

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA FIZIKU

Mirjana Šiljegović

UTICAJ DODATKA BIZMUTA NA SVOJSTVA NEKRISTALNIH POLUPROVODNIKA SISTEMA As-S

- magistarski rad -

Novi Sad, 2008.

Rad posvećujem svojim najmilijim,

mami, tati i Slavi

Koristim priliku da izrazim veliku zahvalnost:

• <u>dr Svetlani Lukić</u>, redovnom profesoru Prirodno-matematičkog fakulteta u Novom Sadu, mentoru ovog rada na velikoj pomoći oko izbora i realizacije problematike rada, kao i na nesebičnom angažovanju u svim fazama rada i izuzetnoj savesnosti prilikom pregleda rukopisa,

• <u>dr Dragoslavu Petroviću</u>, redovnom profesoru Prirodno-matematičkog fakulteta u Novom Sadu, koji mi je kao šef Katedre za eksperimentalnu fiziku kondenzovane materije omogućio da se bavim problematikom iz koje je proistekao ovaj rad,

• <u>mr Goranu Štrbcu</u>, istraživaču-saradniku na Katedri za eksperimentalnu fiziku kondenzovane materije, na svesrdnoj pomoći pri realizaciji merenja termičkih karakteristika,

• <u>mr Dragani Štrbac</u>, asistentu na Fakultetu tehničkih nauka u Novom Sadu, na nesebičnom angažmanu u realizaciji merenja optičkih karakteristika,

• <u>mr Milošu Slankamencu</u>, asistentu na Fakultetu tehničkih nauka u Novom Sadu, na pruženoj pomoći pri izvođenju eksperimenata i obradi rezultata koji se odnose na merenja elektrićnih osobina,

• <u>dr Fedoru Skubanu</u>, docentu na Prirodno-matematičkom fakulteta u Novom Sadu, na izuzetno korisnim sugestijama pri interpretaciji dobijenih rezultata , na pruženoj pomoći pri pretraživanju i proučavanju literature, a najviše na velikom strpljenju i podršci,

• <u>Radenku Kisiću</u>, kolegi i stručnom saradniku na Prirodno-matematičkom fakulteta u Novom Sadu, na izuzetnom zalaganju pri tehničkoj obradi grafika i slika, a koji je i zaslužan za konačnu formu i izgled rada u celini,

• mojim dragim kolegama, <u>dr Imreu Gutu</u>, <u>Ljubici Đačanin</u> i <u>Branislavu Šešumu</u> na spremnosti da u svakom trenutku pomognu i uz čiju saradnju je sve bilo lakše i lepše.

I na kraju, veliko HVALA dugujem mojim najdražima, mojoj porodici, čija me je podrška i ljubav uvek pratila.

Mirjana Šiljegović

S A D R Ž A J

1. UVOD	1
1.1. Specifičnosti amorfnog stanja materije	1
1.2. Provera amorfnosti uzoraka tipa Bi _x (As ₂ S ₃) _{100-x}	
1.3. Zapreminska masa stakala sistema $Bi_x(As_2S_3)_{100-x}$	6
2. TERMIČKE OSOBINE	7
2.1. Diferencijalna skenirajuća kalorimetrija	7
2.2. Rezultati snimanja DSC krivih stakala sistema Bi _x (As ₂ S ₃) _{100-x}	10
2.3. Kinetika kristalizacionih procesa stakala Bi ₄ (As ₂ S ₃) ₉₆ i Bi ₆ (As ₂ S ₃) ₉₄	14
2.4. Kinetika predkristalizacionih procesa stakala Bi ₄ (As ₂ S ₃) ₉₆ i Bi ₆ (As ₂ S ₃) ₉₄	27
2.5. Termička stabilnost stakala Bi ₄ (As ₂ S ₃) ₉₆ i Bi ₆ (As ₂ S ₃) ₉₄	35
3. OPTIČKE OSOBINE	38
3.1. Karakteristike spektara transparencije halkogenida	38
3.2. Rezultati merenja spektara transparencije stakala sistema $Bi_x(As_2S_3)_{100-x}$	43
3.4. Rezultati određivanja koeficijenata apsorpcije stakala sistema $Bi_x(As_2S_3)_{100-x}$	47
3.5. Rezultati merenja indeksa prelamanja stakala sistema $Bi_x(As_2S_3)_{100-x}$	51
3.6. Korekcija koeficijenata apsorpcije stakala sistema $Bi_x(As_2S_3)_{100-x}$ na osnovu	
vrednosti indeksa prelamanja	63
4. ELEKTRIČNE I DIELEKTRIČNE OSOBINE	66
4.1. Modeli energetskih spektara amorfnih materijala	66
4.2. Električna provodljivost u jednosmernom režimu	69
4.3. Rezultati merenja dc provodljivosti stakala sistema Bi _x (As ₂ S ₃) _{100-x}	73
4.4. Električna provodljivost u naizmeničnom režimu	78
4.5. Rezultati merenja <i>ac</i> provodljivosti stakala sistema Bi _x (As ₂ S ₃) _{100-x}	81
4.6. Dielektrične osobine materijala	90
4.7. Rezultati merenja dielektričnih osobina stakala sistema $Bi_x(As_2S_3)_{100-x}$	97
ZAKLJUČAK	114
LITERATURA	117

1. UVOD

1.1. Specifičnosti amorfnog stanja materije

Halkogenidna stakla spadaju u grupu amorfnih materijala koje karakteriše kratkodometna uređenost strukture i veliki broj nezasićenih hemijskih veza. Naročit interes za proučavanje osobina ovih stakla potiče od činjenice da amorfni halkogenidi imaju izuzetnu aplikativnu mogućnost variranja fizičkih parametara, u skladu sa zahtevima primene, i to na dva načina:

1) promenom odnosa sastavnih komponenti ili

 promenom odgovarajućih parametara u režimu sinteze ovih materijala u relativno širokim intervalima i gotovo u potpunosti programirano u skladu sa unapred definisanim zahtevima [1].

Halkogenidna stakla u svom sastavu sadrže S, Se ili Te u kombinaciji sa elementima IV i (ili) V grupe Periodnog sistema elemenata, a koja se, prema veličini procepa pokretljivosti, svrstavaju u amorfne poluprovodnike. Pored halkogenidnih stakala, u grupu amorfnih poluprovodnika spadaju još i oksidna stakla i amorfni poluprovodnici čiji je sastav analogan sastavu poluprovodnika u kristalnom stanju.

Amorfni poluprovodnici su sa druge strane, podskup grupe amorfnih materijala podeljenih prema kriterijumu električne provodljivosti, pa tako pored njih, razlikujemo još i amorfne dielektrike i metalna stakla.

Po složenosti, odnosno u zavisnosti od broja elemenata koji ulaze u sastav halkogenidnih stakala, razlikujemo:

- binarna stakla: $A^{IV}-B^{VI}$, $A^{V}-B^{VI}$
- trojna stakla: $A^{V}-B^{VI}-C^{VII}$ ili M- $A^{V}-B^{VI}$
- četverokomponentna M- A^V- B^{VI}- C^{VII}
- složena: $A^{IV} A^{V} B^{VI}(1) B^{VI}(2) C^{VII}$

(A^{IV}: Si, Ge ili Pb; A^V: As, Sn ili Bi; B^{VI}: S, Se ili I; C^{VII}: Cl, Br ili I; M: bilo koji drugi element (najčešće metal)) [2]

Halkogenidna stakla se mogu razmatrati kao mreža kovalentnih veza sa stepenom povezanosti koji se menja sa promenom sastava. Upravo ova osobina promenjivosti povezivanja atoma u amorfnoj matrici čini halkogenidna stakla materijalima koje karakteriše širok spektar osobina i metastabilnih pojava.

Mirjana Šiljegović – Magistarski rad

Amplituda termičkih oscilacija strukturnih jedinica zavisi od hemijskog sastava materijala. Ako su hemijske veze između atoma sferno simetrične, odnosno jonskog karaktera ili su jako polarne metalne, amplituda oscilacija je velika. To se odražava na veliku pokretljivost čestica rastopa i malu viskoznost što dovodi do prelaza iz tečnosti u kristalno, uređeno stanje. U ovakvim materijalima, povećanje rastojanja između čestica dovodi do slabog i sporog smanjenja energije veze, što je uzrok brzog rearanžmana čestica tokom procesa kristalizacije rastopa uz mali gubitak energije [3]. U slučaju kovalentnih veza, a upravo one dominiraju između strukturnih jedinica u amorfnim materijalima, mala pomeranja atoma izazivaju značajan gubitak u energiji veze. Aranžman čestica tokom hlađenja rastopa je, prema tome, sprečen i neuređena struktura nalik tečnosti se zamrzava [3].

Uvođenje primesnih atoma u amorfnu matricu ima značajan efekat na stabilnost stakala u smislu ubrzavanja procesa rekristalizacije, pa se stoga njihovo uvođenje ograničava na uslovno rečeno nižu oblast koncentracije (u zavisnosti od vrste primesnih atoma) [3]. Sa druge strane, legiranje halkogenidnih stakala atomima prelaznog metala dovodi do značajnih promena gotovo svih fizičkih osobina osnovnog stakla. Binarni halkogenidni sistemi su veoma dobro istraženi, pa se mogu razmatrati kao modeli pri ispitivanju strukture i osobina složenijih staklastih sistema, a naročito je interesantno ispitivanje sistema nastalih legiranjem binarnih sistema odgovarajućim primesnim atomima.

U ovom magistarskom radu upravo je ispitivan uticaj primesnih atoma na fizičke karakteristike amorfne binarne matrice. U tu svrhu, izvršeno je legiranje sastava As_2S_3 atomima Bi u cilju ispitivanja promena u osobinama stakla u funkciji koncentracije Bi. Namera je prvenstveno bila da se ispitaju električne i dielektrične osobine ovih stakala, s obzirom da se stanje primesnih atoma Bi najočitije odražava na ove osobine. Takođe je ispitan uticaj dodatka atoma Bi i na optičke i termičke osobine, a sve u cilju uspostavljanja korelacije između parametara koji karakterišu pomenute osobine za osnovnu matricu i određenih koncentracija primesnih atoma Bi.

1.2. Provera amorfnosti uzoraka tipa $Bi_x(As_2S_3)_{100-x}$

Provera amorfnosti ispitivanih uzoraka, halkogenidnih amorfnih poluprovodnika opšte formule $Bi_x(As_2S_3)_{100-x}$ za koncentracije atoma bizmuta 0.5, 2, 4, 6, 8 i 10 at.%, izvršena je vizuelno, optički i rendgenski.

Vizuelna provera uzoraka sa x= 0.5, 2, 4 i 6 at.% Bi ukazala je na pojavu školjkastog izloma karakterističnog za staklastu formu.

Posmatranjem uzoraka pri transparenciji u polarizovanoj svetlosti nisu primećeni nikakvi optički aktivni centri za stakla sa x=0.5, 2, 4 i 6 at.% Bi, dok su se stakla sa x=8 i 10 at.% Bi pokazala neprozračnim, te ovom metodom nije bilo moguće potvrditi amorfnost njihove strukture.

Rendgenska kontrola neuređenosti stukture stakala sistema Bi-As-S urađena je na difraktometru za prah Brucker D8 sa bakarnom antikatodom. Difraktogramski snimci ispitivanih uzoraka prikazani na slici 1.1.

Slika 1.1. Difraktogrami stakala sistema $Bi_x(As_2S_3)_{100-x}$

x=10				x=8			
strukturna jedinica	<i>d</i> [nm]	2 heta [°]	<i>I</i> [rel. jed.]	strukturna jedinica	<i>d</i> [nm]	2 heta [°]	<i>I</i> [rel. jed.]
	2 515	35.7	100		2.515	35.7	91
Bi	2.315	33.7	100	IUU Bi	1.92	47.3	100
DI	1.69	54.5	55	DI	1.68	59.0	45
	1.212	78.9	40		1.212	76.0	23
	2.515	35.7	100		2.515	35.7	100
As	1.93	47.1	81	As	1.93	47.1	64
	2.24	40.2	52		2.24	40.2	45
As S	4.45	20.4	100		4.45	20.4	100
A5253	2.24	40.2	60	A5203	2.24	40.2	24

Tabela 1.1. Kvalititativna analiza difraktograma uzoraka $Bi_x(As_2S_3)_{100-x}$

Potvrđena je amorfnost uzoraka sa x=0.5, 2, 4 i 6 at.% Bi (slika 1.1.), dok su kod uzoraka sa x=8 i 10 at.% Bi utvrđeni i kvalititativnom analizom određeni pojedini kristalni centri. Međuravanska rastojanja i intenziteti difrakcionih pikova koji odgovaraju ovim kristalnim centrima takođe su dati u tabeli 1.1.

Analiza je pokazala postojanje tri kristalne forme: Bi, As i As_2S_3 u oba uzorka. Može se primetiti da najintenzivniji difrakcioni pik kod oba uzorka odgovara strukturnoj jedinici As_2S_3 , kao i da se položaji difrakcionih maksimuma ostalih strukturnih jedinica poklapaju, razlikujući se jedino u intenzitetu.

1.3. Zapreminska masa stakala sistema Bi_x(As₂S₃)_{100-x}

U okviru uvodnih istraživanja izvršena su i merenja zapreminske mase uzoraka iz ispitivanog sistema Bi-As-S metodom hidrostatičkih terazija. Masa uzoraka odmeravana je na analitičkim terazijama METTLER B-6. Merenja su vršena u vazduhu i destilovanoj vodi, a izvršena je i korekcija na potisak vazduha.

Kalkulisane vrednosti gustina stakala sa odgovarajućim greškama prikazane su u tabeli 1.2.

Funkcionalna zavisnost gustine ispitivanih stakala od sadržaja Bi prikazana je na slici 1.2. Može se primetiti linearan trend rasta gustine ispitivanih stakala sa porastom udela Bi, što ukazuje da je reč o čvrstim rastvorima [4].

Tabela 1.2. Vrednosti gustine stakala $Bi_x(As_2S_3)_{100-x}$

x [at.%]	$ ho [10^3 \text{kg/m}^3]$
0.5	3.149 (8)
2	3.461(6)
4	3.668 (9)
6	3.741 (7)
8	3.874 (8)
10	4.214 (11)

Slika 1.2. Zavisnost gustine od udela Bi u staklima sistema $Bi_x(As_2S_3)_{100-x}$

Analitički oblik funkcije prikazane na slici 1.2 je:

$$\rho = 3.19(7) \cdot 10^3 + 97.6(11) \cdot x$$

gde je x sadržaj Bi u at.%.

Parametar fita koji odgovara vrednosti gustine pri nultom udelu Bi u saglasnosti je sa vrednošću gustine za As₂S₃ $(3.2 \cdot 10^3 kg/cm^3)$ [5].

Elementarnu ćeliju kristala As_2S_3 tipa čini skup od 20 atoma odnosno 4 molekula As_2S_3 (struktura minerala auripigmenta) [6]. Svaki atom arsena okružen je sa tri atoma sumpora, a svaki atom sumpora sa dva atoma arsena. Atom As ima 5 valentnih elektrona od kojih tri grade vezu, a dva tzv. "usamljena" (*LP electrons*), formiraju nevezujuću "*lone-pair*" orbitalu [7]. Od 6 elektrona halkogena, dva formiraju vezu sa As, a četiri čine "*lone-pair*" veze. Na taj način, unutar sloja atomi su povezani jakom kovalentnom vezom. Na slici 1.3 prikazano je vezivanje strukturnih grupa AsS₃ u auripigmentu preko mostovnih atoma S u dvodimenzionalnu beskonačnu rešetku koja se sastoji od dvanaestočlanih izlomljenih prstenova [8]. Strukturne grupe AsS₃ imaju oblik piramida u kojima je atom As na vrhu, a atomi sumpora čine osnovu [9]. Šest takvih piramida vezanih preko mostovnih atoma sumpora čine pomenuti prsten.

Mirjana Šiljegović – Magistarski rad

Građa staklastog trisulfida arsena je slična građi auripigmenta, tj. kratkodometna uređenost se pri prelazu kristal-staklo za As_2S_3 ne menja [10].

Budući da se Bi nalazi u istoj, V grupi Periodnog sistema elemenata kao As, pretpostavlja se da joni Bi ulaze u strukturu binarne matrice zamenjujući atome As u osnovnim AsS₃ piramidalnim strukturnim jedinicama.

2. TERMIČKE OSOBINE

2.1. Diferencijalna skenirajuća kalorimetrija

Diferencijalna skenirajuća kalorimetrija (DSC) je tehnika koja registruje energiju (energetski fluks) potrebnu za održavanje nulte temperaturske razlike između ispitivanog uzorka i referentnog materijala, pri unapred definisanoj brzini grejanja (hlađenja), uz pretpostavku da se oba materijala nalaze pod istim uslovima. DSC se često koristi kao kvantitativna merna metoda koja pruža mogućnost određivanja bitnih termičkih parametara, poput: temperature topljenja i ključanja, temperature prelaza iz staklastog u viskozno stanje, procenta iskristalisanih frakcija, termičke stabilnosti, identifikacije faznih transformacija i sl. Tipična šema ćelije DSC uređaja prikazana je na slici 2.1.

DSC uređaj može raditi u dva režima: u izotermskom ili adijabatskom (dinamičkom) [11-13].

Osnova izotermskog metoda je u obezbeđivaju uslova da se temperature ispitivanog uzorka i temperatura referentnog materijala održavaju jednakim u toku zagrevanja variranjem snage u oba segmenta peći, preko koje se dobija promena entalpije ili toplotnog kapaciteta u uzorku u odnosu na referentni materijal.

Slika 2.1. Šema DSC ćelije, U-uzorak, RS-referentni standard

Da bi uzorak, tokom merenja, bio na istoj temperaturi kao referentni materijal (slika 2.1.), mora se nalaziti u uslovima da mu se dodatno odvodi, odnosno, po potrebi, dovodi odgovarajuća količina toplote. Merenje se realizuje tako što se uzorak zagreva do

Mirjana Šiljegović-Magistarski rad

temperature nešto iznad temperature razmekšavanja T_g , a toplota koja se oslobodi tokom procesa kristalizacije snima se u zavisnosti od vremena na konstantnoj temperaturi.

U adijabatskom režimu rada, DSC kalorimetar obezbeđuje konstantnost toplotnog fluksa između uzorka i referentnog materijala. U ovom slučaju, promena entalpije ili toplotnog kapaciteta u uzorku uzrokuje razliku temperature u odnosu na referentni uzorak, a koja se meri preko razlike napona između uzorka i referentnog materijala. Merenje se sastoji u zagrevanju uzorka konstantnom izabranom brzinom a toplota koja se pri tome oslobađa snima se u funkciji temperature ili vremena.

DSC merenja su naročito interesantna jer obezbeđuju:

- detekciju procesa koji se odigravaju u uzorku i određivanje temperature na kojima se oni odigravaju
- određivanje kinetike pojedinih procesa i energije njihove aktivacije
- određivanje promene toplotnog kapaciteta uzorka
- određivanje energije koja odgovara detektovanim procesima
- određivanje stepena čistoće supstance, itd.

Pri ispitivanju stakala sistema $Bi_x(As_2S_3)_{100-x}$ korišćen je uređaj Mettler-Toledo DSC 822. Uzorci u balk formi, mase 5-20 mg, presom su zatvarani u aluminijumske posudice i termički tretirani pri različitim brzinama grejanja u temperaturskom intervalu od sobne pa do temperature od 773 K. Merenja su vršena u inertnoj, dinamičkoj atmosferi N₂.

Slika 2.2. DSC snimak stakla Sb₃₇S₄₈I₁₅

Površine pod endotermnim i egzotermnim pikovima odgovaraju entalpijskim promenama u uzorku. Prvi endotermni efekat (slika 2.2, pik 1) predstavlja proces razmekšavanja, karakterističan za neuređene sisteme i okarakterisan temperaturom T_g . Ovaj proces je po pravilu praćen skokovitom izmenom toplotnog kapaciteta materijala, dok entalpijska promena može i da izostane. Egzotermni efekat (slika 2.2, pik 2) označava proces kristalizacije, a endotermni efekat koji se na njega temperaturski nedovezuje proces topljenja nastalih kristalih centara u uzorku (slika 2.2, pik 3).

Temperatura transformacije stakla T_g osnovni je parametar faznog prelaza omekšavanja stakla. Ona predstavlja temperaturu iznad koje amorfna matrica može ispoljiti različite strukturne konfiguracije, a ispod koje je strukturna matrica zamrznuta i ne može lako doći do promene u drugu strukturu [15]. Za određivanje ovog parametra koristi se više metoda, koje za odgovarajuću vrednost temperature uzimaju onu koja odgovara jednoj od sledećih karakterističnih tačaka:

1. Onset tačka- tačka preseka bazne linije pre razmekšavanja i tangente povučene na merenu krivu u tački prevoja

2. Bisektor tačka- tačka preseka merene krive i simetrale ugla između bazne linije pre i posle razmekšavanja

3. tačka prevoja

4. Richardsonova tačka- tačka koja odgovara preseku merene krive i normale postavljene tako da važi jednakost površina [16]

5. tačka u kojoj DSC kriva deli promenu Δc_p na dve jednake polovine

6. end point tačka- tačka preseka tangenti na merenu krivu i baznu liniju nakon razmekšavanja

Slika 2.3. Ilustracija metoda određivanja T_g

Mirjana Šiljegović-Magistarski rad

Određivanje temperature razmekšavanja T_g pomenutim metodama ilustrovano je na slici 2.3. Bisektor tačka je pritom označena kao STAR, a tačka u kojoj DSC kriva deli promenu Δc_p na dve jednake polovine je obeležena sa DIN, saglasno odgovarajućim standardima koji su u upotrebi. Prilikom određivanja temperatura razmekšavanja T_g stakala sistema Bi_x(As₂S₃)_{100-x} korišćena je metoda onset tačke.

U temperaturskom intervalu razmekšavanja specifična toplota (toplotni kapacitet) trpi skokovitu izmenu koja se može povezati sa kreacijom vakancija i dodatnim konfiguracionim stepenima slobode kretanja atoma i molekula. Promena toplotnog kapaciteta Δc_p se dakle može tumačiti kao rezultat uređivanja strukture [17]. U termodinamičkom smislu, veličina promene specifične toplote na temperaturi T_g proporcionalna je broju energetskih minimuma u toku relaksacionog procesa, tj. procesa prelaska u staklasto ili gumasto stanje. Za određivanje Δc_p DSC tehnikom koriste se direktna metoda i metoda safira.

Direktna metoda se zasniva na definiciji specifične toplote koja je jednaka količniku toplotnog fluksa (HF) i proizvodu brzine grejanja i mase uzorka [16]:

$$c_p = \frac{HF}{\beta m} \tag{2.1.}$$

Ova metoda je primenjena pri ispitivanju stakala sistema Bix (As₂S₃)_{100-x}.

Metoda safira je metoda koja se odavno koristi, a bazira se na poređenju DSC signala ispitivanog uzorka sa DSC signalom kalibracionog uzorka poznate specifične toplote [16].

$$c_{p} = \frac{HF \cdot m_{saf}}{m \cdot HF_{saf}} \cdot c_{p}(saf)$$
(2.2.)

Metoda safira zahteva tri merenja: bazno merenje (kada je aluminijumska posuda prazna), merenje kalibracionog uzorka (safira) i merenje ispitivanog uzorka.

Korekcija krivih baznom krivom za obe metode je obavezna.

2.2. Rezultati snimanja DSC krivih stakala sistema $Bi_x(As_2S_3)_{100-x}$

Na slici 2.4 prikazane su snimljene DSC krive zavisnosti toplotnog toka (normiranog u odnosu na masu uzorka) u funkciji porasta temperature za sva stakla ispitivanog sistema pri brzini grejanja od 10 K/min. Prvi maksimum (pik 1) odnosi se na kinetički efekat

omekšavanja, okarakterisan entalpijskim relaksacionim pikom, usled molekularnih prestrukturavanja u materijalu. Drugi maksimum (pik 2) predstavlja egzotermnu reakciju kristalizacije. Može se primetiti da su procesi kristalizacije jasno definisani samo kod stakala $Bi_4(As_2S_3)_{96}$ i $Bi_6(As_2S_3)_{94}$. Iz tog razloga u analizama kinetike procesa kristalizacije prezentovani su rezultati za stakla ova dva sastava. Kristalizacioni maksimum stakla $Bi_4(As_2S_3)_{96}$ nije sasvim simetričan zbog preklapanja temperaturskog intervala završetka procesa kristalizacije sa intervalom u kojem počinje endotermna entalpijska promena topljenja kristalnih centara (pik 3). Iz tog razloga mogu se očekivati odstupanja u pojedinim parametrima kinetičke analize, naročito u onim čija je definicija vezana za vrednost odgovarajuće promenljive na tačno određenoj temperaturi u intervalu kristalizacije. I kod stakla $Bi_6(As_2S_3)_{94}$ proces topljenja se temperaturski kontinualno nadovezuje na proces kristalizacije, što predstavlja poteškoću pri definisanju onset temperatura topljenja formiranih kristalnih faza.

Takođe se uočava je da kod stakala sa x=6, 8 i 10 at. % Bi entalpijska promena topljenja kristalnih faza praćena sa dva ili čak tri pika, iz čega se može zaključiti da u ovim uzorcima egzistira ili se tokom termičkog tretmana formira više vrsta kristalnih centara, što je za uzorke sa najvećim udelom bizmuta i potvrđeno difrakciono-rendgenskom analizom (poglavlje 1).

Na DSC krivama stakala sa x=0.5 i 2 at.% Bi uočavaju se samo efekti razmekšavanja stakla.

Slika 2.4. DSC snimci stakala sistema Bi_x(As₂S₃)_{100-x} pri brzini grejanja od 10 K/min

Mirjana Šiljegović-Magistarski rad

Oblast razmekšavanja ispitivanih stakala značajno se pomera ka nižim temperaturama sa uvećanjem sadržaja Bi do koncentracije od 6 at. %. Pri većim koncentracijama, ovaj efekat je neznatan i temperatura razmekšavanja T_g zadržava gotovo konstantnu vrednost od oko 460 K. O tome više reči u poglavlju 2.4.

Na slikama 2.5 i 2.6 prikazane su DSC krive uzoraka kod kojih je registrovana kristalizacija (x=4 i 6 at.% Bi) za pojedine brzine zagrevanja. Zbog temperaturskog preklapanja procesa kristalizacije i topljenja, u termičkom tretmanu stakla Bi₄(As₂S₃)₉₆ primenjivane su manje brzine grejanja. Uzorci stakla Bi₆(As₂S₃)₉₄ zagrevani su većim brzinama da bi se povećao entalpijski relaksacioni pik (usled kašnjenja brzine uspostavljanja ravnotežnog stanja u odnosu na brzinu zagrevanja), odnosno da bi se obezbedilo preciznije očitavanje parametra T_g . Zapaža se trend pomeranja oblasti kristalizacije i topljenja ka višim temperaturama sa povećanjem brzine grejanja kod oba uzorka. Istovremeno, sa povećanjem brzine grejanja endotermni pikovi procesa topljenja kristalnih faza u staklu Bi₆(As₂S₃)₉₄ teže da se objedine u jedan usled male razlike u temperaturama topljenja različitih kristalnih centara, ali i zbog mnogo veće količine kristalnih centara koji se tope na nižoj temperaturi, pa je efekat njihovog topljenja mnogo veći i sa povećanjem brzine pomera se u temperatursku oblast efekta koji se odnosi na kristalne centre koji se tope na nešto višoj temperaturi.

Slika 2.5. DSC snimci stakala Bi₄(As₂S₃)₉₆ pri različitim brzinama grejanja

Slika 2.6. DSC snimci stakala Bi₆(As₂S₃)₉₄ pri različitim brzinama grejanja

Tabela 2.1. Karakteristične temperature i entalpije procesa tokom termičkog tretmana stakala $Bi_x(As_2S_3)_{10}$
--

x [at. %]	β [K/min]	<i>T_g</i> [K]	T_{ons}^{l} [K]	<i>T_p</i> [K]	$T_{m_1}^{2}$ [K]	T _{m2} ³ [K]	<i>m</i> [mg]	H _{kr} [J/g]	<i>H_{m1}</i> [J/g]	<i>H</i> _{m2} [J/g]
	2	451.65	512.59	518.08	571.28		15.31	7.61	7.35	
4	5	455.55	518.07	524.36	572.81		13.00	8.26	3.49	—
-	10	459.61	521.20	528.78	572.02		6.62	10.4	3.06	—
	15	464.01	527.13	534.83	573.87		13.43	10.27	1.15	—
	10	459.31	524.81	529.29	579.51	589.48	8.96	18.06	10.27	0.81
6	15	460.84	529.02	533.84	582.28	591.15	12.47	15.49	12.97	
0	20	462.02	531.17	536.01	582.66	591.10	9.57	17.04	12.13	
	30	463.22	534.42	540.44	582.81	591.80	10.72	15.83	10.56	
0.5	10	476.46					18.43			
2	10	467.36					11.12			
8	10	460.5			581.16	585.35	20.32		21.0	
10	10	460.31			581.18	588.06	11.54		8.16	0.81

U tabeli 2.1 date su vrednosti temperatura staklo-prelaza T_g ispitivanih uzoraka i temperatura karakterističnih za kristalizacione procese, T_{ons} i T_p pri svim primenjenim

¹ temperatura početka procesa kristalizacije

² temperatura maksimuma prvog pika topljenja kristalnih centara

³ temperatura maksimuma drugog pika topljenja kristalnih centara

brzinama zagrevanja uzoraka sa x=4 i 6 at.% Bi, kao i onset temperature topljenja prethodno kristalisanih frakcija. Rezultati su iskorišćeni za određivanje energija aktivacije odgovarajućih procesa i za procenu termičke stabilnosti materijala. Pored toga, date su i vrednosti entalpija, odnosno energija oslobođenih u procesima kristalizacije i energija apsorbovanih u procesima topljenja.

2.3. Kinetika kristalizacionih procesa stakala Bi₄(As₂S₃)₉₆ i Bi₆(As₂S₃)₉₄

Kristalizacija ima značajnu ulogu u određivanju stabilnosti materijala i njihove praktične primene. DSC je široko prihvaćena tehnika u analizi kristalizacione kinetike neuređenih sistema. Međutim, da bi se u potpunosti razumela ova vrsta faznog prelaza, mora se uzeti u obzir više faktora, kao što su struktura materijala, starost uzorka i njegova termička istorija.

Kinetička analiza procesa kristalizacije uobičajeno se realizuje polazeći od klasičnog teorijskog modela Johson-a, Mehl-a i Avrami-ja (*JMA model*) [18-21]. U osnovi, ovaj model opisuje razvoj kristalizacione frakcije χ u funkciji efektivnog vremena kristalizacije *t* :

$$\chi(t) = 1 - \exp\left[-\left(Kt\right)^n\right]$$
(2.3.)

gde je n kinetički eksponent koji zavisi od mehanizma i dimenzionalnosti rasta kristala. Funkcija K predstavlja konstantu brzine reakcije, čija je temperaturna zavisnost opisana Arrhenius-ovom jednačinom:

$$K[T(t)] = K_0 \exp\left[-\frac{E}{RT(t)}\right]$$
(2.4.)

 K_0 je frekventni faktor, proporcionalan verovatnoći molekulskih sudara, R univerzalna gasna konstanta a E aktivaciona energija fazne transformacije.

Generalno, frekvencija nukleacije i brzina rasta kristala ispoljavaju ponašanje koje odstupa od Arheniusovog. Međutim, u ograničenom temperaturskom intervalu kao što je interval kristalizacionih pikova u DSC eksperimentima, za obe veličine se može smatrati da zadovoljavaju pomenuto ponašanje.

Kinetička analiza reakcije kristalizacije znači određivanje njene ukupne energije aktivacije E i konstante brzine reakcije K. Iako je JMA model prvenstveno izveden za eksperimente realizovane u izotermskim uslovima, često se koristi i u neizotermskim procesima jer su dobijene vrednosti za kinetičke parametre u dobroj saglasnosti sa

vrednostima dobijenim drugim metodama. Značajno je istaći da je kristalizacija složen proces koji se sastoji iz nukleacije, odnosno stvaranja kristalizacionih centara i rasta kristala. Ukoliko procesi nukleacije i rasta zadovoljavaju Arrhenius-ovu zavisnost u nekom užem temperaturskom intervalu (a što je gotovo uvek zadovoljeno u DSC eksperimentima), aktivaciona energija kristalizacije E_C se sastoji iz energije aktivacije procesa nukleacije E_N i energije aktivacije rasta kristala E_G . Međutim, pri zagrevanju stakla konstantnom brzinom, proces nukleacije je značajan samo na nižim temperaturama ili je čak zanemarljiv u smislu broja formiranih kristalnih centara, dok je proces rasta kristala aktuelan na višim temperaturama i nezavisan od ishoda procesa nukleacije. Stoga se može pretpostaviti da se ukupna energija aktivacije kristalizacije E_C svodi na doprinos samo energije aktivacije kristalnog rasta [22,23]:

$$E_c \cong \frac{m}{n} E_G \tag{2.5.}$$

Veličina n uzima vrednost 1, 2, 3 ili 4 u zavisnosti od mehanizma kristalizacije (odnosno prema tome da li je nukleacija površinska ili zapreminska i koja je dimenzionalnost rasta), dok parametar m može imati vrednost 1, 2 ili 3 u zavisnosti samo od dimenzionalnosti rasta pri brzini rasta nezavisnoj od vremena. Odnos parametara m i nodređen je ponašanjem nukleacije tokom zagrevanja. Ukoliko se broj kristalnih centara u staklu ne uvećava u značajnijoj meri tokom rasta kristala, može se uzeti da je m=n. Ukoliko staklo ne sadrži kristalne centre, važi da je n=m+1. Pored ova dva slučaja, mogu se razlikovati još dva, u praksi veoma česta, kada parametar n ne uzima celobrojnu vrednost:

- 1. kada je brzina nukleacije opadajuća funkcija vremena, m < n < m+1
- 2. kada brzina nukleacije raste, n > m+1

Razvijen je čitav niz postupaka za određivanje energije aktivacije i drugih parametara koji karakterišu kinetiku procesa kristalizacije. Iako su izotermske tehnike u većini slučajeva tačnije, neizotermske termoanalitičke metode su atraktivnije i imaju niz prednosti. Naime, neizotermske metode su postale opšte metode za određivanje termičke stabilnosti amorfnih stakala kao i za istraživanje procesa nukleacije i rasta kristala tokom transformacije metastabilne faze u staklu pri njegovom zagrevanju jer obezbeđuju brzo dobijanje informacija o karakterističnim termičkim parametrima u širokom temperaturskom intervalu.

Postoji više podela neizotermskih tehnika. Ovde će biti navedene dve glavne:

- prema brzini grejanja, metode se dele na one koje koriste različite brzine grejanja i one koje za analizu koriste jednu brzinu grejanja,
- prema načinu interpretacije, metode se dele na one koje koriste samo položaj pika i
 metode koje uzimaju u obzir i oblik pika

Najpre će biti razmotrene metode koje se zasnivaju na merenjima sa više brzina grejanja, a za interpretaciju koriste samo parametre koje odgovaraju maksimumima odgovarajućih entalpijskih promena.

Kao što je već pokazano, iz ispitivane serije uzoraka jedino stakla $Bi_4(As_2S_3)_{96}$ i $Bi_6(As_2S_3)_{94}$ imaju jasno definisane egzotermne pikove na DSC krivama koji odgovaraju procesima kristalizacije, pa je kinetička analiza bila primenjena na stakla ova dva sastava.

Metoda Kissinger-a [24] služi za određivanje energije aktivacije *E* i predeksponencijalnog faktora K_0 . Dobija se dvostrukim diferenciranjem jednačine (2.3.) po temperaturi T_p koja odgovara maksimumu entalpijske promene (kristalizacije). Na toj temperaturi brzina kristalizacije $\dot{\chi}$ ima maksimalnu vrednost, pa je $\ddot{\chi} = 0$. Iz tog uslova i uz neke aproksimacije, kao što je pretpostavka da je energija aktivacije *E* mnogo veća od proizvoda *RT*, i da je polazna temperatura u termičkoj analizi T_0 znatno niža od temperatura na kojima se dešava kristalizacija, izvedena je relacija koja na zadovoljavajući način i za širok opseg brzina grejanja β (≤ 100 K/min) opisuje kinetičke parametre i to ne samo u slučaju homogenih, već i heterogenih reakcija kristalizacije:

$$\ln\left(\frac{T_p^2}{\beta}\right) = \ln\left(\frac{E}{RK_0}\right) + \frac{E}{RT_p}$$
(2.6.)

gde je E – energija aktivacije koja se odnosi praktično samo na proces rasta kristalnih centara.

Slika 2.7. Zavisnost funkcije $\ln(T_p^2 / \beta)$ od $1/T_p$ stakala sistema $Bi_x(As_2S_3)_{100-x}$

Linearna zavisnost između $\ln(T_p^2/\beta)$ i $1/T_p$ omogućava da se iz njenog nagiba odredi energija aktivacije *E*, dok presek sa ordinatnom osom daje predeksponencijalni frekventni faktor K_0 .

Kalkulisane vrednosti ovih parametara prikazane su u tabeli 2.2, a odgovarajuće linearne zavisnosti za stakla sa x=4 i 6 at.% Bi na slici 2.7.

Iz grupe metoda koja se zasnivaju na parametrima maksimuma entalpijskih promena, uporedo sa Kissinger-ovom metodom, u analizi se često koristi i metoda čiji su autori *Mahadevan i saradnici* [25,26], s obzirom da ona predstavlja pojednostavljenu formu Kissinger-ove jednačine. Pomenuti autori uveli su dopunsku aproksimaciju, a to je da se veličina $\ln T_p^2$ znatno sporije menja u poređenju sa $\ln \beta$ pa je u tom slučaju moguće pisati:

$$\ln \beta = -\frac{E}{RT_p} + const.$$
(2.7.)

Linearna zavisnost između veličina $ln\beta$ i $1/T_p$ za stakla sa x=4 i 6 at.% Bi prikazana na slici 2.8. Iz njenog nagiba moguće je odrediti energiju aktivacije *E*. Već na osnovu grafičkog prikaza ovih zavisnosti evidentno je da uzorku sa x=4 at.% Bi odgovara nešto veća vrednost ovog parametra. To potvrđuju izračunate vrednosti energije aktivacije prikazane u tabeli 2.2.

Slika 2.8. Zavisnost funkcije $-\ln\beta$ od $1/T_p$ stakala sistema $Bi_x(As_2S_3)_{100-x}$

Aktivaciona energija procesa kristalizacije takođe se može odrediti preko modela koji su razvili *Augis i Bennett* [27]. Na osnovu sličnih aproksimacija kao u prethodna dva modela, autori su došli do sledećeg izraza:

$$\ln\left(\frac{T_p - T_0}{\beta}\right) = -\ln K_0 + \frac{E}{RT_p}$$
(2.8.)

gde je T_0 – početna temperatura u DSC eksperimentu.

Funkcija $\ln(T_p - T_0 / \beta) = f(1/T_p)$ je prava linija, čiji nagib daje vrednost E/R, a prikazana je na slici 2.9. Do preseka krivih dolazi u tačkama koje odgovaraju istim brzinama grejanja zbog veće promene u nagibu krive u odnosu na promenu u vrednostima T_p . Vrednosti energije aktivacije određene ovom metodom prikazane su u tabeli 2.2.

Slika 2.9. Zavisnost funkcije $\ln((T_p - T_0) / \beta)$ od $1/T_p$ stakala sistema $Bi_x(As_2S_3)_{100-x}$

Tabela 2.2. Parametri metoda termičke analize zasnovanih na maksimumima entalpijskih promena

x	analiza Kissinger-a		analiza Mahadevan	analiza Augis	i Bennett
[at. %]	E [kJ/mol]	$K_0 [\mathrm{s}^{-1}]$	E [kJ/mol]	E [kJ/mol]	$K_0 \ [\mathrm{s}^{-1}]$
4	272 ± 13	$1.424 \cdot 10^{22}$	279 ± 13	270 ± 13	$3.012 \cdot 10^{23}$
6	228 ± 10	$5.585 \cdot 10^{17}$	237 ± 10	228 ± 10	$2.952 \cdot 10^{19}$

Saglasnost vrednosti energije aktivacije (tabela 2.2) prema sve tri metode je u okviru greške merenja. Nešto veća odstupanja se javljaju u vrednostima frekvetnog faktora, koja su posledica prvenstveno aproskimacija uvedenih u računu, u cilju pojednostavljenja metoda.

Energija aktivacije je indikativan parametar za brzinu kristalizacije, a to bi onda značilo da je staklo $Bi_6(As_2S_3)_{94}$ tokom termičkog tretmana okarakterisano manjom brzinom kristalizacije u odnosu na staklo sa 4 at.% Bi u svom sastavu. Sem toga, manja vrednost frekventnog faktora K_0 ovog uzorka ukazuje na manji afinitet ka kristalizaciji u poređenju sa staklom $Bi_4(As_2S_3)_{96}$. Međutim, bez poznavanja strukturnih jedinica koje egzistiraju u uzorcima na ovim temperaturama nemoguće je praviti poređenja između vrednosti ovih parametara, s obzirom da se mogu odnositi na procese kristalizacije različitih strukturnih elemenata.

Drugu grupu metoda za analizu kinetičkih parametara procesa kristalizacije u staklima čine postupci koji uzimaju u obzir i oblik egzotermnog maksimuma, a ne samo njegov položaj na temperaturnoj osi.

Metoda koju su uveli *Matusita i saradnici* [28-30] zasniva se na razmatranju nekoliko temperatura T koje odgovaraju različitom stepenu kristaličnosti materijala χ , umesto jedne temperature, koja odgovara maksimalnoj brzini kristalizacije, T_p . Jednačina koja povezuje karakteristične parametre kristalizacije (tzv. *Matusita-Sakka relacija*) ima oblik [24]:

$$\ln[-\ln(1-\chi)] = -n\ln\beta - 1.052\frac{mE}{RT} + const.$$
 (2.9.)

Prednost korišćenja Matusita-Sakka relacije u kinetičkoj analizi leži u činjenici da se može višestruko iskoristiti za određivanje pojedinih parametara kristalizacije.

Naime, preko nagiba linearne zavisnosti $\ln[-\ln(1-\chi)] = f(\ln\beta)$ na određenoj temperaturi moguće je izračunati red reakcije *n*, što je prvi predložio Ozawa [31,32].

Ovaj metod je, međutim, dao zadovoljavajući rezultat samo za staklo sastava $Bi_6(As_2S_3)_{94}$. Promena kristalne frakcije sa promenom brzine grejanja za staklo ovog sastava praćena je na trima različitim temperaturama koje pripadaju oblasti u kojoj dolazi do kristalizacije uzorka pri svim brzinama grejanja, a rezultati su prikazani na slici 2.10.

Deformacija i nesimetričnost pika kristalizacije uzorka $Bi_4(As_2S_3)_{96}$, koje su uočene već u analizi DSC snimaka, utiču na značajno smanjenje tačnosti očitavanja iskristalisanih frakcija na pojedinim temperaturama. To je ujedno i razlog izostanka pouzdanih rezultata prema metodi Ozawe za uzorak $Bi_4(As_2S_3)_{96}$.

Slika 2.10. Zavisnost funkcije $\ln(-\ln(1-\chi))$ od $\ln\beta$ stakla $Bi_6(As_2S_3)_{94}$

Matusita-Sakka relacija može se iskoristiti i za nalaženje veličine *mE*, odnosno *mE/n-metoda Šatave* [30]. Ako se za odabranu brzinu grejanja predstavi funkcija $\ln[-\ln(1-\chi)] = f(1/T)$, iz nagiba ove linearne zavisnosti moguće je odrediti parametar *mE*.

Fitovane linearne zavisnosti za stakla sa x=4 i 6 at.% Bi prikazane su na slici 2.11 i 2.12. Odstupanja od linearnosti pomenute funkcije, prvenstveno u visokotemperaturskom intervalu, primećena su kod niza halkogenidnih stakala i tumače se saturacijom centara kristalizacije u završnoj fazi kristalizacije [33] ili restrikcijom rasta kristala usled male veličine čestica [34]. Takođe, u literaturi je zapažena i egzistencija dva nagiba u zavisnosti ln $\left[-\ln(1-\chi)\right] = f(1/T)$ [35,36], što ukazuje na odvijanje procesa kristalizacije pri dvema različitim brzinama. Kako kod uzoraka Bi₄(As₂S₃)₉₆ i Bi₆(As₂S₃)₉₄ do odstupanja u linearnosti dolazi u niskotemperaturskom delu, ne stoji pretpostavka o saturaciji kristalizacionih centara.

S druge strane, na slikama 2.5 i 2.6 se može uočiti da se procesi razmekšavanja i početka kristalizacije odvijaju u bliskom temperaturskom intervalu, pa je izvesniji zaključak da je to zbog toga došlo do odstupanja na nižim temperaturama. U prilog ovom ide činjenica da su odstupanja izraženija kod uzorka sa 6 at.% Bi, budući da je termički tretiran sa većim brzinama grejanja (slika 2.12).

Odgovarajuće vrednosti parametra mE date su u tabeli 2.3.

Sa druge strane, *modifikovana metoda Ozawe-Chena* [32] koristi Matusita-Sakka relaciju za prikaz funkcije $\ln \beta = f(1/T)$ pri odabranoj kristalnoj frakciji čiji nagib omogućava određivanje veličine *mE/n*. Metoda Ozawe-Chena za ispitivana stakla ilustrovana je na slikama 2.13 i 2.14. Po određivanju parametra *mE/n* iz nagiba prikazanih krivih, procenjena je vrednost reda reakcije *n* iz količnika parametara *mE* i *mE/n* (n^{rac} -tabela 2.3).

Slika 2.13. Zavisnost funkcije $\ln \beta$ od 1/T stakala sistema $Bi_4(As_2S_3)_{96}$

Tabela 2.3. Parametri Matusita-Sakka analize

<i>x</i> [at. %]	<i>mE</i> [kJ/mol]	<i>mE/n</i> [kJ/mol]	п	n ^{rač}
4	280 ± 14	267 ± 7	_	1.05
6	200 ± 10	244 ± 6	0.833 ± 0.013	0.82

Slika 2.14. Zavisnost funkcije $\ln \beta$ od 1/T stakala sistema $Bi_6(As_2S_3)_{94}$

Još jedan model koji omogućava izračunavanje energije aktivacije kristalizacije *E* i reda reakcije *n* je analiza čiji su autori *Gao i Wang* [37]. Metoda se zasniva na određivanju maksimalne brzine kristalizacije izjednačavanjem drugog izvoda kristalisane frakcije sa nulom ($\ddot{\chi} = 0$).

Brzine kristalizacije u funkciji temperature stakala sa x=4 i 6 at.% Bi pri odgovarajućim brzinama grejanja prikazane su na slikama 2.15 i 2.16. U ovoj metodi koriste se veličine koje se odnose na vrh egzotermnog maksimuma kristalizacije. Pri uslovu da je E >> RT, *Gao i Wang* su dobili sledeće relacije:

$$\frac{\beta E}{K_p R T_p^2} = 1 \tag{2.10.}$$

$$\dot{\boldsymbol{\chi}}_p = 0.37 n \boldsymbol{K}_p \tag{2.11.}$$

$$\ln \dot{\chi}_{p} = \ln(0.37nK_{0}) - \frac{E}{RT_{p}}$$
(2.12.)

Iz nagiba funkcije predstavljene jednačinom (2.12.) i parametara linearnog fita mogu se izračunati vrednosti energije aktivacije kristalizacije *E* i frekventni faktor K_0 . Pomenuta funkcija za stakla sa x=4 i 6 at.% Bi prikazana je na slici 2.17, a izračunate vrednosti odgovarajućih parametara u tabeli 2.4. Vrednosti $(dx/dt)_p$ kod oba ispitivana uzorka rastu u istom odnosu kao i odgovarajuće brzine grejanja, što je uočeno i kod drugih halkogenidnih stakala [38].

Slika 2.15. Zavisnost brzine kristalizacije χ od temperature stakla $Bi_4(As_2S_3)_{96}$

Slika 2.16. Zavisnost brzine kristalizacije χ od temperature stakla $Bi_6(As_2S_3)_{94}$

Relacije (2.10.) i (2.11.) omogućavaju određivanje reda reakcije kristalizacije *n* (Avramijev indeks) za svaku brzinu grejanja:

Slika 2.17. Zavisnost $\ln \chi_p$ od $1/T_p$ stakala sistema $Bi_x(As_2S_3)_{100-x}$

<i>x</i> [at. %]	β [K/min]	<i>Ż</i> _p [%/s]	E [kJ/mol]	K_0 [10 ²⁵ s ⁻¹]	$K_p \ [10^{-3} \ { m s}^{-1}]$	п	$\langle n \rangle$
	2	0.10		9.92	2.15	1.22	
4	5	0.23	264 ± 10	10.34	5.27	1.17	1.00
	10	0.40		11.63	10.37	1.04	1.09
	15	0.65		12.74	18.49	0.95	
	10	0.55		4.28	11.13	1.34	
6	15	0.80	250 + 10	4.37	16.43	1.32	1 41
0	20	1.15	259 ± 10	4.03	21.74	1.43	1.41
	30	1.83		3.74	32.11	1.54	

Tabela 2.4. Parametri Gao-Wang analize

Mirjana Šiljegović-Magistarski rad

Određivanje parametra K_p bitno je sa stanovišta termičke stabilnosti stakala, jer predstavlja meru tendencije ka devitrifikaciji materijala pri grejanju. Manje vrednosti na izabranim temperaturama ukazuju na veću termičku stabilnost stakala. Prema tome, na osnovu vrednosti iz tabele 2.4. može se zaključiti da je staklo sa manjim procentualnim udelom Bi termički stabilnije u odnosu na staklo sa 6 at.% Bi. Međutim, tek sa paralelnom primenom više različitih kriterijuma za tendenciju ka devitrifikaciji, može se dobiti potpunija informacija o stabilnosti stakala. O tome će biti više reči u poglavlju o termičkoj stabilnosti.

U cilju utvrđivanja konzistentnosti rezultata, u tabeli 2.5 prikazane su vrednosti energije aktivacije procesa kristalizacije prema metodama primenjenim u ovom radu. Za uzorak sa x=4 at.% Bi sve metode daju prilično usaglašene vrednosti pomenutog parametra. Fluktuacije u vrednostima ovih metoda, koje su reda veličine 5-10 kJ/mol objašnjavaju se različitim aproksimacijama koje su primenjene da bi se došlo do konačnog obrasca u pojedinim analizama. Takođe, temperaturski i gradijent pritiska u uzorcima ispitivanih stakala, koji je javljaju kao posledica termičkog tretmana, podložni su proizvoljnim varijacijama, a što onda ima izvestan uticaj na kinetičke parametre [39].

analiza	E [kJ/mol] za različite x [at. %]				
ananza	4	6			
Kissinger	272 ±13	228 ±10			
Mahadevan	280 ±13	237±10			
Augis-Bennett	270 ±13	232±10			
Matusita-Sakka	(× <i>m</i>), 280 ±14	200 ± 10			
Matusita-Sakka	$(\times(m/n))$, 267 ±7	244 ±6			
Gao-Wang	284 ±11	259 ±10			

 Tabela 2.5. Energija aktivacije kristalizacije određena

 različitim metodama analize

S druge strane, može se primetiti da su odstupanja u vrednostima kod uzoraka sa x=6 at.% Bi za poslednje 3 metode značajnija u poređenju sa prve tri. Ova razlika je i očekivana, jer se prve tri metode zasnivaju na parametrima koji odgovaraju maksimumu pika kristalizacije, a koji je kod uzoraka ovog sastava jasno definisan. Preostale tri metode uzimaju u obzir i oblik pika, a za koji je u analizi DSC snimaka utvrđeno da je delimično deformisan u visokotemperaturskom delu usled nadovezivanja pika topljenja kristalnih centara.

Poređenjem vrednosti Avramijevog eksponenta n, odnosno reda reakcije kristalizacije (tabele 2.3 i 2.4), može se zaključiti da se veličine određene različitim metodama relativno dobro slažu, naročito za staklo sa x=4 at.% Bi. I metoda Matusita-e i

Sakka-e, sa jedne strane (tabela 2.3), i metoda Gao-a i Wang-a sa druge strane (tabela 2.4), za kristalizaciju u staklima oba sastava daju vrednost veličine *n* blisku jedinici, što navodi na zaključak da je dimenzionalnost kristalnog rasta m=1 i da se radi o pretežno površinskoj jednodimenzionalnoj kristalizaciji. Do istog zaključka, odnosno iste vrednosti parametra *m* može se doći poređenjem vrednosti parametra *mE* iz Matusita-Sakka analize (tabela 2.3) i vrednosti aktivacione energije *E* prema jednoj od prve tri navedene metode iz tabele 2.5. S obzirom da je $m \le n < m+1$, u ovde analiziranim procesima kristalizacije dominantnu ulogu imaju kristalni centri prisutni u materijalu i pre termičkog tretmana, uz zanemarljiv doprinos centara nukleacije koji se formiraju za vreme termičke analize, a brzina slabo izražene nukleacije opada sa vremenom i porastom temperature.

2.4. Kinetika predkristalizacionih procesa stakala Bi₄(As₂S₃)₉₆ i Bi₆(As₂S₃)₉₄

Predkristalizaciona analiza DSC snimaka podrazumeva određivanje parametara karakterističnih za faznu transformaciju omekšavanja stakla. To su temperatura omekšavanja T_g , energija aktivacije pomenutog procesa, E_t i skokovita promena specifične toplote Δc_p u oblasti T_g . Određivanje parametra T_g je od velikog praktičnog značaja s obzirom da njegova pozicija na temperaturnoj skali ukazuje na opseg temperatura u kojem se dati materijali mogu primenjivati, kao i na na njihovu termičku stabilnost.

Temperatura omekšavanja stakla T_g definiše se kao temperatura na kojoj vreme relaksacije τ postaje jednako vremenu posmatranja pomenutog efekta u eksperimentu [40]. Sa povećanjem brzine grejanja, vreme posmatranja se smanjuje, pa zbog toga temperatura T_g raste, odnosno T_g se menja inverzno u odnosu na relaksaciono vreme.

Na slici 2.18 prikazana je temperatura omekšavanja T_g ispitivanih stakala, pri brzini grejanja od 10 K/min, u funkciji od sadržaja Bi. Vrednosti ovog parametra za ispitivane sastave određene su sa DSC snimaka, prikazanih na slici 2.4, metodom onset tačke i date su u tabeli 2.6.

U literaturi se susreću izuzetno različite vrednosti parametra faznog prelaza stakla As₂S₃: 453.16 K [5], 485.16 K [3], 424.16 [41], 445.06 [42], pa se ne može pouzdano utvrditi u kojoj meri primesni atomi bizmuta utiču na širinu oblasti staklo prelaza matrice. Međutim, nesumnjivo se može zaključiti da se, za ispitivanu seriju uzoraka, najveća vrednost parametra T_g javlja pri najmanjoj koncentraciji primesnih atoma. Sa povećanjem sadržaja atoma Bi, T_g počinje da opada.

Slika 2.18. Zavisnost T_g od udela Bi u sistemu $Bi_x(As_2S_3)_{100-x}$

Do koncentracije Bi od 4 at.% nastavlja se trend smanjenja parametra T_g . Međutim, dalje povećanje udela primesnih atoma u sadržaju sistema As-S nema značajnijeg efekta na parametar T_g , odnosno razlike u vrednostima za sastave sa x= 4, 6, 8 i 10 at.%. u okviru su greške merenja, pa se može smatrati da je parametar fazne transformacije omekšavanja u ovom intervalu koncentracije Bi konstantan.

S druge strane, temperatura na kojoj se javlja fazni prelaz staklokristal proporcionalna je srednjem koordinacionom broju materijala [43], iz čega se može zaključiti da je značajnija promena u koordinaciji sistema As-S prisutna samo u staklima Bi_{0.5}(As₂S₃)_{99.5} i Bi₂(As₂S₃)₉₈.

Najveća vrednost temperature razmekšavanja, koja odgovara sastavu sa 0.5 at.% Bi u sistemu As-S, posledica je jačanja građe stakla i povećanja čvrstoće i krutosti strukturne mreže. Ova vrednost ujedno je veća i od prosečne vrednosti

Tabela 2.6. Vrednosti T_g stakala sistema $Bi_x(As_2S_3)_{100-x}$

x	β	Tg
[at. %]	[K/min]	[K]
0.5	10	476.5 (5)
2	10	467.4 (5)
	2	451.7 (5)
4	5	455.6 (5)
4	10	459.6 (5)
	15	464.0 (5)
	10	459.3 (5)
6	15	460.8 (5)
0	20	462.0 (5)
	30	463.2 (5)
8	10	460.5 (5)
10	10	460.3 (5)

temperture razmekšavanja stakla As₂S₃.

Naime, pri uvođenju Bi u sistem As-S u jako malim koncentracijama ne dolazi odmah do ugrađivanja primesnih atoma u strukturne jedinice, već se prvo obrazuju veze između primesnih atoma i mostovnih atoma sumpora, budući da atomi S ne mogu u potpunosti da zadovolje valentnost isključivo u vezama tipa As-S. Takođe, između atoma u piramidalnim strukturnim jedinicama vladaju jake kovalentne veze, a u S-S lancima dominiraju Van der Valsove veze, što ima za posledicu da se primesni atomi pri manjim koncentracijama ugrađuju samo u lančane veze. Ovaj efekat manifestuje se u povećanju parametra T_g . Time se istovremeno povećava i oblast u kojoj opstaje čvrsto staklo. Kako je uzorak sa x= 0.5 at.% Bi sastav kome odgovara maksimalna vrednost parametra T_g (slika 2.20) u ispitivanoj seriji, on se može smatrati kao kritičan sastav u kojem ispitivani sistem postaje hemijski uređena legura [44].

Prema ponašanju parametra T_g u zavisnosti od udela Bi, ali i analizi koodinacionog broja (poglavlje 3.5.), može se pretpostaviti da su za sastav sa 2 at.% Bi karakteristična dva položaja inkorporacije primesnih atoma, odnosno atomi Bi se, sem u mostovnim vezama ugrađuju i u piramidalne strukturne jedinice, supstitucijom sa atomima As. Na ovaj način kreiraju se energetski povoljnije Bi-S veze (energije veze 315.3 KJ/mol) na račun As-S veza i homopolarne As-As veze čija je energija veze (382 KJ/mol)[45] zanemarivo veća od energije veze As-S, pa je ukupni energetski bilans sistema manji i reflektuje se u smanjenju temperature razmekšavanja T_g .

Daljim povećanjem udela Bi u sistemu As-S, odnosno sve do koncentracije od 4 at.% Bi, povećava se broj primesnih atoma u piramidalnim jedinicama u odnosu na broj u mostovnim vezama, što utiče na slabljenje građe i čvrstoće strukturne mreže. Sem toga, sa povećanjem sadržaja Bi favorizuje se formiranje homopolarnih Bi-Bi veza (energije veze 200.4 KJ/mol), pa se koheziona energija sistema značajno smanjuje.

U oblasti koncentracija od 4 do 10 at.% primesnih atoma, vrednosti parametra T_g se menjaju u okviru greške merenja, pa se može zaključiti da su u ovom intervalu koncentracija podjednako zastupljeni efekti ugrađivanja primesnih atoma u piramidalne jedinice i u lance. Kako su uticaji ovih efekata na ponašanje parametra faznog prelaza opozitni, vrednost T_g gotovo je konstantna. Slični rezultati dobijeni su i u sistemu Se-Te dopiranom sa atomima Sb [44].

Iz tabele 2.6 takođe se može primetiti da povećanje brzine grejanja β u termičkom tretmanu uzoraka sa x=4 i 6 at.% Bi utiče na pomeranje veličine T_g ka većim vrednostima. Ovaj trend ilustrovan je na slikama 2.19 i 2.20, koje predstavljaju DSC snimke zavisnosti toplotnog toka od temperature u oblasti transformacije stakla kod sastava Bi₄(As₂S₃)₉₆ i Bi₆(As₂S₃)₉₄ dobijenih pri različitim brzinama grejanja β .

Slika 2.19. Oblast razmekšavanja stakla $Bi_4(As_2S_3)_{96}$

Slika 2.20. Oblast razmekšavanja stakla $Bi_6(As_2S_3)_{94}$

Naime, što je veća brzina grejanja, to je manja oblast u kojoj tečnost može biti pothlađena, pa je i T_g veća. Ovakvo ponašanje opisuje jednačina Lasocka-e [46]:

$$T_g = A + B \ln \beta \tag{2.14.}$$

gde su A i B konstante.

Veličina A predstavlja temperaturu omekšavanja pri brzini grejanja od 1 K/s, dok B zavisi od sastava stakla i opada sa smanjenjem brzine hlađenja rastopa pri sintezi [47]. Na slici 2.21 uočava se da se ispitivana stakla povinuju ponašanju opisanom jednačinom Lasocka-e. Konstante A i B određene su iz linearnog fita eksperimentalnih podataka i date su u tabeli 2.7. Vrednosti konstante A za oba uzorka međusobno se malo razlikuju, što je skladu sa trendom neznatne promene veličine T_g pri ovim koncentracijama, uočenom na DSC snimcima (tabela 2.6).

Slika 2.21. Zavisnost T_g od $\ln \beta$ za stakla sistema $Bi_x(As_2S_3)_{100-x}$

Tabela 2.7. Parametri A i B iz jednačine Lasocka-e za stakla sistema $Bi_x(As_2S_3)_{100-x}$

<i>x</i> [at.%]	<i>A</i> [K]	<i>B</i> [K]
4	471.0 ± 0.2	5.9 ± 0.8
6	465.8 ± 0.2	3.58 ± 0.17

Drugi bitan parametar koji karakteriše transformaciju stakla je energija aktivacije procesa omekšavanja E_t . Ona predstavlja energiju koju je potrebno da apsorbuje grupa atoma u staklastom stanju da bi skokovito prešla iz jednog u drugo moguće metastabilno stanje veće stabilnosti. Naime, pri zagrevanju stakla, atomi trpe retke prelaze između lokalnih potencijalnih minimuma odvojenih različitim energijskim barijerama u konfiguracionom prostoru gde svaki lokalni minimum predstavlja različitu strukturu. To dakle znači da atomi u staklima sa najnižom aktivacionom energijom imaju najveću verovatnoću preskoka u metastabilno stanje najniže unutrašnje energije, pa su takva stakla najstabilnija u staklastom stanju [46,48].

Na taj način, određivanjem energije aktivacije moguće je proceniti afinitet atoma ispitivanog stakla ka uspostavljanju termodinamički stabilnije konfiguracije pri njegovoj transformaciji. Jedna od najčešće primenjivanih metoda za određivanje ove veličine je već spominjana Kissinger-ova metoda, za koju je ustanovljeno da se može koristiti ne samo za kristalizacione već i sa procese transformacije stakla [49-51], i to u formi:

$$\ln\left(\frac{T_g^2}{\beta}\right) = \frac{E_t}{RT_g} + const.$$
 (2.15)

Primena Kissinger-ovog modela na stakla $Bi_4(As_2S_3)_{96}$ i $Bi_6(As_2S_3)_{94}$ dala je rezultate koji su prezentovani na slici 2.22.

Slika 2.22. Zavisnost $\ln(T_g^2 / \beta)$ od $1/T_g$ za stakla sistema $Bi_x(As_2S_3)_{100-x}$
Iz nagiba linearne zavisnosti određene su vrednosti energije aktivacije procesa omekšavanja i date u tabeli 2.8. Vrednosti dobijene za ispitivane uzorke tipične su za halkogenidna stakla [50,52,53].

Potrebno je naglasiti da je za određivanje energije aktivacije uzorka sa 6 at.% Bi korišćena vrednost parametra T_g dobijena prema metodi *end point* tačke (poglavlje 2.1.), jer se metoda onset tačke pokazala neodgovarajućom usled slabo definisanog pika razmekšavanja na DSC snimcima ovog uzorka, naročito pri manjim brzinama termičkog tretmana (slika 2.6). Sem toga, vrednosti energije aktivacije uzorka sa 4 at.% Bi, kalkulisane za onset i end point vrednosti temperature staklo prelaza (slika 2.22, tabela 2.8) razlikuju se u okviru greške merenja, što ukazuje na ravnopravnost u upotrebi različitih metoda određivanja temperature fazne transformacije stakla u cilju izračunavanja termičkih parametara stakla.

Kissingerova jednačina za analizu se može koristiti i u pojednostavljenoj formi. Naime, promena veličine $\ln T_g^2$ je zanemarljivo mala u poređenju sa promenom $\ln \beta$ [24], pa se u tom slučaju može pisati:

$$\ln \beta = -\frac{E_t}{RT_g} + const.$$
(2.16)

Slika 2.23. Zavisnost $-\ln\beta$ od $1/T_g$ za stakla sistema $Bi_x(As_2S_3)_{100-x}$

Mirjana Šiljegović-Magistarski rad

Na slici 2.23 prikazana je ova funkcionalna zavisnost, dok su energije E_t , dobijene linearanim fitovanjem podataka, takođe navedene u tabeli 2.8.

<i>x</i> [at.%]	$E_t \left[\text{kJ/mol} \right]^1$	$E_t [\text{kJ/mol}]^2$
4	277 ± 11	285 ± 12
4	(onset metoda)	(onset metoda)
4	293±13	301±14
4	(end point metoda)	(end point metoda)
6	288 ± 12	296 ± 13

Tabela 2.8. Aktivacione energije procesa relaksacije E_t u oblasti omekšavanja za stakla
sistema $Bi_x(As_2S_3)_{100-x}$

Rezultati dobijeni prema dvema metodama u zadovoljavajućoj su korelaciji. U diskusiji o dobijenim vrednostima za ova dva uzorka neophodno je uzeti u obzir i poteškoće pri određivanju temperature razmekšavanja stakla sa većim udelom Bi usled nedovoljno definisanog pika razmekšavanja na DSC krivoj, odnosno uticaj ovog eksperimentalnog faktora na tačnost rezultata. S druge strane, pokazano je da se različite metode određivanja parametra staklo prelaza jednako uspešno mogu koristiti u kinetičkoj analizi, što omogućava poređenje vrednosti energije aktivacije razmekšavanja ispitivanih uzoraka za end point vrednosti temperature ovog faznog prelaza. U tom smislu, može se zaključiti da je staklo sa većim sadržajem Bi okarakterisano nešto manjom energijom aktivacije, i time sklonije procesu kristalizacije u odnosu na staklo sa 4 at.% Bi. Ovaj zaključak je u saglasnosti sa utvrđenom tendencijom kristalizacije uzoraka sa 8 i 10 at.% Bi već na sobnoj temperaturi (poglavlje 1).

x [at.%]	$\Delta c_p [J/gK]$ pri $\beta = 10$ K/min	т
0.5	0.228	-
2	0.284	-
4	0.221	31.72
6	0.216	54.77

Tabela 2.9. Promena specifične toplote Δc_p pri različitim brzinama grejanja i indeks
 'lomljivosti' za stakla sistema $Bi_x(As_2S_3)_{100-x}$

Pri faznoj transformaciji omekšavanja stakla, kao što je već naglašeno u poglavlju 2.1., dolazi do skokovite promene specifične toplote $\Delta c_p = c_{pl} - c_{pg}$, gde su c_{pl} i c_{pg} specifične toplote rastopa i stakla, respektivno. Ovaj skok je posledica dva efekta koji se javljaju pri transformaciji stakla: formiranja vakancija, usled čega dolazi do povećanja toplotnog

sadržaja sistema i pojave dodatnih konfiguracionih stepeni slobode kretanja atoma [55].

U tabeli 2.9 prikazani su rezultati promene specifične toplote stakala iz ispitivanog sistema pri brzini grejanja β =10 K/min. Može se primetiti da su vrednosti Δc_p međusobno bliske i praktično se ne može uočiti neka zavisnost od sastava. Promena specifične toplote Δc_p predstavlja iznos energije koji staklo mora izgubiti da bi dostiglo odgovarajuće ravnotežno stanje za vreme relaksacije. S obzirom da su u slučaju stakla iz ispitivanog sistema zapažene relativno male vrednosti skoka specifične toplote pri transformaciji, pa se može zaključiti da su ispitivani materijali blizu ravnoteže.

U tabeli 2.9 navedene su još i vrednosti za tzv. indeks lomljivosti stakala m, izračunate prema obrascu [56]:

$$m \approx \frac{E_t}{RT_g \ln 10} \tag{2.17}$$

Pritom su za energiju aktivacije procesa relaksacije stakala sa x=4 i 6 at.% Bi uzete vrednosti iz Kissingerove analize (tabela 2.8).

Pomenuti indeks je od značaja za procenu kinetičke jačine stakala ispitivanog sistema. Naime, Angell i saradnici [57] klasifikovali su ostakljavajuće rastope u dve grupe. Tako razlikujemo kinetički jake (ili lomljive) rastope, kod kojih temperaturska zavisnost viskoznosti zadovoljava Arrhenius-ovu funkciju [46] a indeks *m* dostiže maksimalnu vrednost 16 [58], i kinetički slabe rastope, kod kojih se temperatursko ponašanje viskoznosti ne pokorava Arrhenius-ovoj funkciji i indeks *m* dostiže vrednost čak i do 200 [59]. Na osnovu vrednosti indeksa *m* prikazanih u tabeli 3.9, može se zaključiti da stakla Bi₄(As₂S₃)₉₆ i Bi₆(As₂S₃)₉₄ spadaju u kinetički slabe rastope. Veća vrednost kinetičke lomljivosti stakla sa 6 at. % Bi u poređenju sa staklom sa 4 at. % Bi objašnjava se slabijim vezama između strukturnih jedinica u ovom uzorku, čime je olakšano njihovo kretanje u toku relaksacije.

Sa druge strane, prema veličini promene Δc_p na temperaturi T_g razlikuju se termodinamički jaki i slabi rastopi. Kao granična vrednost između ove dve klasifikacije rastopa uzima se vrednost Δc_p oko 0.3 J/gK. Termodinamički slabe rastope karakteriše značajna promena konfiguracione entropije. Jaki rastopi, s druge strane, ispoljavaju malu promenu specifične toplote tokom staklo-prelaza. Na osnovu vrednosti Δc_p prikazanih u tabeli 2.9, stakla Bi₄(As₂S₃)₉₆ i Bi₆(As₂S₃)₉₄ mogu se svrstati u termodinamički jake rastope sklone očvršćavanju u strukturno uređenom obliku sa najmanjim brojem veza između atoma iste vrste, koje karakteriše velika gustina energetskih minimuma i velika visina prosečne

¹ prema Kisinger-ovoj metodi

² prema pojednostavljenoj Kisinger-ovoj metodi

potencijalne barijere koju molekuli materijala treba da preskoče da bi dostigli stabilniju konfiguraciju [53].

2.5. Termička stabilnost

U cilju izračunavanja nivoa stabilnosti stakala, u literaturi su predložene različite kvantitativne metode [60-65]. Većina njih je zasnovana na karakterističnim temperaturama procesa koji se odigravaju u staklima prilikom njihovog termičkog tretmana.

Najčešće korišćeni kriterijumi u literaturi za ocenu termičke stabilnosti stakala, a koji se baziraju na karakterističnim temperaturnim tačkama sa DSC snimaka su: Dietzel-ov, Hruby-jev i Saad-Poulain-ov. U tom smislu, mogu se izdvojiti sledeće veličine:

- $\Delta T = T_{ons} T_g$ prema Dietzel-ovom kriterijumu [63];
- $Hr = \frac{T_{ons} T_g}{T_m T_p}$ prema Hruby-jevom kriterijumu [64];
- $H' = \frac{T_{ons} T_g}{T_g}$ otežana termička stabilnost, prema kriterijumu Saad-a i Poulain-a

[65];

•
$$S = \frac{(T_p - T_{ons})(T_{ons} - T_g)}{T_g}$$
 - prema tzv. S-kriterijumu Saad-a i Poulain-a [65].

Veću termičku stabilnost i veću tendenciju ka ostakljavanju iz rastopa imaju stakla kod kojih ovi parametri imaju veću vrednost.U tabeli 2.10 date su veličine koje karakterišu termičku stabilnost stakala $Bi_4(As_2S_3)_{96}$ i $Bi_6(As_2S_3)_{94}$ prema navedenim kriterijumima.

<i>x</i> [at. %]	β [K/min]	$T_g[\mathbf{K}]$	T_{ons} [K]	$T_p\left[\mathrm{K}\right]$	T_m [K]	$\Delta T [K]$	H'	Hr	<i>S</i> [K]
	2	451.6	512.6	518.1	571.3	334.1	0.341	1.145	1.874
4	5	455.5	518.1	524.4	572.8	335.7	0.343	1.290	2.156
4	10	459.6	521.2	528.8	572.0	334.7	0.330	1.424	2.504
	15	464.0	527.1	534.8	573.9	336.3	0.331	1.617	2.546
	10	459.3	524.8	529.3	579.5	338.7	0.352	1.304	1.576
6	15	460.8	529.0	533.8	582.3	341.3	0.363	1.407	1.751
0	20	462.0	531.2	536.0	582.7	342.3	0.366	1.482	1.772
	30	463.2	534.4	540.4	582.8	344.4	0.375	1.680	2.255

Tabela 2.10. Parametri termičke stabilnosti zasnovani na karakterističnim temperaturama sa DSC snimaka

Međutim, temperaturni parametri iz tabele 2.10 daju neusaglašene rezultate. Dietzelov i parametar Saad-a i Poulaine-a imaju veću vrednost za staklo sa x=6 at.% Bi, pri svim brzinama grejanja u termičkom tretmanu. S druge strane, Hruby-ev i S-kriterijum daju veće vrednosti za staklo sa x= 4 at. % Bi. Razlog za neusaglašenost rezultata ovih kriterijuma proističe iz poteškoće u određivanju parametra T_{ons} , s obzirom na činjenicu da se procesi razmekšavanja i početka kristalizacije odvijaju u bliskom temperaturskom intervalu, naročito kod uzoraka sa x= 6 at. % Bi. Stoga se vrednosti Dietzel-ovog i parametra Saad-a i Poulaine-a moraju uzeti sa dozom rezerve, dok se Hruby-ev i S-kriterijum mogu u izvesnoj meri smatrati izvesnijim, budući da u njihovim definicijama figurišu i veličine T_m i T_p , a koje su jasno definisane na DSC snimcima oba uzorka.

Da bi se ove nedoumice otklonile, pristupilo se ocenjivanju termičke stabilnosti stakala na osnovu još jednog kriterijuma. Surinach i Hu [66] razvili su kriterijume stabilnosti koji se zasnivaju na vrednosti konstante brzine reakcije na temperaturi maksimuma entalpijskog efekta kristalizacije T_p :

•
$$K(T_p) = K_0 \exp\left(-\frac{E}{RT_p}\right);$$

Tabela 2.11. Parametar termičke stabilnosti prema Surinach i Hu-ovom kriterijumu

x	β	$K(T_p)$
[at. %]	[K/min]	$[s^{-1}]$
	2	$1.64 \cdot 10^{-8}$
4	5	$3.48 \cdot 10^{-8}$
4	10	$5.85 \cdot 10^{-8}$
	15	$11.73 \cdot 10^{-8}$
	10	$1.89 \cdot 10^{-5}$
6	15	$2.94 \cdot 10^{-5}$
0	20	$3.62 \cdot 10^{-5}$
	30	$5.5 \cdot 10^{-5}$

.Tabela 2.11 sadrži veličine koje su proizašle iz analize prema Surinach-u i Hu-u. Prilikom izračunavanja ovih parametara za aktivacionu energiju procesa kristalizacije E i za frekventni faktor K_0 uzete vrednosti iz Kissinger-ove analize. Manja vrednost ovog pokazatelja znači i veću termičku stabilnost. Iz tabele 2.11. očigledno je da uzorcima sa x=4 at.% Bi odgovara manja vrednost parametra $K(T_p)$ pri svim brzinama grejanja, te se nesumnjivo može zaključiti da je uzorak Bi₄(As₂S₃)₉₆ termički stabilniji u poređenju sa Bi₆(As₂S₃)₉₄. Ovim je takođe i potvrđena pretpostavka o ispravnosti rezultata prema Hruby-evom i S-kriterijumu.

3. OPTIČKE OSOBINE

3.1. Karakteristike spektara transparencije halkogenida

Halkogenidna stakla su materijali koji se koriste kao optički elementi zahvaljujući velikoj transparentnosti u infracrvenoj (IC) oblasti spektra i mnoštvu pojava koje ispoljavaju kada su izloženi dejstvu svetlosti ili drugog zračenja. U amorfnim halkogenidima uočene su različite vrste fotoindukovanih strukturnih ili fizičko-hemijskih promena, poput: fotokristalizacije, fotopolimerizacije, fotodekompozicije, fotoindukovanih morfoloških promena [67,68] i svetlošću izazvanih promena u lokalnoj atomskoj konfiguraciji [69-71]. Pomenute pojave povezane su sa značajnim promenama u vrednostima optičkih parametara i sa pomeranjem apsorpcione ivice [72,73], što omogućava primenu ovih materijala u proizvodnji velikog broja optičkih uređaja. Izučavanje optičkih osobina halkogenidnih stakala je takođe značajno i sa teorijske tačke gledišta, jer je moguće ustanoviti osnovne mehanizme interakcije optičkog zračenja sa neuređenom materijom i na taj način utvrditi u kojoj meri neuređenost utiče na optičke osobine halkogenidnih stakala.

Dijapazon transparencije tipičnih halkogenidnih stakala ilustrovan je na slici 3.1[74].

Slika 3.1. Transparentni spektar stakla $Ge_{20}As_{14}S_{12}Se_{40}I_{14}$ (16)

Može se uočiti da se potpuna apsorpcija javlja u delu vidljive oblasti spektra kao i niz apsorpcionih pikova u bliskom infracrvenom (IC), u standardnom IC i dalekom IC području.

Dugotalasna granica intervala optičke transparentnosti u halkogenidnim staklima posledica je apsorpcije vezane za kombinovane i složene oscilacije u grupama atoma iz

prve koordionacione sfere. Na još većim talasnim dužinama, kao posledica neuređenosti strukture, počinje kontinualni spektar fononske apsorpcije [75]. U oblasti kratkih talasnih dužina, granica transparentnog intervala uslovljena je prelazima elektrona iz valentne u provodnu zonu. Kratkotalasna granica transparencije naziva se apsorpcionom granicom i odgovara širini optičkog procepa [76].

Sem značajne transparentnosti, još jedna činjenica čini halkogenidna stakla izuzetno aplikativnim u proizvodnji različitih optičkih uređaja. Naime, ozračivanjem halkogenidnih stakala svetlošću talasne dužine u blizini apsorpcione granice, moguće je izazvati različite

reverzibilne i nereverzibilne efekte kao što su fotoprovodnost, fotoluminescencija (posledica postojanja lokalizovanih nivoa defekata u zabranjenoj zoni), fotohemijske reakcije, fotostrukturne transformacije i slično. Izučavanjem ovih pojava ne samo da mehanizmi se rasvetljavaju apsorpcije svetlosti u materiji već se i ukazuje na moguće primene ovih materijala u praksi, koje nisu uvek svojstvene za njihove kristalne analoge [76-78]. Da bi se razumeli pomenuti foto-efekti, neophodno je poznavati raspodelu elektronskih stanja i položaj apsorpcione ivice halkogenidnih stakala.

halkogenidnih stakala

Ivica apsorpcionog spektra amorfnih poluprovodnika, u dijapazonu kraćih talasnih dužina, uslovno se može podeliti na tri oblasti:

1. visoko-apsorpciona oblast (slika 3.2, oblast 1), u kojoj apsorpcija potiče od optičkih prelaza između delokalizovanih stanja valentne i provodne zone. Apsorpcioni koeficijent u ovom delu spektra ima vrednost $\alpha \ge 10^4 cm^{-1}$ [76,78] i može se, u opštem slučaju, prema Tauc-ovom modelu [79], prikazati relacijom:

$$\alpha(\hbar\omega) = \frac{B(\hbar\omega - E_g^{opt})^r}{\hbar\omega}$$
(3.1.)

gde je $\hbar \omega$ energija fotona, E_g^{opt} širina optičkog procepa, a r je indeks koji uzima vrednost 1/2 u slučaju dozvoljenih direktnih prelaza tj. prelaza koji se dešavaju uz očuvanje talasnog vektora i vrednost 2 za dozvoljene indirektne prelaze, tj. za prelaze koji su praćeni promenom talasnog vektora i učešćem fonona. Ako su pomenuti prelazi prema pravilima izbora zabranjeni, indeks r uzima vrednosti 3/2 odnosno 3. S obzirom da je za neuređene

sisteme karakteristična neodređenost talasnog vektora i manja dužina slobodnog puta nosilaca naelektrisanja, izborna pravila u njima nisu tako strogo definisana kao u kristalima.

Kod većine halkogenidnih stakala, visoko-apsorpciona oblast se javlja usled indirektnih prelaza elektrona iz delokalizovanih stanja valentne zone u delokalizovana stanja provodne zone, pa je u tom slučaju, izraz (3.1.) analogan onom koji je dobio Tauc [80],(uz pretpostavku o mogućnosti opisivanja ivica valentne i provodne zone paraboličnom funkcijom) [81]:

$$\sqrt{\alpha \hbar \omega} = B \left(\hbar \omega - E_g^{opt} \right) \tag{3.2.}$$

B je konstanta nezavisna od energije i proporcionalna širini repova δE lokalizovanih stanja zona [82,83]:

$$B = \frac{4\pi\sigma_{\min}}{\hbar\omega}$$
(3.3.)

gde je σ_{\min} ekstrapolisana vrednost *dc* provodljivosti za $T \rightarrow \infty$.

Funkcija $\sqrt{\alpha h \nu} = f(h \nu)$ predstavlja linearnu zavisnost (tzv. Taucov plot), čiji presek sa apscisom daje vrednost E_g^{opt} , a nagib konstantu *B*.

2. spektralna oblast koja se naziva i Urbach-ov eksponencijalni rep (slika 3.2, oblast 2), a u kojoj apsorpcioni koeficijent uzima vrednost $10^1 \le \alpha \le 10^4 cm^{-1}$ [84]. Apsorpcija u ovom delu spektra vezuje se za prelaze elektrona iz lokalizovanih stanja repa valentne zone u delokalizovana stanja provodne zone. Za ovu oblast karakteristična je eksponencijalna zavisnost apsorpcionog koeficijenta od energije fotona:

$$\alpha = \alpha_0 \exp\left(\frac{h\nu - E_g^{opt}(T)}{kT^*}\right)$$
(3.4.)

Parametar $\Delta = kT^*$ predstavlja meru nagiba linearnog dela eksponencijalnog repa, a T^* temperaturu uzorka

Na širinu optičkog procepa, a time i na nagib apsorpcione granice, utiču kako sam režim sinteze (maksimalna temperatura rastopa i brzina hlađenja), tako i spoljašnji faktori, poput temperature ili ozračivanja svetlošću određene talasne dužine, kada dolazi do prekidanja hemijskih veza i njihovog rearanžmana, što rezultuje promenama u lokalnoj strukturi stakla [85].

Uopšteno, temperaturska zavisnost optičkog procepa najčešće se prikazuje preko tri modela:

• linearnog [86]:

$$E_{g}(T) = E_{g}(0) - \gamma T$$
(3.5.)

gde je $E_g(0)$ širina procepa na T=0 K a γ koeficijent linearne temperaturne zavisnosti optičkog procepa.

• modela Varshni-ja [86]:

$$E_{g}(T) = E_{g}(0) - \frac{\mu T^{2}}{T + \beta}$$
(3.6.)

gde su μ i β konstante koje zavise od vrste materijala

• jednooscilatornog ili modela Fan-a [87,88]:

$$E_g(T) = E_g(0) - \frac{A}{\exp(\hbar\omega/\kappa T) - 1}$$
(3.7.)

gde je A takođe konstanta, zavisna od vrste materijala.

Temperaturska zavisnost širine optičkog procepa tumači se sumom najmanje dva doprinosa: strukturne neuređenosti tj. topološke komponente i termičke neuređenosti tj. fononske komponente [85]. Budući da je doprinos prve komponente dominantan, a znajući da se u određenom temperaturskom intervalu neuređenost može smatrati približno konstantnom, za koeficijent apsorpcije se može koristiti i izraz:

$$\alpha = \alpha_0 \exp \frac{\hbar \omega}{E_e} \tag{3.8.}$$

gde je E_e tzv. Urbach-ov nagib [78] koji predstavlja širinu repova lokalizovanih stanja u procepu.

Prema modelu Mot-a i Daviss-a [89], širina lokalizovanih stanja blizu ivice pokretljivosti zavisi od stepena neuređenosti i defekata prisutnih u amorfnoj strukturi.

3. oblast slabe apsorpcije (slika 3.2, oblast 3) koju karakteriše vrednost koeficijenta apsorpcije $\alpha \le 1 \text{ cm}^{-1}$ [80]. Za ovaj deo spektra vezuju se prelazi elektrona iz lokalizovanih stanja duboko u procepu u delokalizovana stanja provodne zone. Takođe ga karakteriše

ekponencijalna zavisnost od energije fotona, ali je nagib prave manji nego kod Urbach-ovog repa, odnosno:

$$\alpha = C \exp \frac{\hbar \omega}{E_t} \tag{3.9.}$$

gde je E_t analogno kao u prethodnom slučaju, mera nagiba linearnog dela eksponencijalnog repa i povezan je sa defektnim stanjima u materijalu.

Širina optičkog procepa predstavlja meru jačine veza u ispitivanom materijalu. Međutim, vezivanje strukturnih jedinica u amorfnim materijalima je statističke prirode, pa treba razmatrati kohezivnu energiju koja oslikava prosečnu jačinu veze za ispitivani sastav, a to istovremeno omogućava određivanje broja mogućih veza i njihov karakter. Da bi objasnili strukturu i osobine različitih halkogenidnih stakala, Bicerno i Ovshinski [90] uveli su sledeće pretpostavke:

- a) Atomi jedne vrste favorizovano se kombinuju sa atomima različite vrste. To onda favorizuje formiranje staklaste strukture sa povećanjem temperature razmekšavanja T_g. Veze između atoma iste vrste će se javiti samo ako postoji višak određene vrste atoma, u kom slučaju nije moguće zadovoljenje njegove valentnosti vezivanjem samo sa atomima različite vrste.
- b) Veze se formiraju dosledno opadanju energije veze sve dok se sve raspoložive valence atoma ne zadovolje
- c) Svaki konstituentni atom je okružen sa (8-N) atoma, gde je N broj valentnih elektrona.

Za određivanje vrednosti širine opričkog procepa halkogenidnih stakala, u praksi se najčešće koriste dva postupka.

Prvi je prilaz prema Stuke-u [91], koji polazi od činjenice da kod mnogih amorfnih poluprovodnika zabranjenoj zoni po pokretljivosti odgovara energija fotona pri kojoj je koeficijent optičke apsorpcije reda 10⁴ cm⁻¹. Nakon unošenja popravke za izmenu procepa sa temperaturom, položaj praga pokretljivosti kod mnogih materijala odgovara koeficijentu apsorpcije reda veličine 10³ cm⁻¹.

Drugi pristup za određivanje širine optički zabranjene zone je ekstrapolacija linearnog dela krive $\alpha = f(h\nu)$. Treba istaći da se ovo smatra grubim pristupom i da su tako dobijene vrednosti po pravilu manje od širine procepa po pokretljivosti za 0.1 do 0.2 eV [92].

Ukoliko je vrednost apsorpcionog koeficijenta ispitivanog materijala dovoljno velika, koristi se metod Stuke-a. Kada to nije slučaj, vrši se ekstrapolacija zajedničkog

linearnog dela za različite debljine uzorka. Direktno izračunavanje koeficijenta apsorpcije na osnovu transparencije moguće je samo uz određenu aproksimaciju. Odgovarajuća korekcija može se izvršiti na osnovu poznavanja disperzije indeksa prelamanja.

3.2. Rezultati merenja spektara transparencije stakala sistema Bi_x(As₂S₃)_{100-x}

Za potrebe merenja transparencije, odabrani uzorci stakala ispitivanog sistema mehanički su obrađeni uz pomoć abrazivnih prahova različite krupnoće do forme planparalelnih pločica, a potom polirani do visokog sjaja. U seriji sukcesivnih merenja, pločice su stanjivane od početne debljine približno 0.8-1 mm pa sve do debljine 0.1-0.2 mm, odnosno do debljine koja omogućava mehaničko očuvanje uzoraka.

Spektri transparencije ispitivanih stakala snimani su na uređaju NIR Perkin-Elmer spektrofotometru, model LAMBDA-950, čija je skica prikazani na slici 3.3.

Slika 3.3. Šematski prikaz uređaja LAMBDA 950: 1-deuterijumska i halogenska lampa, 2-dvostruki holografski monohromatori, 3-regulator širine svetlosnog zraka, 4-depolarizator zraka, 5-prekidač, 6-atenuator referentnog zraka i zraka kroz uzorak, 7-kućište za uzorak, 8-visokosenzitivni fotomultiplikator i PbS detektor, 9-prostor za refleksionu ćeliju

Mirjana Šiljegović-Magistarski rad

LAMBDA-950 je višenamenski spektroskopski uređaj koji omogućava merenja transparencije kao i difuzne i ogledalske refleksije u intervalu talasnih dužina od 175-3300 nm sa rezolucijom od 0.05 nm u UV oblasti, odnosno 0.20 nm u bliskoj IC oblasti spektra. Uređaj je povezan sa kvalitetnim UV WinLab softverom koji obezbeđuje brz prikaz i analizu eksperimentalnih podataka. U cilju obezbeđivanja preciznosti rezultata za balk forme uzoraka halkogenidnih stakala, izvršena je atunuacija referentnog zraka svetlosti do na 10%.

Spektri transparencije stakala sa x=0.5, 2 i 4 at.% Bi pri različitim debljinama uzoraka prikazani su na slikama 3.4, 3.5 i 3.6.

Stakla sa 6 i 8 at.% Bi pokazala su se neprozračnim u ispitivanom spektralnom području

Slika 3.4. Spektar transparencije stakla Bi_{0.5}(As₂S₃)_{99.5}

Slika 3.5. Spektar transparencije stakla Bi₂(As₂S₃)₉₈

Može se primetiti da pri najmanjim debljinama svih uzoraka vrednost transparencije ne prelazi vrednost od oko 30%, pa se zaključuje da su stakla ispitivanog sistema relativno slabo transparentna. Takođe se uočava da su vrednosti transparencije sva tri uzorka pri najvećim debljinama gotove identične i iznose oko T= 2.5%. Sa smanjenjem debljine uzoraka porast transparentnosti ispoljava različito ponašanje, u zavisnosti od udela Bi u sadržaju sistema As-S.

Uzorak sa najmanjim sadržajem Bi već pri debljini od d=0.76 mm ima vrednost T \approx 25 %, a sa njegovim daljnjim stanjivanjem, trend porasta prozračnosti je znatno manji, pa pri debljini d=0.21 mm ona iznosi T \approx 30%.

Staklo sastava $Bi_2(As_2S_3)_{98}$ karakteriše postepeno povećanje transparentnosti sa smanjenjem debljine, i u poređenju sa prethodnim uzorkom, s obzirom da su im minimalno postignute debljine gotovo istih vrednosti($d(Bi_2(As_2S_3)_{98})=0.23$ mm), pokazuje se nešto manje prozračnim (T $\approx 22\%$).

S druge strane, transparencija stakla sastava $Bi_4(As_2S_3)_{96}$ je, sve do debljine d=0.27 mm, ispod 5% i, prema tome, mnogo manja od prethodna dva uzorka. Tek pri debljini d=0.11 mm transparencija se značajno povećava do na vrednost T \approx 20%.

Slika 3.6. Spektar transparencije stakla Bi₄(As₂S₃)₉₆

Takođe je zapažen i jedan efekat potpuno eksperimentalnog karaktera: različit uticaj fona na spektre ispitivanih stakala, iako su snimani pod identičnim uslovima, odnosno sa istom osetljivošću. Tako se spektar uzorka sa 0.5 at.% Bi pokazao osetljivim na fon praktično na svim debljinama. Uticaj fona na formu spektra transparencije uzorka sa 2 at.% Bi značajan je tek na najmanjim debljinama, a kod uzorka sa 4 at.% Bi je zanemariv na svim debljinama. Na spektrima transparencije ovog uzorka čak se ne uočava ni skok na oko 900 nm, koji je primetan kod prethodna dva uzorka, a posledica je zamene PbS detektora na Si detektorom.

Nesumnjivo jasniji zaključak koji se može izveti na bazi ovih rezultata, odnosi se na pomak apsorpcionog kraja, kao posledicu sastava stakla. Naime, sa prikazanih transparentnih spektara primetan je efekat pomeranja oblasti transparencije u pravcu dugotalasnog dela spektra sa povećanjem učešća Bi. Kratkotalasna granica uzorka sa najmanjim udelom Bi je $\lambda_g = 590 nm$, za uzorak sa x=2 at.% Bi ona iznosi $\lambda_g = 680 nm$, a kod uzorka sa x= 4 at.% Bi je pomerena do na $\lambda_g = 840 nm$.

3.3. Rezultati određivanja koeficijenata apsorpcije stakala sistema $Bi_x(As_2S_3)_{100-x}$

Spektri transparencije stakala sistema $Bi_x(As_2S_3)_{100-x}$ poslužili su za određivanje širine optičkog procepa sa odgovarajućih spektara apsorpcionih koeficijenata. Naime, koeficijent apsorpcije ispitivanih stakala procenjen je na osnovu podataka za transparenciju i debljinu uzoraka prema relaciji:

$$\alpha = \frac{1}{d} \ln \frac{1}{T} \tag{3.10.}$$

Apsorpcioni koeficijenti, kalkulisani na ovaj način, prikazani su na slikama 3.7 i 3.8 i 3.9. Primećuje se da koeficijenti apsorpcije kod sva tri ispitivana sastava pri minimalno postignutim debljinama dostižu maksimalnu vrednost reda veličine $10^2-10^3 \text{ cm}^{-1}$, pa se za nalaženje vrednosti optičkog procepa ne može primeniti Taucov izraz (3.2.). U tom slučaju procena se vrši ekstrapolacijom linearnog dela krive $\alpha = f(hv)$ do preseka sa apscisom. Takođe se može uočiti da kod uzorka Bi₄(As₂S₃)₉₆ pri debljini d=0.11 mm (slika 3.9.) dolazi do pomeranja linearnog dela krive $\alpha = f(hv)$ ka manjim energijama, pa je za odgovarajuću vrednost širine optički zabranjene zone uzeta ekstrapolisana vrednost, dobijena linearnim fitovanjem funkcije $E_g=f(hv)$ koja odgovara nultoj debljini uzorka (slika 3.10).

Slika 3.8. Apsorpcioni koeficijent stakla Bi_{0,5}(As₂S₃)_{99.5}

Slika 3.8. Apsorpcioni koeficijent stakla Bi₂(As₂S₃)₉₈

Slika 3.9. Apsorpcioni koeficijent stakla $Bi_4(As_2S_3)_{96}$

Fitovanje je izvršeno na osnovu 6 eksperimentalnih tačaka sa zadovoljavajuće visokim koeficijentom linearne regresije (R=0.992). Sem toga, apsorpcioni koeficijent stakla sa 4 at.% Bi pri najmanjoj debljini dostiže vrednost reda veličine 10^3 cm^{-1} , pa je za njega širina optičkog procepa određena i metodom Stuke-a.

Vrednosti optičkog procepa ispitivanih stakala, određene prema gore opisanim postupcima, prikazane su u tabeli 3.1. S obzirom da širina optički zabranjene zone za As_2S_3 iznosi 2.5 eV [93], može se zaključiti da se ovaj parametar već pri najmanjoj koncentraciji Bi smanjuje u značajnoj meri. Sa povećanjem sadržaja primesnih atoma u arsen-sumpornoj matrici nastavlja se trend smanjenja širine optički zabranjene zone, i to najpre od 1.96 do 1.87 eV- pri uvećanju koncentracije atoma Bi do 2 at.%, a potom ponovo u značajnijoj meri (1.87-1.46 eV) u intervalu koncentracija od 2 do 4 at.% Bi.

Slika 3.10. Zavisnost E_g od debljine stakla $Bi_4(As_2S_3)_{96}$

Efekat smanjenja širine optičkog procepa sa uvođenjem Bi primećen je i kod drugih halkogenidnih stakala [94-96].

Smanjenje širine optički zabranjene zone može se objasniti na osnovu modela gustine stanja čiji su autori Davis i Mott [89]. Prema ovom modelu, širina lokalizovanih stanja u blizini ivice pokretljivosti zavisi od stepena neuređenosti i defekata. Nezasićene

veze, koje u amorfnim materijalima nastaju kao posledica favorizovanog kombinovanja atoma različite vrste prema već pominjanom kriterijumu Bicerno-a i Ovshinky-ja [90] (poglavlje 3.1.), odgovorne su za formiranje defekata odnosno novih lokalizovanih stanja u energetskom spektru stakala. Dakle, sa uvođenjem Bi u sistem As-S formiraju se Bi-S veze na račun As-S veza, kreirajući na taj način nova, defektna stanja. Sa porastom koncentracije Bi raste koncentracija Bi-S veza, ali i Bi-Bi veza, što dovodi do "razvlačenja" stanja u procepu između ivica zona (tzv. repovi zona) ili čak do formiranja primesne zone u optičkom procepu [97], čime se smanjuje njegova širina.

Kao što je već ukazano, vrednosti apsorpcionih koeficijenata sva tri ispitivana sastava pripadaju intervalu koji je karakterističan za Urbach-ov eksponencijalni rep spektra (odnosno $10 \le \alpha \le 10^4 \text{ cm}^{-1}$). To znači da je fitovanjem linearnog dela zavisnosti $\ln \alpha = f(h\nu)$ moguće odrediti tzv. Urbach-ov nagib E_e (relacija 3.8.), odnosno širinu repova lokalizovanih stanja u procepu, a time i proceniti stepen neuređenosti strukture.

Postupak određivanja Urbach-ovog nagiba ispitivanih stakala ilustrovan je na slici 3.11. Može se primetiti da se nagib linearnih delova zavisnosti $\ln \alpha = f(h\nu)$ kod sva tri ispitivana stakla neznatno menja, što ukazuje na malu promenu širine repova u intervalu

Slika 3.11. Zavisnost $\ln \alpha$ od hv stakala sistema $Bi_x(As_2S_3)_{100-x}$

koncentracija primesa 0.5-4 at.%. To onda znači da značajnije smanjenje širine optički zabranjene zone pri povećanju udela atoma Bi od 2 do 4 at.% nije posledica formiranja

defektnih stanja u repovima zona već pre obrazovanja primesne zone u optičkom procepu [92].

Kalkulisane vrednosti parametra E_e za ispitivana stakla prikazane su u tabeli 3.1.

Vrednost parametra E_e u staklu sastava As₂S₃ iznosi 81 meV [93], pa se može zaključiti da se najveći efekat povećanja neuređenosti usled indukovanja novih defektnih stanja sistema As-S postiže upravo za minimalan sadržaj primesnih atoma. Sa daljnjim povećanjem udela Bi, promena stepena neuređenosti u sistemu Bi_x(As₂S₃)_{100-x} je zanemarljiva.

<i>x</i> [at. %]	$E_g[eV]$	E _g [eV]- Stuke-ov metod	E _e [meV]
0.5	1.96±0.03	—	135±2
2	1.87±0.03		134±2
4	1.46±0.02 ⁻¹	1.53±0.05	137±2

Tabela 3.1. Vrednosti širine optički zabranjene i repova lokalizovanih stanja

3.4. Rezultati merenja indeksa prelamanja stakala sistema $Bi_x(As_2S_3)_{100-x}$

Disperzija indeksa prelamanja stakala sistema $Bi_x(As_2S_3)_{100-x}$ određena je direktnom metodom prelamanja zraka na prizmi. Snimanje je vršeno pomoću specijalno formiranog laboratorijskog sistema, koji je opisan u ranijim radovima [98-101].

Karakteristike spektara transparencije su ukazale da raspoloživa aparatura omogućuje merenja disperzije indeksa prelamanja uzoraka sa x=0.5, 2 i 4 at. % Bi.

Prizme su pripremljene od odabranih komada ispitivanih stakala mehaničkom obradom (brušenjem abrazivnim prahovima različite krupnoće), pri čemu je željena forma obezbeđena korišćenjem specijalno konstruisanog držača, na koji je staklo pričvršćivano tokom obrade. Visoki sjaj graničnih pljosni dobijen je naknadnim poliranjem.

Ugao prizme φ meren je na dvokružnom optičkom goniometru Enraf Nonus Y-881, sa tačnošću od 2['].

¹ vrednost određena za nultu debljinu uzorka

Eksperimentalne zavisnosti $n(\lambda)$ za sva tri ispitivana stakla u opsegu talasnih dužina od 600-1800 nm prikazane su na slici 3.12. Može se primetiti da zavisnosti imaju oblik normalne disperzije i da su vrednosti indeksa prelamanja u okviru karakterističnih za halkogenidna stakla. Sa povećanjem udela Bi u ispitivanim staklima, vrednost indeksa prelamanja se povećava, naročito za uzorak sa x=4 at.% Bi.

Slika 3.12. Disperzija indeksa prelamanja stakala sistema $Bi_x(As_2S_3)_{100-x}$

Krive disperzije optičkih stakala određene su brojem i pozicijom apsorpcionih ivica komponenata stakla i njegovom strukturom. U okviru granica koje nameće izrada optičkih stakala, moguće je menjati pomenute osobine da bi se dobile željene krive disperzije.

U praksi je veoma često potrebno poznavati indeks prelamanja na talasnim dužinama koje su van opsega obuhvaćenog merenjima. Analitička reprezentacija disperzije indeksa prelamanja je takođe neophodna za proračune tokom izrađivačkog procesa nekog optičkog sistema. Mnogi autori su pokušali formulisati disperzionu formulu na taj način što bi računali indeks prelamanja sa par konstanti izvedenih iz merenja. Formula bi trebala pokriti celo upotrebljivo područje stakla (od UV do IC oblasti spektra), biti precizna i jednostavna koliko je to moguće. Iz analitičkih razloga, bilo bi poželjno ako bi *n* bilo izraženo u formi $n = \sum a_j \lambda^j$, gde su a_j koeficijenti empirijski koeficijenti, a λ_j rezonantne talasne dužine. Postoji više disperzionih formula koje zadovoljavaju ove potrebe sa različitom preciznošću, ali su primenljive samo u optičkom području gde je apsorpcija zanemarljiva.

Za analizu ponašanja indeksa prelamanja stakala sistema $Bi_x(As_2S_3)_{100-x}$ koristiće se tri modela.

Cauchy [102] spada među prve autore koji su uspeli formulisati disperzioni model u algebarskoj formi. Jednačina koja opisuje ponašanje indeksa prelamanja sa promenom talasne dužine prema ovom modelu je oblika:

$$n\lambda^4 = a\lambda^4 + b\lambda^2 + c \tag{3.11.}$$

Primenom Cauchy-evog modela na vrednosti indeksa prelamanja ispitivanih stakla i fitovanjem istih polinomom četvrtog stepena, dobijeni su rezultati koji su predstavljeni redom na slikama 3.13, 3.14 i 3.15.

Slika 3.13. Zavisnost $n\lambda^4$ od λ stakla $Bi_{0.5}(As_2S_3)_{99.5}$

Slika 3.14. Zavisnost $n\lambda^4$ od λ stakla $Bi_2(As_2S_3)_{98}$

Slika 3.15. Zavisnost $n\lambda^4$ od λ stakla $Bi_4(As_2S_3)_{96}$

Vrednosti parametara Cauchy-eve disperzione analize, dobijenih iz linearnog fita, prikazani su u tebeli 3.2.

x [at. %]	а	b [10 ⁵ nm ²]	c [10 ¹⁰ nm ⁴]
0.5	2.268	1.306	0.605
2	2.299	9.221	1.011
4	2.636	4.914	7.843

Tabela 3.2. Parametri Cauchy-eve analize

Parametar *a* predstavlja graničnu vrednost indeksa prelamanja za $\lambda \rightarrow \infty$ i analogan je statičkom indeksu prelamanja u Sellmeir-ovoj i Wemple DiDomenico analizi. Poznavanje parametara Cauchy-eve analize omogućava ekstrapolaciju vrednosti indeksa prelamanja u oblastima talasnih dužina u kojima nisu izvršena merenja. Glavni nedostatak ovog modela je nepotpuno poznavanje fizičkog smisla parametara *a,b* i *c*.

Druga disperziona formula korišćena za analizu je Sellmeir-ova formula [102]. Dobijena je primenom elektromagnetne teorije na molekulsku strukturu materijala. Naime, ako elektromagnetni talas pada na atom ili molekul, tada valentni elektroni vibriraju na frekvenciji upadnog talasa i imaju rezonanciju na talasnoj dužini λ_i .

Za indeks prelamanja se u tom slučaju može pisati:

$$n^{2} = 1 + \sum_{j=1}^{N} \frac{a_{j} \lambda^{2}}{\lambda^{2} - \lambda_{j}^{2}}$$
(3.12.)

gde λ_i označava efektivnu rezonantnu talasnu dužinu, a a_j tzv. sile oscilatora.

Pokazalo se da praktično sve disperzione krive optičkih stakala mogu biti opisane korišćenjem dve efektivne talasne dužine: jedne u UV oblasti (tipično u oblasti 50-150 nm) i jedne u IC oblasti (7-10 μm).

Glavna prednost Sellmeier-ove disperzione formule je u povezivanju parametara analize sa strukturom ispitivanog materijala. Greške interpolacije ovom metodom su minimalne, a čak su i greške ekstrapolacije znatno manje u odnosu na ostale disperzione modele.

S obzirom da je u elektromagnetnoj teoriji pokazano [102] da valentni elektroni u materijalu osciluju na vrlo bliskim, praktično istim frekvencijama, gornja relacija se može koristiti i u jednostavnijoj formi:

$$n^{2} = 1 + \frac{A\lambda^{2}}{\lambda^{2} - \lambda_{0}^{2}}$$
(3.13.)

gde je A ukupna sila oscilatora, a λ_0 talasna dužina prosečne frekvencije oscilatora (elektrona).

Primena Sellmeir-ovog disperzionog modela na stakla sistema $Bi_x(As_2S_3)_{100-x}$ dala je rezultate koji su prezentovani na slikama 3.16, 3.17 i 3.18. Eksperimentalne vrednosti indeksa prelamanja fitovane su polinomom drugog stepena.

Slika 3.16. Zavisnost $\lambda^2 / (n^2 - 1)$ od λ^2 stakla $Bi_{0.5}(As_2S_3)_{99.5}$

Slika 3.18. Zavisnost $\lambda^2 / (n^2 - 1)$ od λ^2 stakla $Bi_4(As_2S_3)_{96}$

Iz nagiba linearne zavisnosti i njenog preseka sa ordinatnom osom određene su vrednosti Sellmeir-ovih koefijenata A i λ_0 i prikazane u tabeli 3.3 za sva tri ispitivana sastava.

Na osnovu ovih vrednosti izračunate su i veličine:

- statički indeks prelamanja: $n_{\infty} = \sqrt{1+A}$
- srednja frekvencija elektronskih oscilatora $v_0 = c / \lambda_0$
- prosečna energija elektronskih oscilatora $E_0 = h v_0$

a čije su vrednosti takođe date u tabeli 3.3.

Tabela 3.3. Parametri Sellmeir-ove analize

<i>x</i> [at. %]	A	$\lambda_0 [\mathrm{nm}]$	$E_0 [{ m eV}]$	$v_0 [10^{14} { m Hz}]$	n_{∞}
0.5	4.216	318.963	3.887	9.405	2.284
2	4.280	321.273	3.835	9.386	2.298
4	5.828	347.311	3.569	8.638	2.613

Može se zaključiti da ukupna sila oscilatora značajno raste sa povećanjem sadržaja Bi u ispitivanim staklima. Vrednosti talasne dužine odnosno frekvencije oscilatora pripadaju UV oblasti spektra, što je u skladu sa predviđanjima teorije. Evidentna je tendencija smanjenja talasne dužine prosečne frekvencije oscilatora sa porastom udela Bi. Poređenjem vrednosti statičkog indeksa prelamanja u Sellmeir-ovoj analizi sa istim dobijenim prema Cauchy-evom modelu (tabela 3.2., parametar *a*), zaključuje se da je saglasnost rezultata dveju metoda sasvim zadovoljavajuća.

Treći i najčešće korišćeni model u literaturi za opis ponašanja indeksa prelamanja u oblasti transparencije je model Wemple i DiDomenico-a (WDD model) [103], a koji se zasniva na sledećoj relaciji:

$$n^{2} = 1 + \frac{E_{d}E_{0}}{E_{0}^{2} - E^{2}}$$
(3.14.)

veličina E označava energiju upadnih fotona,

 E_0 energiju efektivnog oscilatora, a

 E_d je disperzioni parametar koji predstavlja meru jačine međuzonskih optičkih prelaza.

Pomenuti parametri mogu se dobiti lineranim fitovanjem eksperimentalnih podataka. Od naročitog značaja je određivanje veličine E_0 , s obzirom da energija efektivnog oscilatora predstavlja orijentir za vrednost prosečnog optičkog procepa i da pruža informacije o ukupnoj zonskoj slici ispitivanog materijala. Sem toga, disprezioni parametar E_0 može se poistovetiti sa srednjom energijom prelaza iz nevezujućih *lone-pair* stanja valentne zone u stanja provodne zone.

Funkcija $(n^2 - 1)^{-1} = f(E^2)$ za stakla sa x=0.5, 2 i 4 at.% Bi predstavljena je respektivno na slikama 3.19, 3.20 i 3.21.

U tabeli 3.4. prikazane su vrednosti disperzionih parametara Wemple i DiDomenico analize za ispitivana stakla.

Slika 3.19. Zavisnost $1/(n^2 - 1)$ od $(h\nu)^2$ stakla $Bi_{0.5}(As_2S_3)_{99.5}$

Slika 3.21. Zavisnost $1/(n^2-1)$ od $(hv)^2$ stakla $Bi_4(As_2S_3)_{96}$

Na osnovu podataka iz linearnog fita funkcije izračunate su i veličine (tabela 3.4):

- statički indeks prelamanja: $n_{\infty} = \sqrt{1 + E_d / E_0}$
- srednja frekvencija elektronskog oscilatora $v_0 = c / \lambda_0$

Tabela 3.4. Parametri Wemple DiDomenico analize

<i>x</i> [at. %]	$E_0 [{ m eV}]$	E_d [eV]	$E_D/E_O=A$	$\lambda_0 [{ m nm}]$	n(0)	$v_0 [10^{14} \text{Hz}]$	$E_{g}^{opt}\left[eV ight]$	E_0/E_g^{opt}
0.5	3.897	16.493	4.232	318.100	2.287	9.431	1.96	1.99
2	3.816	16.358	4.286	324.886	2.299	9.234	1.87	2.05
4	3.474	20.173	5.807	356.845	2.609	8.407	1.46 (1.59)	2.37(2.18)

Disperzioni parametar E_0 značajno se smanjuje sa povećanjem sadržaja Bi u sistemu As-S. Vrednost ove veličine za staklo As_2S_3 iznosi 5.33 ± 0.04 eV [93], pa je očigledno da uvođenje Bi u arsen-sumpornu matricu već u malim koncentracijama ima efekat smanjenja prosečnog optičkog procepa. Ovaj zaključak je u saglasnosti sa rezultatima spektroskopskih merenja. Fizički smisao parametra E_0 odgovara rastojanju između "centara gravitacije" valentne i provodne zone, pa je izvesno da je povezan sa energijom različitih hemijskih veza u ispitivanom materijalu [93]. Dakle, može se tumačiti da uočeno smanjenje vrednosti ovog parametra, najvećim delom potiče od nižih vrednosti energije veze Bi-S (315.5 KJ/mol) u odnosu na S-S (425.30 KJ/mol) i As-S (379.5 KJ/mol) [45].

S druge strane, u literaturi se mogu naći podaci da je kod niza ispitivanih stakala primećena proporcionalnost između veličina E_0 i E_g^{opt} u obliku relacije $E_0 \approx 2E_g^{opt}$, a koju je među prvima uočio Tanaka [104]. Da je reč o približnom, a ne strogo definisanom odnosu između ovih dveju veličina ukazuju rezultati dobijeni za stakla sistema Ge-Sb-S dopirana sa Ag $(E_0 \approx 2.4E_g^{opt})$ [105] i za GeS₂ filmove $(E_0 \approx 2.3E_g^{opt})$ [106].

Kao što se može videti iz tabele 3.4., stakla sa 0.5 i 2 at.% Bi u granicama greške zadovoljavaju pomenuti odnos, dok se izvesno odstupanje javlja kod stakla sa 4 at.% Bi. Ovo odstupanje objašnjava se uticajem refleksije na apsorpcioni spektrar, o čemu će biti više reči u poglavlju 3.5. Vrednosti u zagradi odnose se ukalkulisanu refleksiju i kao što se može primetiti, za staklo sa 4 at.% Bi odnos E_0/E_g^{opt} u tom slučaju ima vrednost bližu 2.

Bitna odlika WDD modela je da povezuje disperzionu energiju E_d sa drugim fizičkim parametrima materijala preko empirijske relacije:

$$E_d = \beta N_c Z_a N_e \tag{3.15.}$$

gde je β konstanta koja u zavisnosti od karaktera hemijskih veza između strukturnih jedinica uzima jednu od dve moguće vrednosti [107]: kovalentnu (β =0.37±0.04 eV) ili jonsku (β =0.26±0.03 eV), N_c je koordinacioni broj najbližih katjonskih suseda anjona, Z_a je formalna hemijska valenca anjona a N_e je ukupan broj valentnih elektrona po anjonu.

Disperzioni parametar E_d stakla As₂S₃ ima vrednost 21.46±0.18 [93], pa se može zaključiti da uvođenje Bi u arsen-sumpornu osnovu u koncentracijama x= 0.5 i 2 at.% ima efekat smanjenja oscilatorne snage odnosno jačine međuzonskih optičkih prelaza. Međutim, daljnje povećanje koncentracije Bi ima opozitan efekat, odnosno dovodi do povećanja parametra E_d do vrednosti bliske onoj koja karakteriše matricu As₂S₃.

Prema relaciji (3.15.) više različitih faktora može uticati na promenu veličine E_d . U prvom redu to su koordinacija katjona, veći ili manji stepen jonosti veze kao i promena broja atoma u ulozi katjona koja utiče na broj valentnih elektrona po anjonu. Međutim, na osnovu analize parametara fazne transformacije stakala sa x=0.5, 2 i 4 at.% Bi (poglavlje 2.4.), ali i ponašanja parametra E_d za ova tri sastava, može se pretpostaviti da je dominantan uticaj parametra N_c na vrednost oscilatorne snage.

U tom smislu, relacija (3.15) će se iskoristiti za izračunavanje parametra N_c . Dobijene vrednosti prikazane su u tabeli 3.6.

<i>x</i> [at. %]	N_c	
0	3.20 [108]	
0.5	2.39	
2	2.37	
4	3.30	

Tabela 3.6. Vrednosti koordinacionog broja N_c

Smanjenje koordinacionog broja N_c pri koncentracijama Bi od x= 0.5 i 2 at.%, ukazuje na značajnu promenu koncentracije S-S homopolarnih veza, usled zamene mostovnih S atoma sa primesnim atomima Bi. Pri koncentraciji od 4 at % Bi, koordinacioni broj N_c odgovara eksperimentalno utvrđenoj vrednosti za As₂S₃, što se objašnjava supstitucijom atoma As sa atomima Bi u piramidalnim strukturnim jedinicama AsS₃ [109]. Ovi rezultati su u saglasnosti sa zaključcima izvedenih na osnovu veze između koordinacije i parametra fazne transformacije omekšavanja stakla T_g (poglavlje 2.4.).

Zavisnost statičkog indeksa prelamanja n(0) od sastava ispitivanih stakala ispoljava nešto veću vrednost pri koncentraciji od 4 at.% Bi, što se, u skladu sa Lorenc-Lorencovom relacijom, tumači većom elektronskom polarizabilnošću atoma Bi (kovalentnog radijusa 146 pm) u poređenju sa atomima As (kovalentnog radijusa 119 pm) i S (kovalentnog radijusa 102 pm) [45].

Takođe, pomak apsorpcione ivice prema većim talasnih dužinama uočen u merenjima transparencije ispitivanih stakala, prema Kramers-Kroningovoj relaciji [110]:

$$n(0) - 1 = \frac{1}{2\pi^2} \int_0^\infty \alpha d\lambda$$
 (3.16.)

dovodi do povećanja statičkog indeksa prelamanja.

3.5. Korekcija koeficijenata apsorpcije stakala sistema $Bi_x(As_2S_3)_{100-x}$ na osnovu vrednosti indeksa prelamanja

Apsorpcioni spektri stakala sistema $Bi_x(As_2S_3)_{100-x}$ prezentovani u poglavlju 3.2. izračunati su bez uračunavanja refleksije. Da bi se procenila opravdanost upotrebe aproksimativnog izraza za koeficijent apsorpcije (3.8.), potrebno je izračunati refleksiju pomoću relacije:

$$R = \frac{(n-1)^2}{n^2 + 1} \tag{3.17.}$$

u opsegu talasnih dužina u kojem su vršena merenja transparentnosti uzoraka. Vrednosti indeksa prelamanja u ovom intervalu mogu se izračunati na osnovu parametara jednog od tri analizirana disperziona modela.

Na slici 3.22 predstavljene su krive disperzije indeksa prelamanja uzorka $Bi_{0.5}(As_2S_3)_{99.5}$ prema sva tri disperziona modela. Postoji visoka korelacija između eksperimentalnih podataka i disperzionih krivih prema Sellmeir-ovom i WDD modelu, dok analitička kriva po Cauchy-evom modelu ispoljava manje odstupanje na kraćim talasnim dužinama. Stoga su za izračunavanje refleksije korišćene vrednosti indeksa prelamanja dobijene na osnovu parametara WDD modela.

Kada su poznate vrednosti refleksije, apsorpcioni koeficijent je moguće odrediti na osnovu izraza [111]:

Slika 3.22. Disperzija indeksa prelamanja stakla $Bi_{0.5}(As_2S_3)_{99.5}$ prema modelima disperzione analize

Vrednosti apsorpcionih koeficijenata u oblasti kratkotalasne granice korigovane na refleksiju stakala sa x= 0.5, 2 i 4 at.% Bi prikazane su na slici 3.23. Vrednosti širine optičkog procepa pre i nakon korekcije na refleksiju date su u tabeli 3.7. Može se zaključiti da su za stakla sa x= 0.5 i 2 at.% Bi odstupanja u vrednostima u okviru greške, pa se koeficijent apsorpcije sa zadovoljavajućom tačnošću može aproksimirati izrazom (3.8.).

Međutim, za staklo sa 4 at.% Bi zapažen je veći uticaj refleksije na vrednost apsorpcionog koeficijenta, pa time i na širinu optičkog procepa, te je u računu neophodno koristiti relaciju (3.18.) Sem toga, ova konstatacija ukazuje i na drugačiju vrstu strukturne modifikacije pri uvođenju Bi u koncentraciji od 4 at.% u arsen-sumpornu matricu.

Slika 3.23. Korigovani apsorpcioni koeficijenti stakala sistema $Bi_x(As_2S_3)_{100-x}$

κοι εκείμε πα τεμεκείμα							
<i>x</i> [at. %]	$E_g[eV]$	$E_{g ext{-kor}}[eV]$ - Stuke-ov metod	$E_{g ext{-kor}} \left[ext{eV} ight]$				
0.5	1.97±0.03	—	2.01±0.03				
2	1.93±0.03		1.95 ± 0.03				
4	$1.46^{1}\pm0.02$	1.53 ±0.02	1.59±0.02				

Tabela 3.7. Poređenje vrednosti širine optički zabranjene zone nakonkorekcije na refleksiju

¹ Vrednost određena za nultu debljinu uzorka

4. ELEKTRIČNE I DIELEKTRIČNE OSOBINE

4.1. Modeli energetskih spektara amorfnih materijala

Na električne osobine halkogenidnih stakala u značajnoj meri utiče osobenost energetskog spektra elektronskih stanja ovih materijala.

Naime, realne amorfne materijale odlikuje i geometrijsko i strukturno odsustvo uređenosti. Geometrijska neuređenost se manifestuje u nagomilavanju deformacija u rasporedu strukturnih elemenata i odstupanju dužina atomskih veza i uglova između njih od konstantnih vrednosti već pri udaljavanju od prve koordinacione sfere. Strukturna neuređenost se javlja u vidu prekinutih veza, dvostrukih veza i modifikovanih osnovnih strukturnih jedinica, koji predstavljaju tzv. defektne centre. Ove geometrijske i hemijske fluktuacije dovode do "razvlačenja" stanja u procepu između ivica zona, pa se, kad je reč o amorfnim poluprovodnicima, ne može govoriti o postojanju zabranjene zone u klasičnom smislu [112] (slika 4.1).

Još jedan uzrok pojavljivanja repova zona je prisustvo kratkodometne neuređenosti u rastojanjima između nevezujućih atoma. Ovo je naročito karakteristično za halkogenidne atome, koji, pored dve vezujuće orbitale, imaju i jednu nevezujuću *p*-orbitalu, a koja formira vrh valentne zone. Ako se dva ovakva atoma nađu jedan blizu drugog u neuređenoj mreži, interakcija između nevezujućih tzv. *lone-pair* orbitala uzrokuje povećanje energije njima pridruženih stanja a na taj način i njihovo razvlačenje sa ivice valentne zone u procep.

Slika 4.1. Energetski spektar amorfnih materijala prema CFO modelu

Značajna posledica neuređenosti jeste i da elektroni mogu postati lokalizovani. Pojava lokalizacije je verovatnija što je veći stepen neuređenosti, pa se lokalizovana stanja prvenstveno javljaju u repovima valentne i provodne zone, a njihova širina zavisi od karaktera hemijskih veza. Na granici između lokalizovanih stanja u repovima i delokalizovanih stanja valentne ili provodne zone dolazi do skokovite izmene pokretljivosti nosilaca naelektrisanja μ usled različitog mehanizma transporta nosioca naelektrisanja.

Model Cohen-a, Fritzsche-a i Ovshinsky-a (CFO model [113]) uvodi termin procep pokretljivosti kao analog pojma zabranjene zone kod kristalnih poluprovodnika (slika 4.1) u objašnjenju promene pokretljivosti nosilaca naelektrisanja za nekoliko redova veličine duž energetske skale.

Daviss i Mott [112,114] otišli su i korak dalje u energetskoj slici raspodele lokalizovanih stanja. Naime, na osnovu brojnih eksperimenata koji svedoče o učvršćenju Fermijevog nivoa u okolini sredine procepa, oni su predvideli postojanje maksimuma gustine lokalizovanih stanja u sredini pukotine pokretljivosti (slika 4.2).

Ovim modelom objašnjena je razlika između optičke i električne aktivacione energije ($E_{el} \sim 1/2 E_{opt}$) [115].

Slika 4.2. Energetski spektar amorfnih materijala prema modelu Daviss-a i Mott-a

Model Marshall-a, Owen-a i Mott-a [116] predstavlja dalju razradu modela Daviss-a i Mott-a i

uvodi u energetski spektar amorfnih materijala akceptorska i donorska stanja kao posledicu cepanja stanja u okolini Fermi nivoa. Naime, do cepanja ovih stanja dolazi usled interakcije lutajućih veza sa elektronima. Lutajuće veze predstavljaju tačkaste defekte na kojima se ne može ostvariti uobičajena koordinacija zbog ograničenja lokalnog okruženja. To znači da neutralna lutajuća veza sadrži nesparen elektron, koji se aktivacijom može prevesti u provodnu zonu, pa nivo na kojem se nalazi lutajuća veza odgovara donorskom nivou (slika 4.3). S druge stane, zahvat drugog elektrona od strane lutajuće veze ekvivalentan je emisiji šupljine, pa nivo sa kojeg se zahvata elektron odgovara akceptorskom nivou. Energetska razlika između akceptorskog i donorskog

Slika 4.3.Energetski spektar amorfnih materijala prema modelu Marshall-a, Owen-a i Mott-a

nivoa odgovara Kulonovskom odbojnom potencijalu.

U halkogenidnim staklima javljaju se lokalizovana stanja koja potiču od defektih centara sa negativnom korelacionom energijom ili tzv. U⁻ centara [114]. Ovi centri nastaju usled elektron-fonon interakcije. Kao što je već rečeno, neutralna lutajuća veza sadrži nesparen elektron i na taj način poseduje negativnu energiju U_{eff} , pa je elektronsko sparivanje kao rezultat rearanžmana atoma energetski favorizovano. Elektron-fonon kuplovanje je izraženo u amorfnim halkogenidima kako zbog niske koordinacije atoma što rezultuje u velikoj fleksibilnosti amorfne mreže, tako i zbog postojanja lone-pair orbitala. Transfer elektrona sa lutajuće veze na drugu dovodi do kreiranja D⁻ stanja sa dva spinski uparena elektrona i D⁺ sa dve šupljine, koje onda mogu formirati kovalentnu vezu sa lone-pair elektronima na susednom atomu. (model Kastner-a, Adler-a i Fritzhcze-a [114,117]). Energija potrebna za dovođenje elektrona pri formiranju D⁻ centra se nadomešćuje energijom koja se oslobodi pri formiranju nove veze na D⁺ stanju. U zonskoj slici halkogenidnih stakala, D⁻ centri se nalaze malo ispod Fermi nivoa, D⁺ centri iznad njega, a D⁰ centri koji nastaju pobuđivanjem jednog elektrona iz D⁻ centra u provodnu zonu ili dovođenjem elektrona na D⁺ centar, u neposrednoj blizini Fermi nivoa [118] (slika 4.4).

Slika 4.4. Energetski spektar amorfnih materijala modelu Kastner-a, Adler-a i Fritzhcz-ea

Usled deformacije rešetke (koja se javlja kako pri interakciji sa susednim valentnim elektronima, tako i između samih D centara), lokalizovanom stanju se ne može dodeliti jedna vrednost energije.

Sem tačkastih defekata, u amorfnim poluprovodnicima se javljaju i kvazimolekularni i hipervalentni defektni centri, pa gustina stanja prolazi kroz niz razdvojenih maksimuma unutar pukotine pokretljivosti [116,119] (slika 4.5).

Slika 4.5: Energetski spektar amorfnih materijala na osnovu dosadašnjih saznanja

Pojava lokalizovanih stanja u procepu pokretljivosti halkogenidnih stakala ima za posledicu mogućnost realizacije transporta nosilaca naelektrisanja preko tri različita mehanizma:

- 1) preskocima između lokalizovanih stanja na ivicama zona,
- 2) tunelovanjem između lokalizovanih stanja u blizini Fermi nivoa i
- 3) preskocima između delokalizovanih stanja.

4.2. Električna provodljivost u jednosmernom režimu

Termička zavisnost električne provodljivosti amorfnih halkogenida u režimu proticanja jednosmerne (dc) struje može se opisati Arhenius-ovom jednačinom:

$$\sigma = \sigma_0 \; e^{\frac{\Delta E}{kT}} \tag{4.1.}$$

gde je σ ukupna provodljivost i predstavlja zbir doprinosa sva tri mehanizma čiji pojedinačni udeo zavisi od temperaturskog intervala u kojem se ispitivani materijal tretira, σ_0 je predeksponencijalni faktor, a ΔE energija aktivacije procesa provođenja.

Međutim, sama vrednost aktivacione energije ne može direktno ukazati na karakter provodljivosti, s obzirom da se različiti mehanizmi transporta nosioca naelektrisanja mogu odvijati simultano, naročito na nižim temperaturama. Mott i Davis [120] su stoga predložili kriterijum razdvajanja mehanizama provođenja prema vrednosti predeksponencijalnog faktora σ_0 . Naime, usled manje gustine stanja i smanjene pokretljivosti nosilaca naelektrisanja, faktor σ_0 treba biti za 2-3 reda veličine manji pri provođenju između lokalizovanih stanja u odnosu na σ_0 za delokalizovana stanja koji za većinu amorfnih halkogenida iznosi između 10 000 i 50 000 $\Omega^{-1}m^{-1}$. Vrednost faktora σ_0 pri preskocima u okolini Fermi nivoa obično iznosi oko 1 $\Omega^{-1}m^{-1}$.

a) Na visokim temperaturama najveći udeo u provodljivosti čine preskoci termički aktiviranih nosioca naelektrisanja između delokalizovanih stanja, analogno kao u kristalima. Temperaturska zavisnost specifične provodnosti ovog mehanizma opisuje se relacijom[121]:

$$\sigma = \sigma_{01} e^{\frac{\Delta E_{\sigma}}{kT}}$$
(4.2.)

gde je $\sigma_{01} = eN_{eff}kT\mu_1$ predeksponencijalni faktor, N_{eff} efektivna gustina stanja na nivou E_c (ili E_v ako su u pitanju šupljine), a μ_1 pokretljivost nosilaca naelektrisanja za ovaj mehanizam provođenja. ΔE_{σ} predstavlja širinu zabranjene zone kod kristala, odnosno pukotinu pokretljivosti kod amorfnih poluprovodnika.

Temperaturska zavisnost pokretljivosti nosilaca naelektrisanja za ovaj mehanizam provođenja slabo je izražena.

Na nižim temperaturama su dominantna i druga dva mehanizma provođenja.

b) Temperaturska zavisnost specifične provodljivosti koja se odnosi na mehanizam provođenja preskocima između lokalizovanih stanja na ivicama zona opisuje se relacijom[122]:

$$\sigma = \sigma_{02} \ e^{\frac{-E_A - E_F + \Delta W_1}{kT}} \tag{4.4.}$$

gde je $\sigma_{02} = eN_T kT \mu$ predeksponencijalni faktor, N_T gustina lokalizovanih stanja u repovima provodne ili valentne zone, ΔW_I aktivaciona energija skoka, E_A energija kraja zone (uz pretpostavku da se provodnost realizuje elektronima), a μ_2 pokretljivost nosilaca naelektrisanja u ovom mehanizmu provođenja. Kod dominirajuće provodnosti šupljinskog tipa, analogna relacija sadrži energiju kraja zone E_B .

Provodljivost nosilaca naelektrisanja u ovom slučaju ima aktivacioni karakter, s obzirom da svaki put kada elektron (ili šupljina) prelazi sa jednog lokalizovanog mesta na drugo, on izmenjuje energiju sa fononom.

c) Temperaturska zavisnost specifične provodljivosti koja se realizuje tunelovanjem između lokalizovanih stanja u blizini Fermi nivoa data je relacijom [121]:

$$\sigma = \sigma_{03} \ e^{\frac{\Delta W_2}{kT}} \tag{4.5.}$$

gde je $\sigma_{03} = eN(E_F) kT\mu_3$ predeksponencijalni faktor, $N(E_F)$ gustina lokalizovanih stanja u okolini Fermijevog nivoa, ΔW_2 energija aktivacije skoka, a μ_3 pokretljivost nosilaca naelektrisanja u slučaju ovog mehanizma provođenja.

Vrednost energije ΔW_2 približno odgovara poluširini zone defekata ($\Delta W_2 \approx 0.1 \text{ eV}$).

d) Pri niskim temperaturama smanjuje se energija i broj fonona te su stimulisani fononski prelazi sve manje povoljni. Za nosioce naelektrisanja tada postaju pogodniji prelazi na veća rastojanja do energetski favorizovanih centara. Ovakav mehanizam se naziva mehanizmom prelaza sa promenljivom dužinom.

Specifična električna provodnost amorfnog materijala sa promenljivom dužinom skoka elektrona se može opisati funkcijom:

$$\sigma = \sigma_{04}(T) e^{-\frac{B}{T^{1/4}}}$$
(4.6)

gde je *B* parametar koji karakteriše opadanje talasne funkcije sa povećanjem rastojanja od centra, odnosno sa dužinom skoka.

Merenjem provodnosti jednosmerne struje u širem temperaturskom intervalu, iz nagiba zavisnosti ln σ od (1/T) moguće je odrediti vrednosti faktora σ_0 i aktivacione energije E_{σ} , a na taj način i predvideti dominantne mehanizme provodnosti u odgovarajućim temperaturskim intervalima.

Međutim, neretko intervali ovih promena su mali, te ih je teže uočiti ili je neki od mehanizama provođenja dominantan u širem temperaturskom intervalu, pa "maskira" eventualno prisutne druge mehanizme i na taj način onemogućava njihovu identifikaciju. U tim slučajevima vrše se merenja u režimu proticanja naizmenične (*ac*) struje.

Na slici 4.6. prikazana je provodljivost pojedinih mehanizama provođenja jednosmerne struje (dc) u zavisnosti od temperature.

Slika 4.6. Temperaturska zavisnost dc provodljivosti za pojedine mehanizme

Opšte je poznato da halkogenidna stakla ispoljavaju p-tip provodljivosti. Naime, u ovim materijalima efekat strukturne neuređenosti ima manji uticaj na lone-pair orbitale koje čine valentnu zonu u odnosu na nevezujuće orbitale. Zbog toga je oblast lokalizovanih stanja u repu valentne zone manja u poređenju sa lokalizovanim stanjima provodne zone. To ima za posledicu da je broj elektrona ekscitovanih iznad procepa u provodnu zonu manji od broja šupljina ekscitovanih u valentnu zonu, pa se halkogenidna stakla ponašaju kao p-poluprovodnici. Takođe, prilikom termičke aktivacije, vreme života slobodnih šupljina ekscitovanih sa pozitivno nalektrisanih defektnih centara je duže od vremena života slobodnih elektrona ekscitovanih sa negativno naelekrisanih defektnih centara, koji se zbog toga pretežno rekombinuju, što ponovo upućuje na dominantnost p-tipa provodljivosti [121].

U cilju poboljšanja fizičkih karakteristika, neretko se halkogenidni poluprovodnici legiraju nekim od primesnih atoma, što onda ima značajne reperkusije i na njihovu elektronsku strukturu odnosno tip provodljivosti [123]. Promena sastava dovodi do promene gustine elektrona i stepena neuređenosti, što ima za posledicu pomeranje Fermi-nivoa ka valentnoj ili provodnoj zoni, u zavisnosti od vrste primesnih atoma.

Amorfni halkogenidi su generalno indiferentni na dopiranje, s obzirom da je Ferminivo "fiksiran" oko sredine pukotine pokretljivosti raspodelom elektronskih stanja defektnih centara [124]. Međutim, uočeno je da nalektrisane primese mogu promeniti odnos broja defektnih centara u toj meri da Fermi-nivo postane "pomerljiv". Metalne primese, poput Bi [125,126-130] i Pb [131] ulaze u amorfnu matricu kao naelektrisane vrste i menjaju koncentraciju defektnih centara. U trenutku kada koncentracija primesa postane veća od koncentracije defektnih centara, staklo ispoljava prelaz iz p u n-tip provodljivosti. U halkogenidnim staklima iz grupe Ge-Se dopiranim sa Bi [132], Bi-Se razvezujuća stanja mešaju se sa Ge-Se antivezujućim stanjima, smanjujući na taj način energetski minimum provodne zone. Ovaj minimum pomera Fermi-nivo naviše, dok maksimum valentne zone ne pokazuje nikakve značajne promene sa uvođenjem Bi. *p-n* prelaz se javlja uglavnom zbog novih, nezauzetih stanja koja su tek nešto iznad Fermi-nivoa.

4.3. Rezultati merenja dc provodljivosti stakala sistema $Bi_x(As_2S_3)_{100-x}$

Električna provodljivost jednosmerne struje stakala sistema $Bi_x(As_2S_3)_{100-x}$ određena je u stacionarnom i u dinamičkom režimu merenja.

Stakla sa x = 0.5, 2, 6 i 8 at.% Bi mehanički su obrađena uz pomoć abrazivnih prahova različite krupnoće do forme planparalelnih pločica dimenzija približno 4x4x2 mm. Na pločice je sa obe strane nanešen sloj srebrne paste koji ima ulogu elektroda. Uzorci su termički tretirani u intervalu od sobne pa do temperature bliske temperaturi razmekšavanja T_g . Uređaj oznake HP 4329A koji je korišćen merenje *dc* provodljivosti uzoraka prikazan je na slici 4.7.

U oba režima merenja, uzorak se postavlja na specijalno konstruisan nosač koji se nalazi u visokotemperaturskoj komori i izlaže jednosmernom ili naizmeničnom naponu.

Slika 4.7. Aparatura za merenje dc provodljivosti

Merenje provodljivosti u nepromenljivom električnom polju sastoji se u određivanju omskog otpora ispitivanog materijala na izabranim temperaturama pri konstantnom radnom naponu U = 10 V.

Specifična provodljivost je računata na osnovu relacije:

$$\sigma = \frac{d}{RS} \tag{4.7}$$

gde su d i S debljina i površina pločice uzorka respektivno, a R merena vrednost otpora.

Dobijeni rezultati prikazani su na slici 4.8. Zapaža se da ponašanje provodljivosti ispitivanih stakala zadovoljava Arhenius-ov tip temperaturske zavisnosti, odnosno ukazuje da je provodljivost termički aktiviran proces [133]. Sem toga, eksponencijalni porast provodljivosti sa temperaturom kod svih uzoraka ukazuje na njihov poluprovodnički karakter.

Iz nagiba linearne zavisnosti funcije $ln \sigma_{DC}$ i njenog preseka sa ordinatnom osom određeni su predeksponecijalni faktor $ln\sigma_0$ i energija aktivacije ΔE_{σ} . Njihove vrednosti kao i vrednosti provodljivosti na sobnoj temperaturi predstavljene su u tabeli 4.1.

Slika 4.8. Zavisnost $\ln \sigma_{DC}$ od 1/T stakala sistema $Bi_x(As_2S_3)_{100-x}$

Zapaža se tendencija porasta provodljivosti sa povećanjem sadržaja Bi u sistemu As-S, naročito za uzorak sa 8 at.% Bi, čija je provodljivost čak sa 7 redova veličine veća u odnosu na uzorak sa 6 at.% Bi. Kao što se može primetiti iz tabele 4.1, porast provodljivosti praćen je smanjenjem vrednosti energije aktivacije i predeksponencijalnog faktora.

Aktivaciona energija ΔE_{σ} u mehanizmu provođenja između delokalizovanih stanja predstavlja energetsku razliku između ivice pokretljivosti i Fermijevog nivoa (E_c - E_F , odnosno E_F - E_v), a ako se provođenje realizuje prvenstveno između lokalizovanih stanja, ΔE_{σ} označava sumu energetskih rastojanja između lokalizovanih stanja i Fermi nivoa kao i aktivacionu energiju mobilnosti procesa preskoka između lokalizovanih stanja

Prema kriterijumu Daviss-a i Mott-a [120], vrednosti predeksponencijalnog faktora uzoraka sa x= 0.5, 2 i 6 at.% Bi ukazuju na dominaciju mehanizma provođenja preskocima između delokalizovanih stanja u ispitivanom temperaturskom intervalu. Smanjenje aktivacione energije sa porastom udela Bi, ilustrovano na slici 4.9, objašnjava se redukcijom širine termičkog energetskog procepa usled indukovanja lokalizovanih stanja u repovima zona.

Slika 4.9. Zavisnost E_{σ} od udela Bi u sistemu As-S

Mirjana Šiljegović-Magistarski rad

Sem toga, zavisnost funkcije $ln\sigma_0$ od sadržaja Bi u sistemu As-S (slika 4.10.) ukazuje na povećanje učešća lokalizovanih stanja u provodljivosti sa povećanjem udela Bi. Ovaj efekat je naročito izražen kod uzorka sa 8 at.% Bi, s obzirom na značajan pad energije aktivacije i predeksponencijalnog faktora, čija je vrednost, u skladu sa kriterijumom Mott-a i Daviss-a, karakteristična za mehanizam provođenja između lokalizovanih stanja.

<i>x</i> [at. %]	$\sigma_{300K}[arOmega^{l}cm^{-l}]$	$\Delta E_{\sigma} [eV]$	$\sigma_0 \left[arOmega^l cm^{-l} ight]$	E_g^{opt} / 2 [eV]
0.5	$2.54 \cdot 10^{-16}$	0.714	$3.64 \cdot 10^3$	0.985
2	$8.74 \cdot 10^{-15}$	0.680	524.64	0.965
6	$7.06 \cdot 10^{-14}$	0.632	149.41	-
8	1.8·10 ⁻⁷	0.371	2.85	-

 Tabela 4.1. Vrednosti predeksponencijalnog faktora i energije

 aktivacije za stakla sistema Bi_x(As₂S₃)_{100-x}

Povećanje *dc* provodljivosti praćeno smanjenjem aktivacione energije može se tumačiti ili kao posledica pomeranja Fermi-nivoa u halkogenidnim staklima dopiranim sa primesama [112,134], ili usled povećanja udela preskočne provodljivosti između defektnih stanja, nastalih po uvođenju primesnih atoma u osnovnu amorfnu matricu.

Slika 4.10. Zavisnost ln σ_0 od udela Bi u sistemu As-S

Naime, dodatak Bi u relativno velikim koncentracijama ($\geq 7\%$ u sistemu Ge-Se [135,136] i $\geq 3.5\%$ u sistemu Ge-Te [137] dovodi do modifikacije strukture poluprovodnika i indukuje p-n prelaz. Kao što je utvrđeno u drugim halkogenidnim staklima sa primesnim atomima metala [131], pretpostavlja se da atomi Bi ulaze u amorfnu matricu u jonizovanom Bi³⁺ stanju. Obrazovanje negativno nalektrisanih D centara pri dodavanju Bi narušavalo bi ravnotežu između D⁻ i D⁺ centara, zbog čega bi se Fermi-nivo "pomerao" ka provodnoj zoni i uzrokovao promenu karaktera provodljivosti iz *p*- u *n*-tip kao i uočeno smanjenje *dc* aktivacione energije.

U okviru merenja optičkih osobina stakala sistema $Bi_x(As_2S_3)_{100-x}$, pre svega za uzorak $Bi_4(As_2S_3)_{96}$, već je utvrđeno da najverovatnije dolazi do modifikacije strukture sistema As-S u vidu formiranja primesne zone, koja bi sa daljnjim povećanjem udela Bi trebalo da ima sve veću gustinu stanja i da na taj način eventualno postane dominantan mehanizam u provodljivosti, a u zavisnosti od njenog položaja u odnosu na valentnu zonu i do eventualne promene tipa provodljivosti.

Međutim, kao što se može primetiti (tabela 4.1.), veličina polovine optičkog procepa uzoraka sa x=0.5 i 2 at.% Bi ne samo da je znatno veća od energije aktivacije provođenja (što ukazuje na aktivno učešće lokalizovanih defektnih stanja u transportnim procesima [138]), već sugeriše da Fermi-nivo leži ispod centra optički zabranjene zone, što dakle odgovara p-tipu provodljivosti. Defektna stanja za ove uzorke potiču od uspostavljanja hemijskih veza tipa Bi-S.

Promena tipa provodljivosti, koja bi se mogla očekivati pri većim koncentracijama Bi, morala bi, prema tome, biti posledica formiranja novih defektnih stanja. Iz analize predkristalizacionih procesa (poglavlje 2.4.) se može zaključiti da bi ta defektna stanja mogla poticati od homopolarnih veza tipa Bi-Bi. U skladu s tim, značajno povećanje provodljivosti izmereno baš kod uzorka sa 8 at.% Bi bi se moglo objasniti većom koncentracijom ovih veza koje, budući da su metalnog karaktera, obezbeđuju slobodne elektrone u provodnoj zoni. Međutim, kao što je utvrđeno iz merenja optičkih karakteristika, uzorci sa većim sadržajem Bi su se pokazali netransparentnim u ispitivanoj spektralnoj oblasti, pa se na ovom mestu ne može utvrditi da li je sa povećanjem udela Bi, odnosno formiranjem novih defektnih stanja, došlo do pomeranja Fermi-nivoa ka provodnoj zoni. Merenje termosnage stakala ispitivanog sistema dalo bi potrebnu verifikaciju ovde iznete pretpostavke o promeni tipa provodljivosti, ali su se i merenja ac provodljivosti pokazala uspešnim u identifikaciji p-n prelaza. Naime, ac merenja omogućavaju detekciju mehanizma preskoka nosilaca naelektrisanja između primesne i provodne (ili valentne) zone, pa se na osnovu vrednosti energije aktivacije kao i temperaturske zavisnosti provodljivosti može potvrditi ili osporiti ovde izneta hipoteza o promeni tipa provodljivosti.

Mirjana Šiljegović-Magistarski rad

Konačno, neosporan zaključak koji se može izvesti na osnovu merenja *dc* provodljivosti uzoraka sistema Bi-As-S jeste da uvođenje Bi u arsen-sumpornu matricu utiče na značajno smanjenje energije aktivacije preskoka nosilaca naelektrisanja između delokalizovanih stanja kao i na povećanje učešća lokalizovanih stanja u procesu provođenju, koje za veće koncentracije Bi postaje i dominantan mehanizam u ukupnoj jednosmernoj komponenti provodljivosti ispitivanih stakala.

4.4. Električna provodljivost u naizmeničnom režimu

Opšta karakteristika svih amorfnih poluprovodničkih materijala je da u režimu proticanja naizmenične struje elektroprovodljivost ispoljava zavisnost od frekvencije u vidu povećanja svoje vrednosti [139]. Različiti mehanizmi provođenja mogu uzrokovati ovaj tip zavisnosti *ac* provodljivosti, pa nije uvek lako uočiti koji od njih je odgovoran za provodljivost izmerenu konkretno u nekom eksperimentu. Jedan od načina jeste na osnovu vrednosti aktivacione energije i temperaturskog ponašanja frekventnog faktora *s*.

Merenja *ac* provodljivosti amorfnih poluprovodnika široko se koriste za izučavanje prirode defektnih centara, s obzirom da se smatra da su oni odgovorni za ovaj tip provodljivosti [140].

a) Provođenje realizovano nosiocima pobuđenim u delokalizovana stanja u blizini E_c ili E_v opisuje frekventna zavisnost tipa:

$$\sigma(\omega) = \frac{\sigma(0)}{1 + \omega^2 \tau^2} \tag{4.8.}$$

odnosno, provodnost je u ovom slučaju gotovo nezavisna od frekvencije primenjenog polja do frekvencije reda veličine 10^8 Hz. $\sigma(0)$ predstavlja specifičnu provodljivost u stacionarnom režimu, a τ vreme relaksacije.

b) Frekventna zavisnost provodljivosti preko nosilaca pobuđenim u lokalizovana stanja blizu krajeva valentne ili provodne zone je [141]:

$$\sigma(\omega) \approx \omega \left[\ln \frac{\nu_{ph}}{\omega} \right]^4$$
 (4.9.)

Slika 4.11. Frekventna zavisnost ac provodljivosti za sva 3 mehanizma provođenja

Na osnovu ove zavisnosti može se zaključiti da se nagib krive zavisnosti $ln\sigma(\omega)$ smanjuje sa porastom frekvencije spoljašnjeg polja (slika 4.11.).

Pokazalo se da kao relacija koja približno opisuje ponašanje provodnosti u slučaju ovog mehanizma može da posluži i jednačina [142,143]:

$$\sigma(\omega) \approx const. \cdot \omega^s \tag{4.10.}$$

pri čemu se se vrednost parametra *s* smanjuje od 0.84 pri $\omega = 10^2 Hz$ do 0.65 pri $\omega = 10^8 Hz$. Stoga se frekventna zavisnost dinamičke provodnosti može sa dovoljnom tačnošću dati i kao:

$$\sigma(\omega) \approx const. \cdot \omega^{0.8} \tag{4.11.}$$

Temperaturska zavisnost provodljivosti za ovaj mehanizam u promenjivom režimu istog je oblika kao i u stacionarnom režimu, odnosno eksponencijalno raste sa temperaturom (slika 4.11).

c) Mehanizam tunelovanja nosilaca nalektrisanja u okolini Fermi nivoa ispoljava praktično istu frekventnu zavisnost kao i prethodni mehanizam (relacija (4.10.).

Provodljivost u režimu proticanja naizmenične struje interpretira se u aproksimaciji parova, prema kojoj se par sastoji od dva lokalizovana stanja, između kojih se nosioci nalektrisanja mogu kretati sa odgovarajućim relaksacionim vremenom. Ukupna *ac* provodljivost predstavlja sumu doprinosa svih parova.

Za objašnjenje *ac* provodljivosti amorfnih poluprovodnika koristi se više modela: model kvantno-mehaničkog tunelovanja, model tuneliranja velikih polarona i model korelisanih preskoka barijere [140].

Model kvantno-mehaničkog tunelovanja (OMT model) razmatra preskoke nosioca naelektrisanja između dva lokalizovanja stanja odvojena barijerom u potencijalnom procepu pokretljivosti pod uticajem električnog polja. Ovaj model predviđa da je faktor s manji od 1 (npr, za tipične vrednosti

 $\omega = 10^4 Hz$ i $\tau_0 = 10^{-13}$ s dobija se s= 0.8) i nezavisan od temperature a da opada sa povećanjem frekvencije (slike 4.12 i 4.13).

Polaroni nastaju ako preskok nosioca naelektrisanja na odgovarajući položaj uzrokuje značajne deformacije lokalne rešetke. Za velike polarone tj. polarone čija je prostorna distribucija velika u poređenju sa međuatomskim rastojanjima, preklapanje potencijalnih jama susednih položaja je moguće zahvaljujući dugodometnoj prirodi dominirajuće Kulonovske interakcije.

Teorija tuneliranja velikih polarona (*OLP model*) [144] predviđa opadanje frekventnog faktora *s* sa povećanjem temperature, pa čak i za velike vrednosti r_0 , *s* nastavlja da opada, eventualno težeći ka vrednosti koju predviđa QMT model. Za male vrednosti r_0 , *s* ispoljava minimum na određenoj temperaturi, a zatim nastavlja da raste sa porastom temperature.

Na slici 4.12 predstavljena je temperaturska zavisnost frekventnog faktora za dve redukovane vrednosti r_0 (OLP (I) i OLP (II) se odnose na radijuse velikog odnosno malog polarona respektivno).

Kao najuspešniji u interpretaciji eksperimentalnih rezultata, naročito na nižim i srednjim temperaturama, pokazao se metod korelisanih preskoka barijere tzv. *CHB model* [145-147], u kome je uvedena pretpostavka da su strukturni centri D^+ i D^-

oznake I i II se odnose na redukovane vrednosti radijusa polarona 20 i 25 respektivno.

naelektrisani centri koji povećavaju Kulonovski potencijal i koji, kada se preklapaju, smanjuju aktivacionu energiju preskoka barijere. Pretpostavljeno je i da su u većini materijala pri nižim i srednjim temperaturama prisutni samo naelektrisani centri tj. da je efektivna korelaciona energija dovoljno velika tako da su svi D^0 centri konvertovani u D^+ i D^- centre. U tom slučaju, jedina moguća forma transfera elektrona između defektnih centara u naizmeničnom električnom polju je simultano kretanje dva elektrona. Pobuđivanjem *lone-pair* stanja formira se prazna orbitala, koja može formirati kovalentnu vezu sa lone-pair na susednom halkogenom atomu, pa se na taj način generiše D^+ centar, a zarobljavanje para transferovanih elektrona na nekom od izvornih D^+ centara dovodi do prekidanja veze i

formiranja D⁻ centra. Na ovaj način, naelektrisani defektni centri izmenjuju mesta, a kao posledica elektronskog transfera javlja se promena dipolnog momenta.

Model CHB predviđa i temperatursku (slika 4.12) i frekventnu (slika 4.13) zavisnost faktora *s*. Pritom je bitno istaći da u ovom modelu faktor *s* za male vrednosti W_M/kT (gde je W_M visina efektivne barijere) opada sa opadanjem frekvencije, dok za veće vrednosti W_M/kT , *s* ima vrednost blisku 1 i gotovo da ne zavisi od frekvencije [140].

Faktor *s* na sobnim temperaturama ima vrednost u intervalu od 0.7-1 i opada sa porastom temperature prema relaciji [146,147]:

$$s = 1 - (6kT/E_g)$$
 (4.12.)

gde je E_g širina optičkog procepa.

Zavisnost realnog dela *ac* provodljivosti od temperature je oblika [139]:

$$\sigma \approx T^n \tag{4.13.}$$

gde je *n*

$$n = (1 - s)\ln(1/\omega\tau_{o}) \tag{4.14.}$$

Slika 4.14. Zavisnost realnog dela ac provodljivosti od T za različite modele

i prikazana je na slici 4.14 za sva tri pomenuta modela.

Međutim, CHB model ne predviđa snažnu temperatursku zavisnost $\sigma(\omega, T)$ na višim temperaturama. Shimakawa [145] je to objasnio pretpostavivši da na višim temperaturama, usled termičke aktivacije defektnih centara, raste gustina paramagnetnih D^0 stanja, pa umesto skokova bipolarona, na ovim temperaturama veći udeo u provodljivosti čine skokovi polarona-elektrona između \boldsymbol{D}^0 i D^+ stanja i šupljina između D^0 i D^- stanja. Kombinovani mehanizam polarona i interpretira bipolarona uspešno eksperimentalne rezultate mnogih halkogenidnih stakala.

4.5. Rezultati merenja ac provodljivosti stakala sistema $Bi_x(As_2S_3)_{100-x}$

Za potrebe merenja *ac* provodljivosti stakala sistema $Bi_x(As_2S_3)_{100-x}$ korišćen je uređaj 4149A Impedance/Phase Gain Analyzer prikazan na slici 4.14. Uzorci, smešteni u visokotemperatursku komoru, izlagani su naizmeničnom naponu frekvencije 1 kHz-1 MHz. Naizmenična komponenta provodljivosti uzorka $Bi_8(As_2S_3)_{92}$ merena je na uređaju oznake Gamry 300, koji radi na istom principu kao i uređaj 4149A Impedance/Phase Gain Analyzer, ali u opsegu frekvencija 10 Hz-100 kHz. Merenjem impedance ispitivanog uzorka uz poznavanje njegovih dimenzija, moguće je odrediti ukupnu provodljivost prema relaciji:

$$\sigma = \frac{d}{ZS} \tag{4.15.}$$

gde su d i S debljina i površina pločice uzorka respektivno, a Z merena vrednost impedance.

Naizmenična komponenta provodljivosti dobija se oduzimanjem *dc* komponente od ukupne provodljivosti.

Slika 4.15. Aparatura za merenje ac provodljivosti

Frekventne zavisnosti naizmenične komponente provodljivosti stakala sa x=0.5, 2, 6i 8 at.% Bi na različitim temperaturama prikazane su redom na slikama 4.16- 4.19. Ovde je potrebno naglasiti da se frekventne zavisnosti *ac* provodljivosti uzoraka sa x=0.5 i 2 at.% Bi na izabranim temperaturama razlikuju u okviru vrednosti greške meranja, pa je iz tog razloga došlo do poklapanja odgovarajućih krivih (slike 4.16 i 4.17).

Slika 4.16. Frekventna zavisnost ac provodljivosti stakla Bi_{0.5}(As₂S₃)_{99.5}

Slika 4.17. Frekventna zavisnost ac provodljivosti stakla $Bi_2(As_2S_3)_{98}$

Na osnovu prikazanih rezultata zaključuje se da *ac* provodljivost uzoraka sa x = 0.5, 2 i 6 at.% Bi raste sa frekvencijom u celom merenom intervalu i da se može opisati relacijom (4.10.). Zavisnost *ac* provodljivosti ispitivanih stakala od frekvencije objašnjava

se relaksacijom usled kretanja nosilaca naelektrisanja koji tuneluju ili preskaču između ravnotežnih stanja [148].

Slika 4.18. Frekventna zavisnost ac provodljivosti stakla $Bi_6(As_2S_3)_{94}$

Slika 4.19. Frekventna zavisnost ac provodljivosti stakla $Bi_8(As_2S_3)_{92}$

Odsustvo frekventne zavisnosti provodljivosti u većem delu merenog intervala jedino kod uzorka sa 8 at.% Bi, kao i značajno veća vrednost ac provodljivosti u odnosu na dc komponetu ovog uzorka ukazuje na egzistenciju drugačijeg mehanizma, odnosno na aktivno učešće kristalnih centara Bi u transportnim procesima. Ovakvo ponašanje električne provodljivosti može se objasniti na osnovu Kopsovog modela [149], a koji se opet bazira na Maksvel-Vagnerovom modelu strukturne uređenosti [150]. U tom smislu, a prema rezultatima rendgenske analize (poglavlje 1), sastav sa 8 at.% Bi se može tretirati kao nehomogena dvoslojna struktura-jedan sloj čine kristalni centri Bi i predstavljaju provodan sloj, a drugi sačinjava arsen sumporna matrica u koju su ovi centri inkorporirani.

Za dielektrike dopirane metalnim primesama karakteristično je povećanje ac provodljivosti tek na višim frekvencijama [151], odnosno konkretno za uzorak sa 8 at.% primesnih atoma Bi u intervalu 10 kHz -100 kH (slika 4.19). Naime, na niskim frekvencijama, primenjeno električno polje "primorava" nosioce nalektrisanja da driftuju na veća rastojanja. Sa povećanjem frekvencije, pomeraj nosilaca nalektrisanja se redukuje i ac provodljivost počinje da se ponaša po zakonu (4.10.). Ovo povećanje odgovara dielektričnoj disperziji pripisanoj graničnoj polarizaciji, a koja potiče od slobodnih nosilaca naelektrisanja, koji se, krećući se pod uticajem polja, nagomilavaju na graničnim površinama između metalnim centara i amorfne matrice. O tome više reči u poglavlju 4.6.

Na osnovu nagiba linearnih zavisnosti $\log \sigma = f(\log f)$ moguće je odrediti frekventni faktor *s*. Iz već pomenutih razloga, fitovanje eksperimentalnih podataka za uzorak sa 8 at.% Bi izvršeno je u frekventnom intervalu 10 kHz-100 kHz.

Slika 4.20. Zavisnost s od T stakala sistema $Bi_x(As_2S_3)_{100-x}$

<i>x</i> [at. %]	T (K)	S
	300	0.9956
	353	0.9951
0.5	413	0.9922
	433	0.9903
	453	0.9903
	300	0.9988
	313	0.9986
2	353	0.9965
	393	0.9955
	413	0.9946
	300	0.9183
6	353	0.8814
0	413	0.9467
	453	0.9643
	300	0.9680
8	353	0.9028
0	393	0.9454
	433	0.9672

Tabela 4.2.Vrednosti faktora s stakala sistema $Bi_x(As_2S_3)_{100-x}$

Dobijene vrednosti prikazane su u tabeli 4.2.

S obzirom da je vrednost frekventnog faktora s kod svih ispitivanih stakala znatno veća od 0.8 i da je utvrđeno da je faktor s temperaturno zavisna veličina (slika 4.20), može se zaključiti da se ac provodljivost stakala sistema $Bi_x(As_2S_3)_{100-x}$ ne može tumačiti prema QMT teoriji. Temperatursko ponašanje frekventnog faktora ispitivanih stakala se ne može objasniti ni pomoću OLP teorije, budući da višim temperaturama faktor s ne teži vrednosti koju predviđa QMT model (tj. $s \approx 0.8$).

S druge strane, eksperimentalne vrednosti faktora *s* stakala x= 0.5 i 2 at.% Bi na sobnoj temperaturi u

zadovoljavajućoj su saglasnosti (greška iznosi ≈ 8 %) sa vrednostima koje se dobijaju prema CHB modelu (0.921 i 0.9197 respektivno), odnosno na osnovu relacije (4.12.). Vrednosti faktora *s* stakala sa x= 0.5, 2 i 6 at.% Bi bliske jedinici i slabo izražena promena frekventog faktora sa temperaturom tumače se većom visinom efektivne barijere kod ovih uzoraka, a što je potvrđeno u dielektričnim merenjima (poglavlje 4.7.).

Analogno, nešto niže vrednosti faktora *s* stakala sa x= 6 i 8 at.% Bi i izraženija temperaturska zavisnost objašnjavaju se smanjenjem visine potencijalne barijere i promenom mehanizma odgovornog za elektroprovodljivost ovih uzoraka.

Sem toga, manja vrednost predeksponencijalnog faktora uzorka sa x=6 at.% Bi u poređenju sa uzorcima sa x=0.5 i 2 at.% Bi (tabela 4.2) ukazuje na smanjenje broja defektnih stanja odgovornih za bipolaronski mehanizam provođenja.

Temperaturska zavisnost provodljivosti stakala sistema $Bi_x(As_2S_3)_{100-x}$, x= 0.5, 2, 6 i 8 at % Bi u naizmeničnom režimu prikazana je na slikama 4.21- 4.24.

Slika 4.21. Zavisnost ac provodljivosti od T stakla $Bi_{0.5}(As_2S_3)_{99.5}$ za f=1 kHz

Slika 4.22. Zavisnost ac provodljivosti od T stakla $Bi_2(As_2S_3)_{98}$ za f=1 kHz

Mirjana Šiljegović-Magistarski rad

S obzirom da je temperaturska zavisnost uzoraka sa x=0.5 i 2 at % Bi mnogo manje izražena nego frekventna zavisnost, (slike 4.16 i 4.17), na slikama 4.21. i 4.22 predstavljena je temperaturska zavisnost provodljivosti ovih uzoraka pri jednoj frekvenciji. Slaba promena frekventno zavisne komponente provodljivosti sa temperaturom, kao i vrednosti faktora *s* bliske jedinici svedoče o tome da se provodljivost u naizmeničnom režimu ostvaruje preskocima nosilaca naelektrisanja po lokalizovanim stanjima u okolini Fermi-nivoa [118].

Slika 4.23. Zavisnost ac provodljivosti od T stakla $Bi_6(As_2S_3)_{94}$

Uzorak $Bi_6(As_2S_3)_{94}$ ima nešto izraženiju temperatursku zavisnost elektroprovodljivosti, naročito na višim temperaturama (i većim frekvencijama), dok se kod stakla Bi₈(As₂S₃)₉₂ uočava jaka temperaturska zavisnost $\sigma(\omega)$ u celom temperaturskom intervalu. Ovaj efekat može se objasniti učešćem i neutralnih defektnih centara D^0 u provodljivosti [152], čiji je doprinos kod $Bi_6(As_2S_3)_{94}$ dominantan tek na višim temperaturama, a kod Bi₈(As₂S₃)₉₂ u gotovo celom merenom opsegu temperature. Pritom je temperaturska zavisnost provodljivosti stakla sa x=6 at.% Bi posledica smanjenja visine potencijalne barijere usled povećanja temperature, a kod stakla sa 8 at.% Bi u svom sastavu, smanjenje visine barijere ima uzrok u pomeraju Fermi-nivoa ka provodnoj zoni. Naime, pri ovoj koncentraciji Bi, gustina lokalizovanih stanja je već na nižim temperaturama dovoljno velika da dovodi do pomeranja Fermi nivoa i stimuliše dominaciju jednopolaronskog mehanizma provođenja, što se odražava na smanjenje udela mehanizma prenosa nalektrisanja bipolaronima.

Slika 4.24. Zavisnost ac provodljivosti od T stakla $Bi_8(As_2S_3)_{92}$

Egzistencija jednopolaronskog i bipolaronskog mehanizma provođenja, uz tendenciju bržeg rasta gustine defektnih stanja odgovornih za jednopolaronski mehanizam sa povećanjem udela Bi je konstatovana i kod drugih halkogenidnih stakala koja sadrže Bi, a koja ispoljavaju p-n prelaz [145,152, 153-156].

Na osnovu koeficijenata pravca određene su frekventne distribucije aktivacionih energija elektroprovodnosti ispitivanih stakala, koje su predstavljene na slici 4.25. Povećanje frekvencije polja pospešuje preskoke elektrona između lokalizovanih stanja, pa se očekuje da aktivaciona energija $\Delta E_{\sigma}(\omega)$ opada pri porastu frekvencije.

Može se primetiti (slika 4.24) da je aktivaciona energija provodnosti naizmenične struje kod svih ispitivanih uzoraka niska, naročito za uzorke sa x= 0.5 i 2 at. % Bi. Sem toga, promena aktivacione energije sa frekvencijom uzoraka sa najmanjim sadržajem Bi takođe je mala.

Vrednosti aktivacione energije, koje se za uzorke sa x= 0.5 i 2 at. % Bi kreću u opsegu od 10^{-3} do $8 \cdot 10^{-3}$ eV, zapravo su karakteristika metala. Ova pojava primećena je i u sistemu Sb-S-I dopiranom primesnim atomima Fe [157]. Jedno od objašnjenja pomenutog efekta bi moglo biti da se atomi Bi pri malim koncentracijama ne ugrađuju u strukturne jedinice matrice stakla već vrše perturbaciju potencijalne barijere između valentne i

Slika 4.25. Frekventna zavisnost energije aktivacije stakla sistema $Bi_x(As_2S_3)_{100-x}$

provodne zone, što rezultuje pojavom kanala sa nižom aktivacionom energijom, a duž kojih se provođenje realizuje preskocima sa različitom dužinom skoka [158]. Opravdanost ove pretpostavke proizilazi iz analize koordinacionog broja za različite udele Bi (poglavlje 3.3.)

S druge strane, vrednost aktivacione energije uzoraka sa 6 i 8 at.% Bi je za red veličine veća (oko 0.1 eV) i ukazuje da se elektroprovodnost kod ovih materijala odvija preskočnim mehanizmom nosilaca naelektrisanja između bliskih defektnih nivoa u blizini Fermi-nivoa [153]. Sem toga, energija aktivacije ovih uzoraka ispoljava veću zavisnost od frekvencije (što znači da je i *s* veličina zavisna od frekvencije) ali i promene u nagibu što odgovara pominjanom prisustvu dva mehanizma provođenja.

4.6. Dielektrične osobine materijala

Uvođenjem halkogenidnih stakala u jednosmerno ili naizmenično električno polje, dolazi do uspostavljanja polarizacije. U zavisnosti od vrste strukturnih jedinica i karaktera hemijskih veza među njima, kao i frekvencije, u halkogenidnim staklima se može uspostaviti više tipova polarizacije.

Opšte je poznato da kod materijala u kojima su prisutni polarni molekuli, spoljašnje električno polje delimično uređuje postojeće permanentne dipole u toku vremenskog perioda reda veličine 10⁻⁹ s. Obzirom da toplotne oscilacije smanjuju ovu uređenost, može se zaključiti da se tzv. *orijentacijska* uređenost povećava sa porastom jačine spoljašnjeg električnog polja i snižavanjem temperature.

Ako su u materijalu prisutni samo neutralni molekuli, spoljašnje električno polje razdvaja centre pozitivnih i negativnih naelektrisanja i na taj način indukuje dipole u dielektriku. Ovakva polarizacija se naziva i *deformacionom*, jer je elektronska polarizacija izazvana deformacijama elektronskih oblaka. Ona za razliku od orijentacijske, nema trajniji karakter, odnosno nakon uklanjanja električnog polja nestaje u kratkom periodu reda veličine 10⁻¹⁶ s.

Kod materijala sa pretežno jonskim vezama takođe je prisutna deformaciona polarizacija. Nju spoljašnje električno polje uzrokuje na taj način što dovodi do delimične deformacije kristalne rešetke čime se gubi prethodna neutralnost. Formira se izvestan broj dipola u nekom vremenu reda veličine 10^{-13} s.

Slika 4.26. Šematski prikaz disperzione zavisnosti dielektrične propustljivosti

Razmotrena mehanizma, tri polarizacije, ne pokrivaju ista područja frekvencije. Kako je ilustrovano na slici 4.26, mehanizam elektronske polarizacije pokriva najširi deo frekventnog područja, jonska polarizacija mikrotalasno, infracrveno i vidljivo područje, а dipolna orijentacijska polarizacija se prostire samo u oblasti mikrotalasa [159].

Polarizacija (\vec{P}), se definiše kao suma svih dipolnih momenata po jedinici zapremine uzorka: Mirjana Šiljegović-Magistarski rad

$$\vec{P} = \sum_{i} N_i \; \alpha_i \; \vec{E}_{\perp}(i) \tag{4.16.}$$

Veličina \vec{E}_{i} (*i*) odgovara lokalnom polju za atome i-te vrste.

Polarizacija \vec{P} je proporcionalna makroskopskom polju \vec{E} , kako jednosmernom, tako i naizmeničnom [160]:

$$\vec{P} = \varepsilon_o \ \chi \ \vec{E} \tag{4.17.}$$

odnosno:

$$P(\omega) = \varepsilon_0 \chi(\omega) E(\omega) \tag{4.18.}$$

gde je dielektrična susceptibilnost $\chi(\omega)$ kompleksna veličina:

$$\chi(\omega) = \chi_1(\omega) - i\chi_2(\omega) \tag{4.19.}$$

Veza između komponenata dielektrične susceptibilnosti i komponenata dielektrične propustljivosti je:

$$\varepsilon_1(\omega) = 1 + \chi_1(\omega) \tag{4.20.}$$

$$\varepsilon_2(\omega) = \chi_2(\omega) \tag{4.21.}$$

Prema tome, poznavajući dielektričnu konstantu materijala, moguće je predvideti dominirajući mehanizam polarizacije. Realni deo $\varepsilon_1(\omega)$ se odnosi na maksimalni iznos energije koji se može uskladištiti u materijalu i u fazi je sa spoljašnjim poljem, te određuje elastična svojstva materijala. Imaginarni deo $\varepsilon_2(\omega)$ predstavlja tzv. dielektrične gubitke, odnosno deo energije koji se u dielektriku konvertuje u toplotu usled kašnjenja uspostavljanja polarizacije za promenom polja. S obzirom da je defazovan u odnosu na spoljašnje polje, odgovoran je za neelastična svojstva materijala.

Za halkogenidna stakla sa pretežno kovalentnim vezama između strukturnih jedinica, svakako da su dominirajući mehanizmi polarizacije dipolna i elektronska polarizacija. Kao što se zaključiti sa slike 4.26, u optičkoj oblasti frekvencija prisutna je samo elektronska polarizacija, pa se merenjem indeksa prelamanja i korišćenjem relacije $\varepsilon_1=n^2$ može odrediti doprinos ovog mehanizma u ukupnoj polarizaciji.

Realni deo *ac* provodljivosti se može izraziti preko dielektričnih gubitaka na sledeći način:

$$\sigma_1(\omega) = \varepsilon_0 \omega \varepsilon_2(\omega) \tag{4.22.}$$

dok za imaginarni deo važi:

$$\sigma_2(\omega) = \varepsilon_0 \omega \varepsilon_1(\omega) \tag{4.23.}$$

Tangens dielektričnih gubitaka je veličina koja se najčešće upotrebljava za opis dielektričnih osobina nekoga materijala, a određuje njegovu sposobnost da apsorbuje elektromagnetnu energiju. Definiše se kao odnos komponenata dielektrične propustljivosti :

$$tg\delta = \frac{\varepsilon_2}{\varepsilon_1} \tag{4.24.}$$

Prema Debye-voj teoriji polarizacije [161], realni i imaginarni deo dielektrične propustljivosti su definisani na sledeći način [162]:

$$\varepsilon_1(\omega) = \varepsilon_{\infty} + \frac{\varepsilon_0 - \varepsilon_{\infty}}{1 + \omega^2 \tau^2}$$
(4.25.)

$$\varepsilon_2(\omega) = \frac{\varepsilon_0 - \varepsilon_{\omega}}{1 + \omega^2 \tau^2} \omega \tau \tag{4.26.}$$

gde je ε_0 statička, a ε_{∞} optička dielektrična propustljivost.

Za tangens gubitaka se prema tome dobija:

$$tg(\omega) = \frac{\varepsilon_0 - \varepsilon_{\infty}}{\varepsilon_0 + \varepsilon_{\infty} \omega^2 \tau^2} \omega \tau \qquad (4.27.)$$

Frekventna zavisnost veličina ε_1 , ε_2 i $tg\delta$ prikazana je na slici 4.27. Može se zaključiti da dielektrični gubici u oblasti disperzije imaju maksimalnu vrednost za $\omega\tau=1$, a izvan nje teže minimalnim vrednostima.

Slika 4.27. Frekventna zavisnost veličina $\varepsilon_1, \varepsilon_2$ i $tg\delta$

Merenjem dielektričnih gubitaka u funkciji frekvencije polja moguće je odrediti vreme relaksacije dipola. Prema Debye-evoj teoriji [161], maksimalni tangens gubitaka se dobija za:

$$\omega_{\max \iota g\delta} \tau = \sqrt{\frac{\varepsilon_0}{\varepsilon_{\infty}}}$$
(4.28.)

i iznosi:

$$(tg\delta)_{\max} = \frac{\varepsilon_0 - \varepsilon_{\infty}}{2\sqrt{\varepsilon_0 \varepsilon_{\infty}}}$$
(4.29.)

Eliminacijom veličine $\omega \tau$ iz jednačina (4.26.) i (4.27.) dobija se veza između ε_1 i ε_2 u oblasti disperzije pri konstantnoj temperaturi:

$$\left(\varepsilon_{1} - \frac{\varepsilon_{0} + \varepsilon_{\infty}}{2}\right)^{2} + \left(\varepsilon_{2}\right)^{2} = \left(\frac{\varepsilon_{0} - \varepsilon_{\infty}}{2}\right)^{2}$$
(4.30.)

koja zapravo predstavlja jednačinu kruga.

Cole i Cole [162,163] došli su do zaključka da u koordinatnom sistemu sa osama ε_1 i ε_2 tačke sa koordinatama ($\varepsilon_1, \varepsilon_2$) leže na polukrugu koji opisuje gornja jednačina.

Međutim, kod amorfnih materijala, usled kompleksnosti strukturne građe eksperimentalni rezultati u izvesnoj meri odstupaju od Debye-eve teorije, tako što tačke leže nešto niže a ne na samoj apscisi (slika 4.28) [161,163].

Slika 4.28.Cole-Cole dijagram: a) teorijski, b) na osnovu eksperimentalnih rezultata

Šema koja se najčešće koristi za opisivanje dielektričnih gubitaka halkogenidnih stakala je paralelna veza kondenzatora i termogenog provodnika (slika 4.29) [161,164]. Usled prednjačenja struje u kondenzatoru za naponom, javljaju se aktivna i reaktivna komponenta struje koje ujedno opisuju gubitak energije halkogenidnog dielektrika na preorijentaciju dipola.

Slika 4.29. Šema realnog dielektrika

Ukupnu struju koja protiče kroz dielektrik smešten u naizmenično električno čine tri komponente [162]:

1) kapacitivna struja, koja fazno prednjači za naponom:

$$I_{cap} = U\omega C_g \tag{4.31.}$$

gde je C_g geometrijska kapacitivnost (odgovara kapacitivnosti na vrlo visokim frekvencijama)

2) zaostala ili prava struja provođenja:

$$i_{res} = \frac{U}{R_{in}} = UG_{in} \tag{4.32.}$$

3) apsorbovana struju i_{abs} koja se javlja kao posledica uspostavljanja odgovarajućeg mehanizma polarizacije, a koja opada po eksponencijalnom zakonu:

$$i_{abs} = U s \exp\left(-\frac{t}{\tau}\right) \tag{4.33.}$$

s je provodljivost koja odgovara apsorpcionoj struji a τ je vreme za koje početna vrednost struje i_{abs} opadne *e* puta.

Absorbovana struja takođe ima aktivnu i reaktivnu komponentu:

$$i_{abs\,ak} = Us \frac{\omega^2 \tau^2}{\omega^2 \tau^2 + 1}$$
 (4.34.)

$$i_{abs\,reak} = Us \frac{\omega\tau}{\omega^2 \tau^2 + 1} = \frac{i_{abs_{ak}}}{\omega\tau}$$
(4.35.)

Mirjana Šiljegović-Magistarski rad

Prisustvo apsorbovane struje dovodi do povećanja i aktivne provodljivosti (iznad G_{in}) i kapacitivnosti (iznad C_g), pa su aktivna i reaktivna komponenta ukupne struje opisane sledećim relacijama:

$$I_{a} = i_{abs_{ak}} + I_{res} = U \left(s \frac{\omega^{2} \tau^{2}}{\omega^{2} \tau^{2} + 1} + G_{in} \right)$$
(4.36.)

$$I_r = i_{abs_{reak}} + I_{cap} = U\omega \left(C_g + s \frac{\tau}{\omega^2 \tau^2 + 1} \right)$$
(4.37.)

Tangens dielektričnih gubitaka se za realan dielektrik definiše kao odnos aktivne i reaktivne struje:

$$tg\delta = \frac{I_a}{I_r} = \frac{\omega^2 \tau^2 (G_{in} + s) + G_{in}}{\omega [s\tau + C_g (\omega^2 \tau^2 + 1)]}$$
(4.38.)

odnosno, uzimajući u obzir prethodne relacije:

$$tg\delta = \frac{\omega^{2}\tau^{2}(G_{in} + s) + G_{in}}{\omega[s\tau + C_{g}(\omega^{2}\tau^{2} + 1)]}$$
(4.39.)

Izraz (4.39.) istovremeno je i relacija koja opisuje zavisnost tangensa gubitaka od frekvencije.

Ako je zaostala struja mala, odnosno otpornost dielektrika velika, gubici najvećim delom potiču od relaksacionih procesa, pa je $I_{res} << i_{absak}$ i $G_{in} << s$. Ako se uzme da je $G_{in}=0$, diferenciranjem (4.38.) po ω dobija se frekvencija ω koja odgovara maksimumu dielektričnih gubitaka:

$$\omega = \sqrt{\frac{1}{\tau^2} + \frac{s}{C_g \tau}}$$
(4.40.)

$$tg\delta_{\max} = \frac{s\tau}{2C_g\sqrt{1+\frac{s\tau}{C_g}}}$$
(4.41.)

U slučaju dipolnog mehahizma gubitaka, frekvencija ω' odgovara odnosu perioda spoljašnjeg električnog polja i vremena relaksacije dipola. Dielektrični gubitak predstavlja

energiju utrošenu na savlađivanje otpora viskozne sredine procesu orijentacije dipola. Ako se pretpostavi da je $s << C_g \tau$, ovaj odnos ima već pominjani jednostavan oblik:

$$\omega \dot{\tau} = 1 \tag{4.42.}$$

i predstavlja uslov maksimuma dielektričnih gubitaka u polarnom dielektriku na datoj temperaturi.

Po pravilu, dielektrični gubici značajno rastu sa temperaturom. Ovaj rast je prouzrokovan rastom provodnosti zaostale i apsorbovane struje na višim temperaturama.

Dielektrični gubici koji potiču od dipolnog mehanizma dostižu svoj maksimum na određenoj temperaturi. Naime, efekti rasta temperature i pada viskoznosti svaki ponaosob utiču na iznos gubitaka tako što stepen

Slika 4.30. Zavisnost dielektričnih gubitaka od temperature (puna linija), gubici usled dipolne ili jonske polarizacije (kriva a), gubici usled Džulovog efekta (kriva b)

orijentacije dipola raste uz istovremeno smanjenje energije potrebne za savlađivanje otpora viskozne sredine, i dok prvi efekat povećava tan δ , drugi utiče na njegovo smanjenje, pa se na izvesnoj temperaturi dostiže maksimum. S obzirom da na niskim frekvencijama dominiraju gubici usled provodnosti (koji takođe rastu sa temperaturom), a na višim gubici prvenstveno usled relaksacionih procesa, zavisnost ukupnih dielektričnih gubitaka od temperature predstavlja zbir krivih zavisnosti ovih dveju komponenata (slika 4.30) [164].

4.7. Rezultati merenja dielektričnih osobina stakala sistema $Bi_x(As_2S_3)_{100-x}$

Dielektrične osobine stakala sistema $Bi_x(As_2S_3)_{100-x}$ takođe su merene na 4149A Impedance/Phase Gain Analyzer instrumentu (slika 4.14), koji omogućava merenje impedance, otpornosti, kapacitivnosti, induktivnosti i faznog pojačanja različitih komponenti u funkciji od frekvencije primenjenog polja na datoj temperaturi.

Za potrebe određivanja dielektričnih svojstava stakala sistema $Bi_x(As_2S_3)_{100-x}$ merene su vrednosti termogene otpornosti i kapacitivnosti sistema uzorak-držač (odnosno komora) na izabranim temperaturama u frekventnom intervalu 1 kHz-1 MHz. Za izračunavanje parametara kompleksne dielektrične propustljivosti ε' , ε'' i tgo korišćena je šema prikazana na slici 4.29.

S obzirom na to da je sistem uzorak-držač ekvivalentan sistemu od dva paralelno vezana kondenzatora, od kojih je jedan sa ispitivanim staklom a drugi sa vazduhom između ploča, izvršena je korekcija na rezultate u smislu da se eliminiše uticaj vazdušnog kondenzatora. Parametri dielektrične propustljivosti i faktor gubitaka izračunati su prema sledećim relacijama:

$$\varepsilon' = \frac{C_{uzorka}}{C_0} \tag{4.43.}$$

$$\varepsilon'' = \frac{1}{R\omega C_0} \tag{4.44.}$$

$$tg\delta = \frac{\varepsilon'}{\varepsilon''} \tag{4.45.}$$

Zavisnosti dielektrične propustljivosti ε' od frekvencije na različitim temperaturama za stakla sa x=0.5, 2, 6 i 8 at.% Bi prikazane su na slikama 4.31-4.34.

Slika 4.31. Frekventna zavisnost dielektrične konstante stakla $Bi_{0.5}(As_2S_3)_{99.5}$

Bitno je naglasiti da su za uzorak sa 8 at.% Bi prikazane vrednosti dielektričnih parametara u intervalu frekvencija od 1 kHz-100 kHz, s obzirom da je zaključeno da je potrebno, u seriji novih merenja, potvrditi verodostojnost dobijenih rezultata u niskofrekventnom intervalu.

Dielektrična propustljivost stakla As_2S_3 na sobnoj temperaturi iznosi 8 i ne ispoljava zavisnost od frekvencije sve do 10^6 Hz [3]. Prema tome, evidentna je tendencija povećanja vrednosti ovog parametra već sa uvođenjem primesnih atoma u malim koncentracijama u sastav sistema As-S.

Takođe se uočava pojava frekventne zavisnosti, koja je naročito izražena na višim temperaturama. Porast dielektrične konstante objašnjava se povećanjem koncentracije defektnih stanja u optičkom procepu u okolini Fermi nivoa, odnosno učestalijim preskocima nosilaca naelektrisanja u defektna stanja.

Slika 4.32. Frekventna zavisnost dielektrične konstante stakla Bi₂(As₂S₃)₉₈

Slika 4.33. Frekventna zavisnost dielektrične konstante stakla $Bi_6(As_2S_3)_{94}$

Slika 4.34. Frekventna zavisnost dielektrične konstante stakla $Bi_8(As_2S_3)_{92}$

Naročito se zapaža značajno povećanje vrednosti ε' kod uzorka Bi₈(As₂S₃)₉₂ u odnosu na stakla sa manjim procentualnim učešćem Bi. Ovaj efekat se, u skladu sa Maksvel-Vagnerovim modelom strukturne uređenosti [150], objašnjava formiranjem velikih dipola metalnih kristalnih centara usled nagomilavanja nosilaca naelektrisanja na graničnim površinama sredina sa različitom permeabilnošću (metal-amorfna matrica). Polarizacija uspostavljena na ovaj način manifestuje se u visokoj vrednosti dielektrične konstante i dielektričnih gubitaka na niskim frekvencijama, a koji se značajno smanjuju sa povećanjem frekvencije[165-167].

Postojanje disperzije u merenom intervalu frekvencija, odnosno primetno opadanje ϵ' sa porastom učestanosti polja kod svih ispitivanih uzoraka posledica je otežane orijentacije dipola usled stalnih promena smera polja.

Kao što je već rečeno u uvodnom delu, u zavisnosti od vrste strukturnih jedinica i karaktera hemijskih veza među njima, kao i frekvencije, u halkogenidnim staklima se može uspostaviti više tipova polarizacije. Udeo elektronskog mehanizma u ukupnoj polarizaciji ispitivanih stakala može se proceniti na osnovu relacije $\varepsilon_{\infty}^{\prime} = n_{\infty}^2$ [160] koja važi u optičkoj oblasti. S obzirom da dielektrične propustljivosti uzoraka sa x= 0.5 i 2 at.% Bi na sobnim temperaturama teže vrednostima 8.5 i 10.2 respektivno, na osnovu podataka iz dispezione analize o statičkim indeksima (poglavlje 3.2.) dolazi se do zaključka da elektronska polarizacija kod ovih uzoraka učestvuje sa oko 78 odnosno 72 % u ukupnoj polarizaciji. Preostali deo se odnosi na dipolnu i eventualno jonsku polarizaciju, koja se kod ispitivanih stakala ne može zanemariti u prvoj aproksimaciji usled veće polarizabilnosti atoma Bi.

Frekventne zavisnosti ispitivanih stakala na pojedinim temperaturama ilustruju i efekat povećanja dielektrične konstante sa temperaturom, naročito na nižim frekvencijama.

Temperaturska zavisnost dielektrične konstante posledica je činjenice da je orijentaciona polarizacija povezana sa termičkom brzinom molekula, te dipoli ne mogu da se orijentišu na nižim temperaturama [168,169]. Povećanje temperature omogućava lakšu orijentaciju dipola, udeo orijentacione polarizacije u ukupnoj polarizaciji raste, što se odražava i na porast dielektrične konstante [170].

Slika 4.44. Zavisnost ln ε od 1/T stakala sistema $Bi_x(As_2S_3)_{100-x}$

Slika 4.45. Zavisnost ln ε od 1/T stakala sistema $Bi_x(As_2S_3)_{100-x}$

Linearna zavisnost funkcije lne['] od temperature, prikazana na slikama 4.44 i 4.45 karakteristična je za sisteme sa molekulskim dipolima za koje važi Debye-eva teorija [161] o zavisnosti viskoznosti od vremena relaksacije. Prema ovoj teoriji, e['] eksponencijalno raste sa temperaturom, te se može zaključiti da se dielektrične osobine stakala sistema $Bi_x(As_2S_3)_{100-x}$ mogu uspešno opisati Debye-evom teorijom.

Poreklo molekulskih dipola može biti povezano sa mikro-nehomogenostima u strukturi stakla, velikom polarizabilnošću atoma Bi [171] i sa formiranjem mikroklastera [172]. Kao još jedan izvor molekulskih dipola u halkogenidnim staklima koja sadrže Bi [117], navode se naelektrisana defektna D^+ i D^- stanja. U ovom radu je utvrđeno i da egzistencija posebne struktrurne uređenosti u vidu postojanja dveju sredina sa različitim permeabilnostima, konkretno u uzorku sa 8 at.% Bi u svom sastavu , takođe može biti uzrok obrazovanja dipola.

Frekventna zavisnost imaginarnog dela dielektrične propustljivosti ispitivanih stakala na različitim temperaturama prikazana je na slikama 4.46-4.49.

Slika 4.46. Frekventna zavisnost faktora gubitaka stakla $Bi_{0.5}(As_2S_3)_{99.5}$

Slika 4.47 Frekventna zavisnost faktora gubitaka stakla $Bi_2(As_2S_3)_{98}$

Slika 4.48. Frekventna zavisnost faktora gubitaka stakla $Bi_6(As_2S_3)_{94}$

Slika 4.49. Frekventna zavisnost faktora gubitaka stakla $Bi_8(As_2S_3)_{92}$

Može se primetiti da se vrednost faktora gubitaka $\epsilon^{\prime\prime}$ povećava sa temperaturom u merenom intervalu frekvencija kod svih ispitivanih uzoraka. Ovakvo ponašanje je i očekivano, jer je na većim temperaturama otežana orijentacija dipola u smeru promene polja (usled povećanja kinetičke energije), a veći je i otpor viskozne sredine.

Takođe se uočava da faktor gubitaka značajno raste i sa povećanjem udela Bi. S obzirom da dielektrični gubici u staklu zavise od broja lokalizovanih stanja, može se zaključiti da koncentracija defektnih stanja raste sa povećanjem sadržaja Bi u sistemu $Bi_x(As_2S_3)_{100-x}$. S druge strane, očigledan skok u vrednosti faktora gubitaka i za nekoliko redova veličine kod uzorka sa 8 at.% Bi na niskim frekvencijama objašnjava se dominacijom polarizacije na graničnim površinama i time dužim kanalima provodljivosti.

Prema Guintini-evom dipolarnom modelu dielektrične disperzije [173], a koji se zasniva na Elliot-ovoj ideji [147] o preskocima nosilaca nalektrisanja između D stanja, za svaki par stanja D^+ i D^- se pretpostavlja da formiraju dipol čije relaksaciono vreme zavisi od sopstvene energije aktivacije [43], a koja je određena visinom potencijalne barijere preko koje nosioci nalektrisanja vrše preskoke [174]. Prema ovom modelu, faktor dielektričnih gubitaka na odgovarajućoj temperaturi i frekvenciji opisan je relacijom:

$$\varepsilon^{\prime\prime\prime}(\omega) = (\varepsilon_0 - \varepsilon_\infty) 2\pi^2 N \left(\frac{n_0 e^2}{\varepsilon_0}\right)^3 k T \tau_o^m W_M^{-4} \omega^m$$
(4.46.)

gde je *m* snaga ugaone frekvencije, definisana izrazom:

$$m = -\frac{4kT}{W_M} \tag{4.47.}$$

 n_0 je broj elektrona koji vrše preskoke, *N*-koncentracija lokalizovanih stanja, W_M predstavlja energiju koju je potrebno uložiti za prenošenje elektrona iz datog elektronskog stanja u beskonačnost, ε_0 i ε_∞ su statička i optička dielektrična konstanta respektivno, a τ_0 je vreme relaksacije.

Na slikama 4.50-4.52 predstavljene su zavisnosti $\log \epsilon'' = f(\log f)$ za stakla sa x= 2, 6 i 8 at.% Bi. Iz nagiba ovih linearnih zavisnosti moguće je odrediti parametar *m*, a potom i W_M na osnovu relacije (4.47). Dobijene vrednosti prikazane su u tabelama 4.3, 4.4 i 4.5.

Slika 4.50. Zavisnost log ε^{ℓ} od logf stakla Bi₂(As₂S₃)₉₈

T (K)	т	W_M [eV]
300	-0.210	0.49
313	-0.221	0.49
353	-0.223	0.54
413	-0.252	0.57
433	-0.272	0.55

Tabela 4.3. Vrednosti parametara m i W_m za staklo $Bi_2(As_2S_3)_{98}$

Slika 4.51. Zavisnost log $\varepsilon^{l'}$ od logf stakla Bi₆(As₂S₃)₉₄

Ponašanje $\varepsilon^{\prime\prime}$ sa frekvencijom stakla Bi₆(As₂S₃)₉₄ (slike 4.48 i 4.51) ukazuje na prisustvo dve vrste procesa koji kontrolišu mehanizam dielektričnog ponašanja u ovom uzorku. Prvi tip procesa aktuelan je u celom frekventnom intervalu na nižim temperaturama, odgovoran je opadanje parametara *m* i *s* i u skladu je sa mehanizmom CBH modela. Drugi proces se javlja na višim temperaturama, u frekventnom intervalu 10 kHz -1 MHz, sa tendencijom povećanja opsega ovog intervala sa povećanjem temperature. Odgovoran je za povećanje parametara *m* i *s* a posledica je smanjenja gustine defektnih stanja usled konverzije bipolaronskih stanja (D⁺, D⁻) u jednopolaronska stanja D⁰. Manifestuje se u smanjenju visine potencijalne barijere *W*_M na višim temperaturama (tabela 4.4.)

T (K)	т	W_M [eV]
300	-0.272	0.38
353	-0.290	0.419
413	-0.445	0.32
453	-0.560	0.28

Tabela 4.4. Vrednosti parametara m i W_m za staklo $Bi_6(As_2S_3)_{94}$

Slika 4.52. Zavisnost log $\varepsilon^{\prime\prime}$ od logf stakla $Bi_8(As_2S_3)_{92}$

Tabela 4.5. Vrednosti parametara m i W_m za staklo $Bi_8(As_2S_3)_{92}$

T (K)	т	W_M [eV]
300	-1.024	0.10
353	-1.025	0.12
393	-0.999	0.14
413	-0.990	0.14
433	-0.961	0.16

Prezentovani rezultati za uzorke sa x=2 i 8 at % Bi kao i za uzorak sa x=6 at.% Bi na nižim frekvencijama su dakle u saglasnosti sa Guintini-evom teorijom dielektrične disperzije.

Parametar *m* je negativan kod svih uzoraka i opada sa povećanjem temperature kod uzoraka sa x=2 i 8 at.% Bi, kao što predviđa Guintini-eva teorija.

Primećuje se da se energija aktivacije W_M smanjuje sa povećanjem udela Bi, naročito kod uzorka sa 8 at.% Bi. Ovaj efekat se objašnjava formiranjem većeg broja slobodnih nosilaca naelektrisanja u procepu sa povećanjem sadržaja Bi, što je u saglasnosti sa rezultatima merenja naizmenične elektroprovodnosti ovog uzorka, gde je konstatovano aktivno učešće metalnih kristalnih centara u transportnim procesima. S druge strane, mala vrednost W_M ukazuje na široku oblast lokalizovanih stanja, što pokazuje da su dielektrična merenja stakla Bi₈(As₂S₃)₉₂ u saglasnosti sa rezultatima merenja provodljivosti u *dc* režimu.

Slične vrednosti visine potencijalne barijere zapažene su i kod drugih halkogenidnih stakala [175-177].

Promena faktora dielektričnih gubitaka sa temperaturom može biti objašnjena prema Stevels-u [178], koji je razložio relaksacione pojave na tri dela. Naime, dielektrični gubici u materijalu koji se javljaju pri njegovom termičkom tretmanu posledica su tri doprinosa: termički aktivirane relaksacije slobodno rotirajućih dipola Debye-evog tipa, električne provodljivosti usled elektron-fonon interakcije na višim temperaturama i vibracionih gubitaka. Udeo gubitaka koji su posledica Džulovog efekta može se proceniti pomoću relacije [179-181]:

$$\varepsilon_{DC}^{\prime\prime} = \sigma_{DC} / \omega \varepsilon_0 \tag{5.31.}$$

Slika 4.53. Temperaturska zavisnost dc faktora gubitaka stakala $Bi_x(As_2S_3)_{100-x}$

Faktor gubitaka usled provođenja u funkciji od temperature za ispitivana stakla pri frekvenciji od 10 kHz predstavljen je na slikama 4.53-4.55. Džulovski gubici uzoraka sa x=0.5 i 2 at.% Bi prikazani su zajedno, a za uzorke sa x=6 i 8 at.% Bi pojedinačno, s obzirom na veliku razliku u vrednostima. Iako ovi gubici rastu sa povećanjem temperature kao što se i očekuje, njihova brojna vrednost je u poređenju sa ukupnim gubicima uzoraka sa x=0.5, 2, 4 i 6 at.% Bi mala, pa se može zaključiti da dielektrični gubici ovih stakala najvećim delom potiču od dipolnog mehanizma.

Slika 4.54. Temperaturska zavisnost dc faktora gubitaka stakala $Bi_6(As_2S_3)_{94}$

Slika 4.55. Temperaturska zavisnost dc faktora gubitaka stakala $Bi_8(As_2S_3)_{92}$

Međutim, kod stakla sa najvećim udelom Bi, *dc* gubici očekivano predstavljaju dominantan faktor u ukupnim gubicima.

Dielektrični gubici koji potiču od dipolnog mehanizma dostižu maksimum na izvesnoj temperaturi usled delovanja dva, po dejstvu suprotna efekta: rasta temperature koji dovodi do smanjenja orijentisanosti dipola u pravcu polja i sa druge strane, pada viskoznosti koji utiče na smanjenje energije za savlađivanje otpora sredine.

Na slikama 4.56-4.59 prikazane su temperaturske zavisnosti tangensa gubitaka ispitivanih stakala.

Kod uzoraka sa 0.5 i 2 at.% Bi primećuje se promena u nagibu krive tangensa gubitaka sa povećanjem temperature., a kod stakala sa većim sadržajem Bi uočavaju se i maksimumi na pojednim frekvencijama odnosno temperaturama.

Slika 4.56. Zavisnost tg δ od T stakla $Bi_{0.5}(As_2S_3)_{99.5}$

Slika 4.57.Zavisnost tg δ od T stakla $Bi_2(As_2S_3)_{98}$

Slika 4.58. Zavisnost tg δ od T stakla $Bi_6(As_2S_3)_{94}$

Ovo je omogućilo da se za za staklo sa 6 at.% Bi odredi distribucija vremena relaksacije τ dipola na različitim temperaturama (tabela 4.6.).

<i>T</i> (K)	ω_M (kHz)	$\tau(s)$
300	6.470	$1.54 \cdot 10^{-4}$
353	17.298	9.21·10 ⁻⁶
413	429.536	3.7.10-7

Tabela 4.6. Relaksacioni parametri stakla $Bi_6(As_2S_3)_{94}$

Smanjenje vrednosti maksimuma tangensa gubitaka stakla $Bi_6(As_2S_3)_{94}$ na višim frekvencijama ukazuje na promenu koncentracije nalektrisanih defektnih stanja i potvrđuje zaključke o postojanju dva procesa koja kontrolišu mehanizam električnog i dielektričnog ponašanja ovog stakla.

Slika 4.59. Zavisnost tg δ od T stakla $Bi_8(As_2S_3)_{92}$

Zaključak

Predmet ovog eksperimentalnog rada bilo je izučavanje relevatnih fizičkih osobina trokomponentnih halkogenidnih stakala iz sistema $Bi_x(As_2S_3)_{100-x}$. Namera je prvenstveno bila da se ispita i analizira uticaj primesnih atoma Bi na fizičke karakteristike binarne matrice As_2S_3 . U tu svrhu, kao reprezentativni predstavnik sistema navedene opšte formule izabrana je serija x=0.5, 2, 4, 6, 8 i 10 at.% Bi.

Gustina stakala određena je metodom hidrostatičkih terazija i njene vrednosti se, u zavisnosti od sadržaja bizmuta, menjaju u intervalu od 3150 kg/m³ do 4215 kg/m³.

Provera amorfnosti ispitivanih uzoraka izvršena je vizuelno, optički i rendgenski. Pritom je potvrđena strukturna neuređenost stakala sa x=0.5,2,4 i 6 at.% Bi u svom sastavu. Kod stakala sa x=8 i 10 at.% Bi registrovani su kristalni centri tipa Bi, As i As₂S₃.

U okviru termičkih istraživanja izvršena je diferencijalna skenirajuća kalorimetrija stakala. Ova tehnika omogućava detekciju predkristalizacionih i kristalizacionih procesa, kao i određivanje karakterističnih temperatura i energija koji se odnose na pomenute fazne transformacije. Metodom onset tačka određene su temperature razmekšavanja kao i zavisnost ovog parametra od sastava sistema. Takođe je, direktnom metodom, određena promena toplotnog kapaciteta u oblasti razmekšavanja i zaključeno je da ova veličina ne ispoljava neku značajniju zavisnost od sastava. Procesi kristalizacije registrovani su samo kod stakala sa x=4 i 6 at.% Bi iz ispitivane serije. Stoga su ovi uzorci termički tretirani pri različitim brzinama grejanja. Uočen je trend pomeranja efekata na temperaturskoj skali ka višim temperaturama sa povećanjem brzine skeniranja. Kinetičkom analizom kristalizacionih procesa ovih uzoraka prema različitim metodama određeni su bitni termički parametri, poput energije aktivacije kristalizacije i dimenzionalnosti rasta. Utvrđeno je da se radi o pretežno površinskoj kristalizaciji kod oba uzorka. U okviru analize predkristalizacionih procesa uzoraka sa x=4 i 6 at.% Bi određena je zavisnost temperature transformacije stakla od brzine skeniranja, energija aktivacije kao i indeks "lomljivosti", prema čijoj vrednosti su ova dva stakla svrstana u grupu kinetički slabih rastopa. Na osnovu karakterističnih temperatura faznih transformacija pomenuta dva uzorka izvršena je procena njihove termičke stabilnosti. Zaključeno je da je staklo sa manjim udelom bizmuta termički stabilnije.

Optička ispitivanja su izvršena na staklima sa x=0.5, 2 i 4 at.% Bi u svom sastavu, a obuhvatila su merenja transparencije i disperzije indeksa prelamanja. Spektri transparencije poslužili su za procenu apsorpcionih koeficijenata, na osnovu kojih su određene širine optičkog procepa i širine oblasti lokalizovanih stanja u repovima zona. Utvrđeno je da se parametar E_g značajno smanjuje sa uvođenjem primesnih atoma Bi u osnovnu matricu

 As_2S_3 . Najveći efekat povećanja neuređenosti strukture osnovne matrice usled formiranja novih, defektnih stanja primećen je kod uzorka sa najmanjim sadržajem Bi. Smanjenje optičkog procepa pri većim koncntracijama Bi tumačeno je obrazovanjem primesne zone u optički zabranjenoj zoni.

Merenja disperzije indeksa prelamanja pokazala su povećanje ovog parametra sa udelom Bi (od 2.42 do 2.83). Ponašanje indeksa prelamanja analizirano je prema tri modela i utvrđena je zadovoljavajuća korelacija između eksperimentalnih podataka i analitičkih krivih, kao i između pojedinih parametara disperzionih modela. Sem toga, određeni su i odgovarajući disperzioni parametri, čije vrednosti pružaju informacije o uticaju strukture na indeks prelamanja.

Merenja električnih osobina stakala sistema Bi-As-S izvršena su u dva režima: jednosmernom i naizmeničnom. U okviru merenja dc provodljivosti uočeno je povećanje provodljivosti i za nekoliko redova veličine sa povećanjem sadržaja Bi, praćeno smanjenjem aktivacione energije i sve većim učešćem lokalizovanih stanja u transportnim procesima. Frekventna zavisnost provodljivosti konstatovana je kod svih uzoraka u merenom opsegu frekvencija, sem kod uzorka sa 8 at.% Bi, gde se ista javlja tek na višim frekvencijama, što je prema Koopsovom modelu, a u skladu sa Maksvel-Vagnerovim modelom strukturne uređenosti objašnjeno učešćem kristalnih centara Bi u transportnim procesima. Vrednosti energije aktivacije, određene iz termičke zavisnosti ac provodljivosti, ukazale su na dominaciju mehanizma preskoka nosilaca naelektrisanja sa promenjivom dužinom skoka kod uzoraka sa 6 i 8 at.% Bi. Sem toga, kod poslednja dva uzorka konstatovana je egzistencija jednopolaronskog i bipolaronskog mehanizma provođenja.

Dielektrična svojstva stakala sistema Bi-As-S okarakterisana su preko merenja dielektrične konstante i faktora gubitaka. Konstatovano je značajno povećanje ovih parametra po uvođenju Bi u binarnu matricu. Naročito je zapažen skok vrednosti dielektričnih parametara na nižim frekvencijama kod uzorka sa 8 at.% Bi, usled polarizacije na graničnim površinama kristalni metalni centar-amorfna matrica. Izvršena je procena udela elektronskog mehanizma u ukupnoj polarizaciji. Zaključeno je da povećanje gubitaka sa povećanjem temperature najvećim delom potiče od dipolnog mehanizma. Frekventna zavisnost faktora gubitaka objašnjena je u skladu sa Guintini-evim dipolarnim modelom dielektrične disperzije. Manje vrednosti visine potencijalne barijere kod stakala sa većim udelom Bi ukazuju ne samo na povećanje oblasti lokalizovanih stanja i već i na povećanje koncentracije slobodnih nosilaca naelektrisanja, a što je u skladu sa zaključcima izvedenih na bazi merenja električnih karakteristika.

Literatura

- [1] А.И. Попов, В.А. Воронцов, , И.А. Попов, Физика и техника полупроводников, 35, 6, (2001), 665
- [2] З.У. Борисова, Химия стеклообразных полупроводников, ЛГУ, Ленинград, (1972)
- [3] M.A. Popescu, Non-Crystalline Chalcogenides, Kluwer Academic Publishers, 2000
- [4] H. Schumann: In Metallographie, VEB Dent. Verlag für Grundstoffindustrie, Leipzig, (1975)
- [5] www.amorphous.materials.com
- [6] Б.Т. Коломиец, Н.А Горюнова, В.П Шило Стеклообразное состояние в халькогенидах.-В кн.: "Стеклообразное состояние". Москва; Изд-во АН СССР, 456-460, (1960).
- [7] M.H.R.Lankhorst, J.Non-Cryst. Solids, 297, 210, (2002)
- [8] D.J.E. Mullen, W. Nowacki, Z. Kristall., 136, 48, (1972)
- [9] N. Morimoto, X-Rays, 5, 115,(1949)
- [10] А.А. Вайполин, А.А. Порай-Кошиц, Физика твердого тела, 5, 1, 246, (1963)
- [11] A.K. Agnihotri, A. Kumar, A.N. Nigam, J. Non-Cryst. Solids 101 127, (1988)
- [12] V.D. Das, P.J. Lakshmi, Phys. Rev. B 37, 720, (1988)
- [13] N. Afify, M.A. Abdel-Rahim, A.S. Abd-El-Halim, M.M. Hafiz, J. Non-Cryst. Solids 128, 269, (1991)
- [14] G. Štrbac, *Tehnologija dobijanja i karakterizacija nekristalnih poluprovodnika iz sistema Sb(As)-S-I*, Novi Sad (2007)
- [15] В.А.Лихачев, А.Е. Волков, В.Е. Шудегов, Континуальная теория дефектов, ЛГУ, Ленинград, (1986)
- [16] user com, Information for users of Mettler Toledo Thermal Analysis systems, (1998, 1999, 2003)
- [17] J. Jackle, Philos. Mag. B, 56, 113 (1987)
- [18] W.A. Johnson, K.F. Mhl, Trans. Amer. Inst. Mining Met. Egrs., 135, 315, (1981)
- [19] M. Avrami, J. Chem. Phys. 7, 1103, (1939)
- [20] M. Avrami, J. Chem. Phys. 8, 212, (1940)
- [21] M. Avrami, J. Chem. Phys. 9, 177, (1941)
- [22] S. Ranganathan, M. Von Heimendahl, J. Mat. Sci. 16, 2401. (1981)
- [23] M. Von Heimendahl, G. Kuglstatter, J. Mat. Sci. 16, 2405, (1981)
- [24] H.E. Kissinger, J. Res. Nat. Bur. Stan. 57, 217, (1956)
- [25] Mahadevan S., Giridhar A., Singh A.K., J. Non-Cryst. Solids, 88, 11, (1986)
- [26] Matusita K., Sakka S., Phys. Chem. Glasses, 20, 81, (1979)
- [27] Augis J.A., Bennett J.E., J. Therm. Anal., 13, 283, (1978)
- [28] Matusita K., Sakka S., Bull. Inst. Chem. Res., Kyoto Univ., 59, 159, (1981)
- [29] Matusita K., Tashiro M., Phys. Chem. Glasses, 14, 77, (1973)
- [30] Matusita K., Komatsu T., Yokota R., J. Mater Sci., 19, 291, (1984)
- [31] Ozawa T., Polymer, 12, 150, (1971)
- [32] Ozawa T., Bull. Chem. Soc. Jap., 38, 1881, (1965)
- [33] J. Colemenero, J.M. Barandiaran, J. Non-Cryst. Solids 30, 263, (1978)
- [34] M. Avrami, J. Chem. Phys. 9, 177, (1941)
- [35] L.A. Wahab, S.A. Fazek, A.H. Ashour, Materials Chemistry and Physics 68, 272-277, (2001)
- [36] L.A. Wahab, K. Sedeek, A.Adam, Materials Chemistry and Physics 59, 232-236, (1999)
- [37] Gao Y.Q., Wang W., J. Non-Cryst. Solids, 81, 129, (1986)
- [38] J. Vazquez, P.L. Lopez-Alemany, P. Villares, R. Jiménez-Garay, Mater. Chem. Phys. 57, 162, (1998)
- [39] M.M. A. Imran, D. Bhandari, N.S. Saxena, Journal of Thermal Analysis and Calorimetry, 65, 257-274, (2001)
- [40] S.R. Joshi, A. Pratap, N.S. Saksena, M.P. Saksena, A. Kumar, J. Mat. Sci. Lett., 13, 77, (1994)

- [41] M.S. Iovu, S.D. Shutov, A.M. Andriesh, Moldavian Journal of the Physical Sciences 1, 84-95, (2002)
- [42] M. Krbal, T. Wagner, T. Srba, J. Schwarz, J. Orava, T. Kohoutek, V. Zima, L. Benes, S.O. Kasap, M. Frumar, Journal of Non-Crystalline Solids 353, 1232-1237, (2007)
- [43] J.S. Berkes, *The Physics of Non-Crystalline Solids*, G.H. Frischat (Ed.), Trans Tech Publications, Clausthahl-Zeller-feld, Germany, (1977)
- [44] N.B. Maharjan, D. Bhandari, N.S. Saxena, D.D. Paudyal, M. Husain, phys.stat.sol a, 178, 663, (2000)
- [45] Handbook of chemistry and physics, ed.: Weast R.C., CRC Press, Cleveland, (1974)
- [46] K.Sangwal, B. Surowska, P. Błaziak, Mater. Chem. Phys., 77, 511, (2002)
- [47] M. Lasocka, Mater. Sci. Eng. 23, 173, (1976)
- [48] Lawn B.R., Howes V.R., J. Mater. Sci., 16, 2745, (1981)
- [49] H.S. Chen, J. Non-Cryst. Solids 27, 257, (1978)
- [50] J.E. Shelby, J. Non-Cryst. Solids 34, 111, (1979)
- [51] J. Colmenero, J.M. Barandiaran, J. Non-Cryst. Solids 30, 263, (1978)
- [52] J.A. Macmillan, J. Phys. Chem. 42, 3497, (1965)
- [53] S. Mahadevan, A. Giridhar, J. Non-Cryst. Solids 197, 219, (1996)
- [54] M.A. Abdel-Rahim, Physica B 239, 238, (1997)
- [55] J. Gong , Y. Li, J. Mater. Sci., 35, 209, (2000)
- [56] K.L.Ngai, R.W. Rendell, L.D.Pye, W.C. LaCourse, H.J. Stevens, *The Physics of Non-Crystalline Solids*, Taylor & Francis, London, (1992)
- [57] C.A. Angell, J. Non-Cryst. Solids 73, 1, (1985)
- [58] G. Adams, J.H. Gibbs, J. Chem. Phys. 43, 139, (1965)
- [59] А.П. Литвин, Поваренных А.С., u: Конституция и свойства минералов, т. 2, Наук. думка, Киев, (1967)
- [60] X. Zhao, S. Sakka, J. Non-Cryst. Solids, 95-96, 487, (1987)
- [61] D.R. Uhlmann, J. Non-Cryst. Solids 7, 337, (1972)
- [62] D.R. Uhlmann, J. Non-Cryst. Solids 25, 43, (1977)
- [63] J. Colmenero, J.M. Barandiaran, J. Non-Cryst. Solids 30, 263, (1978)
- [64] A. Hruby, Czech. J. Phys. B 22, 1187, (1972)
- [65] M. Saad, M. Poulain, Mater. Sci. Forum, 19-20, 11, (1987)
- [66] S. Surinach, M.D. Baro, M.T. Clavaguera-Mora, N. Clavaguera, J. Mater. Sci., 19, 3005, (1984)
- [67] E. Márquez, C.Corrales, J.B. Ramirez-Malo, J. Reyes, J. Fernández-Peńa, P. Villares, R. Jiménez-Garay, Mater.Lett. 20, 183, (1994)
- [68] E. Márquez, R. Jiménez-Garay, A. Zakery, P.J.S. Ewen, A.E. Owen, Philos. Mag. B 63, 1169, (1991)
- [69] A.E. Owen, A.P. Firth, P.J.S. Ewen, Philos. Mag. B 52, 347, (1985)
- [70] S.R. Elliott, Physics of Amorphous Materials, Longman, New York, (1990)
- [71] P.J.S. Ewen, A.E. Owen, High-performance Glasses, Blackie, London, (1992)
- [72] E. Márquez, J.B. Ramirez-Malo, J. Fernández-Peńa, P. Villares, R. Jiménez-Garay, P.J.S. Ewen, A.E. Owen, J.Non-Crys. Solid 164-166, 1223, (1993)
- [73] E. Márquez, J.B. Ramirez-Malo, J. Fernández-Peńa, R. Jiménez-Garay, P.J.S. Ewen, A.E. Owen, Opt. Matter. 2, 143, (1993)
- [74] C.C. Huang, D.W. Hewak, J.V. Badding, Optics Expess, 12, 11, 2501, (2004)
- [75] S.R. Elliott, Physics of Amorphous Materials, Longman, New York, (1990)
- [76] J. Tauc, Amorphous and Liquid Semiconductors, Plenum, New York, (1974)
- [77] Z. Cimpl, F. Kosek, Phys. Stat. Sol. (a), 93, K55, (1986)
- [78] D.A. Minkov, E. Vateva, E. Skordeva, D. Arsova, M. Nikifora, J.Non-Crys. Solid 90, 481, (1987)
- [79] J. Tauc, Grigorovici R., Vancu A., Phys. Stat. Sol., 15, 627, (1966)
- [80] J.Tauc, J.Non-Crys. Solid 8-10, 569, (1972)

Literatura

- [81] J.Tauc: The optical properties of solids, ed.: Abeles F., North Holand, Amsterdam, (1971)
- [82] R. Tsu, P. Menna, H.Mahan, Solar Cells 21, 189, (1987)
- [83] J. Robertson, Philos. Mag B 69, 307, (1994)
- [84] F. Urbach., Phys. Rev., 92, 1324, (1953)
- [85] A. Thakur, G. Singh, G.S.S. Saini, N. Goyal, S.K. Tripathi, Optical Materials 30, 565-570, (2007)
- [86] V.P. Varshni, Physica, 34, 149, (1976)
- [87] H.Y. Fan, Phys. Rev., 78, 83, (1950)
- [88] H.Y. Fan, Phys. Rev., 82, 900, (1951)
- [89] N.F. Mott, E.A. Davis, Clarendon Press, Oxford, (1979)
- [90] S.R. Ovshinsky, D. Adler, Contemp. Phys. 19, 109, (1978)
- [91] Stuke J., J. Non-Cryst. Solids, 4,1, (1970)
- [92] I.O. Guth, S.R. Lukić, Journal of Optoelectronics and Advanced Materials 3, 4, 903-908, (2001)
- [93] E. Márquez, A.M. Bernal-Oliva, J.M. González-Leal, R. Prieto-Alcón, T. Wagner, J. Phys. D: Appl. Phys. 39, 1793-1799, (2006)
- [94] M.A. Majeed Khan, M. Zulfequar, M. Husain, Optical Materials 22, 21-29, (2003)
- [95] K.L. Bhatia, M. Singh, T. Katagawa, N. Kishore, M. Suzuki, Semicond. Sci. Techol. 10, 65-70, (1995)
- [96] P. Sharma, M. Vashistha, I.P. Jain, Chalcogenide Letters 2, 11, 115-121, (2005)
- [97] S. Caudhari, S.K. Biswas, A. Chaudhary, J. Non-Cryst. Solids 23, 4470, (1998)
- [98] Imre O. Gut, Svetlana R. Lukić, Maja M. Garić, XLV Konferencija ETRAN-a, Bukovička Banja-Aranđelovac, 295-297, (2001)
- [99] S.R. Lukić, V. Manić, B. Đurić-Stanojević, I.O. Gut, Zbornik radova sa X kongresa fizičara Jugoslavije, 115-118, (2000)
- [100] S.J. Skuban, S.R. Lukić, I.O. Gúth, D.M. Petrović, J. Optoel. Adv. Mat. 4, Nº3, 737-742, (2002)
- [101] Ž.N. Cvejić, I.O. Gúth, A. Tverjanovich and D.M. Petrović, BPU-5, Vrnjačka Banja, 657-660, (2003)
- [102] Born M., E Wolf., Principles of optics, pergamon Press, Oxford, (1984)
- [103] S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338, (1971)
- [104] Tanaka K., Thin Solid Films, 66, 271, (1980)
- [105] E. Márquez, T. Wagner, J.M. González-Leal, A.M. Bernal-Oliva, R. Prieto-Alcón, R. Jiménez-Garay, P.J.S. Ewen, Journal of Non-Crystalline Solids 274, 62-68, (2000)
- [106] E. Márquez, A.M. Bernal-Oliva, J.M. González-Leal, R. Prieto-Alcón, J.C. Navarro, D. Minkov, Physica Scripta 60, 90-96, (1999)
- [107] J.M. Gonzalez-Leal, R. Prieto-Alcon, J.A.A. Angel, E. Marquez, J. Non-Cryst. Solids 315, 134, (2003)
- [108] R.K. Galkkiewicz, J. Tauc, Solid State Commun. 10, 1261, (1972)
- [109] G. Georgescu, F. Sava, M. Rares-Medianu, Journal Of Optoelectronics and Advanced Materials, Vol. 8, No.5, 1801 –1805, (2006)
- [110] J.D. Yackson, Classical Electrodynamics, 2nd edition, Wiley, New York, (1975)
- [111] L. Bergmann, Cl. Schaffer, Lehrbuch der Experimentalphysik, Bd. III, Optik, Atomphysik, 1 Teil, Walleoptik, W. De Gruyter (ed), Berlin, (1962)
- [112] Н.Мотт, Э. Давис: Эелектронные процесы б некристаллических веществах, Издатальство "МИР", Москва (1974)
- [113] M.H. Cohen, H. Fritzche, S.R. Ovshinsky, Phus. Rev. Lett., 22, 1065 (1969)
- [114] P. W. Anderson, Phys. Rev. Lett. 34, 953 (1975)
- [115] С.А. Костылев, В.А. Шкут, Електроные переключение б аморфных полупроводниках, Наукова Думка, Киев, 1978
- [116] A.E. Owen, J.M. Marshall, Proc. 7th Int. Conf. Amorph. Liquid Semicond., Edinburg, 529, (1977)
- [117] M. Kastner, D. Adler, H. Fritzche, Phus. Rev. Lett., 37, 22, 1504, (1976)

- [118] A. Feltz, Amorphe und glasartige anorganische festkörper, Akademie-Verlag, Berlin, (1983)
- [119] A.E. Owen, W.E. Spear, Phys. Chem. Glasses, 17, 174, (1976)
- [120] E.A. Davis, N.F. Mott, Philos. Mag., 22, 903, (1970)
- [121] S.R. Elliott., Physics of amorphous materials, Longman, London, (1990)
- [122] P. Nagels, Amorphous semiconductors, ed.: Brodsky M.H., Springer Verlag, Berlin, (1979)
- [123] N.F. Mott, Phillos Mag 1969, 19:835,(1969)
- [124] K.H.J. Buschow and F.R. De Boer: *Physics of Magnetism and magnetic materials*, Kluwer Academic Publishers, (2003)
- [125] N. Thoge, T. Minami, Y. Yamamato, M. Tanaka, J. Appl. Phys. 51, 1048, (1980)
- [126] N. Thoge, Y. Yamamato, T. Minami, M. Tanaka, J. Appl. Phys. Lett. 34, 640, (1979)
- [127] K.L. Bhatia, G. Parthasarthy, A. Sharma, E.S.R. Gopla, Phys. Rev. B 38, 6342, (1988)
- [128] P. Nagels, L. Tichy, A. Triska, H. Ticha, J. Non. Cryst. Solids 59 &60. 1015, (1983)
- [129] N. Thoge, T. Minami, M. Tanaka, J. Non. Cryst. Solids 37, 23, (1980)
- [130] N. Thoge, T. Yonesaki, T. Minami, J. Appl. Phys. 58, 4225, (1985)
- [131] N. Thoge, H. Matsuo, T. Minami, J. Non. Cryst. Solids 95 &96, 809, (1987)
- [132] O. Matsuda, J. Non. Cryst. Solids, 198-200, 688, (1996)
- [133] B.T. Kolomiets, Phys. Status Solidi 7, 713, (1964)
- [134] B.T. Kolomiets, E. Lebedev, N.A. Rogachev, Fiz. Tekh Popuorov. 8, 545, (1974)
- [135] N. Thoge, T. Minami, Y. Yamamato, M. Tanaka, J. Appl. Phys. 51, 1048, (1980)
- [136] P. Nagels, M. Rotti, W. Vikhrov, Phys. Collog. C4, 907, (1981)
- [137] K.L. Bhatia, G. Parthasarathy, A.K. Sharma, E.S.R. Gopal, Phys. Rev. B 38, 6342, (1988)
- [138] K.L. Bhatia, N. Kishore, J. Malik, M. Singh, R.S. Kundu, A. Shrama, B.K. Srivastav, Semicond. Sci. Technol. 17, 189-197, (2002)
- [139] A.K. Jonscher, Nature 267, 673, (1977)
- [140] S.R. Elliot, Advances in Physics, Vol 36, No 2, 135-218, (1987)
- [141] I.G. Austin, N.F. Mott, Adv. Phys., 18, 41, (1969)
- [142] F. Salam, J.C. Giuntini, S.H.S. Soleyman, J.V. Zanchetta, Appl. Phys. A 63, 447, (1996)
- [143] J.C. Giuntini, P. Belougne, B. Deroide, J.V. Zanchetta, Solid State Comm. 62, 739, (1987)
- [144] M. Pollak, G.E. Pike, Phys. Rev Lett. 28, 1449, (1972)
- [145] K. Shimakava, Phil. Mag. B, 46, 123, (1983)
- [146] S.R. Elliott, Phillos Mag B 36, 1291, (1978)
- [147] S.R. Elliott, Phillos Mag B 37, 135, (1978)
- [148] N. Thoge, T. Minami, Y. Yamamato, M. Tanaka, J. Appl. Phys. 51, 1048, (1980)
- [149] C.G. Koops, Phys. Rev. 83, 121, (1951)
- [150] K.W. Wagner, J. Amer. Phys 40, 317, (1973)
- [151] R. Pelster, P. Marquardt, G. Nimtz, A. Enders, H. Eifert, K. Friederich, F. Petzolt, Physical Review B 45, 16, (1992)
- [152] K.L. Bhatia, S.K. Malik, N. Kishore, S.P. Singh, Phil. Mag. B 66, 587, (1992)
- [153] V.K. Bhatnaagar, K.L. Bhatia, J. Non. Cryst. Solids 119, 214, (1990)
- [154] M. Singh, K.L. Bhatia, N. Kishore, S.P. Singh, R.S. Kundu, J. Non. Cryst. Solids 180, 251, (1995)
- [155] K.L. Bhatia, M. Singh, N. Kishore, M. Suzuki, Phil. Mag. B 73, 383, (1996)
- [156] S.K. Malik, K.L. Bhatia, V.K. Bhatnaagar, Phil. Mag. B 63, 573, (1991)
- [157] I.O. Guth, D.M. Petrović, M.V. Šiljegović, S.R. Lukić, Journal of Optoelectronics and Advanced Materials
- 9, 6, 1694-1698, (2007)
- [158] I.O Gúth, Fizičke osobine nekristalnih materijala u sistemu Fe-Sb-S-I, doktorska disertacija, PMF, Univerzitet u Novom Sadu, (2001)

- [159] M. Barsoum, Fundametals of Ceramics, McGraw-Hill, New York, 543, (1997)
- [160] W.D. Kingery, Introduction to Ceramics, 2nd Ed., Wiley, New York, 931, (1976)
- [161] B.Tareev, Physics of dielectric materials, Mir Publishers, Moskow, (1975)
- [162] N. Hill, W.E. Vaughan, A.H. Price, M. Davies, *Dielectric Properties and Molecular Behaviour*, D. van Nostrand, London, 480, (1969)
- [163] М.Э. Борисова, С.Н. Кайков, Физика диелектриков, Изд. Мир, Москва, (1980)
- [164] Дж. Стевелс, Электрические свойства стекол, Москва, (1961)
- [165] G.M. Tsangaris, G.C. Psarras, N. Kouloumbi, J. Mater. Sci 33, 2027-2037, (1998)
- [166] G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Compos Part A: Appl Sci Manufact 33, 375-384, (2002)
- [167] G.M. Tsangaris, N. Koloumbi, S. Kyvelidis, Mater Chem Phys 44, 245-250, (1996)
- [168] O.S. Panwar, M. Radharishna, K.K. Srivastava, K.N. Lakshminarayan, Phil. Mag.B 41, 253, (1980)
- [169] D.K. Goel, C.P. Singh, R.K. Shukla, A. Kumar, J. Mater. Sci. 35, 1017, (2000)
- [170] K.K. Srivastava, D.R. Goyal, A. Kumal, K.N. Lakshminarayan, O.S. Panwar, I. Krishan, Phys. Status Solidi a 41, 323, (1977)
- [171] V.S. Edelman, Sov. Phys.-Usp. 20, 819, (1977)
- [172] J.C. Phillips, J. Non. Cryst. Solids 55, 179, (1983)
- [173] J.C. Guintini, J.V. Zanchetta, D. Jullien, R. Enolie, P. Houenou, J. Non. Cryst. Solids 45, 57, (1981)
- [174] S. Glasstone, K.J. Laidler, N. Eyring, *The Theory of Rate Process*, McGrew Hill Publ. Coo., New York, (1941)
- [175] S.S. Fouad , A.E. Bekheet, A.M. Farid, Physica B, 322, 163, (2002)
- [176] A.M. Farid, A.E. Bekheet, Vacuum, 59, 932, (2000)
- [177] N. Choudhary, A. Kumar, Turk. J. Phys., 29, 119, (2005)
- [178] J.M. Stevels, The Electric Properties of Glasses, Hantbuch der physik, 350, (1975)
- [179] R. Arora and A. Kumar, J. Mater. Sci. Lett. 9, 348, (1990)
- [180] D.R. Goyal, S. Walker, K.K. Srivastava, Phys. Stat. Sol. 64, 351, (1981)
- [181] M. Zulfequar, A. Kumar, J. Electrochem. Soc. 136, 1099 (1989)

Biografija

Mirjana Šiljegović je rođena u Sarajevu 16.12.1979. godine. Gimnaziju je završila 1998. godine u Zvorniku kao đak generacije, a iste godine upisala je studije na Departmanu za fiziku pri Prirodno-matematičkom Fakultetu. 2003. godine diplomirala je na Departmanu za fiziku, na Katedri za eksperimentalnu fiziku kondenzovane materije.

Od 01.04.2004. godine zaposlena je na Departmanu za fiziku na Prirodno-matematičkom

fakultetu, na republičkom naučno-istaživačkom projektu: "Amorfni i nanostrukturni halkogenidi i keramike". Od 2006. godine učesnik je i na pokrajinskom projektu "Tehnologija dobijanja i karakterizacija neuređenih halkogenida". Angažovana je i u nastavi na više opštih kurseva fizike u održavanju računskih i eksperimentalnih vežbi. Koautor je 10 naučnih radova i saopštenja objavljenih u stranim i domaćim časopisima i saopštenih na naučnim skupovima. Većina ovih radova bavi se problematikom vezanom za karakterizaciju halkogenidnih amorfnih materijala.

Novi Sad, 21.04.2008.

Mirjana Šiljegović

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET

KLJUČNA DOKUMENTACIJSKA INFORMACIJA

Redni broj:	
RBR	
Identifikacioni broj:	
IBR	
Tip dokumentacije:	Monografska dokumentacija
TD	e ,
Tip zapisa:	Tekstualni štampani materijal
TZ	1 5
Vrsta rada:	Magistarski rad
VR	
Autor	Miriana Šiliegović
AU	
Mentor:	dr Svetlana Lukić
MN	
Naslov rada:	Uticai dodatka hizmuta na svojstva nekristalnih poluprovodnika sistema
NR	Δ c_S
Iozik muhlikacija:	srnski (latinica)
ID	sipski (latilica)
JI Jarik izvoda:	srnski/angleski
Jezik izvouu.	SIPSKI/CIIGICSKI
JI Zamlia muhlikovanja:	Schiig
Zemija publikovanja.	Sibija
	Maine dine
Uze geograjsko poarucje:	vojvodina
UGP	2000
Godina:	2008
GO	
Izdavač:	Autorski reprint
Mesto i adresa:	Prirodno-matematički fakultet, Trg Dositeja Obradovića 4, Novi Sad
MA	
Fizički opis rada:	broj poglavlja-6, broj strana-121, broj referenci-181, broj tabela-24, broj
FO	slika-108, broj priloga-0
Naučna oblast:	Fizika
NO	
Naučna disciplina:	Eksperimentalna fizika kondenzovane materije
ND	
Predmetna odrednica/ ključne reči:	halkogenidna poluprovodnička stakla, sistem Bi-As-S, optičke, električne,
PO	dielektrične i termičke karakteristike
UDK	
Čuva se:	Biblioteka departmana za fiziku, PMF-a u Novom Sadu
ČU	-
Važna napomena:	Ovaj rad je realizovan u okviru naučno-istraživačkog projekta "Amorfni i
VN	nanostrukturni halkogenidi" (br. 141026) Ministarstva nauke i zaštite
	životne sredine Republike Srbije
Izvod	Predmet ovog eksperimentalnog rada bilo je izučavanje relevatnih fizičkih
17.	osobina halkogenidnih stakala iz sistema Bi $(A_{S2}S_{2})_{100}$ x=0.5.2.4.6.8.10
12	U okviru termičkih istraživanja izvršena je diferencijalna skenirajuća
	kalorimetrija stakala Kinetičkom analizom predkristalizacionih i
	kristalizacionih procesa uzoraka prema različitim metodama određeni su
	kristanzacionini procesa uzoraka prema razneratim metodama određeni su
	odgovarajuci termicki parametri. Opticka ispitivanja su pokazala da se
	sirina optickog procepa značajno smanjuje sa povećanjem sadržaja bizmuta,
	a indeks prelamanja trpi porast. Merenja provodljivosti u režimu proticanja
	jednosmerne struje ukazala su na polupovodnički karakter ispitivanih
	uzoraka, kao i na značajno smanjenje energije akrivacije pri većim udelima
	bizmuta. Merenjem provodljivosti u naizmeničnom režimu utvrđena je
	značajna uloga kristalnih centara bizmuta u transportnim procesima.
	Dielektrična konstanta ispitivanih stakala se značajno povećava sa
	sadržajem primesnih atoma, naročito kod uzorka sa kristalnim centrima
	bizmuta, što je objašnjeno pojavom granične polarizacije prema Maskvel-
	Vagnerovom modelu strukturne uređenosti.

Datum prihvatanja teme od NN veća: DP	13.02.2008.
Datum odbrane: DO	
Članovi komisije: KO	
Predsednik:	dr Dragoslav Petrović, redovni profesor Prirodno-Matematičkog fakulteta u Novom Sadu
član:	dr Svetlana Lukić, redovni profesor Prirodno-Matematičkog fakulteta u Novom Sadu
član:	dr Fedor Skuban, docent na Prirodno-Matematičkom fakultetu u Novom Sadu
član:	Dr Radmila Marinković-Nedučin, redovni profesor na Fakultetu tehničkih nauka u Novom Sadu

UNIVERSITY OF NOVI SAD FACULTY OF SCIENCE AND MATHEMATICS

KEY WORDS DOCUMENTATION

Accession number: ANO *Identification number:* INO Document type: Monograph publication DT Type of record: Textual printed material TR Master's thesis Content code: CC Mirjana Šiljegović Author: AU Mentor/comentor: dr Svetlana Lukić MN Influence of bismuth addition on characteristics of non-crystalline Title: TΙ semiconductors from system As-S Serbian (Latin) Language of text: LT Language of abstract: English LA Country of publication: Serbia and Montenegro CP Locality of publication: Vojvodina LP Publication year: 2008 PY Publisher: Author's reprint PU Faculty of Science and Mathematics, Trg Dositeja Obradovića 4, Novi Sad *Publication place:* PP Physical description: chapters-6, pages-121, references-181, tables-24, figures and graphs-108, PD appendices-0 Scientific field: Physics SF Scientific discipline: Experimental physics of condensated matter SD Subject/ Key words: Chalcogenide semiconducting glasses, system Bi-As-S, optical, electric, SKW dielectric and thermal properties UC Holding data: Library of Department of Physics, Trg Dositeja Obradovića 4 HD Note: none Ν Abstract: General characterisation of physical properties for system of chalcogenide glasses of type Bi_x(As₂S₃)_{100-x}, x=0.5,2,4,6,8,10 was object of this paper. AB Diferential scening calorimetry of glasses was done as a part of thermal researches. Apropriate thermal parameteres were obtained in accordance with different methods of kinetic analyze of glass transition and crystalization processes. Optical investigation showed significant decreace of optical band gap with bismuth content, while refraction index undergoes

increase. Conductivity measurements in dc regime pointed to semiconductive character of investigated glasses, as also significant decrease of activation energy for higher bismuth content. Ac conductivity measurements confirmed active role of bismuth crystal centers in transport processes. Dielectric constant of investigated glasses significantly increase with impurity atoms content, especially for sample with crystal centers, wich is explained in terms of interfacial polarisation, according to Maxvel-Vagner's model of stuctural order. Accepted by the Scientific Board: **ASB** Defended on: **DE** Thesis defend board: **DB** President: Member: Member:

Member:

dr Dragoslav Petrović, full professor on Faculty of Science, Novi Sad dr Svetlana Lukić, full professor on Faculty of Science, Novi Sad dr Fedor Skuban, docent on Faculty of Science, Novi Sad dr Radmila Marinković-Nedučin, full professor on Faculty of Tehnical Science, Novi Sad