

UNIVERZITET U NOVOM SADU

PRIRODNO-MATEMATIČKI FAKULTET

INSTITUT ZA FIZIKU УНИВЕРЗИТЕ ПРИРОДНО-МАТЕ

ПРИМЉЕНО:	1 7 HOR 2002			
ОРГАНИЗ ЈЕД.	6 P O J			
0603	9/385			
Norton				

dr Mario Škrinjar

Milica S. Manojlović

Spinske ekscitacije i termodinamičke osobine antiferomagnetika tipa La₂CuO₄ sa interakcijama prvih i drugih suseda

-diplomski rad-

Novi Sad, novembar 2002.

Posvećeno seni moje bake

,

Sadržaj

Uv	od		• 1
1	Viso	kotemperaturni superprovodnici: osnovni pojmovi	2
	1.1	Otkriće visokotemperaturnih superprovodnika	2
	1.2	Kristalna struktura visokotemperaturnih superprovodnih	
		bakarnih oksida	3
	1.3	Primeri visokotemperaturnih superprovodnih bakarnih oksida	4
2	Kris	talna struktura i fazni dijagram $La_{2-x}M_xCuO_4$	9
3	Mag	metne osobine La ₂ CuO ₄ : spinske ekscitacije i	
	tern	iodinamičke osobine	12
	3.1	Magnetna struktura La_2CuO_4 ; efektivni hamiltonijan	12
	3.2	Određivanje energije elementarnih ekscitacija metodom spinskih	
		Grinovih funkcija	18
	3.3	Određivanje magnetizacije podrešetke metodom spinskih	
		Grinovih funkcija	26
	3.4	Energija elementarnih ekscitacija u okolini apsolutne nule;	
	·	Goldstonov mod; faktor renormalizacije	28
	3.5	Određivanje energije sistema	31
	3.6	Energija elementarnih ekscitacija, magnetizacija i	20
		srednja energija sistema u Blohovoj aproksimaciji	32
	3.7	Određivanje temperature faznog prelaza	35
4	Ana	liza rezultata	36
	4.1	Spektar elementarnih ekscitacija La_2CuO_4	
		na niskim temperaturama	36
	4.2	Nelova temperatura	39
Zaključak			;43
A	Pril	og: Grinove funkcije i Kalenovo dekuplovanje	44
Li	terati	ıra	49

1

Uvod

Uvod

Otkriće visokotemperaturne superprovodnosti u keramičkom oksidu bakra, lantana i barijuma 1986. godine predstavlja značajan datum za fiziku kondenzovane materije, jer tim otkrićem započinje niz kako eksperimentalnih istraživanja novih materijala s takvim svojstvima, tako i pokušaja nalaženja teorijskog modela koji bi opisao njihovo ponašanje. Iako je do danas načinjeno više teorija koje bi trebalo da opišu pojavu visokotemperaturne superprovodnosti, traganje za novim visokotemperaturnim superprovodnicima bilo je i jeste u najvećoj meri empirijsko, budući da jedinstvena teorija koja bi mogla da ukaže na pravac razvoja takvih materijala još uvek nije poznata.

Proučavanjem visokotemperaturnih superprovodnika u normalnoj (nedopiranoj) fazi, primećeno je da oni imaju neke zajedničke strukturne karakteristike za koje se pretpostavlja da igraju značajnu ulogu u mehanizmu prelaska ovih materijala u superprovodno stanje, te da samim tim mogu biti osnova za objašnjenje superprovodnosti ovih jedinjenja u dopiranom režimu. Iz tog razloga, u teorijskim razmatranjima ovih materijala velika pažnja se posvećuje izučavanju njihovih osobina upravo u normalnoj fazi.

U ovom radu proučavane su magnetne osobine nedopiranog La_2CuO_4 , koji na niskim temperaturama, pri dopiranju sa Ba, Sr ili Ca, prelazi u superprovodno stanje. Premda najveći značaj ovog jedinjenja leži u njegovoj superprovodnosti, što ga čini atraktivnim sa stanovišta mogućnosti tehnološke primene, La_2CuO_4 je zanimljiv i sa čisto teorijskog aspekta zbog toga što, kako eksperimentalni rezultati, tako i teorijska razmatranja ukazuju na činjenicu da je ovo jedinjenje veoma dobra aproksimacija dvodimenzionog spinskog Hajzenbergovog antiferomagnetika, sistema od fundamentalnog značaja u statističkoj fizici.

Rad je koncipiran na sledeći način: u prvoj glavi dat je kratak pregled struktura i osobina nekih najpoznatijih visokotemperaturnih superprovodnika, zajedno sa modelima koji opisuju ponašanje elektrona u tim materjalima. Detaljan opis kristalne strukture i faznog dijagrama dopiranog La_2CuO_4 dat je u drugoj glavi. U trećoj glavi analitički su ispitivane dinamičke i statičke magnetne osobine La_2CuO_4 u spinskom formalizmu, kao i u bozonskom formalizmu na niskim temperaturama. Rezultati dobijeni spinskim pristupom analizirani su u četvrtoj glavi, na osnovu numeričkih proračuna izvršenih matematičkim paketom Mathematica 3.0.

1 Visokotemperaturni superprovodnici: osnovni pojmovi

1.1 Otkriće visokotemperaturnih superprovodnika

Pojava superprovodljivosti otkrivena je 1911. godine, kada je holandski fizičar Kamerling Ones (Kamerlingh Onnes) ustanovio da ispod kritične temperature $T_C \simeq 4.2 K$ otpor žive (Hg) opada čak 10⁷ puta u odnosu na vrednost koja odgovara sobnoj temperaturi. Za ovim otkrićem usledio je niz istraživanja kojima je utvrđeno da superprovodne osobine, na temperaturama ispod kritične, pokazuju oko 20 metalnih elemenata (Nb, Pb, In...) i oko 1000 jedinjenja i legura. Zastoj u istraživanjima nastupio je početkom sedamdesetih godina prošlog veka kada se, nakon otkrića superprovodnosti kod Nb₃Ge na temperaturama ispod $T_C \simeq 23.2 K$, na osnovu izvesnih teorijskih predviđanja mislilo da se u nastojanjima da se dobiju što više vrednosti kritičnih temperatura ne može dalje otići. Međutim, istraživanja keramičkih oksida sa kristalnom strukturom perovskita dovela su sredinom osamdesetih godina do značajnog prodora Milerovim (Müller) i Bednorcovim (Bednorz) otkrićem superprovodnosti [1] u keramičkom oksidu bakra, lantana i barijuma (La_2CuO_4 dopiran barijumom) na temperaturama ispod čak $T_C \simeq 30K$. Dalja ispitivanja su pokazala da se ovo jedinjenje (kraće zvano LMCO, gde je sa M označen metal kojim se dopira) može dopirati i drugim primesama (Ca, Sr), čime se kritična temperatura menja.

Otkriće superprovodnog keramičkog oksida *LMCO* označava početak dobijanja i izučavanja visokotemperaturnih superprovodnika. Usledilo je otkriće superprovodnosti u jedinjenjima $YBa_2Cu_3O_{6+X}(YBCO)$ sa kritičnom temperaturom ($T_C \simeq 77 K$) [2],[3].

Otada, sintetizovani su uzorci mnogobrojnih superprovodnih bakarnih oksida. Neki od njih su, zajedno sa kritičnim temperaturama, prikazani u Tabeli 1¹.

Eksperimentalna otkrića visokotemperaturnih superprovodnika praćena su pojavom određenog broja teorijskih modela koji bi trebalo da opišu njihove suštinske karakteristike. Ipak, jednoznačna teorijska interpretacija glavnih osobina ovih materijala i njihovog mehanizma prelaska u superprovodno stanje još nije data.

Naposletku, bitno je naglasiti da se u proučavanju visokotemperaturnih su-

¹Kritične temperature "starih" elementarnih provodnika (Nb, Pb...) date su u tabeli radi poređenja.

Materijal	$T_{C}(K)$
$HgBa_2Ca_2Cu_3O_{8+x}$	133.0
$Tl_2Ca_2Ba_2Cu_3O_{10}$	125.0
YBa ₂ Cu ₃ O ₇	92.0
Bi ₂ Sr ₂ CaCu ₂ O ₈	89.0
La _{1.85} Sr _{0.15} CuO ₄	39.0
Nd _{1.85} Ce _{0.15} CuO ₄	24.0
$RbCs_2C_{60}$	33.0
Nb ₃ Ge	23.2
Nb	9.25
Pb	7.20

Tabela 1: Vrednosti kritičnih temperatura nekih superprovodnika

perprovodnika velika pažnja posvećuje ponašanju ovih jedinjenja u nedopiranom režimu, jer se pretpostavlja da neobične osobine visokotemperaturnih superprovodnika u normalnoj fazi mogu pružiti objašnjenje njihove superprovodnosti.

1.2 Kristalna struktura visokotemperaturnih superprovodnih bakarnih oksida

Posmatranjem kristalne strukture superprovodnih bakarnih oksida može se primetiti sličnost sa kristalnom strukturom **perovskita** [3]. Perovskiti, čija je hemijska formula ABX_3 , kristališu u kubnoj kristalnoj rešetki, kod koje nemetalni anjoni X (obično su to atomi kiseonika) formiraju oktaedar oko nemetalnog katjona B, pri čemu osam takvih oktaedara okružuju metalni katjon A. Takođe, treba napomenuti da se kod perovskitnih jedinjenja pri dopiranju na određenoj temperaturi javljaju strukturni prelazi u tetragonalnu i ortorombičnu fazu.

Imajući u vidu strukturu perovskita, struktura superprovodnih bakarnih oksida može se posmatrati kao da je sačinjena od blokova perovskitne strukture, pomerenih jednih u odnosu na druge ili umetnutih između različitih slojeva. Posledica te činjenice je da je zajednički strukturni element superprovodnih bakarnih oksida jedna ili više bliskih, međusobno paralelnih CuO_2 ravni, razdvojenih slojevima drugih atoma (*La*, *O*, *Ba*, *Y*...). U tim ravnima atomi bakra su u kvadratnoj ili pravougaonoj planarnoj koordinaciji pri čemu rastojanje Cu-O iznosi približno 1.9Å. Eksperimentalno je utvrđeno da kritična temperatura bakarnih oksida zavisi od broja bliskih susednih CuO_2 ravni i to tako što raste sa povećanjem tog broja od jedan do tri², pri čemu je primećeno da s daljim povećanjem broja bliskih CuO_2 ravni dolazi do zasićenja u rastu kritična temperature. Slojevi koji razdvajaju CuO_2 ravni primaju elektrone iz CuO_2 ravni ili ih predaju istima, usled čega ove ravni postaju elektronski aktivne, tj. u njima se javlja provodnost šupljinskog (*p*), odnosno elektronskog (*n*) tipa.

Na osnovu toga, smatra se da je pojava superprovodnosti bitno vezana s procesima koji se dešavaju u CuO_2 ravnima visokotemperaturnih superprovodnika, te se često problem izučavanja njihove strukture pojednostavljuje ograničavanjem na dve dimenzije, tj. na analizu CuO_2 ravni.

Druga bitna karakteristika superprovodnih bakarnih oksida je **antiferomagnetno** dugodometno uređenje nedopiranih jedinjenja. Antiferomagnetno uređenje [4] podrazumeva (prema Nelu (Néelu)) skup dve ili više različito orijentisanih feromagnetnih podrešetki, pri čemu se najbliži susedi nalaze u čvorovima koji pripadaju različitim podrešetkama. Pri dopiranju, ovakvo dugodometno uređenje spinova biva uništeno, ali je eksperimentalno (neelastičnim neutronskim rasejanjem) utvrđeno da se u superprovodnoj fazi zadržava kratkodometno uređenje spinova koje je na malim rastojanjima blisko onom uočenom u nedopiranom stanju ispod Nelove temperature. S obzirom na to da se antiferomagnetne korelacije javljaju i u superprovodnoj fazi, antiferomagnetizam ovih jedinjenja često se povezuje sa njihovom superprovodnošću, te je velik broj radova, a između ostalih i ovaj, posvećen upravo izučavanju magnetnih osobina nedopiranih "roditeljskih" jedinjenja visokotemperaturnih superprovodnih bakarnih oksida.

1.3 Primeri visokotemperaturnih superprovodnih bakarnih oksida

Od otkrića pa do danas, sintetizovan je velik broj visokotemperaturnih superprovodnika. U ovom odeljku navešćemo nekoliko primera visokotemperaturnih

4

²Na primer, jedinjenje $Tl_2Ca_2Ba_2Cu_3O_{10}$, čija je kritična temperatura visoka i iznosi $T_C \simeq 125K$, ima u svojoj strukturi tri bliske CuO_2 ravni.

superprovodnih bakarnih oksida kod kojih se vidi na koje načine se može realizovati električna provodnost u CuO_2 ravnima ([2],[5]).

- La_2CuO_4 S obzirom na činjenicu da će La_2CuO_4 biti u radu detaljno razmatran, na ovom mestu ćemo samo ukazati na to da se kod ovog jedinjenja metalno stanje postiže tako što se joni trovalentnog lantana (La^{3+}) zamenjuju dvovalentnim stroncijumom (Sr^{2+}). Usled toga, radi očuvanja električne neutralnosti, dolazi do odlaženja elektrona iz CuO_2 ravni, tačnije iz *p*-ljuski kiseonikovih jona O^{2-} koji prelaze u O^{-} stanje s jednom šupljinom u *p*ljusci.
- Nd_2CuO_4 Za razliku od La_2CuO_4 , gde se CuO_2 ravni dopiraju šupljinama, CuO_2 ravni ovih jedinjenja dopiraju se elektronima. Naime, trovalentni neodijum (Nd^{3+}) iz Nd_2CuO_4 zamenjuje se sa četvorovalentnim cerijumom (Ce^{4+}) zbog čega se višak elektrona prenosi u CuO_2 ravan. Smatra se [5] da se ti elektroni smeštaju na bakarne jone Cu^{2+} čime oni prelaze u stanje Cu^+ sa popunjenom d-ljuskom. I u ovom, kao i u prethodnom slučaju, znak Holovog (*Hall*) koeficijenta potvrdio je o kojoj se vrsti nosilaca naelektrisanja radi.

Slika 1: Poređenje faznih dijagrama za Nd_2CuO_4 i La_2CuO_4 [3]

5

Fazni dijagrami La_2CuO_4 i Nd_2CuO_4 (Slika 1) pokazuju veliku sličnost. Oba jedinjenja su u nedopiranom stanju antiferomagnetno uređena sa sličnim Nelovim temperaturama, s tom razlikom što je antiferomagnetna faza stabilnija za Nd_2CuO_4 (narušava se tek za koncentraciju primesa od $x \simeq$ 0.12). S daljim porastom koncentracije primesa, kod oba jedinjenja se na niskim temperaturama javlja superprovodna faza s najvišom kritičnom temperaturom koja odgovara koncentraciji primesa od oko $x \simeq 0.15$. Kod jedinjenja koja se dopiraju šupljinama, superprovodna faza postoji na mnogo širem opsegu koncentracije primesa.

 $YBa_2Cu_3O_{6+x}(YBCO)$ Za razliku od gore opisanih jedinjenja, struktura $YBCO_{6+x}$ karakteriše se time što poseduje CuO_2 ravni koje nisu samostalne, već se nalaze u grupama od po dve ([2],[3]). Ove ravni razdvojene su atomima itrijuma, koji s njima čine jako povezan $CuO_2 - Y^{3+} - CuO_2$ bisloj. Parovi CuO_2 ravni su međusobno razdvojeni slojevima atoma Cu, Ba i O, koji obrazuju "rezervoar naelektrisanja".

Dakle, u strukturi $YBCO_{6+x}$ postoje:

- dve vrste mesta za atome bakra
 - Cul u okviru jednodimenzionih struktura duž b-pravaca elementarne ćelije, tzv. Cul — Ol lanaca
 - Cu2 u okviru CuO₂ ravni
- tri vrste mesta za atome kiseonika
 - Ol u okviru Cul Ol lanaca
 - O2 i O3 u okviru CuO_2 ravni
 - O4, tzv. apeksni kiseonik, čiji je položaj između Cu1 i Cu2

U nedopiranom jedinjenju $YBCO_6$, atomi bakra u CuO_2 ravnima su u kvadratno planarnoj koordinaciji (vezani su sa dva O2 i dva O3 kiseonikova atoma) i nalaze se u stanju Cu^{2+} . Za razliku od njih, atomi bakra na mestima Cu1 vezani su sa dva apeksna kiseonika O4 i nalaze se u Cu^+ stanju. Prema tome $YBCO_6$ ima antiferomagnetno uređenje koje potiče od spinova šupljina bakarnih jona u CuO_2 ravnima, s obzirom da joni bakra na mestima Cu2 nemaju magnetni moment. Za razliku od prethodno opisanih jedinjenja, metalno stanje se kod YBCO postiže dopiranjem kiseonikovim atomima. Promene koje pri tome nastaju mogu se pratiti na faznom dijagramu ovog jedinjenja (Slika 2).

Slika 2: Fazni dijagram $YBCO_{6+x}$ u zavisnosti od koncentracije kiseonika [3]

Pri dopiranju, sve do koncentracije $x \simeq 0.2$ održava se čisto antiferomagnetno stanje, jer se atomi kiseonika s jednakom verovatnoćom raspoređuju u oba pravca (i a i b) elementarne ćelije, formirajući samo monomere $Cu^{2+} - O^{2-} - Cu^{2+}$. S povećanjem koncentracije kiseonika (0.2 < x < 0.4), formiraju se fragmenti lanaca (Cu - O - Cu - O - Cu) koji su još uvek slučajno orjentisani tako da kristalna struktura ostaje tetragonalna. U ovom opsegu koncentracija kiseonikovih atoma antiferomagnetno stanje se naziva dopiranim, jer se u CuO_2 ravnima javlja mala koncentracija šupljina. Ova činjenica se objašnjava time što da bi se formirali O^{2-} joni duž CuI - OI lanaca, treba dovesti elektrone iz drugih delova kristala, najverovatnije [5] iz CuO_2 ravni. S povećanjem koncentracije kiseonikovih atoma $(x \simeq 0.4)$, fragmenti lanaca počinju da se uređuju u pravcu b elementarne ćelije, obrazujući tako superstrukturu s naizmeničnim smenjivanjem skoro popunjenih i skoro praznih Cul-Ol lanaca. Ovo je praćeno značajnim povećanjem koncentracije šupljina u CuO_2 ravnima. Usled izmenske interakcije spinova bakra sa spinovima novonastalih šupljina u p-ljuskama kiseonikovih atoma u tim ravnima, u sistemu dolazi do narušavanja antiferomagnetnog uređenja i on prelazi u metalno stanje koje na niskim temperaturama postaje superprovodno. S obzirom na asimetriju između pravaca a i b, na koncentraciji $x \simeq 0.4$ dolazi do strukturnog prelaza iz tetragonalne u ortorombičnu strukturu.

Ako dalje dopiramo $YBCO_{6+x}$ kiseonikom, atomi kiseonika će, formirajući u početku samo kratke fragmente, popunjavati prazne Cu1 - O1 lance u gore spomenutoj superstrukturi, te se koncentracija šupljina u CuO_2 ravnima ne povećava, što je u zavisnosti kritične temperature od koncentracije kiseonika opisano pojavom ravnog platoa na temperaturi $T_C \simeq 60K$. S daljim povećanjem koncentracije kiseonika, ovi se fragmenti produžuju obrazujući lance, čime se opet povećava koncentracija šupljina u CuO_2 ravnima.

Nažalost, nemoguće je ispitati da li se može dobiti viša kritična temperatura povećavanjem koncentracije kiseonikovih atoma iznad x = 1, jer je za x = 1 struktura lanaca u potpunosti dovršena.

2 Kristalna struktura i fazni dijagram $La_{2-x}M_xCuO_4$

S obzirom da će se u ovom radu ispitivati magnetne osobine La_2CuO_4 , detaljnije ćemo opisati njegovu kristalnu strukturu. U tom cilju, posmatraćemo fazni dijagram $La_{2-x}M_xCuO_4$ (Slika 3).

Slika 3: Fazni dijagram $La_{2-x}Sr_xCuO_4$ u zavisnosti od koncentracije stroncijuma [3]

Naime, na ovom faznom dijagramu se vidi da se pri snižavanju temperature događa strukturni prelaz iz tetragonalne u ortorombičnu kristalnu strukturu, usled zakretanja CuO_6 oktaedara oko odgovarajuće ose simetrije u CuO_2 ravni³. Prema tome, nedopirani La_2CuO_4 na temperaturama ispod $T_{sr} = 530K$ [6] kristališe u površinski centriranom ortorombičnom kristalografskom sistemu, što znači da an-

³Ovakvi prelazi registrovani su i kod dopiranja La_2CuO_4 sa Ba i Ca.

tiferomagnetno stanje postoji u ortorombičnoj fazi. Na Nelovoj temperaturi, konstante rešetke su $a_o = 5.338 \text{ \AA}$, $b_o = 5.406 \text{ \AA}$ i $c_o = 13.141 \text{ \AA}^4$ ([6],[7]). CuO_2 ravni su samostalne, na međusobnom rastojanju koje iznosi približno 6.6 Å, razdvojene međusobno sa dva LaO sloja koji predstavljaju "rezervoar naelektrisanja".

Svaki atom bakra u provodnim ravnima okružen je sa šest atoma kiseonika: četiri u ravni i dva u *c*-pravcu (tzv. apeksni kiseonici) koji pripadaju "rezervoarima naelektrisanja". Ovi atomi kiseonika oko bakra obrazuju oktaedar, slično perovskitnoj strukturi. Rastojanje između bakra i kiseonika u ravni iznosi približno 1.9 Å, a u pravcu *c*-ose iznosi približno 2.4 Å⁵, što znači da je oktaedar izdužen u pravcu *c*-ose. Izduženje ovog oktaedra može se objasniti analiziranjem elektronske strukture CuO_2 ravni. Naime, energetski nivo 3d-stanja izolovanog bakarnog jona se u kristalu cepa na podnivoe zbog interakcije sa kristalnim (ligandnim) poljem. U polju sferne simetrije, energija 3d-nivoa je petostruko degenerisana, ali se u polju kubne simetrije petostruki 3d-nivo cepa na triplet niže i dublet više energije. Pri smanjenju simetrije od kubne do tetragonalne triplet se cepa na dublet niže i singlet više energije, a dublet na dva singleta. Smanjenje energije koje nastaje pri skidanju degeneracije tog dubleta (efekat Jana-Telera (*Jahn-Teller*)) daje značajan doprinos [3] u izduženju CuO_6 oktaedra u posmatranom jedinjenju.

Razmotrimo sada atomske konfiguracije elemenata koji obrazuju ovo jedinjenje:

$$Cu: [Ar](3d)^{10}(4s)^{1}$$

La: [Xe](5d)^{1}(6s)^{2}
O: [He](2s)^{2}(2p)^{4}

U kristalu, lantan se nalazi u La^{3+} stanju, koje odgovara stabilnoj konfiguraciji ksenona, kiseonik u O^{2-} stanju kojem odgovara popunjena 2p-ljuska, a bakar, s obzirom da se mora očuvati električna neutralnost, mora biti u Cu^{2+} stanju. To znači da svaki atom bakra otpušta dva elektrona, jedan 4s- i jedan 3d- elektron, usled čega u 3d- ljusci ostaje jedna šupljina sa spinom $S = \frac{1}{2}$.

Premda La_2CuO_4 nije superprovodan na bilo kojim temperaturama, kada se dopira sa *Ba*, *Sr* ili *Ca* pokazuje superprovodnost na temperaturama ispod neke

⁴"o" označava da je reč o parametrima elementarne ćelije u ortorombičnoj fazi.

⁵Ovo rastojanje je slično za mnoge bakarne okside.

kritične. Najzanimljivije je jedinjenje sa Sr jer pokazuje najveće vrednosti kritične temperature. Promene koje u La_2CuO_4 nastaju pri dopiranju Sr mogu se pratiti na faznom dijagramu (Slika 3). Naime, kao što je već rečeno, zamena La^{3+} sa Sr^{2+} dovodi do prelaska elektrona iz CuO_2 ravni u "rezervoar naelektrisanja". Ovo se realizuje tako što elektroni napuštaju jone kiseonika O^{2-} zbog čega ovi prelaze u stanje O^- sa šupljinom u p-ljusci⁶. Usled izmenske interakcije [3] između spinova na bakarnim jonima i spinova novonastalih šupljina, dolazi do brzog razgrađivanja antiferomagnetnog uređenja, te već pri koncentracijama $x \simeq 0.02$ dugodometno antiferomagnetno uređenje nestaje i na niskim temperaturama se javlja faza spinskog stakla⁷. Daljim povećavanjem koncentracije Sr ($x \simeq 0.04$), $La_{2-x}Sr_xCuO_4$ prelazi u metalno stanje. Za koncentraciju Sr između $x \simeq 0.06$ i $x \simeq 0.25 - 0.30$, javlja se na niskim temperaturama superprovodna faza. Maksimalna vrednost kritične temperature $T_C^{max} = 40K$ odgovara tzv. "optimalnoj" koncentraciji Sr od $x \simeq 0.15^8$.

⁸Pri dopiranju sa Ba i Ca, maksimalne kritične temperature ($T_C^{max} = 30K$ i $T_C^{max} = 20K$, respektivno) postižu se takođe pri koncentraciji primesa od $x \simeq 0.15$.

⁶Usled jakog kulonovskog odbijanja koje bi postojalo između dve šupljine kada bi elektroni odlazili iz *d*-orbitale bakra, energetski je povoljniji prelazak elektrona iz *p*-ljuski kiseonika.

⁷Spinsko staklo je magnetni materijal u kojem ispod određene temperature (T_f -temperature mržnjenja) nastaje termodinamički neravnotežno metastabilno magnetno stanje koje se karakteriše "zamrznutom" (odsustvuju termodinamičke fluktuacije) prostornom raspodelom orijentisanih spinskih magnetnih momenata. Stanje spinskog stakla je po pravilu prouzrokovano time što u sistemu postoje haotički raspoređeni magnetni momenti i konkurentske interakcije koje izazivaju frustraciju magnetnih momenata. Stoga spinsko staklo obično nastaje u amorfnim magneticima.

U slučaju lantanida verovatni uzrok pojave spinskog stakla jeste interakcija između spinova bakarnih jona i dopiranih šupljina.

3 Magnetne osobine *La*₂*CuO*₄: spinske ekscitacije i termodinamičke osobine

3.1 Magnetna struktura La₂CuO₄; efektivni hamiltonijan

Kao što je već istaknuto, proučavanje osobina "roditeljskih" jedinjenja visokotemperaturnih superprovodnika u normalnom stanju moglo bi da da ključ za objašnjenje njihove superprovodljivosti. Iz tog razloga, u ovom radu će se ispitivati magnetne osobine La_2CuO_4 .

Magnetna struktura La_2CuO_4 prikazana je na Slici 4.

Slika 4: a) Magnetna struktura La_2CuO_4 [3]; b) Orijentacija spinova u CuO_2 ravnima

U La_2CuO_4 , atomi bakra se nalaze u Cu^{2+} stanju, što znači da u d-ljusci (tačnije u $\{d_{x^2-y^2}\}$ orbitali) imaju šupljinu sa spinom $S = \frac{1}{2}$. Ti spinovi nepopunjenih d-ljuski koji su lokalizovani u čvorovima kristalne rešetke obrazuju ma-

gnetnu kristalnu rešetku i povezani su međusobno kvantnomehaničkim silama izmene kojima odgovaraju integrali izmene J. Model kojim opisujemo magnetik sa ovakvim karakteristikama zove se Hajzenbergov (*Heisenberg*) model. Neutronskom difrakcijom utvrđeno je da su spinovi unutar CuO_2 ravni antiferomagnetno uređeni ("kuplovani").

U kvantnoj teoriji feromagnetizma (antiferomagnetizma) [4], pretpostavlja se da su na apsolutnoj nuli svi spinovi određene magnetne podrešetke paralelno orijentisani (dugodometno uređenje) i da su z-projekcije spinova svih atoma jednake maksimalnoj vrednosti spina S, usled čega je magnetizacija maksimalna. Pri zagrevanju, toplotni kvant smanjuje projekciju spina na jednom čvoru kristalne rešetke za jedinicu, usled čega spin počinje da precesira oko svoje nove srednje vrednosti⁹. Ovaj "poremećaj" se zbog interakcije izmene prenosi na ostale čvorove magnetne rešetke usled čega se u sistemu pojavljuje talas "zaljuljanih" spinova, tzv. **spinski talas**. U kvantnoj teoriji magnetizma uvodi se i pojam **magnona** koji predstavljaju kvante polja spinskih talasa.

S porastom temperature, dejstvo toplotnih fluktuacija se pojačava i na nekoj kritičnoj temperaturi (Kirijevoj (*Curie*) za feromagnetike, odnosno Nelovoj za antiferomagnetike) dolazi do nestanka dugodometnog uređenja, što znači da sistem iz feromagnetne (antiferomagnetne) faze prelazi u paramagnetno stanje¹⁰.

Da bi se za ovakav sistem uređenih spinova napisao efektivni hamiltonijan, bitno je identifikovati interakcije koje među njima postoje. Kada se započelo sa proučavanjem magnetnih osobina La_2CuO_4 , pošlo se od dvodimenzionog spinskog Hajzenbergovog hamiltonijana u kome je uzeta u obzir samo interakcija prvih najbližih suseda, opisana integralom izmene J. Takav hamiltonijan je sa zadovoljavajućom tačnošću opisivao spektar elementarnih ekscitacija dobijen u prvim eksperimentima, izvedenim sa neutronima energija 2 - 50 meV. Međutim, teorijski proračuni koji su uključivali i interakciju drugih najbližih suseda, predviđali su da se u blizini granice prve Briluenove (*Brillouin*) zone mora javiti disperzija kao posledica te interakcije. S obzirom da su u početku eksperimenti vršeni s detektorima male tačnosti u određivanju položaja rasejanih neutrona, to

⁹U slučaju spina $S = \frac{1}{2}$ jedine moguće z-projekcije spina su $+\frac{1}{2}\hbar i + \frac{1}{2}\hbar$, te toplotni kvant zapravo prevodi spin iz stanja "up" u stanje "down".

¹⁰Ovde se radi o faznom prelazu II vrste.

su izmereni spektri zapravo predstavljali srednje vrednosti na velikim oblastima recipročnog prostora i uticaj interakcije drugih najbližih suseda se nije mogao registrovati. Međutim, korišćenjem epitermalnih neutrona energije $0.1 - 1.0 \ eV$ i detektora osetljivosti veće za red veličine, merenja spektra spinskih talasa duž granice Briluenove zone potvrdila su teorijska predviđanja [8]. Prema tome, potpuni opis magnetizma La_2CuO_4 zahteva uzimanje u obzir interakcija koje nisu sadržane u dvodimenzionom spinskom hamiltonijanu prvih najbližih suseda. Tako se u hamiltonijan uvode interakcija drugih i trećih najbližih suseda u ravni, opisane integralima izmene J_2 i J_3 respektivno, kao i interakcija između slojeva, opisana integralom izmene J_{\perp} . Uobičajeno je ([8],[9]) da se ne uzima interakcija između drugih najbližih suseda u pravcu normalnom na CuO_2 ravni, jer je u ovom jedinjenju interakcija između ravni mnogo manja od interakcije spinova unutar ravni $(J_{\perp} << J)$.

Postoji još jedan tip interakcije koji se može uvesti u hamiltonijan, a o čijem postojanju se takođe zaključilo posmatranjem disperzije spinskih talasa duž granice prve Briluenove zone. To je kružna (prstenasta, ciklična, "ring") interakcija u CuO_2 ravni¹¹ koja nastaje zbog jake hibridizacije orbitala i dovodi do interakcije izmene koja uključuje sva četiri spina na uglovima Cu_4O_4 . Veličina integrala izmene J_C koji odgovara ovoj interakciji ukazuje [8] da ona, ili njoj odgovarajuća elektronska struja, mogu biti značajne za superprovodljivost dopiranih bakarnih oksida.

Pored ovih interakcija, u hamiltonijan se može uvesti antisimetrična interakcija izmene Đalošinski-Morija (*Dzyaloshinski-Moriya*) ([6], [7]), kojoj odgovara integral izmene J_{DM} , a koja potiče od male rotacije CuO_6 oktaedara oko ose čiji je jedinični vektor na Slici 4 označen sa \vec{a}_1 .

Navedene interakcije među spinovima nepopunjenih 3d-ljuski bakarnih Cu^{2+} jona u ravni šematski su prikazane na Slici 5, a Hajzenbergov hamiltonijan koji uključuje te interakcije kao i interplanarnu interakciju ima oblik:

$$\hat{H} = \frac{J}{2} \sum_{i,\delta} \vec{S}_i \vec{S}_{i+\delta} + \frac{J_2}{2} \sum_{i,\delta_2} \vec{S}_i \vec{S}_{i+\delta_2} + \frac{J_3}{2} \sum_{i,\delta_3} \vec{S}_i \vec{S}_{i+\delta_3} + \frac{1}{2} \sum_{i,\delta_{\perp_j}} J_{\perp_j} \vec{S}_i \vec{S}_{i+\delta_{\perp_j}} +$$

¹¹Drugi značajan sistem kod koga je detektovana prstenasta interakcija je He^3 .

Magnetne osobine La₂CuO₄...

$$+ J_C \sum_{\langle i,j,k,l \rangle} [(\vec{S}_i \vec{S}_j) (\vec{S}_k \vec{S}_l) + (\vec{S}_i \vec{S}_l) (\vec{S}_k \vec{S}_j) - (\vec{S}_i \vec{S}_k) (\vec{S}_j \vec{S}_l)] + + \frac{J_{DM}}{2} \sum_{i,\delta} (-)^i \vec{a}_1 \cdot \vec{S}_i \times \vec{S}_{i+\delta}$$

$$(1)$$

pri čemu treba naglasiti da četvrti član eksplicitno uključuje susede na dva (budući da je jedinjenje u ortorombičnoj fazi) različita rastojanja, δ_{\perp_1} i δ_{\perp_2} , a samim tim i dva različita integrala izmene, J_{\perp_1} i J_{\perp_2} . Takođe, primećujemo da je znak antisimetrične izmene različit za različite podrešetke, što je posledica činjenice da je smer rotacije CuO_6 oktaedra za različite podrešetke različit.

Slika 5: Atomske orbitale (Cu $3d_{x^2-y^2}$ i O $2p_{x,y}$) uključene u magnetne interakcije u CuO_2 ravnima [8]

U ovom radu, posmatraćemo hamiltonijan koji se na određeni način razlikuje od hamiltonijana (1). Najpre, proučavaćemo La_2CuO_4 u tetragonalnoj fazi, u kojoj su konstante rešetke $a_t = b_t \approx 3.78 \text{ Å i } c_t \approx 13.2 \text{ Å } [3]$. S jedne strane, to je opravdano činjenicom da se u ravni bilo posmatranjem tetragonalne, bilo ortorombične strukture, dobijaju isti rezultati, a interplanarna interakcija, koja unosi razlike, je mnogo slabija od one unutar ravni. Takođe, s obzirom da La_2CuO_4 u superprovodnoj fazi (zbog čijeg se postojanja ovo jedinjenje i proučava) u određenom opsegu

koncentracija primesa ima tetragonalnu strukturu, to je od značaja magnetne osobine ovog jedinjenja proučavati upravo u toj strukturnoj fazi. Naposletku, i u literaturi se često izučava upravo tetragonalna struktura La_2CuO_4 ([8],[9],[10],[11]). Posledica ovoga je da se hamiltonijan (1) pojednostavljuje u tom smislu što je u tetragonalnoj fazi $J_{DM} = 0$, a $\delta_{\perp 1} = \delta_{\perp 2}$, odnosno $J_{\perp 1} = J_{\perp 2}$.

Dalje, zanemarićemo kružnu interakciju ($J_C = 0$) jer njen doprinos nije jednak u posmatranom temperaturnom intervalu (od apsolutne nule do temperature faznog prelaza). Naime, iako bi ovu interakciju imalo smisla uzeti u obzir na niskim temperaturama, ona bi na visokim temperaturama u tjablikovskoj aproksimaciji dala članove proporcionalne sa $\langle \hat{S}^z \rangle^2$ i $\langle \hat{S}^z \rangle^3$ koji se ne bi mogli porediti sa članovima proporcionalnim sa $\langle \hat{S}^z \rangle$. Pored toga, i u literaturi se ciklična interakcija često zanemaruje ([6],[10],[11]).

Takođe ćemo pretpostaviti da se interakcija drugih najbližih suseda ne razlikuje od interakcije trećih najbližih suseda, tj, da je $J_2 = J_3$, što se često uzima u literaturi ([8],[9]).

Položaj svakog spina obeležavaćemo sa :

$$\hat{S}_{\vec{n}}^{(\alpha)} \equiv \hat{S}_{m,\vec{\rho}_{\alpha}}^{(\alpha)}$$

gde α označava usmerenost spina na tom čvoru i može biti a ("up") ili b ("down"), m prebrojava ravni duž pravca normalnog na površinu magnetika, a \vec{p} je dvodimenzioni vektor koji određuje položaj unutar ravni.

S obzirom da se elementarna pobuđenja sistema sastoje u smanjivanju vrednosti z-projekcije spinova, u hamiltonijanu ćemo umesto operatora \hat{S}^x i \hat{S}^y koristiti operatore \hat{S}^+ i \hat{S}^- , definisane relacijom

$$\hat{S}^{\pm} = \hat{S}^x \pm i\hat{S}^y$$

koji, prema opštoj teoriji angularnih momenata, povećavaju, odnosno smanjuju z-projekciju spina za jedinicu. Konkretno, \hat{S}^+ anihilira, a \hat{S}^- kreira pobuđenja sistema [4].

Rastojanje između prvih, odnosno drugih (trećih) najbližih suseda u ravni, označićemo sa $\overline{\lambda}_{\parallel}$, odnosno $\overline{\lambda}_2$ ($\overline{\lambda}_3$), a između prvih suseda u dve susedne ravni $\overline{\lambda}_{\perp}$.

Magnetne osobine $La_2CuO_4...$

Imajući u vidu gornje oznake i vršeći rotaciju ose kvantizacije jedne podrešetke (ovde b) za ugao π , usled čega važi:

$$\begin{array}{cccc} \hat{S}^{z(b)} & \longrightarrow & -\hat{S}^{z(b)} \\ \hat{S}^{\pm(b)} & \longrightarrow & \hat{S}^{\mp(b)} \end{array}$$

modelni hamiltonijan posmatranog sistema spinova u spoljašnjem magnetnom polju jačine \mathcal{H} , usmerenom duž z-ose, ima oblik:

$$\hat{H} = J \sum_{\substack{m, \vec{p}_{\alpha}, \vec{\lambda}_{\parallel} \\ a = b \\ m, \vec{p}_{\alpha}, \vec{\lambda}_{\parallel}}} \left(\frac{1}{2} (\hat{S}_{m, \vec{p}_{\alpha}}^{+(a)} \hat{S}_{m, \vec{p}_{\alpha} + \vec{\lambda}_{\parallel}}^{+(b)} + \hat{S}_{m, \vec{p}_{\alpha}}^{-(a)} \hat{S}_{m, \vec{p}_{\alpha} + \vec{\lambda}_{\parallel}}^{-(b)}) - g \hat{S}_{m, \vec{p}_{\alpha}}^{z(a)} \hat{S}_{m, \vec{p}_{\alpha} + \vec{\lambda}_{\parallel}}^{z(b)} \right) + \\
+ \frac{1}{2} J_{2} \sum_{\substack{m, \vec{p}_{\alpha}, \lambda_{i} \\ a = a, b \\ i = 2.3}} \left(\frac{1}{2} (\hat{S}_{m, \vec{p}_{\alpha}}^{+(\alpha)} \hat{S}_{m, \vec{p}_{\alpha} + \vec{\lambda}_{i}}^{-(\alpha)} + \hat{S}_{m, \vec{p}_{\alpha}}^{-(\alpha)} \hat{S}_{m, \vec{p}_{\alpha} + \vec{\lambda}_{i}}^{+(\alpha)}) + \hat{S}_{m, \vec{p}_{\alpha}}^{z(\alpha)} \hat{S}_{m, \vec{p}_{\alpha} + \vec{\lambda}_{i}}^{z(\alpha)} \right) - \\
+ \frac{1}{2} J_{\perp} \sum_{\vec{n}, \vec{\lambda}_{\perp}} \vec{S}_{\vec{n}} \vec{S}_{\vec{n} + \vec{\lambda}_{\perp}}^{-(\mu)} + \mu \mathcal{H} \sum_{m, \vec{p}} (\hat{S}_{m, \vec{p}}^{z(\alpha)} + \hat{S}_{m, \vec{p}}^{z(b)})$$
(2)

gde prvi član opisuje interakciju između prvih suseda u ravni, drugi član odgovara interakciji između drugih i trećih suseda u ravni, treći član opisuje interakciju između prvih suseda u susednim ravnima, dok četvrti član uvodi interakciju sa spoljašnjim magnetnim poljem.

Primetimo da modelni hamiltonijan sadrži dve vrste anizotropije:

- prostornu, koja se ogleda u različitim integralima izmene unutar ravni i normalno na ravan
- spinsku, opisanu parametrom g, koja se ogleda u različitoj interakciji između komponenti spinova na dva čvora

Naposletku, treba naglasiti da je hamiltonijan (2) spinski, tj. sadrži spinske operatore. S obzirom da komutacione relacije spinskih operatora nisu ni bozonskog ni fermionskog tipa, često se vrše različite aproksimacije koje se sastoje u tome da se spinski operatori izražavaju preko Boze-operatora s višom ili nižom tačnošću. Primer ovakve aproksimacije je tzv. Blohova aproksimacija, o kojoj će biti reči kasnije (odeljak 3.6).

3.2 Određivanje energije elementarnih ekscitacija metodom spinskih Grinovih funkcija

S obzirom da je cilj ovog rada da poređenjem teorijski dobijenih izraza s eksperimentalnim rezultatima (spektrom elementarnih ekscitacija na niskim temperaturama, odnosno vrednošću Nelove temperature) odredimo veličinu integrala izmene i pokušamo da rešimo dilemu koja postoji u literaturi [8] oko vrste magnetne interakcije između drugih (trećih) suseda, potrebno je da prvo odredimo energiju elementarnih ekscitacija. Pored navedenog, poznavanje tog spektra će nam omogućiti da izračunamo magnetizacije podrešetke i ispitamo njeno ponašanje u blizini apsolutne nule, kao i da izračunamo unutrašnju energiju i ispitamo ponašanje toplotnog kapaciteta sistema.

Hamiltonijan (2) biće polazna tačka za određivanje energije elementarnih ekscitacija sistema spinova nepopunjenih 3d-ljuski Cu^{2+} jona u La_2CuO_4 . S obzirom na to da ćemo pri tome koristiti metod spinskih Grinovih funkcija, najpre moramo napisati Hajzenbergove jednačine kretanja za operatore \hat{S}^{\pm} (u sistemu $\bar{h} = 1$). Konkretno, treba napisati sistem od dve kuplovane jednačine kretanja za operatore $\hat{S}_{m,\bar{p}_a}^{+(a)}$ i $\hat{S}_{m,\bar{p}_b}^{-(b)}$ i pridružen sistem jednačina za adjungovane operatore. Koristeći te jednačine, napisaćemo sistem jednačina kretanja za Grinove funkcije $\langle \langle \hat{S}_{m,\bar{p}}^{\pm(\alpha)} | \hat{B} \rangle \rangle_E$ gde je $\alpha = a, b, a \hat{B}$ je proizvoljni operator. Taj sistem¹² glasi:

$$\begin{split} E\langle\langle\hat{S}_{m,\vec{p}}^{+(a)}|\hat{B}\rangle\rangle &= \frac{i}{2\pi}\langle[\hat{S}_{m,\vec{p}}^{+(a)},\hat{B}]\rangle + \\ &+ J\sum_{\vec{\lambda}_{\parallel}}\left(\langle\langle\hat{S}_{m,\vec{p}}^{z(a)}\hat{S}_{m,\vec{p}+\vec{\lambda}_{\parallel}}^{-(b)}|\hat{B}\rangle\rangle + g\langle\langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{\parallel}}^{z(b)}\hat{S}_{m,\vec{p}}^{+(a)}|\hat{B}\rangle\rangle\right) + \\ &+ J_{\perp}\sum_{\vec{\lambda}_{\perp}}\left(\langle\langle\hat{S}_{m,\vec{p}}^{z(a)}\hat{S}_{(m,\vec{p})+\vec{\lambda}_{\perp}}^{+(a)}|\hat{B}\rangle\rangle - \langle\langle\hat{S}_{(m,\vec{p})+\vec{\lambda}_{\perp}}^{z(a)}\hat{S}_{m,\vec{p}}^{+(a)}|\hat{B}\rangle\rangle\right) \\ &+ J_{\perp}\sum_{\vec{\lambda}_{\perp}}\left(\langle\langle\hat{S}_{m,\vec{p}}^{z(a)}\hat{S}_{(m,\vec{p})+\vec{\lambda}_{\perp}}^{-(b)}|\hat{B}\rangle\rangle + \langle\langle\hat{S}_{(m,\vec{p})+\vec{\lambda}_{\perp}}^{z(b)}\hat{S}_{m,\vec{p}}^{+(a)}|\hat{B}\rangle\rangle\right) + \\ &+ J_{2}\sum_{\substack{\bar{\lambda}_{i}\\i=2,3}}\left(\langle\langle\hat{S}_{m,\vec{p}}^{z(a)}\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{+(a)}|\hat{B}\rangle\rangle - \langle\langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{z(a)}\hat{S}_{m,\vec{p}}^{+(a)}|\hat{B}\rangle\rangle\right) + \end{split}$$

¹²Radi jednostavnosti, indeks E uz Grinove funkcije je izostavljen.

Magnetne osobine $La_2CuO_4...$

$$+\mu \mathcal{H}\langle\langle \hat{S}_{m,\bar{p}}^{+(a)} | \hat{B} \rangle\rangle \tag{3}$$

$$E\langle\langle\hat{S}_{m,\vec{p}}^{-(b)}|\hat{B}\rangle\rangle = \frac{i}{2\pi}\langle[\hat{S}_{m,\vec{p}}^{-(b)},\hat{B}]\rangle - J\sum_{\vec{\lambda}_{\parallel}}\left(\langle\langle\hat{S}_{m,\vec{p}}^{z(b)}\hat{S}_{m,\vec{p}+\vec{\lambda}_{\parallel}}^{+(a)}|\hat{B}\rangle\rangle + g\langle\langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{\parallel}}^{z(a)}\hat{S}_{m,\vec{p}}^{-(b)}|\hat{B}\rangle\rangle\right) - J\sum_{\vec{\lambda}_{\parallel}}\left(\langle\langle\hat{S}_{m,\vec{p}}^{z(b)}\hat{S}_{(m,\vec{p})+\lambda_{\perp}}^{-(b)}|\hat{B}\rangle\rangle - \langle\langle\hat{S}_{(m,\vec{p})+\lambda_{\perp}}^{z(b)}\hat{S}_{m,\vec{p}}^{-(b)}|\hat{B}\rangle\rangle\right) - J\sum_{\vec{\lambda}_{\perp}}\left(\langle\langle\hat{S}_{m,\vec{p}}^{z(b)}\hat{S}_{(m,\vec{p})+\lambda_{\perp}}^{+(a)}|\hat{B}\rangle\rangle + \langle\langle\hat{S}_{(m,\vec{p})+\lambda_{\perp}}^{z(a)}\hat{S}_{m,\vec{p}}^{-(b)}|\hat{B}\rangle\rangle\right) - J\sum_{\vec{\lambda}_{\perp}}\left(\langle\langle\hat{S}_{m,\vec{p}}^{z(b)}\hat{S}_{m,\vec{p}+\vec{\lambda}_{\perp}}^{-(b)}|\hat{B}\rangle\rangle - \langle\langle\hat{S}_{(m,\vec{p})+\lambda_{\perp}}^{z(b)}\hat{S}_{m,\vec{p}}^{-(b)}|\hat{B}\rangle\rangle\right) + J\sum_{\vec{\lambda}_{\perp}}\left(\langle\langle\hat{S}_{m,\vec{p}}^{z(b)}\hat{S}_{m,\vec{p}+\vec{\lambda}_{\perp}}^{-(b)}|\hat{B}\rangle\rangle - \langle\langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{\perp}}^{z(b)}\hat{S}_{m,\vec{p}}^{-(b)}|\hat{B}\rangle\rangle\right) + \mu\mathcal{H}\langle\langle\hat{S}_{m,\vec{p}}^{-(b)}|\hat{B}\rangle\rangle\right)$$

$$(4)$$

$$E\langle\langle\hat{S}_{m,\bar{p}}^{-(a)}|\hat{B}\rangle\rangle = \frac{i}{2\pi}\langle[\hat{S}_{m,\bar{p}}^{-(a)},\hat{B}]\rangle - \\ -J\sum_{\vec{\lambda}\parallel}\left(\langle\langle\hat{S}_{m,\bar{p}}^{z(a)}\hat{S}_{m,\bar{p}+\vec{\lambda}\parallel}^{+(b)}|\hat{B}\rangle\rangle + g\langle\langle\hat{S}_{m,\bar{p}+\vec{\lambda}\parallel}^{z(b)}\hat{S}_{m,\bar{p}}^{-(a)}|\hat{B}\rangle\rangle\right) - \\ -J_{\perp}\sum_{\lambda_{\perp}}\left(\langle\langle\hat{S}_{m,\bar{p}}^{z(a)}\hat{S}_{(m,\bar{p})+\lambda_{\perp}}^{-(a)}|\hat{B}\rangle\rangle - \langle\langle\hat{S}_{(m,\bar{p})+\lambda_{\perp}}^{z(a)}\hat{S}_{m,\bar{p}}^{-(a)}|\hat{B}\rangle\rangle\right) - \\ -J_{\perp}\sum_{\lambda_{\perp}}\left(\langle\langle\hat{S}_{m,\bar{p}}^{z(a)}\hat{S}_{(m,\bar{p})+\lambda_{\perp}}^{+(b)}|\hat{B}\rangle\rangle + \langle\langle\hat{S}_{(m,\bar{p})+\lambda_{\perp}}^{z(b)}\hat{S}_{m,\bar{p}}^{-(a)}|\hat{B}\rangle\rangle\right) - \\ -J_{2}\sum_{\substack{\lambda_{\perp}\\i=2.3}}\left(\langle\langle\hat{S}_{m,\bar{p}}^{z(a)}\hat{S}_{m,\bar{p}+\bar{\lambda}_{i}}^{-(a)}|\hat{B}\rangle\rangle - \langle\langle\hat{S}_{m,\bar{p}+\bar{\lambda}_{i}}^{z(a)}\hat{S}_{m,\bar{p}}^{-(a)}|\hat{B}\rangle\rangle\right) - \\ -\mu\mathcal{H}\langle\langle\hat{S}_{m,\bar{p}}^{-(a)}|\hat{B}\rangle\rangle$$
(5)

$$E\langle\langle\hat{S}_{m,\bar{\rho}}^{+(b)}|\hat{B}\rangle\rangle = \frac{i}{2\pi}\langle[\hat{S}_{m,\bar{\rho}}^{+(b)},\hat{B}]\rangle +$$

19

$$+J\sum_{\tilde{\lambda}_{\parallel}} \left(\langle \langle \hat{S}_{m,\vec{\rho}}^{z(b)} \hat{S}_{m,\vec{\rho}+\vec{\lambda}_{\parallel}}^{-(a)} | \hat{B} \rangle \rangle + g \langle \langle \hat{S}_{m,\vec{\rho}+\vec{\lambda}_{\parallel}}^{z(a)} \hat{S}_{m,\vec{\rho}}^{+(b)} | \hat{B} \rangle \rangle \right) + \\ +J_{\perp} \sum_{\lambda_{\perp}} \left(\langle \langle \hat{S}_{m,\vec{\rho}}^{z(b)} \hat{S}_{(m,\vec{\rho})+\lambda_{\perp}}^{+(b)} | \hat{B} \rangle \rangle - \langle \langle \hat{S}_{(m,\vec{\rho})+\lambda_{\perp}}^{z(b)} \hat{S}_{m,\vec{\rho}}^{+(b)} | \hat{B} \rangle \rangle \right) \\ +J_{\perp} \sum_{\lambda_{\perp}} \left(\langle \langle \hat{S}_{m,\vec{\rho}}^{z(b)} \hat{S}_{(m,\vec{\rho})+\lambda_{\perp}}^{-(a)} | \hat{B} \rangle \rangle + \langle \langle \hat{S}_{(m,\vec{\rho})+\lambda_{\perp}}^{z(a)} \hat{S}_{m,\vec{\rho}}^{+(b)} | \hat{B} \rangle \rangle \right) + \\ +J_{2} \sum_{\substack{\lambda_{\perp}\\i=2.3}} \left(\langle \langle \hat{S}_{m,\vec{\rho}}^{z(b)} \hat{S}_{m,\vec{\rho}+\vec{\lambda}_{i}}^{+(b)} | \hat{B} \rangle \rangle - \langle \langle \hat{S}_{m,\vec{\rho}+\vec{\lambda}_{i}}^{z(b)} \hat{S}_{m,\vec{\rho}}^{+(b)} | \hat{B} \rangle \rangle \right) - \\ -\mu \mathcal{H} \langle \langle \hat{S}_{m,\vec{\rho}}^{+(b)} | \hat{B} \rangle \rangle$$

$$(6)$$

U jednačinama (3), (4), (5) i (6) pojavljuju se Grinove funkcije višeg reda (dvočestične), koje je potrebno svesti na funkcije nižeg reda (jednočestične). U tom cilju, često se koriste različite aproksimacije (Prilog A). U ovom radu će biti korišćeno modifikovano Kalenovo (*H. Callen*) dekuplovanje za niske temperature ([12], Prilog A), koje je za antiferomagnetike sa spinom $S = \frac{1}{2}$ dato izrazom (89) iz priloga:

$$\langle\langle \hat{S}_{g}^{z}\hat{S}_{f}^{\pm}|\hat{B}\rangle\rangle \xrightarrow{g\neq f} S\Big((1-\frac{1}{S}\langle\hat{S}_{g}^{-}\hat{S}_{g}^{+}\rangle)\langle\langle\hat{S}_{f}^{\pm}|\hat{B}\rangle\rangle - \frac{1}{S}\langle\hat{S}_{g}^{\pm}\hat{S}_{f}^{\pm}\rangle\langle\langle\hat{S}_{g}^{\mp}|\hat{B}\rangle\rangle\Big)$$

Na temperaturama bliskim temperaturi faznog prelaza koristićemo tjablikovsko dekuplovanje (Prilog A) jer ono daje bolje rezultate.

Ovde ćemo, primera radi, navesti samo jednu dekuplovanu jednačinu, a ostale se dobijaju analogno.

$$E\langle\langle\hat{S}_{m,\vec{p}}^{+(a)}|\hat{B}\rangle\rangle = \frac{i}{2\pi}\langle[\hat{S}_{m,\vec{p}}^{+(a)},\hat{B}]\rangle + SJ\sum_{\vec{\lambda}\parallel} \left((1 - \frac{1}{S}\langle\hat{S}_{m,\vec{p}}^{-(a)}\hat{S}_{m,\vec{p}}^{+(a)}\rangle)\langle\langle\hat{S}_{m,\vec{p}+\vec{\lambda}\parallel}^{-(b)}|\hat{B}\rangle\rangle - \frac{1}{S}\langle\hat{S}_{m,\vec{p}}^{-(a)}\hat{S}_{m,\vec{p}+\vec{\lambda}\parallel}^{-(b)}\rangle\langle\langle\hat{S}_{m,\vec{p}+\vec{\lambda}\parallel}^{+(a)}|\hat{B}\rangle\rangle + g(1 - \frac{1}{S}\langle\hat{S}_{m,\vec{p}+\vec{\lambda}\parallel}^{-(b)}\hat{S}_{m,\vec{p}+\vec{\lambda}\parallel}^{+(b)}\rangle)\langle\langle\hat{S}_{m,\vec{p}}^{+(a)}|\hat{B}\rangle\rangle - \frac{g}{S}\langle\hat{S}_{m,\vec{p}}^{+(a)}\hat{S}_{m,\vec{p}+\vec{\lambda}\parallel}^{+(b)}\rangle\langle\langle\hat{S}_{m,\vec{p}+\vec{\lambda}\parallel}^{-(b)}|\hat{B}\rangle\rangle + SJ_{\perp}\sum_{\vec{\lambda}_{\perp}}\left((1 - \frac{1}{S}\langle\hat{S}_{m,\vec{p}}^{-(a)}\hat{S}_{m,\vec{p}}^{+(a)}\rangle)\langle\langle\hat{S}_{(m,\vec{p})+\vec{\lambda}_{\perp}}^{+(a)}|\hat{B}\rangle\rangle - \frac{g}{S}\langle\hat{S}_{m,\vec{p}}^{+(a)}\hat{S}_{m,\vec{p}+\vec{\lambda}_{\parallel}}^{+(b)}\rangle\langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{\parallel}}^{-(b)}|\hat{B}\rangle\rangle + SJ_{\perp}\sum_{\vec{\lambda}_{\perp}}\left((1 - \frac{1}{S}\langle\hat{S}_{m,\vec{p}}^{-(a)}\hat{S}_{m,\vec{p}}^{+(a)}\rangle)\langle\langle\hat{S}_{(m,\vec{p})+\vec{\lambda}_{\perp}}^{+(a)}|\hat{B}\rangle\rangle - \frac{g}{S}\langle\hat{S}_{m,\vec{p}}^{+(a)}\hat{S}_{m,\vec{p}+\vec{\lambda}_{\parallel}}^{-(b)}\rangle\langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{\parallel}}^{-(b)}|\hat{S}\rangle\rangle + SJ_{\perp}\sum_{\vec{\lambda}_{\perp}}\left((1 - \frac{1}{S}\langle\hat{S}_{m,\vec{p}}^{-(a)}\hat{S}_{m,\vec{p}}^{-(a)}\rangle)\langle\langle\hat{S}_{(m,\vec{p})+\vec{\lambda}_{\perp}}^{-(a)}|\hat{S}\rangle\rangle - \frac{g}{S}\langle\hat{S}_{m,\vec{p}}^{-(a)}\hat{S}_{m,\vec{p}+\vec{\lambda}_{\parallel}}^{-(b)}|\hat{S}\rangle\rangle + SJ_{\perp}\sum_{\vec{\lambda}_{\perp}}\left((1 - \frac{1}{S}\langle\hat{S}_{m,\vec{p}}^{-(a)}\hat{S}_{m,\vec{p}}^{-(a)}\rangle)\langle\langle\hat{S}_{(m,\vec{p})+\vec{\lambda}_{\perp}}^{-(a)}|\hat{S}\rangle\rangle - \frac{g}{S}\langle\hat{S}_{m,\vec{p}}^{-(a)}\hat{S}_{m,\vec{p}+\vec{\lambda}_{\parallel}}^{-(b)}|\hat{S}\rangle\rangle + SJ_{\perp}\sum_{\vec{\lambda}_{\perp}}\left((1 - \frac{1}{S}\langle\hat{S}_{m,\vec{p}}^{-(a)}\hat{S}_{m,\vec{p}}^{-(a)}\rangle)\langle\langle\hat{S}_{(m,\vec{p})+\vec{\lambda}_{\perp}}^{-(a)}|\hat{S}\rangle\rangle - \frac{g}{S}\langle\hat{S}_{m,\vec{p}}^{-(a)}\hat{S}_{m,\vec{p}+\vec{\lambda}_{\parallel}}^{-(a)}|\hat{S}\rangle\rangle + SJ_{\perp}\sum_{\vec{\lambda}_{\perp}}\left((1 - \frac{1}{S}\langle\hat{S}_{m,\vec{p}}^{-(a)}\hat{S}_{m,\vec{p}}^{-(a)}\rangle)\langle\langle\hat{S}_{(m,\vec{p})+\vec{\lambda}_{\perp}}^{-(a)}|\hat{S}\rangle\rangle - \frac{g}{S}\langle\hat{S}_{m,\vec{p}}^{-(a)}\hat{S}_{m,\vec{p}+\vec{\lambda}_{\parallel}}^{-(a)}|\hat{S}\rangle\rangle + \frac{g}{S}\langle\hat{S}_{m,\vec{p}}^{-(a)}|\hat{S}\rangle\rangle + \frac{g}{S}\langle\hat{S}_{m,\vec{p}}^{-(a)}|\hat{S}\rangle\rangle - \frac{g}{S}\langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{\parallel}}^{-(a)}|\hat{S}\rangle\rangle$$

Magnetne osobine $La_2CuO_4...$

$$-\frac{1}{S}\langle\hat{S}_{m,\vec{p}}^{-(a)}\hat{S}_{(m,\vec{p})+\vec{\lambda}_{\perp}}^{+(a)}\rangle\langle\langle\hat{S}_{m,\vec{p}}^{+(a)}|\hat{B}\rangle\rangle - (1-\frac{1}{S}\langle\hat{S}_{(m,\vec{p})+\vec{\lambda}_{\perp}}^{-(a)}\hat{S}_{(m,\vec{p})+\vec{\lambda}_{\perp}}^{+(a)}\rangle)\langle\langle\hat{S}_{m,\vec{p}}^{+(a)}|\hat{B}\rangle\rangle + \\ +\frac{1}{S}\langle\hat{S}_{m,\vec{p}}^{+(a)}\hat{S}_{(m,\vec{p})+\vec{\lambda}_{\perp}}^{-(a)}\rangle\langle\langle\hat{S}_{(m,\vec{p})+\vec{\lambda}_{\perp}}^{+(a)}|\hat{B}\rangle\rangle + SJ_{\perp}\sum_{\vec{\lambda}_{\perp}}\left((1-\frac{1}{S}\langle\hat{S}_{m,\vec{p}}^{-(a)}\hat{S}_{m,\vec{p}}^{+(a)}\rangle)\langle\langle\hat{S}_{(m,\vec{p})+\vec{\lambda}_{\perp}}^{-(b)}|\hat{B}\rangle\rangle - \\ -\frac{1}{S}\langle\hat{S}_{m,\vec{p}}^{-(a)}\hat{S}_{(m,\vec{p})+\vec{\lambda}_{\perp}}^{-(b)}\rangle\langle\langle\hat{S}_{m,\vec{p}}^{+(a)}|\hat{B}\rangle\rangle + (1-\frac{1}{S}\langle\hat{S}_{(m,\vec{p})+\vec{\lambda}_{\perp}}^{-(b)}\hat{S}_{(m,\vec{p})+\vec{\lambda}_{\perp}}^{+(a)}\rangle)\langle\langle\hat{S}_{m,\vec{p}}^{+(a)}|\hat{B}\rangle\rangle - \\ -\frac{1}{S}\langle\hat{S}_{m,\vec{p}}^{-(a)}\hat{S}_{m,\vec{p}+\vec{\lambda}_{\perp}}^{+(a)}\rangle\langle\langle\hat{S}_{m,\vec{p}}^{-(a)}|\hat{B}\rangle\rangle - (1-\frac{1}{S}\langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{-(a)}\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{+(a)}\rangle)\langle\langle\hat{S}_{m,\vec{p}}^{-(a)}|\hat{B}\rangle\rangle - \\ -\frac{1}{S}\langle\hat{S}_{m,\vec{p}}^{-(a)}\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{+(a)}\rangle\langle\langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{+(a)}|\hat{B}\rangle\rangle - (1-\frac{1}{S}\langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{-(a)}\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{+(a)}\rangle)\langle\langle\hat{S}_{m,\vec{p}}^{+(a)}|\hat{B}\rangle\rangle - \\ -\frac{1}{S}\langle\hat{S}_{m,\vec{p}}^{+(a)}\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{-(a)}\rangle\langle\langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{+(a)}|\hat{B}\rangle\rangle + (1-\frac{1}{S}\langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{-(a)}\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{+(a)}\rangle)\langle\langle\hat{S}_{m,\vec{p}}^{+(a)}|\hat{B}\rangle\rangle - \\ -\frac{1}{S}\langle\hat{S}_{m,\vec{p}}^{+(a)}\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{-(a)}\rangle\langle\langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{+(a)}|\hat{B}\rangle\rangle + \mu\mathcal{H}\langle\langle\hat{S}_{m,\vec{p}}^{+(a)}|\hat{B}\rangle\rangle - (1-\frac{1}{S}\langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{-(a)}|\hat{B}\rangle\rangle) - \langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{-(a)}|\hat{B}\rangle\rangle - \langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{-(a)}|\hat{B}\rangle\rangle) - \langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{-(a)}|\hat{B}\rangle\rangle - \langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{-(a)}|\hat{B}\rangle\rangle - \langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{-(a)}|\hat{B}\rangle\rangle - \langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{-(a)}|\hat{B}\rangle\rangle - \langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{-(a)}|\hat{S}\rangle\rangle - \langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{-(a)}|\hat{S}\rangle\rangle - \langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}^{-(a)}|\hat{S}\rangle\rangle - \langle\hat{S}_{m,\vec{p}+\vec{\lambda}_{i}}$$

Prilikom prelaska iz direktnog u recipročni prostor $(\vec{n} \rightarrow \vec{k})$ Furije-transformacijom, dobijamo izraze tipa:

$$\begin{split} \sum_{\bar{\lambda}_{\alpha}} \langle \hat{S}^{\mu}_{(m,\bar{\rho})+\bar{\lambda}_{\alpha}} \hat{S}^{\nu}_{m,\bar{\rho}} \rangle \langle \langle \hat{S}^{\mu/\nu}_{(m,\bar{\rho})+\bar{\lambda}_{\alpha}} | \hat{B} \rangle \rangle &\longrightarrow \frac{1}{N} \sum_{\bar{q}} \tilde{\gamma}_{\alpha} (\vec{q} - \vec{k}) \Phi^{\mu\nu} (\vec{q}) G^{\mu/\nu} (\vec{k}, E) \\ \sum_{\bar{\lambda}_{\alpha}} \langle \hat{S}^{\mu}_{(m,\bar{\rho})+\bar{\lambda}_{\alpha}} \hat{S}^{\nu}_{m,\bar{\rho}} \rangle \langle \langle \hat{S}^{\mu/\nu}_{m,\bar{\rho}} | \hat{B} \rangle \rangle &\longrightarrow \frac{1}{N} \sum_{\bar{q}} \tilde{\gamma}_{\alpha} (\bar{q}) \Phi^{\mu\nu} (\bar{q}) G^{\mu/\nu} (\vec{k}, E) \\ \sum_{\bar{\lambda}_{\alpha}} \langle \langle \hat{S}^{\mu}_{(m,\bar{\rho})+\bar{\lambda}_{\alpha}} | \hat{B} \rangle \rangle &\longrightarrow \tilde{\gamma}_{\alpha} (\vec{k}) G^{\mu} (\vec{k}, E) \\ \sum_{\bar{\lambda}_{\alpha}} \langle \langle \hat{S}^{\mu}_{m,\bar{\rho}} | \hat{B} \rangle \rangle &\longrightarrow z_{\alpha} G^{\mu} (\vec{k}, E) \end{split}$$

gde važe sledeće oznake

$$G_{\alpha B}^{\pm}(\vec{k}, E) \equiv \langle \langle \hat{S}_{m,\vec{p}}^{\pm(\alpha)} | \hat{B} \rangle \rangle_{\vec{k}}$$
$$\tilde{\gamma}_{\alpha}(\vec{q}) = \sum_{\vec{\lambda}_{\alpha}} e^{i\vec{q}\vec{\lambda}_{\alpha}}, \text{ gde je } \vec{\lambda}_{\alpha} \equiv \vec{\lambda}_{||}; \lambda_{\perp}; \vec{\lambda}_{2}; \vec{\lambda}_{3}$$

Spinske ekscitacije...

$$\Phi^{\mu\nu}(\vec{q}) = \langle \hat{S}^{\mu} \hat{S}^{\nu} \rangle_{\vec{q}}$$

pri čemu je $\alpha = a, b$ i $\mu, \nu = +, -, dok z$ predstavlja broj najbližih suseda uočenog spina. Unutar ravni broj prvih, drugih i trećih najbližih suseda je isti, tj. $z_{\parallel} = z_2 = z_3 = 4$ (Slika 4b), dok je broj najbližih suseda uočenog spina u susednim ravnima $z_{\perp} = 8$ (Slika 4a). Od značaja je eksplicitno napisati čemu su jednake sume $\tilde{\gamma}_{\alpha}(\vec{q})$ (odnosno $\gamma_{\alpha}(\vec{q})$). S obzirom na geometriju posmatranog sistema, jednostavnim računom može se pokazati da važe sledeći izrazi:

$$\gamma_{\parallel}(\vec{q}) = \frac{1}{2}(\cos q_x a + \cos q_y a) \tag{8}$$

$$\gamma_2(\vec{q}) = \cos q_x a \, \cos q_y a \tag{9}$$

$$\gamma_3(\vec{q}) = \frac{1}{2} (\cos 2q_x a + \cos 2q_y a)$$
(10)

$$\gamma_{\perp}^{aa}(\vec{q}) = \gamma_{\perp}^{bb}(\vec{q}) = \cos\frac{q_z c}{2} \cos\frac{a}{2}(q_x - q_y)$$
(11)

$$\gamma_{\perp}^{ab}(\vec{q}) = \gamma_{\perp}^{ba}(\vec{q}) = \cos\frac{q_z c}{2} \cos\frac{a}{2}(q_x + q_y)$$
(12)

gde je

$$\gamma_{\alpha}(\vec{q}) = rac{1}{z_{lpha}} ilde{\gamma}_{lpha}(\vec{q})$$

pri čemu treba istaći da se veličina $\gamma_{\perp}^{aa}(\vec{q})$, odnosno $\gamma_{\perp}^{ab}(\vec{q})$, odnose na interakciju između posmatranog spina i četiri spina u susednim ravnima s kojima je on feromagnetno, odnosno antiferomagnetno sparen ("kuplovan").

Nakon prostorne Furije-transformacije, sistem koji čine jednačina (7) i analogna jednačina koja se dobija dekuplovanjem jednačine (4), dobija oblik

$$(E - J\varepsilon_{1}(\vec{k}))G^{+}_{aB}(\vec{k}, E) - JSI(\vec{k})G^{-}_{bB}(\vec{k}, E) = \frac{i}{2\pi} \langle [\hat{S}^{+(a)}_{m,\vec{p}}, \hat{B}] \rangle$$

$$JSI(\vec{k})G^{+}_{aB}(\vec{k}, E) + (E + J\varepsilon_{2}(\vec{k})))G^{-}_{bB}(\vec{k}, E) = \frac{i}{2\pi} \langle [\hat{S}^{-(b)}_{m,\vec{p}}, \hat{B}] \rangle$$
 (13)

Magnetne osobine $La_2CuO_4...$

gde su uvedene sledeće oznake:

$$\varepsilon_{1}(\vec{k}) = S\varepsilon(\vec{k}) + \frac{\mu\mathcal{H}}{J}$$
$$\varepsilon_{2}(\vec{k}) = S\varepsilon(\vec{k}) - \frac{\mu\mathcal{H}}{J}$$

$$\varepsilon(\vec{k}) = z_2(g(1-\Phi) - \Phi_{\parallel}) + \frac{z_{\perp}}{2}\lambda_{\perp}(1-\Phi - \Phi_{\perp}^{ab}) - \lambda_2[z_2(1-\gamma_2(\vec{k}))(1-\Phi + \Phi_2) + \lambda_2[z_2(1-\Phi + \Phi_2)] - \lambda_2[z_2(1-\Phi + \Phi_2)] - \lambda_2[z_2(1-\Phi - \Phi_2)] - \lambda_2[z_2(1-\Phi + \Phi_2)] - \lambda_2[z$$

$$+z_{3}(1-\gamma_{3}(\vec{k}))(1-\Phi+\Phi_{3})] - \frac{z_{\perp}}{2}\lambda_{\perp}(1-\gamma_{\perp}^{aa}(\vec{k}))(1-\Phi+\Phi_{\perp}^{aa})$$
(14)

$$I(\vec{k}) = z_2 \gamma_{\parallel}(\vec{k}) (1 - \Phi - g \Phi_{\parallel}) + \frac{z_\perp}{2} \lambda_\perp \gamma_\perp^{ab}(\vec{k}) (1 - \Phi - \Phi_\perp^{ab})$$
(15)

$$\Phi = \frac{1}{SN} \sum_{\vec{q}} \Phi^{-+}(\vec{q})$$

$$\Phi_{\parallel} \equiv \frac{1}{SN} \sum_{\vec{q}} \gamma_{\parallel}(\vec{q}) \Phi^{--}(\vec{q}) \qquad \Phi_{i} \equiv \frac{1}{SN} \sum_{\vec{q}} \gamma_{i}(\vec{q}) \Phi^{-+}(\vec{q}), \quad i = 2, 3$$

$$\Phi_{\perp}^{aa} \equiv \frac{1}{SN} \sum_{\vec{q}} \gamma_{\perp}^{aa}(\vec{q}) \Phi^{--}(\vec{q}) \qquad \Phi_{\perp}^{ab} \equiv \frac{1}{SN} \sum_{\vec{q}} \gamma_{\perp}^{ab}(\vec{q}) \Phi^{--}(\vec{q})$$

pri čemu je bitno napomenuti da su zbog realnosti koeficijenata u hamiltonijanu (2) sledeće srednje vrednosti jednake:

$$\Phi^{--}(\vec{q}) = \Phi^{++}(\vec{q}) \qquad \Phi^{aa}_{\perp}(\vec{q}) = \Phi^{bb}_{\perp}(\vec{q}) \qquad \Phi^{ab}_{\perp}(\vec{q}) = \Phi^{ba}_{\perp}(\vec{q})$$

kao i da u gornjim izrazima N predstavlja ukupan broj elementarnih magnetnih ćelija, a λ_2 i λ_{\perp} predstavljaju odnose odgovarajućih integrala izmene, tj. $\lambda_2 = \frac{J_2}{J} = \frac{J_3}{J}$ i $\lambda_{\perp} = \frac{J_1}{J}$. Determinanta sistema (13) je

$$D_1(E) = \begin{vmatrix} E - J\varepsilon_1 & -JSI(\vec{k}) \\ JSI(\vec{k}) & E + J\varepsilon_2 \end{vmatrix}$$
(16)

dok determinanta adjungovanog sistema $D_2(E)$ zadovoljava relaciju

$$D_2(E) = D_1(-E)$$
(17)

Spinske ekscitacije...

Nule gornjih determinanti daju energije spinskih talasa. Determinanta sistema (13) daje

$$E_{1/2} = \mu \mathcal{H} \pm JS \sqrt{\varepsilon^2(\vec{k}) - l^2(\vec{k})}$$

dok su nule determinante adjungovanog sistema

$$E_{1/2} = -\mu \mathcal{H} \mp JS \sqrt{\varepsilon^2(\vec{k}) - l^2(\vec{k})}$$

Iz poslednja dva izraza vidi se da na temperaturi različitoj od nule u prisustvu spoljašnjeg magnetnog polja postoje četiri različite energije, dok u odsustvu polja postoje dve, dvostruko degenerisane energije¹³. U daljem radu mi ćemo definisati dve pozitivne energije uz pretpostavku slabog polja

$$E_{1}(\vec{k}) = JS\sqrt{\varepsilon^{2}(\vec{k}) - I^{2}(\vec{k})} + \mu\mathcal{H}$$
(18)

$$E_2(\vec{k}) = JS\sqrt{\varepsilon^2(\vec{k}) - l^2(\vec{k})} - \mu\mathcal{H}$$
(19)

tako da se gornje determinante, koje će nam služiti za određivanje Grinovih funkcija, mogu zapisati kao

$$D_1(E) = (E - E_1(\vec{k}))(E + E_2(\vec{k}))$$
$$D_2(E) = (E + E_1(\vec{k}))(E - E_2(\vec{k}))$$

U odsustvu spoljašnjeg magnetnog polja $E_1(\vec{k}) = E_2(\vec{k})$ te je

$$D_1(E) = D_2(E) = E^2 - E^2(\bar{k})$$

gde je

$$E(\vec{k}) = JS\sqrt{\varepsilon^2(\vec{k}) - I^2(\vec{k})}$$
(20)

12

pri čemu se često uvodi oznaka

$$\omega(\vec{k}) \equiv \sqrt{\varepsilon^2(\vec{k}) - l^2(\vec{k})}$$

¹³Na apsolutnoj nuli, u prisustvu polja imamo dve različite energije, a u odsustvu polja jednu degenerisanu.

Magnetne osobine $La_2CuO_4...$

usled čega (20) prelazi u

$$E(\vec{k}) = JS\omega(\vec{k}) \tag{21}$$

Da bismo odredili veličine Φ_{\parallel} , Φ_2 , Φ_3 , Φ_{\perp}^{aa} i Φ_{\perp}^{ab} koje figurišu u izrazu za energiju elementarnih ekscitacija, potrebno je naći srednje vrednosti $\Phi^{\mu\nu}(\vec{q}) = \langle \hat{S}^{\mu} \hat{S}^{\nu} \rangle_{\vec{q}}$ preko kojih su one date, a koje se (srednje vrednosti), prema relaciji (79) iz Priloga A, dobijaju preko Grinovih funkcija.

Konkretno, treba izračunati Grinove funkcije $G_{aa}^{+-}(\vec{k}, E)$ i $G_{ba}^{--}(\vec{k}, E)$. U tom cilju, konkretizovaćemo operator \hat{B} kroz operator $\hat{S}_{n,\bar{p}\prime}^{-(a)}$ ($\hat{B} \equiv \hat{S}_{n,\bar{p}\prime}^{-(a)}$), usled čega sistem (13) postaje:

$$(E - J\epsilon_{1}(\vec{k}))G_{aa}^{+-}(\vec{k}, E) - JSI(\vec{k})G_{ba}^{--}(\vec{k}, E) = \frac{i}{2\pi}2\langle\hat{S}^{z(a)}\rangle$$

$$JSI(\vec{k})G_{aa}^{+-}(\vec{k}, E) + (E + J\epsilon_{2}(\vec{k})))G_{ba}^{--}(\vec{k}, E) = 0$$
(22)

Rešavanjem sistema (22) po Grinovim funkcijama $G_{aa}^{+-}(\vec{k}, E)$ i $G_{ba}^{--}(\vec{k}, E)$, u odsustvu spoljašnjeg magnetnog polja, dobija se

$$G_{aa}^{+-}(\vec{k}, E) = \frac{i}{2\pi} 2\sigma \left(\frac{A(\vec{k})}{E - E(\vec{k})} + \frac{B(\vec{k})}{E + E(\vec{k})} \right)$$
(23)

$$G_{ba}^{--}(\vec{k}, E) = \frac{i}{2\pi} 2\sigma \left(\frac{C(\vec{k})}{E - E(\vec{k})} + \frac{D(\vec{k})}{E + E(\vec{k})} \right)$$
(24)

gde su korišćene oznake

$$\sigma = S(1 - \Phi)$$

$$A(\vec{k}) = \frac{1}{2} + \frac{\varepsilon(\vec{k})}{2\omega(\vec{k})} \qquad B(\vec{k}) = \frac{1}{2} - \frac{\varepsilon(\vec{k})}{2\omega(\vec{k})}$$

$$C(\vec{k}) = -\frac{\varepsilon(\vec{k})}{2\omega(\vec{k})} \qquad D(\vec{k}) = \frac{\varepsilon(\vec{k})}{2\omega(\vec{k})}$$

$$C(\vec{k}) = \frac{\varepsilon(\vec{k})}{2\omega(\vec{k})} \qquad D(\vec{k}) = \frac{\varepsilon(\vec{k})}{2\omega(\vec{k})}$$

Na osnovu relacije (79) iz priloga, korišćenjem identiteta

$$\mathcal{P}\frac{1}{x-a\pm i\delta}\stackrel{\delta\to 0}{=}\mathcal{P}\frac{1}{x-a}\mp i\pi\delta(x-a)$$

Spinske ekscitacije...

jednostavnim računom se dobijaju sledeće srednje vrednosti

$$\langle \hat{S}^{-} \hat{S}^{+} \rangle_{\vec{k}} = S(1-\Phi) \left(\frac{\varepsilon(\vec{k})}{\omega(\vec{k})} - 1 \right) + 2S(1-\Phi) \frac{\varepsilon(\vec{k})}{\omega(\vec{k})} \frac{1}{e^{\frac{\varepsilon(\vec{k})}{\Theta}} - 1}$$
(26)

$$\langle \hat{S}^{-} \hat{S}^{-} \rangle_{\vec{k}} = -S(1-\Phi) \frac{I(\vec{k})}{\omega(\vec{k})} - 2S(1-\Phi) \frac{I(k)}{\omega(\vec{k})} \frac{1}{e^{\frac{E(\vec{k})}{\Theta}} - 1}$$
(27)

Sada možemo odrediti veličine Φ_{η} ($\eta = ||, 2, 3, \bot$). One su date sledećim izrazima:

$$\Phi = \frac{2(1-\Phi)}{N} \sum_{\bar{q}} \left(\frac{1}{2} \left(\frac{\varepsilon(\bar{k})}{\omega(\bar{k})} - 1 \right) + \frac{\varepsilon(\bar{k})}{\omega(\bar{k})} \frac{1}{e^{\frac{\varepsilon(\bar{k})}{\Theta}} - 1} \right)$$
(28)

$$\Phi_{||} = -\frac{2(1-\Phi)}{N} \sum_{\vec{q}} \frac{\gamma_{||}(\vec{q})I(\vec{q})}{\omega(\vec{q})} \left(\frac{1}{2} + \frac{1}{e^{\frac{E(\vec{q})}{\Theta}} - 1}\right)$$
(29)

$$\Phi_i = \frac{2(1-\Phi)}{N} \sum_{\vec{q}} \frac{\gamma_i(\vec{q})\varepsilon(\vec{q})}{\omega(\vec{q})} \left(\frac{1}{2} + \frac{1}{e^{\frac{E(\vec{q})}{\Phi}} - 1}\right), \quad i = 2,3$$
(30)

$$\Phi_{\perp}^{aa} = -\frac{2(1-\Phi)}{N} \sum_{\bar{q}} \frac{\gamma_{\perp}^{aa}(\bar{q})I(\bar{q})}{\omega(\bar{q})} \left(\frac{1}{2} + \frac{1}{e^{\frac{E(\bar{q})}{\Theta}} - 1}\right)$$
(31)

$$\Phi_{\perp}^{ab} = -\frac{2(1-\Phi)}{N} \sum_{\vec{q}} \frac{\gamma_{\perp}^{ab}(\vec{q})I(\vec{q})}{\omega(\vec{q})} \left(\frac{1}{2} + \frac{1}{e^{\frac{E(\vec{q})}{\Phi}} - 1}\right)$$
(32)

3.3 Određivanje magnetizacije podrešetke metodom spinskih Grinovih funkcija

Magnetizacija jedne (bilo koje)¹⁴ podrešetke data je izrazom

$$\sigma = \frac{1}{2} - \frac{1}{N} \sum_{\vec{k}} \langle \hat{S}^- \hat{S}^+ \rangle_{\vec{k}}$$
(33)

¹⁴Magnetizacija obe podrešetke je jednaka jer spinovi u obe podrešetke imaju istu vrednost.

Magnetne osobine $La_2CuO_4...$

S obzirom na relaciju (26), dobija se da je

$$\sigma = \frac{1}{2} \frac{1}{\frac{1}{N}\sum_{\vec{k}} \frac{\varepsilon(\vec{k})}{\omega(\vec{k})} + \frac{2}{N}\sum_{\vec{k}} \frac{\varepsilon(\vec{k})}{\omega(\vec{k})} \frac{1}{e^{\frac{\varepsilon(\vec{k})}{\Theta}} - 1}}$$
(34)

gde su korišćene oznake uvedene u odeljku (3.2).

Ako pogledamo izraze (14), (15), (28)—(32) i (34), zaključujemo da je taj sistem jednačina zatvoren i da se može rešavati samousaglašeno, što predstavlja specifičnost spinskog prilaza u odnosu na bozonski.

Pogledajmo sada kako se ponaša magnetizacija kada apsolutna temperatura teži nuli¹⁵:

$$\sigma_0 \equiv \lim_{\theta \to 0} \sigma = \frac{1}{2} \frac{1}{\frac{1}{N} \sum_{\vec{k}} \frac{\varepsilon(\vec{k};0)}{\omega(\vec{k}\cdot 0)}}$$
(35)

Iz gornjeg izraza uočavamo da se magnetizacija podrešetke na apsolutnoj nuli razlikuje od vrednosti $\frac{1}{2}$. To odstupanje se naziva **kvantnim spinskim fluktuacijama** i posledica je činjenice da osnovno stanje antiferomagnetika (tzv. Nelovo stanje) nije svojstveno stanje modelnog spinskog Hajzenbergovog hamiltonijana, te je prema kvantnoj teoriji merenja disperzija u tom stanju različita od nule, tj. postoje fluktuacije oko srednje vrednosti¹⁶. Kvantne spinske fluktuacije postoje na svim temperaturama, samo što su "maskirane" intenzivnijim termalnim fluktuacijama.

Naposletku, uočimo još jednu značajnu činjenicu. Posmatrajući drugi član u imeniocu izraza (34) za magnetizaciju, primećujemo da izraz pod sumom daje najveći doprinos kada $|\vec{k}| \rightarrow 0$. U slučaju spinski anizotropnog magnetika, kada nije zadovoljena Goldstonova teorema, taj član je uvek konačan i magnetizacija uvek ima vrednost različitu od nule. Zanimljivo je analizirati kako se ponaša izraz za magnetizaciju kada je u pitanju spinski izotropan magnetik (g=1). Jednostavnim računom, puštajući da $k \rightarrow 0$ i prelaskom sa sume na integral po pravilu $\sum_{\vec{k}} F(\vec{k}) \rightarrow \frac{V}{(2\pi)^3} \int F(\vec{k}) d^3\vec{k}$, može se pokazati da na temperaturama različitim od nule za trodimenzione magnetike temperaturno zavisni integral konvergira, te i magnetizacija

¹⁵"0" u argumentu funkcija označava ponašanje tih funkcija kada $\theta \rightarrow 0$.

 $^{^{16}}$ Za feromagnetike je osnovno stanje svojstveno stanje hamiltonijana te je magnetizacija na apsolutnoj nuli jednaka tačno $\frac{1}{2}$.

ima konačnu vrednost, dok za dvo- i jednodimenzione magnetike divergira, usled čega je magnetizacija jednaka nuli. Ovo je u skladu s tzv. Mermin-Vagnerovom teoremom ([13],[14]) za izotropne magnetike, prema kojoj za dvo- i jednodimenzione izotropne Hajzenbergove feromagnetike (ili antifero- odnosno ferimagnetike) na temperaturama različitim od nule ne postoji dugodometno magnetno uređenje, tj. magnetizacija je jednaka nuli.

Fizički, to znači da je za jedno- i dvodimenzione magnetike već i najmanja temperatura različita od nule dovoljna da dovede do razaranja dugodometne magnetne uređenosti, dok je kod trodimenzionih magnetika interakcija izmene jača, tako da do potpune razuređenosti dolazi tek na nekoj konačnoj (Kirijevoj) temperaturi.

3.4 Energija elementarnih ekscitacija u okolini apsolutne nule; Goldstonov mod; faktor renormalizacije

S obzirom na činjenicu da ćemo u ovom radu koristiti eksperimentalne podatke preuzete iz [8], koji odgovaraju magnonskom spektru dobijenom na temperaturi T = 10 K, posebno ćemo razmotriti kako izgleda izraz za energiju elementarnih ekscitacija u okolini apsolutne nule. Na apsolutnoj nuli, izraz (20) prelazi u

$$E(\vec{k};0) = JS\left(\left\{z_{2}(g - \Phi(0) - \Phi_{\parallel}(0)) + \frac{z_{\perp}}{2}\lambda_{\perp}(1 - \Phi(0) - \Phi_{\perp}^{ab}(0)) - \lambda_{2}z_{2}[(1 - \gamma_{2}(\vec{k}))(1 - \Phi(0) + \Phi_{2}(0)) + (1 - \gamma_{3}(\vec{k}))(1 - \Phi(0) + \Phi_{3}(0))] - \frac{z_{\perp}}{2}\lambda_{\perp}(1 - \gamma_{\perp}^{aa}(\vec{k}))(1 - \Phi(0) - \Phi_{\perp}^{aa}(0))\right\}^{2} - \left\{z_{2}\gamma_{\parallel}(\vec{k})(1 - \Phi(0) - g\Phi_{\parallel}(0)) + \frac{z_{\perp}}{2}\lambda_{\perp}\gamma_{\perp}^{ab}(\vec{k})(1 - \Phi(0) - \Phi_{\perp}^{ab}(0))\right\}^{2}\right)^{\frac{1}{2}} (36)$$

S obzirom da su eksperimentalni podaci dati za dvodimenzioni (
$$\lambda_{\perp} = 0$$
) spinski izotropan ($g = 1$) model, to ćemo posmatrati izraz za energiju spinskih ekscitacija takvog modela:

$$E(\vec{k};0) = z_2 JS \left(\{1 - \Phi(0) - \Phi_{\parallel}(0) - \lambda_2 [(1 - \gamma_2(\vec{k})) (1 - \Phi(0) + \Phi_2(0)) + \Phi_2(0) \} \right)$$

Magnetne osobine $La_2CuO_4...$

+
$$(1 - \gamma_3(\vec{k}))(1 - \Phi(0) + \Phi_3(0))]$$
² - $\gamma_{\parallel}^2(\vec{k})(1 - \Phi(0) - \Phi_{\parallel}(0))^2$ ² (37)

pri čemu su za dvodimenzioni model veličine koje figurišu u izrazu (37) date sa

$$\Phi(0) = 1 - \frac{1}{\frac{1}{N} \sum_{\vec{q}} \frac{\varepsilon(\vec{q};0)}{\omega(\vec{q};0)}}$$
(38)

$$\Phi_{\parallel}(0) = -\frac{1 - \Phi(0)}{N} \sum_{\vec{q}} \frac{\gamma_{\parallel}(\vec{q})I(\vec{q};0)}{\omega(\vec{q};0)}$$
(39)

$$\Phi_i(0) = \frac{1 - \Phi(0)}{N} \sum_{\vec{q}} \frac{\gamma_i(\vec{q})\varepsilon(\vec{q};0)}{\omega(\vec{q};0)}, \quad i = 2,3$$
(40)

$$\varepsilon(\vec{k};0) = z_2(1 - \Phi(0) - \Phi_{\parallel}(0)) - \lambda_2[(1 - \gamma_2(\vec{k}))(1 - \Phi(0) + \Phi_2(0)) + (1 - \gamma_3(\vec{k}))(1 - \Phi(0) + \Phi_3(0))]$$
(41)

$$I(\vec{k};0) = z_2 \gamma_{\parallel}(\vec{k})(1 - \Phi(0) - \Phi_{\parallel}(0))$$
(42)

Od posebnog značaja je ispitati čemu teži izraz (37) kada intenzitet talasnog vektora teži nuli $(|\vec{k}| \rightarrow 0)$. Naime, uz aproksimacije

$$1 - \gamma_2(\vec{k}) \simeq \frac{1}{2} (k_{||}a)^2 \quad 1 - \gamma_3(\vec{k}) \simeq (k_{||}a)^2 \quad \gamma_{||}^2(\vec{k}) \simeq 1 - \frac{(k_{||}a)^2}{2}$$

gde važi oznaka

$$k_{\parallel}^2 = k_x^2 + k_y^2$$

izraz (37) prelazi u

$$E(\vec{k} \simeq 0; 0) \simeq 4JS \Big(\frac{1}{2} (1 - \Phi(0) - \Phi_{\parallel}(0))^2 - \lambda_2 (1 - \Phi(0) - \Phi_{\parallel}(0) \times [1 - \Phi(0) + \Phi_2(0) + 2(1 - \Phi(0) + \Phi_3(0))] \Big)^{\frac{1}{2}} k_{\parallel} a$$
(43)

Iz gornjeg izraza vidimo da je

$$\lim_{k \to 0} E(k) = 0$$

29

što znači da postoji tzv. Goldstonov mod. Naime, ukoliko postoje određeni sistemi čiji hamiltonijan ima višu simetriju od osnovnog stanja tog sistema, tada govorimo o spontanom narušavanju simetrije, koje je praćeno pojavom bezmasenih bozona, tzv. Goldstonovih bozona, čija energija teži nuli zajedno sa talasnim vektorom (Goldstonova teorema). Na osnovu činjenice da je modelni spinski Hajzenbergov hamiltonijan izotropnih magnetika invarijantan u odnosu na rotaciju u odnosu na bilo koju tačku u prostoru, a da je osnovno stanje zbog usmerenosti spinova invarijantno u odnosu na rotaciju oko određene ose, možemo, imajući u vidu prethodni stav, zaključiti da se kod izotropnih magnetika javlja spontano narušavanje simetrije, usled čega se kao goldstonovske čestice javljaju magnoni čija energija prema (43) teži nuli sa talasnim vektorom. U slučaju magnetika sa spinskom anizotropijom ($g \neq 1$), ili u prisustvu spoljašnjeg magnetnog polja, simetrija hamiltonijana postaje jednaka simetriji osnovnog stanja te gornja teorema više ne važi¹⁷.

Fizički, Goldstonov mod znači da kod izotropnog magnetika za promenu orijentacije spinova nije potrebno uložiti konačnu energiju jer su svi pravci međusobno ekvivalentni. U prisustvu spinske anizotropije ili spoljašnjeg magnetnog polja energija potrebna za promenu orijentacije spinova ima konačnu vrednost.

Vratimo se izrazu (43), koji se može napisati u obliku

$$E(\vec{k} \simeq 0; 0) \simeq c(k_{\parallel}a) \tag{44}$$

gde je c brzina spinskih talasa. Prema [9], c je dato sa

$$c = 2\sqrt{2}JSZ_c \tag{45}$$

gde je Z_c faktor renormalizacije koji se dobija poređenjem izraza (43) i (45):

$$Z_{c} = \left((1 - \Phi(0) - \Phi_{\parallel}(0))^{2} - 2\lambda_{2}(1 - \Phi(0) - \Phi_{\parallel}(0)) [1 - \Phi(0) + \Phi_{2}(0) + 2(1 - \Phi(0) + \Phi_{3}(0))] \right)^{\frac{1}{2}}$$
(46)

¹⁷Prostorna anizotropija (u odsustvu spinske) dopušta postojanje Goldstonovog moda.

3.5 Određivanje energije sistema

Generalizacijom egzaktnog postupka koji je Tjablikov [15] primenio na Hajzenbergov feromagnet sledi da se, za spin $S = \frac{1}{2}$, modelni spinski hamiltonijan (2) može napisati u obliku

$$\hat{H} = H_0 + \frac{1}{2}\hat{H}_2 + \frac{1}{4}i\sum_{m,\vec{p},\alpha=a,b} \left(\hat{S}_{m,\vec{p}}^{-(\alpha)}\frac{d\hat{S}_{m,\vec{p}}^{+(\alpha)}}{dt} - \frac{d\hat{S}_{m,\vec{p}}^{-(\alpha)}}{dt}\hat{S}_{m,\vec{p}}^{+(\alpha)}\right)$$
(47)

gde je H_0 slobodni član, a \hat{H}_2 član koji sadrži proizvode dva spinska operatora. Značaj relacije (47) leži u tome što njenim usrednjavanjem dobijamo energiju sistema ($\langle H \rangle$). U postupku usrednjavanja javljaju se korelacione funkcije koje određujemo preko Grinovih funkcija dekuplovanih u tjablikovskoj aproksimaciji ($\Phi_{\eta} = 0$, gde je $\eta = ||, 2, 3, \bot$) (Prilog A), za koju važe sledeći izrazi:

$$E(\vec{k}) = J\sigma\sqrt{(\varepsilon^T(\vec{k}))^2 - (I^T(\vec{k}))^2}, \quad \text{gde je } \sigma = S(1-\Phi)$$
(48)

$$\varepsilon^{T}(\vec{k}) = z_{2}g + \frac{z_{\perp}}{2}\lambda_{\perp} - \lambda_{2}[z_{2}(1 - \gamma_{2}(\vec{k})) + z_{3}(1 - \gamma_{3}(\vec{k}))] - \frac{z_{\perp}}{2}\lambda_{\perp}(1 - \gamma_{\perp}^{aa}(\vec{k}))$$
(49)

$$I^{T}(\vec{k}) = z_{2}\gamma_{\parallel}(\vec{k}) + \frac{z_{\perp}}{2}\lambda_{\perp}\gamma_{\perp}^{ab}(\vec{k})$$
(50)

Imajući u vidu te relacije, za energiju sistema dobijamo

$$\langle H \rangle \equiv E = H_0 + \sum_{\vec{k}} \triangle E_0(\vec{k}, \theta) + \sum_{\vec{k}} E(\vec{k}, \theta)$$
(51)

gde je

$$\Delta E_0(\vec{k},\theta) = -\sigma(\theta) \left[SJ\varepsilon(\vec{k}) - E^{Bl}(\vec{k}) + \sigma(\theta)J\varepsilon(\vec{k}) - E(\vec{k}) \right]$$
(52)

popravka na energiju osnovnog stanja, a

$$E(\vec{k},\theta) = 2\sigma(\theta)(E^{Bl}(\vec{k}) + E(\vec{k}))\frac{1}{e^{\frac{E(\vec{k})}{\theta}} - 1}$$
(53)

energija sistema u prisustvu elementarnih ekscitacija. $E^{Bl}(\vec{k})$ je energija u Blohovoj aproksimaciji¹⁸.

18 Videti poglavlje 3.6

Razmotrimo ponašanje toplotnog kapaciteta u temperaturskoj oblasti u blizini apsolutne nule. S obzirom na to da je $\Delta E_0(\vec{k}, \theta) \sim \sigma(\theta) \sim \theta^2$, sledi da tjablikovska aproksimacija u najnižem temperaturskom intervalu daje

$$C_{\nu} = \frac{dE}{dT} \sim \theta \tag{54}$$

Ovaj rezultat treba prihvatiti sa oprezom jer tjablikovska aproksimacija ne daje pouzdane rezultate na niskim temperaturama.

3.6 Energija elementarnih ekscitacija, magnetizacija i srednja energija sistema u Blohovoj aproksimaciji

Kao što je već rečeno, spinski operatori se često aproksimiraju bozonskim operatorima. Najniža takva aproksimacija je Blohova (Bloch) aproksimacija, data izrazima

$$\hat{S}^{+(a)} = \sqrt{2S} \ \hat{a} \quad \hat{S}^{-(a)} = \sqrt{2S} \ \hat{a}^{+} \quad \hat{S}^{z(a)} = S - \hat{a}^{+} \hat{a}$$
$$\hat{S}^{+(b)} = \sqrt{2S} \ \hat{b}^{+} \quad \hat{S}^{-(b)} = \sqrt{2S} \ \hat{b} \quad \hat{S}^{z(b)} = -S + \hat{b}^{+} \hat{b}$$

gde su \hat{a}^+ i \hat{a} (odnosno \hat{b}^+ i \hat{b}) Boze-operatori kreacije i anihilacije na čvoru sa spinom "up" (odnosno "down").

Ova aproksiamcija, budući da ne uzima u obzir interakciju između elementarnih ekscitacija (magnona) u sistemu, važi na niskim temperaturama, kada je broj sistemskih pobuđenja mali te se može smatrati kao da je reč o sistemu neinteragujućih magnona. Energija elementarnih ekscitacija i energija sistema se u Blohovoj aproksimaciji dobijaju ako u izrazima (48),(51),(52) i (53) izvršimo zamenu $\sigma \rightarrow S = \frac{1}{2}$, usled čega dobijamo sledeće izraze:

$$E^{\mathcal{B}l}(\vec{k}) = \frac{1}{2}J\sqrt{(\varepsilon^{T}(\vec{k}))^{2} - (I^{T}(\vec{k}))^{2}}$$

gde je

$$\varepsilon^{Bl}(\vec{k}) = \varepsilon^{T}(\vec{k}) \quad I^{Bl}(\vec{k}) = I^{T}(\vec{k})$$

zatim

$$E^{Bl} = H_0 + \sum_{\vec{k}} \triangle E_0^{Bl}(\vec{k}) + \sum_{\vec{k}} E^{Bl}(\vec{k}, \theta)$$
(55)

Magnetne osobine $La_2CuO_4...$

$$E_0^{Bl}(\vec{k}) = -\left(\frac{1}{2}J\varepsilon^{Bl}(\vec{k}) - E^{Bl}(\vec{k})\right)$$
(56)

$$E^{Bl}(\vec{k},\theta) = 2E^{Bl}(\vec{k})\frac{1}{e^{\frac{E^{Bl}(\vec{k})}{\theta}} - 1}$$
(57)

Magnetizacija svake podrešetke je u Blohovoj aproksimaciji data sa

$$\sigma^{Bl} = \frac{1}{2} - \frac{1}{N} \sum_{\vec{k}} \langle \hat{a}^+ \hat{a}^- \rangle_{\vec{k}}$$
(58)

Izraz (58) će dati

$$\sigma^{\mathcal{B}l} = \sigma_0^{\mathcal{B}l} - \bigtriangleup \sigma^{\mathcal{B}l}(\theta) \tag{59}$$

gde je σ_0^{Bl} magnetizacija u osnovnom stanju i data je sa

$$\sigma_0^{Bl} = 1 - \frac{1}{4N} \sum_{\vec{k}} \frac{J \varepsilon^{Bl}(\vec{k})}{E^{Bl}(\vec{k})}$$
(60)

dok član $\Delta \sigma^{Bl}(\theta)$ opisuje promenu magnetizacije sa temperaturom i dat je sa

$$\Delta \sigma^{Bl}(\theta) = \frac{1}{2N} \sum_{\vec{k}} \frac{J \varepsilon^{Bl}(\vec{k})}{E^{Bl}(\vec{k})(e^{\frac{E^{Bl}(\vec{k})}{\theta}} - 1)}$$
(61)

Iz gornjih izraza može se uočiti da sistem jednačina u bozonskom pristupu, za razliku od spinskog, nije zatvoren.

S obzirom da je naš cilj da samo kvalitativno opišemo promene magnetizacije na niskim temperaturama, to ćemo analizu tih promena izvršiti za jednostavniji model antiferomagnetika koji ima prostu tetragonalnu strukturu.

U najnižem temperaturskom intervalu, kada je $\theta = k_B T < \min(J, J_2, J_\perp)$, za spinski izotropan model (g = 1) kada talasni vektor teži nuli $(|\vec{k}| \rightarrow 0)$, dobija se da se magnetizacija menja sa temperaturom po zakonu koji opisuje ponašanje tipično za trodimenzioni antiferomagnetik i ima oblik

$$\Delta \sigma^{Bl}(\theta) = \frac{1}{\sqrt{(4+2\lambda_{\perp})2\lambda_{\perp}}} \frac{8}{\pi^2 J^2 (2+4\lambda_{\perp})} \Gamma(2)\xi(2) \ \theta^2 \tag{62}$$

gde je $\Gamma(2)$ gama-funkcija s vrednošću $\Gamma(2) = 1!$, a $\xi(2)$ Rimanova teta-funkcija definisana sa $\xi(2) = \sum_{n=1}^{\infty} \frac{1}{n^2}$.

Potražimo sada zakon po kome se magnetizacija spinski izotropnog modela menja sa temperaturom kada je $\theta > J_{\perp}(J_{\perp} \ll J)$. Zanemarujući interakciju drugih i trećih najbližih suseda, za zakon disperzije dobijamo

$$E^{Bl}(\vec{k}) \simeq 4JS \sqrt{2(k_{||}a)^2 + \lambda_{\perp}(1 - \cos k_z c)}$$

= $4JS \triangle_1(z) \sqrt{1 + \frac{2(k_{||}a)^2}{\triangle_1^2(z)}}$

odakle se dobija

$$E^{Bl}(\vec{k}) \simeq 4JS \triangle_1(z) + \frac{4JS}{\triangle_1(z)} (k_{\parallel}a)^2$$
(63)

gde važi oznaka

$$\Delta_1(z) = \sqrt{\lambda_{\perp}(1 - \cos k_z c)}$$

Ako izraz (63) ubacimo u (61), dobićemo da je zakon promene magnetizacije sa temperaturom dat sa

$$\Delta \sigma^{Bl}(\theta) = \frac{4 + 2\lambda_{\perp}}{2\pi} \frac{\theta}{JS} \ln \frac{\theta}{JS} \frac{1}{2\sqrt{2\lambda_{\perp}}} \sim \theta \ln \theta$$
 (64)

što je ponašanje karakteristično za anizotropne dvodimenzione antiferomagnetike. Zato ovde govorimo o tzv. **dimenzionom prelazu** (krosoveru), koji je, dakle, posledica prostorne anizotropije.

Ukažimo i na razliku u ponašanju toplotnog kapaciteta na niskim temperaturama u bozonskom pristupu u odnosu na spinski. Naime, prema izrazu (44), na niskim temperaturama energija elementarnih ekscitacija je proporcionalna talasnom vektoru, te se, uzimajući to u obzir, iz relacija (55) i (57) dobija da je $E^{Bl} \sim \theta^4$, odakle je

$$C_V = \frac{dE}{dT} \sim \theta^3 \tag{65}$$

Naposletku, posmatrajući izraz (61), primećujemo da on za dvodimenzioni spinski izotropan antiferomagnetik divergira, što znači da u bozonskom pristupu ne postoji slaganje sa Mermin–Vagnerovom teoremom.

3.7 Određivanje temperature faznog prelaza

Temperaturu faznog prelaza (Nelovu temperaturu) odredićemo metodom spinskih Grinovih funkcija u tjablikovskoj aproksimaciji, jer ona u temperaturskoj oblasti koja odgovara stanjima bliskim maksimalnoj magnetnoj neuređenosti, daje rezultate bliže eksperimentalno dobijenim od Kalenove.

S obzirom da kad $T \rightarrow T_N$, $\sigma \rightarrow 0$, poćićemo od izraza (34) i posmatrati kako se on ponaša kad magnetizacija teži nuli. U tom slučaju, možemo razviti eksponencijalni član u red (jer u brojiocu eksponenta imamo energiju elementarnih ekscitacija, a ona je proporcionalna sa σ), nakon čega dobijamo

$$\sigma = \frac{1}{2} \frac{1}{\frac{1}{N \sum_{\vec{k}} \frac{\varepsilon(\vec{k})}{\omega(\vec{k})} + \frac{2\theta}{NJ\sigma} \sum_{\vec{k}} \frac{\varepsilon(\vec{k})}{\omega^2(\vec{k})}}}$$

Kada $\sigma \rightarrow 0$, prvi član u imeniocu ostaje konačan, dok drugi divergira, usled čega se prvi član može zanemariti u odnosu na drugi, te dobijamo

$$\frac{1}{2} \frac{1}{\frac{2\theta}{NJ} \sum_{\vec{k}} \frac{\varepsilon(\vec{k})}{\omega^2(\vec{k})}} = 1$$
(66)

Imajući u vidu da su $\varepsilon(\vec{k})$ i $\omega(\vec{k})$ u tjablikovskoj aproksimaciji dati izrazima (48), (49) i (50), dobijamo da je Nelova temperatura (u jedinicama energije) data sa

$$\theta_N = \frac{J}{C} \tag{67}$$

gde je C dato izrazom

$$C = \frac{1}{N} \sum_{\vec{k}} \frac{g - \lambda_2 (2 - \gamma_2(\vec{k}) - \gamma_3(\vec{k})) + \lambda_\perp \gamma_\perp^{aa}(\vec{k})}{(g - \lambda_2 (2 - \gamma_2(\vec{k}) - \gamma_3(\vec{k})) + \lambda_\perp \gamma_\perp^{aa}(\vec{k}))^2 - (\gamma_{\parallel}(\vec{k}) + \lambda_\perp \gamma_\perp^{ab}(\vec{k}))^2}$$
(68)

Ovaj izraz, koji će biti korišćen u numeričkoj analizi, važi kako za trodimenzioni, tako i za dvodimenzioni ($\lambda_{\perp} = 0$) antiferomagnetik. Pri tome je potrebno imati u vidu da je u dvodimenzionom slučaju moguće ispitivati samo spinski anizotropan ($g \neq 1$) antiferomagnetik.

U ovom odeljku detaljno ćemo izložiti i analizirati rezultate dobijene spinskim prilazom u modifikovanoj Kalenovoj aproksimaciji.

4.1 Spektar elementarnih ekscitacija La₂CuO₄ na niskim temperaturama

Prema eksperimentalnim rezultatima, preuzetim iz [8], izmerene energije u tačkama $(\frac{\pi}{2}, \frac{\pi}{2})$ i $(\pi, 0)$ prve Briluenove zone¹⁹ (I BZ) za antiferomagnetke iznose

$$E_1 = E\left(\frac{\pi}{2}, \frac{\pi}{2}\right) = 292 \pm 7 \ meV$$
$$E_2 = E(\pi, 0) = 314 \pm 7 \ meV$$

Na osnovu izraza (37), vodeći računa o tome da je

$$\begin{aligned} \gamma_{||}(\vec{k})|_{(\frac{\pi}{2},\frac{\pi}{2})} &= \gamma_{2}(\vec{k})|_{(\frac{\pi}{2},\frac{\pi}{2})} = 0 \quad \gamma_{3}(\vec{k})|_{(\frac{\pi}{2},\frac{\pi}{2})} = -1 \\ \gamma_{||}(\vec{k})|_{(\pi,0)} &= 0 \quad \gamma_{2}(\vec{k})|_{(\pi,0)} = -1 \quad \gamma_{3}(\vec{k})|_{(\pi,0)} = 1 \end{aligned}$$

dobijamo da su energije u navedenim tačkama date izrazima

$$E_1 = z_2 JS\{1 - \Phi(0) - \Phi_{\parallel}(0) - \lambda_2[3(1 - \Phi(0)) + \Phi_2(0) + 2\Phi_3(0)]\}$$
(69)

$$E_2 = z_2 JS\{1 - \Phi(0) - \Phi_{\parallel}(0) - 2\lambda_2(1 - \Phi(0) + \Phi_2(0))\}$$
(70)

Iz odnosa ove dve jednačine nalazimo da je parametar λ_2 dat izrazom

$$\lambda_{2} = \frac{(E_{2} - E_{1})(1 - \Phi(0) - \Phi_{\parallel}(0))}{E_{2}[3(1 - \Phi(0)) + \Phi_{2}(0) + 2\Phi_{3}(0)] - 2E_{1}(1 - \Phi(0) - \Phi_{\parallel}(0))}$$
(71)

U najnižoj aproksimaciji, kada je $\Phi = 0$, $\Phi_{\eta} = 0$, $(\eta = \|, 2, 3)$, parametar λ_2 je dat pojednostavljenim izrazom

$$\bar{\lambda}_2 = \frac{E_2 - E_1}{3E_2 - 2E_1}$$

¹⁹S obzirom na periodičnost \vec{k} u recipročnom prostoru, i funkcije od \vec{k} (ovde energija spinskih ekscitacija) su periodične, te je dovoljno ispitati njihovo ponašanje u prvoj Briluenovoj zoni, budući da se to ponašanje van ove zone ponavlja.

i na osnovu preuzetih eksperimentalnih podataka kreće se u intervalu

$$0.02 < \bar{\lambda}_2 < 0.09$$
 (72)

Da bismo izračunali popravku koja potiče od dekuplovanja, treba odrediti veličine $\Phi(0)$, $\Phi_{\parallel}(0)$, $\Phi_{2}(0)$ i $\Phi_{3}(0)$. S obzirom na zatvorenost sistema jednačina u spinskom pristupu, pri izračunavanju ovih veličina ćemo sve veličine u izrazima (38), (39) i (40) uzeti u najnižoj aproksimaciji ($\Phi^{(0)} = 0$, $\Phi_{\eta}^{(0)} = 0$, $\eta = \parallel, 2, 3$) usled čega ti izrazi dobijaju sledeći oblik:

$$\Phi^{(1)}(0) = 1 - \frac{1}{S^{(1)}} \tag{73}$$

gde je

$$S^{(1)} = \frac{1}{N} \sum_{\vec{k}} \frac{1 - \bar{\lambda}_2 (2 - \gamma_2(\vec{k}) - \gamma_3(\vec{k}))}{\sqrt{(1 - \bar{\lambda}_2 (2 - \gamma_2(\vec{k}) - \gamma_3(\vec{k})))^2 - \gamma_{\parallel}^2(\vec{k})}}$$
(74)

zatim

$$\Phi_{\parallel}^{(1)}(0) = -\frac{1}{N} \sum_{\vec{k}} \frac{\gamma_{\parallel}^{2}(\vec{k})}{\sqrt{(1 - \bar{\lambda}_{2}(2 - \gamma_{2}(\vec{k}) - \gamma_{3}(\vec{k})))^{2} - \gamma_{\parallel}^{2}(\vec{k})}}$$
(75)

$$\Phi_{i}^{(1)}(0) = \frac{1}{N} \sum_{\vec{k}} \frac{\gamma_{i}(\vec{k}) \left(1 - \tilde{\lambda}_{2}(2 - \gamma_{2}(\vec{k}) - \gamma_{3}(\vec{k}))\right)}{\sqrt{\left(1 - \tilde{\lambda}_{2}(2 - \gamma_{2}(\vec{k}) - \gamma_{3}(\vec{k}))\right)^{2} - \gamma_{\parallel}^{2}(\vec{k})}}, \quad i = 2, 3$$
(76)

Integral izmene J odredićemo iz relacije (69) (ili (70)):

$$J = \frac{E_2}{z_2 S(1 - \Phi(0) - \Phi_{\parallel}(0) - 2\lambda_2(1 - \Phi(0) + \Phi_2(0)))}$$
(77)

Ako u gornjim izrazima pređemo na integrale po pravilu $\sum_{\vec{k}} F(\vec{k}) = \int F(\vec{k}) d^3(\vec{k})$ i izvršimo integraciju po dvodimenzionoj I BZ za antiferomagnetike (što znači da su granice integracije od 0 do $\frac{\pi}{a}$ za k_x i od 0 do $\frac{\pi}{a} - k_x$ za k_y), za srednju i za granične vrednosti $\overline{\lambda}_2$ (date relacijom (72)) dobijamo rezultate²⁰ prikazane u Tabeli (2).

²⁰U tabeli je prikazan i faktor renormalizacije izračunat prema izrazu (46).

Slika 6: Spektar elementarnih ekscitacija La_2CuO_4 duž pravaca visoke simetrije u dvodimenzionoj I BZ. Kružići predstavljaju eksperimentalne podatke za La_2CuO_4 na 10 K[8]. Puna linija je teorijska kriva definisana integralima izmene datim u Tabeli 2.

	λ_2					
	0.02	0.06	0.09			
$\lambda_2^{(1)}$	0.08820	0.09238	0.09667			
J[meV]	141.876	137.337	132.016			
Z_c	0.99657	1.02772	1.06699			

Tabela 2: Karakteristične veličine u modifikovanoj Kalenovoj aproksimaciji

Poređenjem ovih rezultata s vrednostima koje su date u [16], zapažamo izuzetno dobro slaganje za vrednost J = 137.337 meV. Uzimajući upravo tu vrednost J i njoj odgovarajući set parametara (λ_2 , $\Phi(0)$, $\Phi_{\parallel}(0)$, $\Phi_2(0)$, $\Phi_3(0)$), možemo na osnovu relacije (37) odrediti spektar elementarnih ekscitacija La_2CuO_4 duž pravaca visoke simetrije u dvodimenzionoj I BZ za antiferomagnetike. Ovaj spektar, zajedno sa eksperimentalnim podacima preuzetim iz [8] prikazan je na Slici 6.

Kao što se sa slike vidi, slaganje je dobro, bez obzira na to sto krivu nismo fitovali za sve eksperimentalne vrednosti, već samo za energije E_1 i E_2 , što svakako ukazuje na korektnost teorijski dobijenog izraza.

4.2 Nelova temperatura

Za razliku od radova [8],[9],[10] u kojima su integrali izmene određeni samo fitovanjem spektra elementarnih ekscitacija na niskim temperaturama, mi ćemo ispravnost našeg pristupa proveriti i poređenjem teorijski dobijenih rezultata za Nelovu temperaturu sa eksperimentalno izmerenom vrednošću iste.

Vrednosti za Nelovu temperaturu računate su na osnovu relacije (67) prelaženjem sa sume na integral u izrazu (68) (kao i u analognom izrazu za 2D antiferomagnetik) i prikazane su u Tabeli 3.

	λ_{\perp}	λ_2	η	J[meV]	$T_N(K)$
	$5 \cdot 10^{-5}$	0.08820	10-3	141.876	348.427
	10-3	0.08820	10-3	141.876	348.641
	10-2	0.08820	10-3	141.876	350.666
	10-1	0.08820	10-3	141.876	370.185
	$5 \cdot 10^{-5}$	0.09238	10-3	137.337	325.915
	10-3	0.09238	10-3	137.337	326.124
	10 ⁻²	0.09238	10-3	137.337	328.096
3D	10-1	0.09238	10-3	137.337	347.078
	$5 \cdot 10^{-5}$	0.09667	10-3	132.016	301.903
	10-3	0.09667	10^{-3}	132.016	302.106
	10-2	0.09667	10-3	132.016	304.015
	10-1	0.09667	10-3	132.016	322.358
	$5 \cdot 10^{-5}$	0.09238	0	137.337	188.919
	10^{-3}	0.09238	0	137.337	189.071
	10 ⁻²	0.09238	0	137.337	190.508
	10-1	0.09238	0	137.337	204.837
	1	0.09238	0	137.337	317.115
	0	0.08820	10-3	141.876	348.416
2D	0	0.09238	10^{-3}	137.337	325.904
	0	0.09667	10^{-3}	132.016	301.893

• -

Tabela 3: Zavisnost Nelove temperature od parametara sistema. Veličina η definisana je relacijom $g = 1 + \eta$

Na osnovu prikazanih rezultata, vidimo da u prisustvu spinske anizotropije $(\eta \neq 0)$ dobijamo veoma slične Nelove temperature, kako za dvodimenzioni, tako i za trodimenzioni antiferomagnetik. Radi poređenja, uzećemo set parametara koji daje rezultate najbliže eksperimenatlno izmerenoj vrednosti za T_N , a koja iznosi $T_N = 325 K$ [16]. Znači, za sistem sa parametrima $\lambda_{\perp} = 5 \cdot 10^{-5}$, $J = 137.337 \, meV$, $\lambda_2 = 0.09238$, $\eta = 10^{-3}$, za Nelovu temperaturu dobija se vrednost $T_N = 325.915 K$ za trodimenzioni, odnosno $T_N = 325.904 K$ za dvodimenzioni antiferomagnetik, što pokazuje izuzetno dobro slaganje s rezultatima navedenim u [6] i [16]. Za trodimenzioni antiferomagnetik ima smisla razmatrati i slučaj kada je $\eta = 0$, međutim, na osnovu rezultata iz Tabele 3. vidimo da se tada dobijaju mnogo niže vrednosti za T_N . Na primer, za sistem sa gore navedenim parametrima dobija se da je $T_N = 188.919 K$.

Prema tome, zaključujemo da je za antiferomagnetno uređenje značaj spinske anizotropije daleko veći od uticaja trodimenzionosti. Prema rezultatima iz Tabele 3, uticaj trodimenzionosti postaje značajan tek za $\lambda_{\perp} > 10^{-2}$. Mala promena T_N pri variranju λ_{\perp} (od 10^{-2} do 10^{-5}) ukazuje na činjenicu da se u tetragonalnoj fazi fero- i antiferomagnetna interakcija između jona u različitim ravnima praktično potiru.

Ukažimo na još jedan bitan rezultat analize posmatranog sistema. Naime, iz hamiltonijana (2) vidi se da smo pretpostavili da je interakcija između drugih (kao i trećih) najbližih suseda antiferomagnetna, bez obzira na to što su oni feromagnetno uređeni. Na takvu pretpostavku nas je navela činjenica da feromagnetna interakcija između drugih (trećih) suseda iako može relativno dobro da interpolira energiju elementarnih ekscitacija na niskim temperaturama, ne omogućava dobijanje rezultata za Nelovu temperaturu koji bi bili u skladu s eksperimentalno izmerenim vrednostima. Naime, mi smo računali Nelove temperature za sve vrednosti parametara iz Tabele 3, uzimajući da je interakcija između drugih (trećih) suseda feromagnetna (u izrazu (49) λ_2 menja znak) i dobili smo drastično veće vrednosti od eksperimenatlno izmerene. Primera radi, navešćemo neke konkretne rezultate koji se dobijaju pod pretpostavkom feromagnetne interakcije, a koji ilustruju to neslaganje:

• Za 2D antiferomagnetik, vrednost Nelove temperature koja odgovara eks-

perimentalnoj, dobija se za $\eta = 2 \cdot 10^{-7}$, tj. za veoma male vrednosti spinske anizotropije, koje su za četiri reda veličine manje od onih koje se navode u literaturi.

- Za 3D antiferomagnetik, vrednosti T_N ≃ 335 K dobijaju se takođe za veoma male anizotropije (η = 10⁻⁶, λ_⊥ = 10⁻⁶) i to ako zanemarimo interakciju drugih suseda (λ₂ = 0).
- Ako ne zanemarimo interakciju drugih suseda ($\lambda_2 \neq 0$), ne možemo dobiti vrednost za Nelovu temeperaturu ispod približno 440 K.

Prema tome, vidimo da feromagnetna interakcija na visokim temperaturama ne može da interpolira eksperimentalne rezultate.

U literaturi se pretežno pretpostavlja antiferomagnetna interakcija između drugih, odnosno trećih suseda (koja se uglavnom dobija na osnovu Habardovog (*Hubbard*) modela), ali se ne analizira visokotemperaturna oblast, tako da je u tom smislu naš pristup korektniji. Možemo istaći da je, na primer, u radu Coldea *et al.* [8] pitanje o prirodi magnetne interakcije između drugih (trećih) suseda ostalo otvoreno.

U ovom radu je, nezavisno od Habardovog modela, pokazano da antiferomagnetna interakcija između drugih (trećih) suseda daje dobro slaganje s eksperimentom u celom temperaturnom intervalu $0 \le T \le T_N$.

Zaključak

Zaključak

Jedinjenju La_2CuO_4 se u zadnjih desetak godina posvećuje velika pažnja. Kao i u svakoj drugoj oblasti ljudskih intelektualnih pregnuća, i u ovom slučaju to interesovanje je delom posledica težnje za razvojem nauke radi sebe same, kao dokaza specifičnosti ljudske vrste, a delom činjenice da La_2CuO_4 može imati značajnu tehnološku primenu, budući da pri dopiranju prelazi u superprovodno stanje.

Cilj ovog rada bio je teorijska analiza magnetnih (dinamičkih i termodinamičkih) osobina La_2CuO_4 . Pri tome su korišćena dva pristupa: spinski i bozonski (na niskim temperaturama). U oba pristupa analizirane su energija elementarnih ekscitacija, srednja energija sistema, magnetizacija, ponašanje toplotnog kapaciteta. Posebno su detaljno ispitivane one karakteristike ovog jedinjenja koje se mogu eksperimentalno meriti. Analizom smo došli do određenih zaključaka.

Najpre, pokazali smo da je za antiferomagnetno uređenje od ključnog značaja ne trodimenzionost, već spinska anizotropija u ravni, a da interplanarna interakcija postaje značajna tek za vrednosti koje ne karakterišu ovakve sisteme. Pored toga, zaključili smo da se Nelova temperatura neznatno menja sa promenom λ_{\perp} usled potiranja fero– i antiferomagnetne interakcije u susednim ravnima. Na pojednostavljenom modelu takođe smo pokazali da u najnižem temperaturnom intervalu ponašanje magnetizacije odgovara klasičnom trodimenzionom antiferomagnetiku, dok se na temperaturama u intervalu $J_{\perp} < \theta << J$ sistem ponaša kao dvodimezioni (tzv. dimenzioni krosover).

Ovakvi zaključci u skladu su sa opštim tvrđenjima koja se navode u literaturi ([6],[7]), a prema kojima La_2CuO_4 predstavlja izuzetno dobru aproksimaciju **dvodimenzionog** Hajzenbergovog antiferomagnetika.

Takođe, veoma važan rezultat ovog rada je da feromagnetna interakcija između drugih, odnosno trećih najbližih suseda daje slaganje sa eksperimentom samo u oblasti niskih temperatura (spektar spinskih talasa), dok u oblasti visokih temperatura ne daje dobre rezultate (Nelova temperatura). Za razliku od toga, pokazano je da antiferomagnetna interakcija daje zadovoljavajuće rezultate u celom temperaturnom intervalu egzistencije antiferomagnetnog stanja.

A Prilog: Grinove funkcije i Kalenovo dekuplovanje

Grinove funkcije uvode se u neravnotežnoj statistici, gde imaju značajnu ulogu u određivanju neravnotežnih srednjih vrednosti preko ravnotežnih raspodela. Pri tome, dvovremenska, temperaturska retardovana funkcija Grina se definiše kao

$$G(x,x';t,t') = \langle \langle \hat{\mathcal{A}}(x,t) | \hat{\mathcal{B}}(x',t') \rangle \rangle = \Theta(t-t') \langle [\hat{\mathcal{A}}(x,t), \hat{\mathcal{B}}(x',t')] \rangle_0$$
(78)

gde su $\hat{\mathcal{A}}(x,t)$ i $\hat{\mathcal{B}}(x',t')$ operatori $\hat{A}(x,t)$ i $\hat{B}(x',t')$ u interakcionoj slici, a $\theta(t-t')$ Hevisajdova step-funkcija.

Međutim, pojam Grinove funkcije ne treba vezivati isključivo za neravnotežne procese. Naime, ako operatori \hat{A} i \hat{B} ne zavise eksplicitno od vremena i ako je sistem prostorno homogen, tada Grinova funkcija zavisi samo od razlike prostornih, odnosno vremenskih koordinata, tj.

$$G(x,x';t,t') \longrightarrow G(x-x';t-t')$$

što znači da Grinova funkcija zavisi od vremena i onda kada originalni operatori ne zavise. Prema tome, Grinove funkcije se mogu koristiti i u problemima ravnotežne statistike (kada hamiltonijan ne zavisi eksplicitno od vremena).

Pri korišćenju Grinovih funkcija, najveći značaj imaju sledeća dva rezultata. Prvo, realni deo pola Grinove funkcije određuje energiju elementarnih ekscitacija sistema, a recipročna vrednost imaginarnog dela određuje vreme života tih ekscitacija. Drugo, poznavanje Grinovih funkcija omogućava nalaženje srednjih vrednosti oblika $\langle \hat{A}(x)\hat{B}(x')\rangle_0$ iz relacije

$$\langle \hat{A}(x)\hat{B}(x')\rangle_{0} = \lim_{\delta \to +0} \int_{-\infty}^{+\infty} \frac{G(x-x';E+i\delta) - G(x-x';E-i\delta)}{1-e^{\frac{E}{\theta}}} dE$$
(79)

Naposletku se postavlja pitanje određivanja same Grinove funkcije. Ona se najčešće određuje iz jednačine kretanja koja u energetskoj reprezentaciji (nakon uvođenja Furije-transforma vreme-energija) glasi:

$$E\langle\langle\hat{A}|\hat{B}\rangle\rangle_{E} = \frac{i}{2\pi}\langle[\hat{A},\hat{B}]\rangle + \langle\langle[\hat{A},\hat{H}]|\hat{B}\rangle\rangle_{E}$$
(80)

Ako se zadržimo na Grinovoj funkciji $\langle \langle \hat{S}_g^{\pm} | \hat{B} \rangle \rangle$, značajnoj za problematiku razmatranu u ovom radu, i potražimo njenu jednačinu kretanja, uočavamo da se

u toj jednačini pojavljuju Grinove funkcije višeg reda, koje potiču od komutatora operatora \hat{S}_g^{\pm} sa hamiltonijanom. Ove funkcije se u principu dobijaju iz njima pridruženih jednačina kretanja u kojima, opet, figurišu Grinove funkcije još višeg reda. Prema tome, izračunavanje Grinovih funkcija bi dovelo do beskonačnog niza jednačina kretanja gde se u svakoj sledećoj Grinova funkcija izražava preko Grinovih funkcija višeg reda. Kako je problem rešavanja ovog beskonačnog niza u opštem slučaju nerešiv, to se u određdivanju Grinovih funkcija višeg reda koriste razne aproksimacije za koje je zajedničko to da se zasnivaju na **dekuplovanju** Grinovih funkcija višeg reda, tj. na predstavljanju Grinovih funkcija višeg reda

Čest primer ovakvog dekuplovanja je tzv. tjablikovsko dekuplovanje, definisano relacijom

$$\langle\langle \hat{S}_{g}^{z} \hat{S}_{f}^{+} | \hat{B} \rangle\rangle \xrightarrow{g \neq f} \langle \hat{S}^{z} \rangle \langle\langle \hat{S}_{f}^{+} | \hat{B} \rangle\rangle \tag{81}$$

Iz gornjeg izraza se vidi da je suština ovog dekuplovanja u zanemarivanju korelacija longitudinalnih (\hat{S}^z) i transverzalnih (\hat{S}^{\pm}) spinskih komponenti na različitim čvorovima magnetne kristalne rešetke, pri čemu se operator \hat{S}^z zamenjuje svojom srednjom vrednošću $\langle \hat{S}^z \rangle$ koja zbog translatorne invarijantnosti ne zavisi od čvora. S obzirom da se pokazalo da ovo dekuplovanje na niskim temperaturama ne daje dobre rezultate, često se koristi **Kalenovo** dekuplovanje [12], koje će ovde biti opisano za feromagnetike sa spinom $S = \frac{1}{2}$.

Naime, operator \hat{S}_{g}^{z} možemo napisati u jednom od sledećih oblika:

$$\hat{S}_{g}^{z} = S - \hat{S}_{g}^{-} \hat{S}_{g}^{+}, \quad S = \frac{1}{2}$$
 (82)

$$\hat{S}_{g}^{z} = \frac{1}{2} (\hat{S}_{g}^{+} \hat{S}_{g}^{-} - \hat{S}_{g}^{-} \hat{S}_{g}^{+})$$
(83)

Ako prvu od ovih jednačina pomnožimo proizvoljnim parametrom α , a drugu sa $(1 - \alpha)$ i saberemo ih, dobijamo

$$\hat{S}_{g}^{z} = \alpha S + \frac{1}{2}(1-\alpha)\hat{S}_{g}^{+}\hat{S}_{g}^{-} - \frac{1}{2}(1+\alpha)\hat{S}_{g}^{-}\hat{S}_{g}^{+}$$
(84)

Zamenom jednačine (84) u Grinovu funkciju oblika (81), koristeći pravilo simetričnog dekuplovanja

$$\langle \langle \hat{S}_{g}^{-} \hat{S}_{g}^{+} \hat{S}_{f}^{+} | \hat{B} \rangle \rangle \xrightarrow{f \neq g} \langle \hat{S}_{g}^{-} \hat{S}_{g}^{+} \rangle \langle \langle \hat{S}_{f}^{+} | \hat{B} \rangle \rangle + \langle \hat{S}_{g}^{-} \hat{S}_{f}^{+} \rangle \langle \langle \hat{S}_{g}^{+} | \hat{B} \rangle \rangle$$

i analogno za funkciju $\langle \langle \hat{S}_g^+ \hat{S}_g^- \hat{S}_f^+ | \hat{B} \rangle \rangle$, dobijamo

$$\langle\langle \hat{S}_{g}^{z} \hat{S}_{f}^{+} | \hat{B} \rangle\rangle \xrightarrow{f \neq g} \langle \hat{S}^{z} \rangle \langle\langle \hat{S}_{f}^{+} | \hat{B} \rangle\rangle - \alpha \langle \hat{S}_{g}^{-} \hat{S}_{f}^{+} \rangle \langle\langle \hat{S}_{g}^{+} | \hat{B} \rangle\rangle$$

$$\tag{85}$$

Analizom ovog izraza, vidi se da

- za $\alpha = 1$, izraz (85) odgovara dekuplovanju Grinove funkcije na bazi identiteta (82)
- za $\alpha = 0$, izraz (85) odgovara dekuplovanju Grinove funkcije na bazi identiteta (83) i svodi se na Tjablikovsko dekuplovanje
- $\alpha = -1$, izraz (85) odgovara dekuplovanju Grinove funkcije na bazi identiteta $\hat{S}_{g}^{z} = -S + \hat{S}_{g}^{+} \hat{S}_{g}^{-}$

Prema tome, zavisno od vrednosti α , možemo dobiti kako pozitivnu, tako i negativnu, pa i nultu korekciju na Tjablikovsko dekuplovanje. Dakle, u izboru parametra α , treba se rukovoditi fizičkim kriterijumom. Naime, s obzirom da operator $\hat{S}^- \hat{S}^+$ u (82) jeste operator koji se pri dekuplovanju tretira aproksimativno, a predstavlja odstupanje \hat{S}^z od +S, to onda ima smisla koristiti tu jednačinu kada je to odstupanje malo, tj. kad je $\langle \hat{S}^z \rangle \simeq S$, a to je na niskim temperaturama. S druge strane, kako operator $\frac{1}{2}(\hat{S}^+_g \hat{S}^-_g - \hat{S}^+_g \hat{S}^+_g)$ opisuje odstupanje \hat{S}^z od nule, to je dekuplovanje na bazi (83) smisleno kada je to odstupanje malo, tj. kad je $\langle \hat{S}^z \rangle \simeq 0$, a to je na temperaturama bliskim temperaturi faznog prelaza. Prema [12], najbolje slaganje sa eksperimentalnim rezultatima u celom temperaturnom intervalu (od apsolutne nule do Kirijeve temperature) daje vrednost

$$\alpha = \frac{\langle \hat{S}^z \rangle}{S}, \ za \ S = \frac{1}{2}$$

za koju se jednačina (84) svodi na

$$\hat{S}_{g}^{z} = \langle \hat{S}^{z} \rangle + \left(\frac{S - \langle \hat{S}^{z} \rangle}{2S} \hat{S}_{g}^{+} \hat{S}_{g}^{-} - \frac{S + \langle \hat{S}^{z} \rangle}{2S} \hat{S}_{g}^{-} \hat{S}_{g}^{+} \right)$$
(86)

pri čemu sada operator u zagradi (onaj koji se pri dekuplovanju tretira aproksimativno) predstavlja odstupanje \hat{S}^z od $\langle \hat{S}^z \rangle$ koje je podjednako u celom temperaturnom intervalu. Prilog

Konačno, jednačina koja opisuje Kalenovo dekuplovanje za feromagnetike sa spinom $S = \frac{1}{2}$ je

$$\langle\langle \hat{S}_{g}^{z} \hat{S}_{f}^{+} | \hat{B} \rangle\rangle \xrightarrow{g \neq f} \langle \hat{S}^{z} \rangle \langle\langle \hat{S}_{f}^{+} | \hat{B} \rangle\rangle - \frac{\langle \bar{S}^{z} \rangle}{S} \langle \hat{S}_{g}^{-} \hat{S}_{f}^{+} \rangle \langle\langle \hat{S}_{g}^{+} | \hat{B} \rangle\rangle$$
(87)

Slično se može pokazati da je za antiferomagnetike sa spinom $S = \frac{1}{2}$, Kalenovo dekuplovanje dato izrazom

$$\langle\langle \hat{S}_{g}^{z} \hat{S}_{f}^{\pm} | \hat{B} \rangle\rangle \xrightarrow{g \neq f} \langle \hat{S}^{z} \rangle \langle\langle \hat{S}_{f}^{\pm} | \hat{B} \rangle\rangle - \frac{\langle \hat{S}^{z} \rangle}{S} \langle \hat{S}_{g}^{\pm} \hat{S}_{f}^{\pm} \rangle \langle\langle \hat{S}_{g}^{\mp} | \hat{B} \rangle\rangle$$
(88)

Složenijom analizom, Kalen je pokazao ([12]) da u opštem slučaju, za $S \neq \frac{1}{2}$, parametar α treba da uzme vrednost

$$\alpha = \frac{1}{2S} \frac{\langle \hat{S}^z \rangle}{S}$$

Na niskim temperaturama, pogodno je ipak modifikovati Kalenov postupak i izvršiti dekuplovanje Grinovih funkcija na osnovu identiteta (82) čime se za antiferomagnetike sa spinom $S = \frac{1}{2}$ dobija sledeći izraz:

$$\langle\langle \hat{S}_{g}^{z}\hat{S}_{f}^{\pm}|\hat{B}\rangle\rangle \xrightarrow{g\neq f} S\left(\left(1-\frac{1}{S}\langle\hat{S}_{g}^{-}\hat{S}_{g}^{+}\rangle\right)\langle\langle\hat{S}_{f}^{\pm}|\hat{B}\rangle\rangle-\frac{1}{S}\langle\hat{S}_{g}^{\pm}\hat{S}_{f}^{\pm}\rangle\langle\langle\hat{S}_{g}^{\mp}|\hat{B}\rangle\rangle\right)$$
(89)

koji je korišćen u ovom radu.

Spinske ekscitacije...

Literatura

- [1] J. G. Bednorz and K. A. Müller, Z. Physik B 64 189 (1986)
- [2] N. M. Plakida: *High-Temperature Superconductors*, Springer-Verlag, Berlin (1995)
- [3] Ž. Kovačević: Uticaj primjesa na elektronsku strukturu CuO₂ ravni visokotemperaturnih superprovodnika (prema materijalima doktorske teze), Prirodno-matematički fakultet, Podgorica (2000)
- [4] D. C. Mattis: Theory of Magnetism I, Springer-Verlag, Berlin (1988)
- [5] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994)
- [6] R. J. Birgeneau, M. Greven, M. A. Kastner, Y. S. Lee, B. O. Wells, Y. Endoh, K. Yamada, G. Shirane, arXiv:cond-mat/9903124 v1 (1999)
- [7] C. J. Peters, R. J. Birgeneau, M. A. Kastner, H. Yoshizawa, J. Endoh, J. Tranquada, G. Shirane, Y. Hidaka, M. Oda, M. Suzuki and T. Murakami, Phys. Rev. B 37 9761 (1988)
- [8] R. Coldea, S. M. Hayden, G. Aepply, T. G. Perring, C. D. Frost, T. E. Mason, S. W. Cheong and Z. Fisk, Phys. Rev. Lett. 86 5377 (2001)
- [9] A. A. Katanin and A. P. Kampf, arXiv:cond-mat/0111533 v1 (2001)
- [10] N. M. R. Peres and M. A. N. Araújo, Phys. Rev. B 65, 132404 (2002)
- [11] A. Singh and P. Goswami, arXiv:cond-mat/0205117 v1 (2002)
- [12] H. B. Callen, Phys. Rev. 130 890 (1963)
- [13] N. Mermin and H. Wagner, Phys. Rev. Lett. 17 1133 (1996)
- [14] A. Gelfert: On the Role of Dimensionality in Meny-Body Theories of Magnetic Long-Range Order, University of Cambridge and Humboldt University of Berlin (2001)

- [15] S. V. Tyablikov: *The Methods in the Quantum Theory of Magnetism*, Plenum Press, New York (1967)
- [16] J. Rossat-Mignod, L. P. Regnault, P. Bourges, P. Burlet, C. Vettier, J. Y. Henry, in Frontiers in Solid State Sciences: Magnetism and Superconductivity, World Scientific, Singapore (1994)
- [17] C. Kittel: Uvod u fiziku čvrstog stanja, Savremena administracija, Beograd (1970)

UNIVERZITET U NOVOM SADU PRIRODNO - MATEMATIČKI FAKULTET KLJUČNA DOKUMENTACIJSKA INFORMACIJA

 \Box Redni broj:(RBR):

□ Identifikacioni broj: (IBR):

□ Tip dokumentacije: (TD): Monografska dokumentacija

□ Tip zapisa:(TZ): Tekstualni štampani materijal

□ Vrsta rada:(VR): Diplomski rad

□ Autor:(AU): Milica S. Manojlović, br. dos. 261/96

□ Mentor:(MN): dr Mario Škrinjar

 \square Naslov rada: (NR):Spinske ekscitacije i termodinamičke osobine antiferomagnetika tipa La₂CuO₄ sa interakcijama prvih i drugih suseda

□ Jezik publikacije:(JP): srpski (latinica)

□ Jezik izvoda:(JI): srpski

□ Zemlja publikovanja:(ZP): SR Jugoslavija

Uže geografsko područje:(UGP): Vojvodina

□ Godina:(GO): 2002

□ Izdavač:(IZ): Autorski reprint

Desto i adresa: (MA): Prirodno - matematički fakultet, Trg Dositelja Obradovića 4, 21000 Novi Sad

 \Box Fizički opis rada:(FO):

□ Naučna oblast:(NO): *Fizika*

Naučna disciplina:(ND): Teorijska fizika čvrstog stanja

□ Predmetna odrednica / Ključne reči:(PO): Fizika, visokotemperaturna superprovodnost, antiferomagnetni, Hajzenbergov spinski Hamiltonijan UDK:

□ Čuva se: (ČU): U bibilioteci Instituta za fiziku Prirodno-matematičkog fakulteta, Univerziteta u Novom Sadu

□ Važna napomena: (VN):

 \Box Izvod: (IZ):

U radu su proučavane magnetne osobine nedopiranog La_2CuO_4 , koji na niskim temperaturama, pri dopiranju sa Ba, Sr ili Ca, prelazi u superprovodno stanje. Rad je koncipiran na sledeći način: u prvoj glavi dat je kratak pregled struktura i osobina nekih najpoznatijih visokotemperaturnih superprovodnika, zajedno sa modelima koji opisuju ponašanje elektrona u tim materjalima. Detaljan opis kristalne strukture i faznog dijagrama dopiranog La_2CuO_4 dat je u drugoj glavi. U trećoj glavi analitički su ispitivane dinamičke i statičke magnetne osobine La_2CuO_4 u spinskom formalizmu, kao i u bozonskom formalizmu na niskim temperaturama. Rezultati dobijeni spinskim pristupom analizirani su u četvrtoj glavi.

□ Datum prihvatanja teme od strane veća: (DP): 21.10.2002.

□ Datum odbrane:(DO): *15.11.2002*.

□ Članovi komisije: (KO):

Predsednik:

Dr Darko Kapor, redovni profesor, PMF, Novi Sad Članovi:

Dr Mario Škrinjar, redovni profesor, PMF, Novi Sad Dr Miroslav Vesković, redovni profesor, PMF, Novi Sad

UNIVERSITY OF NOVI SAD

FACULTY OF NATURAL SCIENCES

KEY WORDS DOCUMENTATION

□ Accession number: (ANO):

□ Identification number: (INO):

□ Document Type: (DT): Monographic documentation

□ Type of record: (TR): Textual printed matter

□ Contents code: (CC): Final work

□ Author: (AU): Milica S. Manojlović, 261/96

D Mentor: (MN): Mario Škrinjar, Ph.D.

□ Title: (TI): Spin excitacions and thermodynamical properties of

antiferromagnetic La_2CuO_4 including nearest- and next-nearest-neighbours exchange coupling

□ Language of text: (LT): Serbian (latin)

□ Language of abstract: (LA): Serbian

□ Country of publication: (LP): FR Jugoslavija

□ Locality of publication: (LP): Vojvodina

□ Publication year: (PY): 2002

D Publisher:(PU): Author's reprint

□ Publ. place: (PP): Faculty of Natural Sciences, Trg Dositelja Obradovića 4, 21000 Novi Sad

□ Physical description:(PD):

□ Scientific field: (SF): Physics

□ Scientific discipline: (SD): Theoretical condensed matter physics

□ Subject/Ket words:(PO): physics, high-temperature superconductivity,

antiferromagnetic, Heisenberg spin Hamiltonian

UC:

□ Holding Data:(HD): The libraby of the Institute of physics, Faculty of Natural Sciences, University of Novi Sad

Note :(VN):Abstract: (AB):

This work considers magnetic properties of the undoped La_2CuO_4 , which, doped by Ba, Sr or Ca, shows superconductivity. The work is organized as follows: In Chapter I, a brief summary of the properties of some well-known high-temperature superconductors is given, including models that describe the behaviour of electrons in these materials. Detailed description of the crystal structure and phase diagram of the doped La_2CuO_4 is given in Chapter 2. Chapter 3 is devoted to the analytic investigation of the static and dynamic magnetic properties of La_2CuO_4 , using spin picture and boson picture at low temperatures. Chapter 4 contains analysis of the results following from the spin treatment of the problem.

□ Accepted by the Scientific Board on:(ASb): 21.10.2002.

Defended:(DE):15.11.2002.

□ Defend board:(DB):

President:

Dr Darko Kapor, full professor, Faculty of Natural Sciences, University of Novi Sad

Members:

Dr Mario Škrinjar, full professor, Faculty of Natural Sciences, University of Novi Sad

Dr Miroslav Vesković, full professor, Faculty of Natural Sciences, University of Novi Sad