 = 1.5$ 3. sloj	$x_N = 0.0$ 4. sloj	5. sloj
Redukovana relativna ENERGIJA - 2.72654	1. sloj · 0.40660	$\epsilon_0 = 0.0; \ \epsilon_N =$ 2. sloj 0.48362	$= 0.0; x_0 = 1.5$ 3. sloj 0.09120	5; $x_N = 0.0$ 4. sloj 0.01638	5. sloj 0.00220
Redukovana relativna ENERGIJA - 2.72654 -1.34758	1. sloj · 0.40660 0.05637	$\epsilon_0 = 0.0; \ \epsilon_N =$ 2. sloj 0.48362 0.01638	$= 0.0; x_0 = 1.5$ 3. sloj 0.09120 0.17732	$x_N = 0.0$ 4. sloj 0.01638 0.48362	5. sloj 0.00220 0.26632
Redukovana relativna ENERGIJA -2.72654 -1.34758 0.00000	1. sloj - 0.40660 0.05637 0.07407	$\epsilon_0 = 0.0; \ \epsilon_N =$ 2. sloj 0.48362 0.01638 0.00000	$= 0.0; x_0 = 1.5$ 3. sloj 0.09120 0.17732 0.46296	$x_N = 0.0$ 4. sloj 0.01638 0.48362 0.00000	5. sloj 0.00220 0.26632 0.46296
Redukovana relativna ENERGIJA -2.72654 -1.34758 0.00000 1.34758	1. sloj · 0.40660 0.05637 0.07407 0.05637	$\epsilon_0 = 0.0; \ \epsilon_N =$ 2. sloj 0.48362 0.01638 0.00000 0.01638	$= 0.0; x_0 = 1.5$ $= 0.0; x_0 = 1.5$ $= 0.09120$ $= 0.17732$ $= 0.46296$ $= 0.17732$	$x_N = 0.0$ 4. sloj 0.01638 0.48362 0.00000 0.48362	5. sloj 0.00220 0.26632 0.46296 0.26632
Redukovana relativna ENERGIJA - 2.72654 -1.34758 0.00000 1.34758 2.72654	1. sloj 0.40660 0.05637 0.07407 0.05637 0.40660	$\epsilon_0 = 0.0; \ \epsilon_N =$ 2. sloj 0.48362 0.01638 0.00000 0.01638 0.48362	$= 0.0; x_0 = 1.5$ $= 0.0; x_0 = 1.5$ $= 0.09120$ $= 0.17732$ $= 0.46296$ $= 0.17732$ $= 0.09120$	$x_N = 0.0$ 4. sloj 0.01638 0.48362 0.00000 0.48362 0.01638	5. sloj 0.00220 0.26632 0.46296 0.26632 0.00220
Redukovana relativna ENERGIJA -2.72654 -1.34758 0.00000 1.34758 2.72654 Redukovana	1. sloj - 0.40660 0.05637 0.07407 0.05637 0.40660	$\epsilon_0 = 0.0; \ \epsilon_N =$ 2. sloj 0.48362 0.01638 0.00000 0.01638 0.48362	$= 0.0; x_0 = 1.5$ 3. sloj 0.09120 0.17732 0.46296 0.17732 0.09120 0.09120	$x_N = 0.0$ 4. sloj 0.01638 0.48362 0.00000 0.48362 0.01638	5. sloj 0.00220 0.26632 0.46296 0.26632 0.00220
Redukovana relativna ENERGIJA -2.72654 -1.34758 0.00000 1.34758 2.72654 Redukovana relativna	1. sloj · 0.40660 0.05637 0.07407 0.05637 0.40660	$\epsilon_0 = 0.0; \ \epsilon_N =$ 2. sloj 0.48362 0.01638 0.00000 0.01638 0.48362 $\epsilon_0 = 0.0; \ \epsilon_N =$	$= 0.0; x_0 = 1.5$ 3. sloj 0.09120 0.17732 0.46296 0.17732 0.09120 $= 0.0; x_0 = 2.0$	$\begin{array}{l} & & \\ 5; \ x_N = 0.0 \\ \hline 4. \ \mathrm{sloj} \\ \hline 0.01638 \\ \hline 0.48362 \\ \hline 0.00000 \\ \hline 0.48362 \\ \hline 0.01638 \\ \hline 0; \ x_N = 0.0 \end{array}$	5. sloj 0.00220 0.26632 0.46296 0.26632 0.00220
Redukovana relativna ENERGIJA - 2.72654 -1.34758 0.00000 1.34758 2.72654 Redukovana relativna ENERGIJA	1. sloj · 0.40660 0.05637 0.07407 0.05637 0.40660 1. sloj	$\epsilon_0 = 0.0; \ \epsilon_N =$ 2. sloj 0.48362 0.01638 0.00000 0.01638 0.48362 $\epsilon_0 = 0.0; \ \epsilon_N =$ 2. sloj	$= 0.0; x_0 = 1.5$ 3. sloj 0.09120 0.17732 0.46296 0.17732 0.09120 $= 0.0; x_0 = 2.0$ 3. sloj	$x_N = 0.0$ 4. sloj 0.01638 0.48362 0.00000 0.48362 0.01638 0; $x_N = 0.0$ 4. sloj	5. sloj 0.00220 0.26632 0.46296 0.26632 0.00220 5. sloj
Redukovana relativna ENERGIJA - 2.72654 -1.34758 0.00000 1.34758 2.72654 Redukovana relativna ENERGIJA - 3.18168	1. sloj 0.40660 0.05637 0.07407 0.05637 0.40660 1. sloj 0.43789	$\epsilon_0 = 0.0; \ \epsilon_N =$ 2. sloj 0.48362 0.01638 0.00000 0.01638 0.48362 $\epsilon_0 = 0.0; \ \epsilon_N =$ 2. sloj 0.49254	$= 0.0; x_0 = 1.5$ 3. sloj 0.09120 0.17732 0.46296 0.17732 0.09120 = 0.0; x_0 = 2.0 3. sloj 0.06137	$x_N = 0.0$ 4. sloj 0.01638 0.48362 0.00000 0.48362 0.01638 0; $x_N = 0.0$ 4. sloj 0.00746	5. sloj 0.00220 0.26632 0.26632 0.00220 5. sloj 0.00074
Redukovana relativna ENERGIJA -2.72654 -1.34758 0.00000 1.34758 2.72654 Redukovana relativna ENERGIJA -3.18168 -1.37000	1. sloj · 0.40660 0.05637 0.07407 0.05637 0.40660 1. sloj 0.43789 0.03579	$\epsilon_0 = 0.0; \ \epsilon_N =$ 2. sloj 0.48362 0.01638 0.00000 0.01638 0.48362 $\epsilon_0 = 0.0; \ \epsilon_N =$ 2. sloj 0.49254 0.00746	$= 0.0; x_0 = 1.5$ 3. sloj 0.09120 0.17732 0.46296 0.17732 0.09120 $= 0.0; x_0 = 2.0$ 3. sloj 0.06137 0.21079	$x_N = 0.0$ 4. sloj 0.01638 0.48362 0.00000 0.48362 0.01638 0; $x_N = 0.0$ 4. sloj 0.00746 0.49254	5. sloj 0.00220 0.26632 0.46296 0.26632 0.00220 5. sloj 0.00074 0.26242
Redukovana relativna ENERGIJA - 2.72654 -1.34758 0.00000 1.34758 2.72654 Redukovana relativna ENERGIJA - 3.18168 -1.37000 0.00000	1. sloj · 0.40660 0.05637 0.07407 0.05637 0.40660 1. sloj 0.43789 0.03579 0.05263	$\epsilon_0 = 0.0; \ \epsilon_N =$ 2. sloj 0.48362 0.01638 0.00000 0.01638 0.48362 $\epsilon_0 = 0.0; \ \epsilon_N =$ 2. sloj 0.49254 0.00746 0.00000	$= 0.0; x_0 = 1.5$ 3. sloj 0.09120 0.17732 0.46296 0.17732 0.09120 $= 0.0; x_0 = 2.0$ 3. sloj 0.06137 0.21079 0.47368	$\begin{array}{l} & \begin{array}{c} & x_N = 0.0 \\ \hline 4. \ \mathrm{sloj} \\ \hline 0.01638 \\ \hline 0.48362 \\ \hline 0.00000 \\ \hline 0.48362 \\ \hline 0.01638 \\ \hline \end{array} \\ \begin{array}{c} & x_N = 0.0 \\ \hline 4. \ \mathrm{sloj} \\ \hline 0.00746 \\ \hline 0.49254 \\ \hline 0.00000 \end{array} \end{array}$	5. sloj 0.00220 0.26632 0.46296 0.26632 0.00220 5. sloj 0.00074 0.26242 0.47368
Redukovana relativna ENERGIJA -2.72654 -1.34758 0.00000 1.34758 2.72654 Redukovana relativna ENERGIJA -3.18168 -1.37000 0.00000 1.37000	1. sloj · 0.40660 0.05637 0.07407 0.05637 0.40660 1. sloj 0.43789 0.03579 0.05263 0.03579	$\epsilon_0 = 0.0; \ \epsilon_N =$ 2. sloj 0.48362 0.01638 0.00000 0.01638 0.48362 $\epsilon_0 = 0.0; \ \epsilon_N =$ 2. sloj 0.49254 0.00746 0.00000 0.00746	$= 0.0; x_0 = 1.5$ 3. sloj 0.09120 0.17732 0.46296 0.17732 0.09120 $= 0.0; x_0 = 2.0$ 3. sloj 0.06137 0.21079 0.47368 0.21079	$x_N = 0.0$ 4. sloj 0.01638 0.48362 0.00000 0.48362 0.01638 0; $x_N = 0.0$ 4. sloj 0.00746 0.49254 0.00000 0.49254	5. sloj 0.00220 0.26632 0.46296 0.26632 0.00220 5. sloj 0.00074 0.26242 0.47368 0.26242

Tabela 3.2: Verovatnoće nalaženja eksitona u perturbovanom petoslojnom filmu

Povećanjem parametra x raste verovatnoća nalaženja eksitona na graničnim i prvim unutrašnjim slojevima tankog monomolekulskog filma, tako da je pri dovoljno velikim vrednostima parametra x_0 (odnosno x_N) gotovo sigurno da će se eksiton naći na prvom ili drugom (odnosno na predzadnjem ili zadnjem) sloju.

⁵Reč približno je stavljena u znake navoda jer je verovatnoća nalaženja eksitona na unutrašnjim slojevima (drugi i predzadnji) ipak nešto veća nego na graničnim slojevima. To je zbog toga što je interakcija između unutrašnjih slojeva tankog monomolekulskog filma intenzivnija od interakcije između prvog sloja filma i vakuuma. Naravno, u slučaju postojanja takvih podloga koje povećavaju inerakciju sa graničnim slojevima filma, najveća verovatnoća nalaženja eksitona bi bila na graničnim slojevima.

Redukovana relativna		$\epsilon_0 = 0.0; \ \epsilon$	$N = 0.0; x_0 =$	0.0; $x_N = 0.5$	· · · · · · · · · · · · · · · · · · ·
ENERGIJA	1 sloi	2 sloj	3 sloj	1 A sloi	5 aloi
-1.95045	0.03089	0.11750	0.24289	0.38250	0.22622
-1.20239	0 26457	0.38250	0.05257	0.11750	0.22023
0.00000	0.40909	0.00200	0.00201	0.00000	0.18280
1.20239	0 26457	0.38250	0.40000	0.11750	0.18182
1.95045	0.03089	0.11750	0.00201	0.38250	0.18280
		0.11700	0.24203	0.36250	0.22023
Redukovana		$\epsilon_0 = 0.0; \epsilon$	$N = 0.0; x_0 =$	0.0: $x_N = 1.0$	
relativna		, , , , , , , , , , , , , , , , , , ,			
ENERGIJA	1. sloj	2. sloj	3. sloj	4. sloj	5. sloj
-2.30278	0.00792	0.04199	0.14659	0.45801	0.34549
-1.30278	0.26986	0.45801	0.13118	0.04199	0.09896
0.00000	0.44444	0.00000	0.44444	0.00000	0.11111
1.30278	0.26986	0.45801	0.13118	0.04199	0.09896
2.30278	0.00792	0.04199	0.14659	0.45801	0.34549
		l	0.2 2000	0110001	0.01010
Redukovana				0.10001	0.01010
Redukovana relativna		$\epsilon_0 = 0.0; \epsilon_1$	$x = 0.0; x_0 =$	0.0; $x_N = 1.5$	
Redukovana relativna ENERGIJA	1. sloj	$\epsilon_0 = 0.0; \epsilon_0$ 2. sloj	$x_{N} = 0.0; x_{0} =$	0.0; $x_N = 1.5$ 4. sloj	5. sloj
Redukovana relativna ENERGIJA - 2.72645	1. sloj 0.00220	$\epsilon_0 = 0.0; \ \epsilon_j$ 2. sloj 0.16378	$N = 0.0; x_0 =$ 3. sloj 0.09120	0.0; $x_N = 1.5$ 4. sloj 0.48362	5. sloj 0.40659
Redukovana relativna ENERGIJA - 2.72645 -1.34758	1. sloj 0.00220 0.26631	$\epsilon_0 = 0.0; \ \epsilon_0$ 2. sloj 0.16378 0.48362	$ \begin{array}{r} & 0.011000 \\ \hline & & \\ N = 0.0; \ x_0 = \\ \hline & & \\ 3. \ \text{sloj} \\ \hline & & \\ 0.09120 \\ \hline & & \\ 0.17732 \end{array} $	$0.0; x_N = 1.5$ 4. sloj 0.48362 0.01638	5. sloj 0.40659 0.05637
Redukovana relativna ENERGIJA - 2.72645 -1.34758 0.00000	1. sloj 0.00220 0.26631 0.46296	$\epsilon_0 = 0.0; \ \epsilon_0$ 2. sloj 0.16378 0.48362 0.00000	$N = 0.0; x_0 = \frac{3. \text{ sloj}}{0.09120}$ 0.17732 0.46296	$0.0; x_N = 1.5$ 4. sloj 0.48362 0.01638 0.00000	5. sloj 0.40659 0.05637 0.07407
Redukovana relativna ENERGIJA - 2.72645 -1.34758 0.00000 1.34758	1. sloj 0.00220 0.26631 0.46296 0.26631	$\epsilon_0 = 0.0; \ \epsilon_1$ 2. sloj 0.16378 0.48362 0.00000 0.48362	$N = 0.0; x_0 =$ 3. sloj 0.09120 0.17732 0.46296 0.17732	$0.0; x_N = 1.5$ 4. sloj 0.48362 0.01638 0.00000 0.01638	5. sloj 0.40659 0.05637 0.07407 0.05637
Redukovana relativna ENERGIJA -2.72645 -1.34758 0.00000 1.34758 2.72645	1. sloj 0.00220 0.26631 0.46296 0.26631 0.00220	$\epsilon_0 = 0.0; \epsilon_0$ 2. sloj 0.16378 0.48362 0.00000 0.48362 0.16378	$ \begin{array}{l} \text{N} = 0.0; \ x_0 = \\ \hline 3. \ \text{sloj} \\ 0.09120 \\ 0.17732 \\ 0.46296 \\ 0.17732 \\ 0.09120 \\ \end{array} $	$0.0; x_N = 1.5$ 4. sloj 0.48362 0.01638 0.00000 0.01638 0.48362	5. sloj 0.40659 0.05637 0.07407 0.05637 0.40659
Redukovana relativna ENERGIJA -2.72645 -1.34758 0.00000 1.34758 2.72645 Redukovana	1. sloj 0.00220 0.26631 0.46296 0.26631 0.00220	$\epsilon_0 = 0.0; \ \epsilon_0$ 2. sloj 0.16378 0.48362 0.00000 0.48362 0.16378	$ \begin{array}{l} \text{N} = 0.0; \ x_0 = \\ \hline 3. \ \text{sloj} \\ 0.09120 \\ 0.17732 \\ 0.46296 \\ 0.17732 \\ 0.09120 \\ \end{array} $	$0.0; x_N = 1.5$ 4. sloj 0.48362 0.01638 0.00000 0.01638 0.48362	5. sloj 0.40659 0.05637 0.07407 0.05637 0.40659
Redukovana relativna ENERGIJA -2.72645 -1.34758 0.00000 1.34758 2.72645 Redukovana relativna	1. sloj 0.00220 0.26631 0.46296 0.26631 0.00220	$\epsilon_0 = 0.0; \ \epsilon_0$ 2. sloj 0.16378 0.48362 0.00000 0.48362 0.16378 $\epsilon_0 = 0.0; \ \epsilon_0$	$N = 0.0; x_0 =$ 3. sloj 0.09120 0.17732 0.46296 0.17732 0.09120 N = 0.0; x_0 =	$0.0; x_N = 1.5$ 4. sloj 0.48362 0.01638 0.00000 0.01638 0.48362 0.0; x_N = 2.0	5. sloj 0.40659 0.05637 0.07407 0.05637 0.40659
Redukovana relativna ENERGIJA -2.72645 -1.34758 0.00000 1.34758 2.72645 Redukovana relativna ENERGIJA	1. sloj 0.00220 0.26631 0.46296 0.26631 0.00220	$\epsilon_0 = 0.0; \ \epsilon_0$ 2. sloj 0.16378 0.48362 0.00000 0.48362 0.16378 $\epsilon_0 = 0.0; \ \epsilon_0$ 2. sloj	$N = 0.0; x_0 =$ 3. sloj 0.09120 0.17732 0.46296 0.17732 0.09120 N = 0.0; x_0 = 3. sloj	$0.0; x_N = 1.5$ 4. sloj 0.48362 0.01638 0.00000 0.01638 0.48362 0.0; x_N = 2.0 4. sloj	5. sloj 0.40659 0.05637 0.07407 0.05637 0.40659
Redukovana relativna ENERGIJA -2.72645 -1.34758 0.00000 1.34758 2.72645 Redukovana relativna ENERGIJA -3.18168	1. sloj 0.00220 0.26631 0.46296 0.26631 0.00220 1. sloj 0.00074	$\epsilon_0 = 0.0; \ \epsilon_1$ 2. sloj 0.16378 0.48362 0.00000 0.48362 0.16378 $\epsilon_0 = 0.0; \ \epsilon_1$ 2. sloj 0.00747	$N = 0.0; x_0 =$ 3. sloj 0.09120 0.17732 0.46296 0.17732 0.09120 N = 0.0; x_0 = 3. sloj 0.06137	$0.0; x_N = 1.5$ $4. \text{ sloj}$ 0.48362 0.01638 0.00000 0.01638 0.48362 $0.0; x_N = 2.0$ $4. \text{ sloj}$ 0.49254	5. sloj 0.40659 0.05637 0.07407 0.05637 0.40659 5. sloj 0.43789
Redukovana relativna ENERGIJA -2.72645 -1.34758 0.00000 1.34758 2.72645 Redukovana relativna ENERGIJA -3.18168 -1.37000	1. sloj 0.00220 0.26631 0.46296 0.26631 0.00220 1. sloj 0.00074 0.26242	$\epsilon_0 = 0.0; \ \epsilon_0$ 2. sloj 0.16378 0.48362 0.00000 0.48362 0.16378 $\epsilon_0 = 0.0; \ \epsilon_0$ 2. sloj 0.00747 0.49254	$N = 0.0; x_0 =$ 3. sloj 0.09120 0.17732 0.46296 0.17732 0.09120 N = 0.0; x_0 = 3. sloj 0.06137 0.20179	$0.0; x_N = 1.5$ $4. \text{ sloj}$ 0.48362 0.01638 0.00000 0.01638 0.48362 0.48362 $0.0; x_N = 2.0$ $4. \text{ sloj}$ 0.49254 0.00746	5. sloj 0.40659 0.05637 0.07407 0.05637 0.40659 5. sloj 0.43789 0.03579
Redukovana relativna ENERGIJA -2.72645 -1.34758 0.00000 1.34758 2.72645 Redukovana relativna ENERGIJA -3.18168 -1.37000 0.00000	1. sloj 0.00220 0.26631 0.46296 0.26631 0.00220 1. sloj 0.00074 0.26242 0.47368	$\epsilon_0 = 0.0; \epsilon_0$ 2. sloj 0.16378 0.48362 0.00000 0.48362 0.16378 $\epsilon_0 = 0.0; \epsilon_0$ 2. sloj 0.00747 0.49254 0.00000	$N = 0.0; x_0 =$ 3. sloj 0.09120 0.17732 0.46296 0.17732 0.09120 N = 0.0; x_0 = 3. sloj 0.06137 0.20179 0.47368	$0.0; x_N = 1.5$ $4. \text{ sloj}$ 0.48362 0.01638 0.00000 0.01638 0.48362 0.48362 $0.0; x_N = 2.0$ $4. \text{ sloj}$ 0.49254 0.00746 0.00000	5. sloj 0.40659 0.05637 0.07407 0.05637 0.40659 5. sloj 0.43789 0.03579 0.05263
Redukovana relativna ENERGIJA -2.72645 -1.34758 0.00000 1.34758 2.72645 Redukovana relativna ENERGIJA -3.18168 -1.37000 0.00000 1.37000	1. sloj 0.00220 0.26631 0.46296 0.26631 0.00220 1. sloj 0.00074 0.26242 0.47368 0.26242	$\epsilon_0 = 0.0; \epsilon_1$ 2. sloj 0.16378 0.48362 0.00000 0.48362 0.16378 $\epsilon_0 = 0.0; \epsilon_1$ 2. sloj 0.00747 0.49254 0.00000 0.49254	$N = 0.0; x_0 =$ 3. sloj 0.09120 0.17732 0.46296 0.17732 0.09120 N = 0.0; x_0 = 3. sloj 0.06137 0.20179 0.47368 0.20179	$0.0; x_N = 1.5$ $4. \text{ sloj}$ 0.48362 0.01638 0.00000 0.01638 0.48362 $0.0; x_N = 2.0$ $4. \text{ sloj}$ 0.49254 0.00746 0.00000 0.00746	5. sloj 0.40659 0.05637 0.07407 0.05637 0.40659 5. sloj 0.43789 0.03579 0.05263 0.03579
Redukovana relativna ENERGIJA -2.72645 -1.34758 0.00000 1.34758 2.72645 Redukovana relativna ENERGIJA -3.18168 -1.37000 0.00000 1.37000 3.18168	1. sloj 0.00220 0.26631 0.46296 0.26631 0.00220 1. sloj 0.00074 0.26242 0.47368 0.26242 0.47368 0.26242 0.00074	$\epsilon_0 = 0.0; \epsilon_1$ 2. sloj 0.16378 0.48362 0.00000 0.48362 0.16378 $\epsilon_0 = 0.0; \epsilon_1$ 2. sloj 0.00747 0.49254 0.00000 0.49254 0.00747	$N = 0.0; x_0 =$ 3. sloj 0.09120 0.17732 0.46296 0.17732 0.09120 N = 0.0; x_0 = 3. sloj 0.06137 0.20179 0.47368 0.20179 0.06137	$0.0; x_N = 1.5$ $4. \text{ sloj}$ 0.48362 0.01638 0.00000 0.01638 0.48362 $0.0; x_N = 2.0$ $4. \text{ sloj}$ 0.49254 0.00746 0.00000 0.00746 0.49254	5. sloj 0.40659 0.05637 0.07407 0.05637 0.40659 5. sloj 0.43789 0.03579 0.05263 0.03579 0.43789

Tabela 3.3: Verovatnoće nalaženja eksitona u perturbovanom petoslojnom filmu

Iz svih tabela se može uočiti da se na svakom čvoru kristalnog sloja nalazi tačno jedan eksiton, koji može biti u N + 1 = 5 različitih energetskih stanja, sa različitim verovatnoćama nalaženja. Za proizvoljan broj slojeva filma (N + 1) važi sledeća relacija, koja ukazuje na to da je zbir svih verovatnoća nalaženja eksitona jednak broju mogućih stanja:

$$\sum_{\nu=1}^{N+1} \sum_{n_z=0}^{N} g_{n_z}^{\nu}(\varrho_{\nu}) = N+1 .$$
(3.19)

4 Zaključak

U radu su istraženi i analizirani energetski spektri (moguća energetska stanja) eksitona u dielektričnim, kristalnim, idealnim beskonačnim i film-strukturama, sa primitivnom kubnom rešetkom, na osnovu čega se došlo do sledećih važnijih rezultata.

- 1. Ove analize su pokazale bitne razlike u zakonu disperzije eksitona u pomenuta dva sistema, kao isključive posledice postojanja granica film-struktura, u kojima energetski spektri poseduju dva gepa. Veličine gepova zavise od debljine filma i od vrednosti izmana energetskih parametara na graničnim površima filma.
- 2. Postojanje graničnih uslova ima za posledicu promenu širine energetske zone eksitona. U odnosu na zonu dozvoljenih energija idealnih struktura sa praktično kontinualnim rasporedom, zona eksitonski dozvoljenih energija u filmu je izrazito diskretna sa konačnim brojem mogućih energetskih nivoa koji je proporcion broju atomskih ravni duž z-pravca.
- 3. Povećanje energije eksitonskog transfera u graničnim slojevima, odnosno, izmedju graničnih i njima susednih kristalografkih ravni filma, dovodi do širenja spektra eksitonskih energija van balkovskih granica, tj. do "izbacivanja" para energetskih nivoa.
- 4. Za neke vrednosti pomenutih parametara energetska zona eksitona izlazi van zone eksitonskih energija neograničenog kristala. U tom slučaju pojavljuju se lokalizovana eksitonska stanja. Energije ovih stanja zavise od debljine filma, ali je uočljiva i izražena zavisnost veličine energije lokalizovanih stanja eksitona od vrednosti graničnih energetskih parametara.
- 5. Ukoliko se pojave lokalizovana eksitonska stanja, onda su ona rasporedjena duž graničnih kristalografskih ravni ("površinska" stanja). Za pojavu "zapreminskih" stanja, u tom slučaju je verovatnoća zanemarivo mala.

5 Dodatak: Eksitoni u molekulskim kristalima

5.1 Eksitoni u kristalima

Apsorpcioni i refleksioni spektri često pokazuju strukturu za fotonsku energiju ispod energetskog gepa, gde bi inače očekivali da kristal bude transparentan. Ovakva struktura prouzrokovana je apsorpcijom fotona i kreacijom para elektron-šupljina. Elektron i šupljina su vezani privlačnom Kulonovom interakcijom slično kao što je elektron vezan sa protonom u formu neutralnog atoma vodonika. Ovakav par elektron-šupljina se naziva eksiton. Na slici 5.1a prikazan je eksiton Vanije-Mota koji je slabo vezan, sa srednjom udaljenošću elektron-šupljina velikom u poredjenju sa konstantom rešetke. Na slici 5.1b je šematski predstavljen jako vezan ili Frenkelov eksiton. Jedan idealan Frenkelov eksiton će prolaziti kroz ceo kristal kao talas, ali elektron će uvek biti u neposrednoj blizini šupljine.

Slika 5.1: a) Eksiton Vanije-Mota

Eksiton se može kretati kroz kristal i prenositi energiju, ali eksiton ne prenosi naelektrisanje, jer je električno neutralan. On je sličan pozitronijumu koji je sastavljen od elektrona i pozitrona. Eksiton može biti formiran u svakom izolatoru. Svi eksitoni su nestabilni i imaju relativno malo vreme života (singletni 10^{-8} s, a tripletni i do 10^{-3} s). Eksitoni mogu formirati i komplekse, kao što su bieksitoni - kreirani od dva eksitona.

Videli smo da se slobodni elektron i slobodna šupljina kreiraju kad god je energija fotona veća od energije gepa. Prag za ovaj proces je $\hbar \omega > E_g$ u direktnom procesu. Medjutim, sama energija veze eksitona još smanjuje taj prag. Energije veze eksitona se kreću od reda veličine 1 meV (Vanije-Motov) do 1 eV (Frenkelov).

Prelazi kojima se formiraju eksitoni ispod energetskog gepa su prikazani na slikama 5.2a i 5.2b. Slika 5.2a prikazuje eksitonske nivoe u odnosu na granicu provodne zone. Eksiton može imati translacionu kinetičku energiju, ali ako je ova kinetička energija veća od energije veze eksitona, tada je eksiton metastabilan u odnosu na njegovo raspadanje na slobodnu šupljinu i slobodni elektron. Svi eksitoni su potencijalno nestabilni u odnosu na emisivnu rekombinaciju, kod koje elektron "upada" u stanje šupljine u valentnoj zoni, što je popraćeno emisijom fotona ili fonona.

Slika 5.2b prikazuje energetske nivoe eksitona čiji je centar masa u mirovanju. Optički prelazi sa vrha valentne zone su prikazani strelicama, najduža odgovara jonizaciji eksitona

pa prema tome i energetskom procepu izmedju granica provodne i valentne zone. Postoji kontinualan skup nivoa, pridruženih svakom od prikazanih eksitonskih nivoa, pošto centar masa eksitona može posedovati translacionu kinetičku energiju (svaki eksitonski nivo obrazuje jednu eksitonsku zonu). Kod direktnih optičkih prelaza ukupna translaciona energija se ne menja osetnije, što znači da mogu postojati oštre eksitonske linije. Nula na skali energije je uzeta od vrha valentne zone.

Slika 5.2: Energetski nivoi eksitona

Energija veze eksitona može se meriti na tri načina.

- U optičkom prelazu iz valentne zone: iz razlike izmedju energije potrebne za kreaciju eksitona i energije kreacije slobodnog elektrona i slobodne šupljine (slika 5.2).
- Iz luminescencije prilikom rekombinacije, uporedjivanjem energije potrebne za rekombinaciju para elektron-šupljina i energije eksitacione rekombinacije.
- Fotojonizacijom eksitona kada nastaju slobodni nosioci. Ovaj eksperiment zahteva visoku koncetraciju eksitona.

Ovde postoje dve granične aproksimacije, jedna po Frenkelu, gde su eksitoni malog radijusa i čvrsto vezani, a druga po Vanije-Motu, gde su eksitoni slabo vezani i gde je udaljenost izmedju elektrona i šupljine velika u poredjenju sa konstantom rešetke. U realnosti se javljaju mešana eksitonska stanja, ali u zavisnosti da li će sistem biti Frenkelov (kristal molekulskog tipa) ili Vanije-Motov (kristal poluprovodničkog tipa) odlučuje veličina koncentracije odgovarajućeg stanja.

5.2 Frenkelovi eksitoni

U čvrsto vezanom eksitonu (slika 5.1b) pobudjenje je lokalizovano u blizini atoma. Šupljina je obično na istom atomu gde je i elektron iako par može biti u kristalu. Frenkelov eksiton je u biti pobudjeno stanje atoma, ali pobudjenje može da se prenosi od jednog atoma do drugog.

Kristali inertnih gasova imaju eksitone koji u osnovnom stanju donekle korespondiraju Frenkelovom modelu. Tako atomski kripton ima svoj najniži atomski prelaz na 9.99 eV, a i u kristalnom stanju odgovarajući prelaz je približno jednak i iznosi 10.17 eV. Energetski gep u kristalu iznosi 11.7 eV, tako da je energija osnovnog stanja eksitona 11.7 eV – 10.17 eV = 1.5 eV i ona se raspodeljuje na slobodan elektron i slobodnu šupljinu odvojeno, kao i na ostatak kristala.

Stanja Frenkelovih eksitona imaju oblik progresivnog talasa, kao i sva ostala pobudjenja u periodičnoj strukturi. Posmatrajmo kristal od N atoma u linijskom nizu ili povezanih u prsten. Ako je u_j osnovno stanje atoma j, onda je osnovno stanje kristala dato kao:

$$\psi_g = u_1 u_2 \cdot \cdot \cdot u_{N-1} u_N , \qquad (5.1)$$

ukoliko su interakcije izmedju atoma zanemarene. Ukoliko je jedan atom j u pobudjenom stanju v_j , sistem se opisuje kao:

$$\phi_j = u_1 u_2 \cdot \cdot \cdot u_{j-1} v_j u_{j+1} \cdot \cdot \cdot u_N . \qquad (5.2)$$

Ova funkcija ima istu energiju kao i funkcija ϕ_l koja opisuje bilo koji drugi pobudjeni atom l. Medjutim, funkcije ϕ koje opisuju jedan pobudjen atom i N-1 atoma u njegovom okruženju, koji su osnovnom stanju, nisu stacionarna kvantna stanja. Ako postoji bilo kakva interakcija izmedju pobudjenog atoma i susednih atoma u osnovnom stanju, energija pobudjenja će se prenositi od atoma do atoma. Kao što će biti pokazano, svojstvena stanja će tada imati talasnu formu.

Kada hamiltonijan sistema deluje na funkciju sa j-tim pobudjenim atomom, dobija se:

$$H\phi_j = \epsilon \phi_j + |X|(\phi_{j-1} + \phi_{j+1}), \qquad (5.3)$$

gde je ϵ – ekscitaciona energija slobodnog atoma, |X| - interakcija koja meri udeo transfera pobudjenja od *j*-tog atoma do njegovih najbližih suseda j - 1 i j + 1. Rešenja prethodne jednačine su talasi Blohovog oblika:

$$\psi_k = \sum_j e^{ijk} \phi_j . \tag{5.4}$$

Pustimo da operator H deluje na ψ_k :

$$H\psi_k = \sum_j e^{ijka} H\phi_j = \sum_j e^{ijka} \left[\epsilon \phi_j + |X|(\phi_{j-1} + \phi_{j+1})\right] .$$
 (5.5)

Sredjivanjem desne strane sledi:

$$H\psi_k = \sum_j e^{ijka} \left[\epsilon + |X| \left(e^{ika} + e^{-ika} \right) \right] \phi_j = \left(\epsilon + 2|X| \cos ka \right) \psi_k , \qquad (5.6)$$

tako da se dobijaju svojstvena energetska stanja kao:

$$E_k = \epsilon + 2|X|\cos ka \,. \tag{5.7}$$

Primenom periodičnih graničnih uslova odredjuju se dozvoljene vrednosti talasnog vektora k:

$$k = \frac{2\pi s}{Na}; \quad s = -\frac{1}{2}N, -\frac{1}{2}N+1, \dots -\frac{1}{2}N-1.$$
 (5.8)

U molekulskim kristalima kovalentna veza unutar molekula je mnogo jača od Van der Walsovih veza izmedju molekula, tako da se javljaju Frenkelovi eksitoni. Elektronska pobudjenja na individualnom molekulu se pojavljuju u kristalu kao eksitoni, često sa malim pomerajem u frekvenciji. Na niskim temperaturama linije u kristalu su relativno oštre, iako može biti više linijska struktura u kristalu nego u molekulu, zbog Davidovog cepanja. Davidov je pokazao da ako postoji σ molekula sa nedegenerisanim nivoima u elementarnoj ćeliji, svaka zona se cepa na σ zona. Drugo cepanje je Beteovo – ako je nivo na koji se molekul pobudjuje g puta degenerisan, onda se umesto jedne dobija g eksitonskih zona.

6 Literatura

- V.M.Agranovich: TEORIYA EKSITONOV, Hayka, Moskva 1968.
- L.L.Chang and L.Esaki, *Phys. Today* Oct. 36 (1992).
- 3. M.G.Cottam and D.R.Tilley: INTRODUCTION TO SURFACE AND SUPERLATTICE EXCITATIONS, Univ.Press, Cambridge 1989.
- 4. D.Raković: FIZIČKE OSNOVE I KARAKTERISTIKE ELEKTROTEHNIČKIH MATERIJALA, Elektrotehnički fakultet, Beograd 1995.
- G.Rickayzen: GREEN'S FUNCTIONS AND CONDENSED MATTER, Academic Press, London 1980.
- B.S.Tošić: STATISTIČKA FIZIKA, *PMF IF*, Novi Sad 1978.
- G.Mahan: MANY PARTICLE PHYSICS, Plenum Press, New York 1990.
- V.M.Agranovich and V.L.Ginzburg: CRYSTALOPTIC WITH SPACE DISPERSION AND THEORY OF EXCITONS, *Nauka*, Moskwa 1979.
- I.D.Vragović, S.M.Vučenović, J.P.Šetrajčić, S.M.Stojković, D.Lj.Mirjanić i D.Raković: OPTIČKE KARAKTERISTIKE DIELEKTRIČNIH FILMOVA, Zbornik radova 2. Simpozijum industrijske elektronoike, 33-37 (1999).
- C.Kittel: QUANTUM THEORY OF SOLIDS, *Wiley*, New York 1963.

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET KLJUČNA DOKUMENTACIJSKA INFORMACIJA

- Redni broj: RBR
- Identifikacioni broj: IBR
- Tip dokumentacije: Monografska dokumentacija TD
- Tip zapisa: Tekstualni štampani materijal TZ
- Vrsta rada: Diplomski rad VR.
- Autor:
- Nemanja Manojlović, br.dos. 322/98 AU
- Mentor: Dr Jovan Šetrajčić, redovni profesor, PMF, Novi Sad MN
- Naslov rada: Moguća eksitonska stanja monomolekulskih kristalnih filmova NR
- Jezik publikacije: Srpski (latinica) JP
- Jezik izvoda: Srpski JI
- Zemlja publikovanja: Srbija ZP
- Uže geografsko područje: Vojvodina UGP
- Godina: 2004. GO
- Izdavač:
- Autorski reprint IZ
- Mesto i adresa: Prirodno-matematički fakultet, Trg Dositeja Obradovića 4, 21000 Novi Sad MA

- Fizički opis rada: (6/26/10/8/7/11/1) FO
- Naučna oblast: Fizika
 NO
- Naučna disciplina: Fizika čvrstog stanja ND
- Predmetna odrednica / ključne reči: molekulski filmovi, eksitoni, Grinove funkcije, spektri i stanja PO
- Čuva se: Biblioteka Instituta za fiziku, PMF Novi Sad
- Izvod:

U radu je primenjen metod dvovremenskih Grinovih funkcija za ispitivanje uticaja granica film-struktura sa složenom kristalnom rešetkom na energetski spektar i moguća stanja eksitona. Dobijeni rezultati predstavljeni su grafički i tabelarno. Izvršene su analize, odnosno poredjenja tih rezultata sa odgovarajućim u idealnim beskonačnim (prostorno neograničenim) strukturama. Na osnovu toga uočene su najbitnije razlike izmedju njih. IZ

- Datum prihvatanja teme od strane Veća: 16.09.2004.
- Datum odbrane: 28.09.2004.
- DO • Članovi komisije: - Predsednik: Dr Radomir Kobilarov, red. profesor, PMF, Novi Sad - Članovi: Dr Jovan Šetrajčić, red. profesor, PMF, Novi Sad Dr MILAN PANTIĆ docent, PMF, Novi Sad KO

25

UNIVERSITY OF NOVI SAD FACULTY OF SCIENCES KEY WORDS DOCUMENTATION

- Accenssion number: ANO
- Identification number: INO
- Document type: Monograph type DT
- Type of record: Printed text TR
- Contents Code: Diploma work CC
- Author: Nemanja Manojlović AU
- Mentor:
 Prof. Dr Jovan Šetrajčić
- MN • Title:
- Possible Exciton States of Monomolecular Crystalline Films NR
- Language of text: Serbian LT
- Language of abstract: English LA
- Country of publication: Serbia CP
- Locality of publication: Vojvodina LP
- Publication year: 2004.
- PY • Publisher: Author's reprint PU
- Publ.place: Novi Sad, Department of Physics, Faculty of Sciences, Trg Dositeja Obradovića 4 PP

- Physical description: (6/26/10/8/7/11/1) PD
- Scientific field: *Physics* SF
- Scientific discipline: Solid State Physics SD
- Key words: molecular films, excitons, Green's functions, spectra and states KW
- Holding data: Library Department of Physics, Novi Sad
- HD Note: N
- Abstract:
 - In this work, the method of the two-time dependent Green's functions was applied to researching of the influence of the surfaces of the film-structures with simple crystalline lattice on the energy spectra and possible exciton states. The obtained results are plotted and the analyzes are carried out, together with the comparison of those results to those obtained for the corresponding ideal, infinite, e.i. spatially unbounded structures. On the basis of those analyzes, the main differences between the structures are observed. AB
- Accepted by the Scientific Board on: 16.09.2004.
- ASB • Defended: 28.09.2004.
- DE
- Work defend board:
 DB President: Dr. Radomir Kobilarov,
 - Full Professor, Faculty of Sciences,
 - University of Novi Sad
 - Member:
- Dr. Jovan Šetrajčić,
- Full Professor, Faculty of Sciences,
- University of Novi Sad,
- Dr. MILAN PANTIC
- Assistant Professor, Faculty of Sciences, University of Novi Sad

Kratka biografija autora

Rodjen 11.03.1977. u Zrenjaninu. Završio osnovnu školu "Vuk Karadžić" u Zrenjaninu, a zatim gimnaziju, takođe u Zrenjaninu. Prirodno-matematički fakultet, odsek za fiziku, smer diplomirani fizičar upisao 1998.

Novi Sad, 09.09.2004.

Manojinbuh Aemanka Nemanja Manojlović