## UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET

| Природно-математички факултет<br>Радна заједница заједничких послова<br>НОВИСАД |        |              |          |  |  |  |  |  |
|---------------------------------------------------------------------------------|--------|--------------|----------|--|--|--|--|--|
| Прамьекс                                                                        | : 22)  | 27 XII. 1979 |          |  |  |  |  |  |
| Орг. јед.                                                                       | Број   | приласт ј    | Вродност |  |  |  |  |  |
| 03                                                                              | 10/113 |              |          |  |  |  |  |  |

.

NADA PRICA

# OSNOVNE KARAKTERISTIKE I PRINCIP RADA ANTIKOMPTONSKOG Y SPEKTROMETRA

#### DIPLOMSKI RAD

NOVI SAD, 1979. god.

Svojim znanjem i iskustvom Dr Bikit Ištvan je mnogo doprineo realizaciji ovog rada. Na tome mu se najtoplije zahvaljujem.

# SADRŽAJ

UVOD

#### Strana

| PROCES DETEKCIJE Y-ZRAČENJA POLUPROVODNIČKIM DETEKTORIMA               | ]      |
|------------------------------------------------------------------------|--------|
| FOTOELEKTRIČNI EFEKAT                                                  | 1      |
| KOMPTONOVO RASEJANJE                                                   | 1      |
| PROIZVODNJA PARA ZA FOTONE ENERGIJA IZNAD 1 MOV                        | -<br>- |
|                                                                        | 3      |
| ELEPTENTI KOINCIDENTNE SPEKTROSKOPIJE                                  | 4      |
| KOINCIDENTNI MERNI UREDJAJI                                            | 6      |
| BRZI DISKRIMINATOR SA OKIDANJEM NA VODEĆU IVICU                        | 6      |
| BRZI DISKRIMINATOR SA OKIDANJEM NA PRESEK NULTOG NIVOA                 | 6      |
| BRZI DISKRIMINATOR SA OKIDANJEM NA KONSTANINOM DELU<br>VISINE IMPULSA  | -      |
| BRZI DISKRIMINATOR KOJI KOMPENZUJE AMPLITUDU I<br>VREME USPONA IMPULSA | /      |
|                                                                        | 8      |
| DIE NOINCIDENTINO KOLO PREKLAPAJUCEG TIPA                              | 9      |
| PRETVARAC VREMENA U AMPLITUDU                                          | 9      |
| KRIVA KAŠNJENJA                                                        |        |
| PRINCIP RADA ANTIKOINCIDENTING SPEKTROMETRA                            | 11     |
| EKSPERIMENT                                                            | 13     |
|                                                                        | 16     |
| OPIS MERINOG UREDUAJA                                                  | 16     |
| PROCENA EFIKASNOSTI ANTIKOMPTONSKOG Y-SPEKTROMETRA                     | 17     |
| REZULTATI MERENJA                                                      | 21     |
| ZAKLJUČAK                                                              | 27     |
| LITERATURA                                                             | 28     |



UVOD

Sve veća prisutnost poluprovodničkih spektrometara u nuklearnim istraživanjima objašnjava se njihovim naglim razvojem. U odnosu na druge spektrometre (na primer scintilacione) oni imaju veoma dobru moć razlaganja, ali im je efikasnost manja.

Poluprovodnički spektrometri se koriste i za ispitivanje spektara  $\gamma$  - zraka, odnosno merenje energije i intenziteta  $\gamma$  - prelaza nekog radioaktivnog izvora. Pri odredjivanju intenziteta koristi se površina pod foto vrhom.

Merenje se može poboljšati delimičnim uklanjanjem dela spektra koji potiče od komptonovog rasejanja fotona. S tim se povećava odnos foto-vrhova prema kontinualnom delu spektra. U praktičnom radu ovo se ostvaruje opkoljavanjem germanijumskog brojača sa velikim natrijum jodidom kao detektorom za detekciju rasejanih komptonovih fotona. Ako se impulsi iz germanijumskog brojača beleže samo kada ne postoji koincidentni signal iz scintilacionog brojača detektuju se u principu samo impulsi vezani za fotoelektrični efekat i za proizvodnju parova.

U ovom radu je konstruisan antikomptonski spektrometar od postojećih komponenti u Laboratoriji za nuklearnu fiziku Instituta za fiziku u Novom Sadu i ispitane su njegove performanse. PROCES DETEKCIJE Y - ZRAČENJA POLUPROVODNIČKIM DETEKTORIMA

Pri prolazu gama zraka kroz detektor dogadjaju se tri procesa:

## FOTOELEKTRIČNI EFEKAT

Kvante energije upadnog elektromagnetnog zračenja apsorbuju vezani elektroni atoma i oslobadjaju se iz elektronskog omotača. Kinetička energija emitovanih foto elektrona je:

$$T = E_{\gamma} - E_{i}^{V}$$

gde je  $E_i^V$  energija veze i-tog sloja u atomu.

Verovatnoća apsorpcije foto-električnim efektom je veća ukoliko je elektron čvršće vezan, tako da je uglavnom tim procesom obuhvaćena K-ljuska ako je energija dovoljno velika. Presek za K-ljusku ima vrednost:

$$\sigma_{\rm f} \approx 10^{-9} \ \rm z^5 \ \rm E_{\gamma}^{-3,5} \qquad [\rm barn]$$

2 - je redni broj apsorbera, a  ${\rm E}_{\gamma}$  je energija upadnog fotona.

### KOMPTONOVO RASEJANJE

Komptonov efekat je elastičan sudar gama zraka i slabo vezanog elektrona iz spoljnih ljuski elektronskog omotača. Foton predaje elektronu deo svoje energije i skreće sa prvobitne putanje, dok elektron uzmiče pod uglom  $\phi$  u odnosu na pravac upadnog fotona (slika 1.).



Energija rasejanog kvanta iznosi:  $E_{\gamma}' = \frac{E_{\gamma}}{1+\alpha(1-\cos\theta)}$ gde je  $\alpha = \frac{E_{\gamma}}{mc^2}$ 

Kinetička energija uzmaknutog elektrona jednaka je razlici energija upadnog i rasejanog fotona:

$$T = E_{\gamma} - E_{\gamma}' = \frac{\alpha E_{\gamma} (1 - \cos \theta)}{1 + \alpha (1 - \cos \theta)}$$

Energija je minimalna za  $\theta=0^{\circ}$ ,  $\phi=90^{\circ}$ , a maksimalna za  $\theta=180^{\circ}$ ,  $\phi=0^{\circ}$ . Ova maksimalna vrednost se naziva komptonova ivica:

$$\mathbf{T}_{\mathrm{m}} = \frac{\mathbf{E}_{\mathrm{Y}}}{1 + \frac{1}{2\alpha}}$$

Raspodela elektrona po energijama za komptonsko rasejanje i Sotoelektrični efekat grafički prikazana izgleda ovako:



Slika 2.

Verovatnoća komptonovog rasejanja po jednom elektronu ima vrednost:

 $\sigma_{\rm c} = 2\pi r_{\rm o}^2 \left\{ \frac{1+\alpha}{\alpha^2} \left[ \frac{2(1+\alpha)}{1+2\alpha} - \frac{\ln(1+2\alpha)}{\alpha} \right] + \frac{\ln(1+2\alpha)}{2\alpha} - \frac{1+3\alpha}{(1+2\alpha)^2} \right\} \quad [\rm cm^2]$  $r_{\rm o} = (e^2/mc^2) = 2,818 \times 10^{-13} \, \rm cm, \quad \alpha = E_{\gamma}/mc^2$  PROIZVODNJA PARA ZA FOTONE ENERGIJA IZNAD 1 MeV

Treći značajan oblik interakcije elektromagnetnog zračenja sa materijom je stvaranje para elektron-pozitron. Energija fotona 2  $m_ec^2$  (1.022 MeV) je prag za ovaj proces. Razlika energije upadnog fotona i energije mirovanja kreiranog para (1.022 MeV) je podeljena izmedju nastalih čestica u vidu kinetičke energije:

 $E_{\gamma} = 2 mc^2 + T_{e^-} + T_{e^+}$ 

Presek za proizvodnju para na višim energijama ima oblik:

$$\sigma_{
m pp} pprox ~{^{Z^2}}$$
 in E  $_{
m \gamma}$ 

Navedeni procesi slabe snop elektromagnetnog zračenja koje ulazi u poluprovodnik. Ukupan koeficijent slabljenja vezan za uklanjanje fotona iz monoenergijskog snopa je dat izrazom:

$$\mu = N\sigma_f + N\sigma_{pp} + ZN\sigma_c$$

gde je N broj atoma apsorbera po jedinici zapremine, a Z je atomski broj.

## ELEMENTI KOINCIDENTNE SPEKTROSKOPIJE

Istovremeni dogadjaji mogu se registrovati jednostavnim sistemom od dva detektora povezana sa koincidentnim kolom, kao što je ovaj na slici 3.



#### Slika 3.

Koincidentni uredjaj će isporučiti izlazni impuls ako signali iz detektora A i B stignu u njega unutar izvesnog vremenskog intervala  $\tau$  jedan od drugog. To znači da koincidentno kolo ima vreme rešavanja  $\pm \tau$ , odnosno  $2\tau$ .

Koincidentni uslov kola mogu ispuniti sledeći nuklearni dogadjaji: fotoni emitovani u kaskadnom  $\gamma$  - raspadu, dve čestice emitovane brzo u kaskadi za vreme radioaktivnog raspada, dva produkta iste nuklearne reakcije,  $\gamma$  - kvanti proizvedeni anihilacijom pozitrona. Ovi dogadjaji se nazivaju istinske koincidencije. U okviru vremena razlaganja koincidentnog kruga se dešava komptonsko rasejanje  $\gamma$  - kvanta u Ge(Li) detektoru i detekcija rasejanog kvanta u zaštitnom NaJ detektoru.

Medjutim, koincidentni ulaz će propustiti izvestan broj slučajnih koincidencija. One potiču od istovremenog raspada dva jezgra, od šuma, ili kao u uradjenom eksperimentu od detektovanja  $\gamma$  - zraka poluprovodničkim brojačem i slučajnog, istovremenog, detektovanja  $\gamma$  - zraka koji direktno dolazi iz izvora, ili posle reflektovanja od neke površine u scintilacioni brojač.

Ukupan broj koincidentnih dogadjaja koje će registrovati posmatrani sistem u vremenu T biće jednak zbiru istinskih i slučajnih. Stvarni broj dogadjaja zabeleženih u detektoru A sa efikasnošću  $\epsilon_{\rm A}$  i detektoru B sa efikasnošću  $\epsilon_{\rm B}$  u vremenu T za izvor čija je aktivnost N je:

 $N_A = \epsilon_A NT$ ;  $N_B = \epsilon_B NT$ 

Ako koincidentni uredjaj izbroji svaki istovremeni par impulsa iz detektora broj istinskih koincidencija biće:

$$N_{AB} = \epsilon_A \epsilon_B NT$$

Za sistem sa vremenom razlaganja  $2\tau$  broj slučajnih koincidentnih dogadjaja, za vreme T, dat je izrazom:

$$N_S = 2\tau N^2 \varepsilon_A \varepsilon_B T$$

Ukupan broj izmerenih dogadjaja je:

 $N_U = N_S + N_{AB}$ .

# KOINCIDENTNI MERNI UREDJAJI

Amplituda impulsa detektora nosi energetsku informaciju o nuklearnom dogadjaju. Vremenska informacija o tom dogadjaju može se dobiti ako se signal iz detektora odvede u okidno kolo koje za svaki impuls daje jedan signal standardnog oblika i amplitude i odredjuje trenutak stizanja impulsa, odnosno trenutak nuklearne interakcije. Za ova merenja koriste se brzi diskriminatori kao što su:

6 -

# BRZI DISKRIMINATOR SA OKIDANJEM NA VODEĆU IVICU

Kada prednja ivica signala detektora dostigne izvestan nivo, prag, on okida izlazno kolo. Vreme nastanka izlaznog signala pokazuje zavisnost od amplitude ulaznog impulsa. Ako ona

ianal prag vremenska razlika

#### Slika 4.

nije konstantna nastaju vremenska odstupanja u okidanju, takozvana vremenska šetnja. To je prikazano na slici 4. Vremenska šetnja se može smanjiti snižavanjem fiksiranog praga. Izbor odredjenog praga diskriminatora može dati optimalnu vremensku rezoluciju samo za vrlo mali opseg impulsnih visina.

Problem vremenske šetnje je prevazidjen merenjem vremena metotom preseka nultog nivoa.

BRZI DISKRIMINATOR SA OKIDANJEM NA PRESEK NULTOG NIVOA

Signal iz detektora je moguće pretvoriti u bipolarni signal. Njegov talasni oblik ukršta se s nultim nivoom u izvesnom vremenskom intervalu posle početka rasta impulsa nezavisno od amplitude impulsa (kao na slici 5.). Taj signal se dovodi u brzi diskriminator koji je podešen da okida na preseku nultog nivoa, pa je merenje vremena oslobodjeno šetnje prouzrokovane



Slika 5.

promenom amplitude ulaznog impulsa. Zato se ovaj metod koristi pri obradjivanju impulsa sa širokim intervalom visina.

Nedostatak brzog diskriminatora sa okidanjem na presek nultog nivoa je što tačka preseka zavisi od vremena rasta impulsa, odnosno od vremena potrebnog za sakupljanje 50% totalnog naelektrisanja oslobodjenog od detektora. Razlike

vremena uspona impulsa unose statistička odstupanja u okidanju diskriminatora. Metod preseka nultog nivoa je najbolje prilagodjen za merenje vremena brzim (plastičnim) scintilatorima.

Treći način merenja vremena sadrži u sebi prednosti dva prethodna.

BRZI DISKRIMINATOR SA OKIDANJEM NA KONSTANTNOM DELU VISINE IMPULSA

Za merenje vremena ovim diskriminatorom koristi se dvostruko diferenciran signal. Taj signal je suma dva impulsa,



oba dobijena od impulsa detektora. Jedan je zakašnjen impuls detektora obrnutog polariteta, a drugi je nezakašnjen i oslabljen do onog dela visine impulsa na kome treba da se vrši okidanje. Okidno kolo je podešeno da okine na tački nultog nivoa, a ona se podudara sa trenutkom stizanja istog dela naelektrisanja f bez obzira na amplitudu impulsa. Princip metoda je ilustrovan na slici 6. Navedeni način merenja daje nisku vremensku šetnju, a deo visine impulsa f na kome se vrši okidanje se bira tako da daje minimalna statistička odstupanja. Vrednost f zavisi od vrste detektora. Za organske scintilatore je, na primer, optimalna vrednost f=10-15%.

## BRZI DISKRIMINATOR KOJI KOMPENZUJE AMPLITUDU I VREME USPONA IMPULSA

Ovakav uredjaj je korišćen u izvršenim koincidentnim merenjima. Svojim principom rada on koriguje razlike u merenju vremena prouzrokovane različitim amplitudama impulsa detektora



i varijacijama u vremenu uspona impulsa (ta karakteristika mu je sadržana u nazivu: Amplitude and Rise time Compensation - ARC). Na slici 7. je prikazan način kompenzovanja za impuls iz poluprovodničkog detektora. Signal se zakasni za neko vreme  $\tau_d$  i sabere sa oslabljenim, nezakašnjenim signalom, obrnutog polariteta. Kolo daje izlazni, logički, impuls u momentu kad rezultujući signal ima vrednost nula. Nulti presek ne zavisi od amplitude impulsa. Ne zavisi ni od strmine početnog

dela talasnog oblika impulsa koja je mera brzine rasta impulsa. Vremenski interval  $\tau_c$  treba da bude što je moguće kraći, a to se postiže odabiranjem malog vremena kašnjenja  $\tau_d$  (3-10 ns).

### BRZO KOINCIDENTNO KOLO PREKLAPAJUĆEG TIPA

Za merenje broja istovremenih nuklearnih dogadjaja sem detektora i razmatranih brzih diskriminatora koriste se i koincidentna kola. Funkcija koincidentnog kola je da isporuči jedan



Slika 8.

izlazni impuls samo kada primi ulazne impulse od oba diskriminatora u okviru vremena rešavanja ±τ. Princip rada jednostavnog koincidentnog kola preklapajućeg tipa dat je na slici 8.

Na ulaz koincidentnog kola dovode se impulsi iz dva diskriminatora i sabiraju. Ako su istovremeni oni će se preklopiti i rezultujući impuls će prevazići prag pratećeg kola koje tada isporuču-

je jedan izlazni impuls. Vreme rešavanja koincidentnog kola je približno jednako širini ulaznih impulsa.

#### PRETVARAČ VREMENA U AMPLITUDU

Da bi se izvršila analiza vremenskih intervala njih treba pretvoriti u impulse čija je amplituda linearno povezana sa dužinom intervala vremena. To se radi pretvaračima vremena u amplitudu ("Time to Amplitude Converters - TACs"). Ima više vrsta pretvarača, a dva su osnovna: tip sa preklapanjem impulsa i start-stop tip. Prvi je zapravo proširenje opisanog koincidentnog kola i on ovde neće biti objašnjen.

#### Start-stop tip

Kod ovog pretvarača "start" impuls pokreće neki uredjaj da akumulira naelektrisanje, a "stop" impuls ga prekida u tome.







Slika 10.



Slika 11.

Kao skladišni uredjaj obično se koristi kondenzator koji je napunjen ili ispražnjen konstantnom strujom, tako da je promena napona proporcionalna vremenu izmedju start i stop impulsa (slika 9.).

Ovaj princip je iskoristio Dardini u svom kolu (slika 10.):

start impuls, stepenastu funkciju napona, je primenio na bazu tranzistora  $T_2$  i on je postao neprovodan. U istom trenutku je iz tranzistora  $T_1$  potekla konstantna struja u kondenzator. Ta struja teče dok na emitor tranzistora  $T_1$  ne stigne stop impuls, takodje stepenasta funkcija napona.

Start i stop impulsi su dobijeni na sledeći način: signali iz dva detektora se dovode u koincidentno kolo i istovremeno iz jednog detektora u jedan okidač, a iz drugog detektora u drugi okidač (slika 11.). Okidači su tunel diode koje su polarizovane tako da njihovo



#### Slika 12.

stanje odgovara tački A na karakteristici (slika 12.). Ako signali iz detektora stignu u koincidentno kolo u okviru vremena razlaganja ono će na izlazu dati impuls koji će prouzrokovati rad monostabilnog kola. Monostabilno kolo će tada isporučiti tunel diodama impuls trajanja Δt.

Radna tačka tunel diode će se pomeriti iz A u B. Ona će egzistirati stabilno u stanju koje se podudara sa tačkom B na karakteristici dok ne dodje impuls iz detektora koji je dovodi u stanje kojem odgovara tačka C. Tada tunel dioda okida prateće kolo i ono proizvodi stepenasti naponski impuls. Taj impuls se šalje u pretvarač kao start ili stop impuls, zavisno od toga iz kog okidača (odnosno detektora) potiče. Na kraju vremenskog intervala  $\Delta$ t tunel dioda se vraćaju u prvobitno stanje.

#### KRIVA KAŠNJENJA

U analizama vremena javlja se problem statističkog odstupanja vremena generisanja logičkog impulsa koji je povezan sa nuklearnim dogadjajem u vremenu. Veličina statističkog odstupanja zavisi od svojstava oba detektora i brzog diskriminatora. Doprinos detektora vremenskom treperenju daje nekoliko faktora. U scintilacionim brojačima jedna komponenta dolazi od mehanizma emisije svetlosti. Ona je mala za brze scintilatore kao što su organski i veća za scintilatore kao što je NaJ. Za poluprovodničke detektore brzina sakupljanja produkata jonizacije je uticajan faktor i statističko odstupanje će zbog njega biti malo za tipove sa površinskom barijerom, a veće za detektore veće osetljive zapremine kao što je Ge(Li) tip. Za obe vrste detektora vremensko treperenje će biti manje za dogadjaje visoke energije iz dva razloga: signal detektora pokazuje manje odstupanje kada je načinjen od više nosilaca naelektrisanja, i relativan doprinos šuma je manji.

- 11 -

Ukupnom statističkom odstupanju znatno doprinosi rad brzih diskriminatora. Oni pokazuju zavisnost vremena stvaranja izlaznog impulsa od amplitude ulaznog impulsa, to jest od vremenske šetnje.



Slika 13.



Slika 14.

Za efikikasno odredjivanje vremenske zavisnosti pojava merenjem istovremenosti statističko variranje se mora uzeti u obzir, jer iako se radi o istom nuklearnom dogadjaju može se dogođiti da zbog njega logički impulsi koji stižu u koincidentno kolo ne budu istovremeni i da preklapanje impulsa bude malo. Raspodela vremenskog treperenja praktično se dobija snimanjem raspodele vræmena kašnjenja izlaznog signala jednog brzog diskriminatora u odnosu na odgovarajući izlazni signal drugog brzog diskriminatora. Dobijena kriva se naziva kriva kašnjenja. Maksimum krive odgovara najverovatnijem vremenu kašnjenja (t<sub>o</sub>). Puna širina na polovini visine maksi-

muma krive kašnjenja je jednaka koincidentnom vremenu rešavanja 27. Na slici 13. je označeno koji deo krive kašnjenja proizilazi od istinskih, a koji od slučajnih koincidencija. Kriva kašnjenja se dobija iz pretvarača vremena u amplitudu. Uz pretvarač vremena u amplitudu se može postaviti jednokanalni analizator da odbacuje deo spektra nastao od slučajnih koincidencija pre analize u višekanalnom analizatoru. U tom slučaju se dobija kriva kao na slici 14. PRINCIP RADA ANTIKOINCIDENTNOG SPEKTROMETRA

Antikoincidentni spektrometar se koristi za gušenje dogadjaja komptonovog rasejanja s ciljem povećanja odnosa foto-vrha i kontinualnog dela spektra.

Sastoji se od: dva ili više detektora

predpojačavača pojačavača brzog diskriminatora koincidentnog uredjaja višekanalnog analizatora izvora visokog napona

Jedan detektor, poluprovodnički, se postavlja kao centralni i radioaktivni izvor ispred njega. Oko njega se stave scintilacioni brojači koji detektuju rasejane komptonove fotone. Višestruka interakcija rasejanih fotona je verovatnija što je kristal NaJ veći. Njegova veličina je ograničena procesom rasta kristala. Do sada je dobijen kristal NaJ velik 16 inča (40,62 cm) u jednoj dimenziji. Za germanijumske detektore važi isto ograničenje zbog teškoće u rastu kristala i teškoće dobijanja debljih kompenzovanih slojeva. 120 cm<sup>3</sup> je maksimalna dobijena aktivna zapremina germanijumskog brojača. Najefikasnija detekcija rasejanih





komptonovih fotona se dobija ako se u veliki scintilacioni detektor cilindričnog oblika stavi poluprovodnički brojač valjkastog oblika. Radioaktivni izvor se pričvršćuje za Ge(Li) brojač i takodje stavlja u otvor scintilatora (slika 15.). Izvrše se vremenske analize impulsa iz spoljašnjeg i centralnog brojača i ispita istovremenost, odnosno vreme kašnjenja im-

pulsa. U višekanalni analizator se propuštaju samo oni impulsi iz poluprovodničkog - Ge(Li) detektora koji nisu u koincidenciji sa impulsima iz sporednog detektora koji ga okružuje. Na taj način impulsi iz scintilacionog - NaJ detektora sprečavaju detekciju pratećih komptonovih impulsa iz centralnog kristala.

Ovde je data šema antikoincidentnog spektrometra koji su konstruisali Orphan i Rasmussen (slika 16.). Sastoji se od tri detektora. Centralni detektor je 30 cm<sup>3</sup> koaksijalni Ge(Li) detektor, a okružuju ga dva scintilaciona detektora sa kristalima NaJ dimenzija 6"x3" (15,23x7,62 cm). Izvor je kolimisan na središni detektor.

Koristi se u spektrometriji  $\gamma$ - zraka ispod 1 MeV kao anti-komptonski spektrometar.

- 15 -



Slika 16.

#### EKSPERIMENT

U eksperimentalnom radu korišćen je izvor  $Cs^{137}$ .  $Cs^{137}$ se raspada  $\beta$  raspadom u pobudjeno stanje Ba<sup>137</sup> i to 93,5%  $\beta$  raspada formira ovo stanje, a samo 6,5% vodi u osnovno stanje Ba<sup>137</sup>.



Slika 17.

Pri prelazu iz pobudjenog u osnovno stanje jezgro Ba<sup>137</sup> emituje ¥ zrak energije 0,6616 MeV. Šema raspada prikazana je na slici 17. Postojećom laboratorijskom aparaturom snimljen je spektar Cs<sup>137</sup>, anti-koincidentni i koincidentni spektar, i kriva kašnjenja.

#### OPIS MERNOG UREDJAJA

Za snimanja navedenih spektara upotrebljeni su sledeći uredjaji: poluprovodnički Ge(Li) detektor•cilindričnog oblika, driftovan koaksijalno, sa jednim otvorenim krajem. Prečnik mu je 49 mm. Prečnik P-sloja je 12 mm. Debljina N-sloja je 0,6 mm. Dužina detektora je 43,5 mm. Zatvoreni kraj je udaljen 5 mm od spoljašnje čeone površine detektora. Aktivna zapremina je V=79 cm<sup>3</sup>. Detektor je hladjen do temperature tečnog azota. Za ovaj detektor je vezan predpojačavač.

Răsejano komptonovo zračenje detektovano je sa dva scintilaciona brojača. Kristal NaJ u njima ima prečnik 1,5" (3,81 cm) i dužinu  $\hat{z}$ " (5,08 cm). Šcintilacioni detektori su napajani sa 1800 V jednosmernog napona, a Ge(Li) detektor je napajan sa 4000 V. Signali iz centralnog detektora su vodjeni jednom granom preko predpojačavača i linearnog pojačavača u višekanalni amplitudni analizator. Isti signal je posle predpojačavača, drugom granom, doveden u brzi diskriminator koji kompenzuje amplitudu i vreme uspona impulsa (ARC). Drugi upotrebljeni brzi diskriminator prima impulse iz scintilacionih detektora. Logički signali iz brzih diskriminatora su doveđeni u pretvarač vremena u amplitudu (TAC). Sema mernog uredjaja data je na slici 18.

# PROCENA EFIKASNOSTI ANTIKOMPTONSKOG Y - SPEKTROMETRA

Efikasnost antikomptonskog  $\gamma$  - spektrometra je odredjena geometrijskom efikasnošću g i efikasnošću detektovanja scintilacionih brojača  $\in (E_{\gamma})$ . Geometrija eksperimenta je prikazana na slici 19. Sve sem boce za tečni azot je nacrtano u razmeri 1:4. Njene dimenzije su proizvoljne. Na slici 20. su nacrtani samo kristali detektora (1:1). Da bi se pojednostavio račun uzeto je da komptonovo rasejano zračenje dolazi na kristale NaJ iz jedne tačke Ge(Li) brojača umesto jz cele osetljive zapremine. Geometrijska efikasnost je jednaka:

 $g = \frac{\Omega}{4\pi}$  - prostorni ugao koji obuhvataju oba scintilaciona brojača

$$\Omega = \frac{S}{r^2} - površina kalote koju obuhvata ugao- kvadrat poluprečnika sfere$$

$$\Omega = \frac{2r^2 (1-\cos \theta)}{r^2} = 2\pi (1-\cos \theta)$$

Na slici 20. je izračunato da je g=12%.

Efikasnost detektovanja scintilacionog brojača uzeta je iz tablica i to za energiju  $E_{\gamma}=0,50$  MeV jer ona odgovara najvećem broju odbačenih impulsa. Efikasnost kristala NaJ 1,5"x2" je  $\in (0,5 \text{ MeV})=0.5$ , pa je efikasnost antikomptonskog  $\gamma$  - spektrometra:

 $\varepsilon = g \cdot \epsilon (E_{\gamma})$  $\varepsilon = 12 \cdot 0,5$  $\varepsilon = 6 \ \$.$ 

ŠEMA MERNOG UREĐAJA



ulaz

Slika 18.



Slika 19.



GEOMETRIJSKA EFIKASNOST

$$\cos \Theta_{1} = \frac{30}{35} = 0.86$$

$$\Omega_{1} = 2\pi (1 - 0.86) = 0.90$$

$$\cos \Theta_{2} = \frac{42}{46} = 0.91$$

$$\Omega_{2} = 2\pi (1 - 0.91) = 0.55$$

$$g = \frac{\Omega_{1} + \Omega_{2}}{4\pi} = \frac{1.45}{4\pi} = 0.12$$

$$g = 12^{\circ}/_{\circ}$$

Slika 20.

#### REZULTATI MERENJA

U izvedenim merenjima upotrebljen je izvor Cs<sup>137</sup>. Na slici 21. je dat spektar koji se dobija u poluprovodničkom Ge(Li) i scintilacionom - NaJ brojaču (precrtan sa ekrana katodnog osciloskopa). Tokom podešavanja instrumenata izvestan broj impulsa koji se dobijaju u scintilacionom detektoru je odbačen, pre snimanja, da bi se izbegao veliki broj impulsa koji potiču od šuma, a podudaraju se s ovima.

Spektar  $\gamma$  - zraka emitovanih od radioaktivnog izvora Cs<sup>137</sup> je snimljen prvo direktno, odnosno samo poluprovodničkim spektrometrom. Slika 22. prikazuje direktan spektar iz jednog od merenja. Meren je ukupan broj impulsa pod foto vrhom i pod komptonovim delom spektra. Na grafiku su označene te oblasti. Takodje je snimljen spektar Cs<sup>137</sup> koincidentnim i antikoincidentnim načinom. Spektar odbačenih impulsa, tj. koincidentni spektar, je dat na slici 23. Antikoincidentni spektar nije priložen jer dobijena razlika u odnosu na direktni ne može da se uoči na grafiku. Snimljen je i koincidentni spektar iz pretvarača vremena u amplitudu, odnosno kriva kašnjenja. Dobijena kriva je nacrtana na slici 24. Sa nje je odredjeno koincidentno vreme rešavanja i ono je 2 $\tau$ =43 ns.

U tabeli br. l. su navedene vrednosti površina pod foto-vrhom i pod komptonovim delom spektra za spektar iz TAC-a, direktni, koincidentni i anti-koincidentni spektar.

Tokom merenja korišćeni su različiti donji nivoi diskriminacije brzih diskriminatora i oni su dati u istoj tabeli. Poredjenjem antikomptonskog i direktnog spektra izračunata je

redukcija komptonskog dela spektra u procentima. Rezultati su upisani u tabeli br. 1.

| -  |  |
|----|--|
| Å  |  |
| Ц  |  |
| ы  |  |
| р  |  |
| Å  |  |
| F. |  |

|                               | komptonova<br>redukcija | redukcija<br>C,58 % |         |         | 1,64 %  |                  | 2,91 & |         | 1,21 % |  |
|-------------------------------|-------------------------|---------------------|---------|---------|---------|------------------|--------|---------|--------|--|
| Antikoinci-                   | dentni<br>spektar       | 2425741             | 1164130 | 2405208 | 1164271 | 1326681          | 635077 | 262512  | 125527 |  |
| Direktni                      | spektar                 | 2439841             | 1164120 | 2445214 | 1165461 | 1366381          | 637432 | 265722  | 126004 |  |
| Koincidentni                  | spektar                 | 21928               | 1424    | 46282   | 3497    | 39532            | 2882   | 4578    | 262    |  |
|                               |                         | kampton             | foto    | kompton | foto    | kompt <b>o</b> n | foto   | kompton | foto   |  |
| Spektar<br>iz TAC-a           |                         | 12115               | 1/110   | 67005   |         | 21003            | 07070  | 2012    | 0070   |  |
| Ukupan broj impulsa           |                         |                     |         |         |         |                  |        |         |        |  |
| nivo<br>minacije              | NaJ                     | د ار<br>د           | 2       | 186     |         | 213              |        | 213     |        |  |
| <br>diskrin<br>Ge (Li)<br>364 |                         |                     | 186     | 186     |         | 418              |        | 418     |        |  |

- 22 -









Slika 21.

|





- 24 -





- 25 -



# KRIVA KAŠNJENJA

Slika 24.

#### ZAKLJUČAK

Cilj ovog rada je bio da se vidi kako radi antikomptonski  $\gamma$  - spektrometar. Isti je izradjen od postojećih delova opreme. Odabrana je optimalna geometrija detektora. Upotrebljeni NaJ detektori obuhvatali su 12% prostora oko centralnog detektora. Teorijski procenjena efikasnost sistema je bila 6%, a sa korišćenim detektorima je postignuta redukcija komptonskog dela spektra do 2,9%.

Sa postojećom elektronikom je postignuto vreme razlaganja koincidentnog kola od oko 40 ns što obezbedjuje dobar odnos pravih prema slučajnim koincidencijama.

Ovakav sistem može da posluži za demonstraciju komptonske redukcije. Iako postignuta komptonska redukcija nije od praktične vrednosti sistem se može iskoristiti za koincidentnu spektroskopiju. Radi poboljšanja performansi sistema trebalo bi izlazno kolo scintilacionih detektora prilagoditi ulazu brzog diskriminatora. Na taj način bi se šum bolje razdvojio od spektra u scintilacionim detektorima, i pri diskriminaciji šuma u brzom diskriminatoru bi se gubio manji deo niskofrekventnog dela spektra.

## LITERATURA

- 1 P.W. Nicholson NUCLEAR ELECTRONICS John Wiley, 1974.
- 2 F.Adams and R.Dams APPLIED GAMMA-RAY SPECTROMETRY Pergamon Press, 1975.
- |3| W.E.Burcham NUKLEARNA FIZIKA - UVOD, SA FIZIKOM ČESTICA Naučna knjiga, Beograd, 1974.

4 Dr Lazar Marinkov OSNOVI NUKLEARNE FIZIKE Novi Sad, 1976.

.

.