Природно-математички фанултет Радна заједница заједничких послова НОВИСАД

PRIRODNO	MATE	EMZ	ATIČKI	FAKULTET
UNIVERZIT	TETA	U	NOVOM	SADU

	North States	:	14.	VI.	1983	
	Úр _{1 јъда}	брс)	1	1	BROANSCI	
Į	03	10 /28				

. . . .

NUMERIČKI PRORAČUN MAGNETIZACIJE ANIZOTROPNOG FEROMAGNETA U OSNOVNOM STANJU

- diplomski rad -

Milan A. Gava

Zahvaljujem se dr Darku Kaporu i dr Mariju Škrinjaru na sugestijama o izboru teme i pomoći u toku rada. Takodjese zahvaljujem dr Katarini Surli na pomoći pri sastavljanju algoritma i radu na računkoj mašini.

• •

Milan A.Gava

SADRŽAJ

.

.

.

II	DEO	
1.	Magnetizacija i magnetna svojstva materijala	1
2.	Hajzembergov model feromagnetika	2
3.	Grinove funkcije anizotropnog feromagnetika	4
II	DEO	
1.	Iterativni postupak	10
2.	Gausova metoda integracije	10
3.	Algoritam glavnog programa	13
II	I DEO	
1.	Analiza dobijenih rezultata	21
2.	Zaključak	24
	Literatura	25

U V O D

Ovaj rad je jedan u nizu radova posvećen istraživanju jednog modela anizotropnog Hajzenbergovog feromagneta. Radovima ranijih istraživanja dobijen je čitav niz zanimljivih rezultata, ali i niz jednačina koje su analizirane u veoma grubim aproksimacijama, jer su zahtevale numeričko rešavanje. Svrha ovog rada je upravo bila razrada numeričkih metoda neophodnih za analizu jednačina onog tipa koje se javljaju kod anizotropnog feromagneta.

U I-delu je dat kratak pregled opšte teorije i dosadašnjih rezultata. II-deo je posvećen numeričkim metodama, dok se u III-delu diskutuju dobijeni rezultati. Ι

1. Magnetizacija i magnetna svojstva materijala

Magnetno stanje materijala karakteriše se pomoću magnetizacije koja se u opštem slučaju definiše kao

$$\vec{M} = \lim_{\Delta V \to O} \frac{\vec{\Delta m}}{\Delta V}$$

gde je $\Delta \vec{m}$ - magnetni moment vezanih naelektrisanja u elementu zapremine - AV. Veza izmedju magnetizacije i magnetnog polja H u linearnoj aproksimaciji je data relacijom $\vec{M} = \chi \vec{H}$. Veličina χ se naziva magnetna susceptibilnost i nju odredjuju dva efekta. Frvi se zove dijamagnetizam i on daje negativan doprinos namagnetiranju, a uslovljen je slobodnim kretanjem slobodnih elektrona kroz materiju. Drugi efekat se zove paramagnetizam i on daje pozitivan doprinos namagnetisanju.

Na osnovu magnetnih svojstava čvrsta tela su podeljena na slabe magnetike (dijamagnetici i paramagnetici) i jake magnetike (feromagnetici, antiferomagnetici i ferimagnetici).

Feromagnetizam je vrlo važna osobina čvrstih tela koja je objašnjena kvantnom mehanikom. On odražava kolektivno svojstvo materijala, a ne pojedinog atoma, jer su npr. pare gvoždja (Fe) paramagnetične, a legure elementa koji u običnom stanju nisu feromagnetični (Cu, Mn i Al) su feromagnetične.Promenom svoje kristalne strukture neki nemagnetični kristali mogu postati feromagnetični. Karakteristika feromagnetizma je da se sa vrlo slabim magnetnim poljem može dobiti vrlo veliko namagnetisanje tela. Bitna pretpostavka kvantne teorije feromagnetizma sastoji se u tome da na apsolutnoj nuli vrednosti Z-projekcija spinova svih atoma imaju maksimalne vrednosti S (vidi 1).

Magnetizacija kristala ima tada maksimalnu vrednost $M_{O} = \mu_{B}NS - gde je \mu_{B}$ magnetni moment atoma izražen u Borovim magnetomima. N - je broj atoma u kristalu. Povećanjem temprature dolazi do otklanjanja Z - projekcije spinova S od maksimalnih vrednosti, a samim tim i smanjivanja magnetizacije. Na nekoj temperaturi Θ_{c} , koja se naziva Kirijevom temperaturom, magnetizacija postaje ravna nuli i feromagnetik prelazi u paramagnetnu fazu.

DEO

Promene magnetizacije sa temperaturom se prate preko relativne magentizacije koja se definiše kao ukupni magnetini moment (po jedinici zapremine) podeljen sa maksimalno mogućom odgovarajućom magnetizacijom (magnetizacijom saturacije). Ako je N broj jona po jedinici zapremine, onda se relativna magnetizacija definiše (prema |3|) kao

(1.1)
$$\sigma = \frac{\sum \langle S_n^{2} \rangle}{NS}$$

ili koristeći translacioni invarijantnost kristala, relativna magnetizacija uzeta po jednom čvoru rešetke i po jedinici magnetnog momenta se definiše kao

(1.2)
$$\sigma = \frac{\oint \left(\frac{s_{r}^2}{s_{r}^2} > \frac{s_{r}^2}{s_{r}^2} \right)}{s}$$

Kod feromagnetika oba izraza su ekvivalentna. Madjutim kod antiferomagnetika, zbog suprotno orijentisanih spinova izraz (1.1) je identički jednak nuli, ali magnetizacija podrešetke nije jednaka nuli i ona se računa preko izraza (1.2)

2. Hajzenbergov model feromagnetika

U teoriji magnetnih dielektrika, kao vrlo važan problem je izračumavanje lokalnog polja koji deluje na atom ili jon, zajedno sa nekim spoljašnjim poljem. Pretpostavljajući da je jak magnetizam definisan medjuspinskom interakcijom, u kojo je dominantna interakcija izmene medju elektronima Hajzenberg je dokazao da se Hamiltonijan feromagnetnog sistema u spoljšnjem magnetnom polju može napisati u obliku:

$$\hat{H} = -g\mu_{B}H \frac{\sum}{n} \hat{S}_{n}^{Z} - \frac{1}{2} \sum_{\substack{n, \ m}} \left[I_{nm}^{X} \hat{S}_{n}^{X} \hat{S}_{m}^{X} + I_{nm}^{X} \hat{S}_{n}^{X} \hat{S}_{m}^{X} + I_{nm}^{X} \hat{S}_{n}^{X} \hat{S}_{m}^{X} + I_{nm}^{X} \hat{S}_{n}^{X} \hat{S}_{m}^{X} \right]$$

gde je g - Landeov faktor, $\mu_{\rm B}$ Borov magneton, H - jačina spoljašnjeg magnetnog polja orijentisanog duž Z -ose, $S_1^{\rm X}$, $S_1^{\rm Y}$, $S_1^{\rm Z}$ - su projekcije spina a $I_{\rm nm}^{\rm X}$, $I_{\rm nm}^{\rm Y}$, $I_{\rm nm}^{\rm Z}$ - predstavljaju intenzitete integrala izmene medju komponentama spinova, koji se nalaze u čvorovima kristalne rešetke \vec{m} i \vec{n} i imaju dimenzije energije.

Ako je $I_{\overrightarrow{n}}^{X} = I_{\overrightarrow{n}}^{Y} = I_{\overrightarrow{n}}^{Z}$ imamo izotropni feromagnetik, čiji je Hamiltonijan oblika

(1.4)
$$\hat{H} = -g\mu_{B}H \sum_{\vec{n}} \hat{S}_{\vec{n}}^{Z} - \frac{1}{2} \sum_{\vec{n}} I \hat{\vec{s}}_{\vec{n}} \hat{\vec{s}}_{\vec{n}}$$

Za anizotropni feromagnetik parametri $I_{\overrightarrow{nm}}^{\mathbf{r}}$ nisu medjusobno isti i tu mogu da postoje različite kombinacije (npr. XY model, Izingov model, ...).

U ovom radu razmatramo specijalan slučaj anizotropnog feromagnetika koji je detaljno obradjen u radu [2]. Posmatra se primitivna kubna feromagnetna rešetka koju grade magnetni joni sa neparnim brojem elektrona. U opštem slučaju interakcija izmene ovih magmetnih jona u osnovnom stanju je anizotropna. Pošto ova interakcija izmene brzo opada sa rastojanjem zadržava se samo interakcija izmedju najbližih suseda. Razmatra se slučaj spina S = 1/2 za koji je magnetni moment magnetnih jona u osnovnom stanju $\vec{M} = g\mu_B \vec{S}$. Hamiltonijan interakcije imaće jednostavnu formu ako se pretpostavi da je veza koja spaja dva susedna jona invarijantna u odnosu na osu rotacije četvrtog reda sa dvema normalnim ogledalskim ravnima (4mm). Za par jona $(\vec{1}, \vec{j})$ čija je veza paralelna sa z-osom interakcija će biti sledećeg oblika

(1.5)
$$\hat{H}_{\overrightarrow{1}\overrightarrow{3}} = J_{\overrightarrow{1}\overrightarrow{3}}\hat{S}^{z}\hat{S}^{z} + J_{\overrightarrow{1}}\hat{S}^{x}\hat{S}^{x} + \hat{S}^{y}\hat{S}^{y})$$

Interakcija (1.5) se smatra opštim oblikom interakcije dva slabo sparena spina čije su veze invarijantne u odnosu na osu rotacije četvrtog reda i dve normalne ogledalske ravni.

Ovde se ne uzimaju u obzir magnetne dipolne interakcije i električne multipolne interakcije izmedju najbližih suseda što je sve uslovljeno činjenicom da se ponašanjem spina S = 1/2 zabranjuje bilo koje sparivanje koje nije bilinearno po komponentama spina. Izraz (1.5) možemo pogodnije napisati ako uvedemo smene

 $(1.6) \qquad J = -J_{\underline{I}} \qquad J' = J_{\underline{II}} - J_{\underline{I}}$

pa tako dobijamo

$$\hat{H}_{\downarrow\downarrow} = - J\hat{S}^{\dagger}\hat{S}^{\downarrow}_{\downarrow} + J\hat{S}^{z}\hat{S}^{z}_{\downarrow}$$

ukupni Hamiltonijan anizotropnog feromagnetika u spoljašnjem magnetnom polju će biti

$$(1.7) \quad \hat{H} = -g\mu_{B}H \sum_{\vec{i}} \hat{S}_{\vec{i}}^{z} - J \frac{1}{2} \sum_{\vec{i}} \sum_{\vec{i}} \hat{S}_{\vec{i}}^{z} \hat{r} + J^{*} \sum_{\vec{i}} \sum_{\vec{i}} \hat{S}_{\vec{i}}^{z} \hat{s}_{\vec{i}}^{z} \hat{r}$$
$$+ J^{*} \sum_{\vec{i}} \sum_{\vec{i}} \hat{S}_{\vec{i}}^{z} \hat{S}_{\vec{i}}^{z} \hat{r} \hat{r} \hat{r}$$

gde se sumiranje vrši po najbližim susedima, pri čemu \vec{i} i \vec{j} uzimaju sve vrednosti ukupnog broja ekvivalentnih jona N, a r vrednosti x, y, z. (Faktor 1/2 je stavljen da bi se izbeglo dvostruko prebrojavanje). Ako anizotropija ne postoji (J⁻=0 ili

tropni Hajzenbergov Hamiltonijan primitivne kubne rešetke za koji se javlja feromagnetizam pri J>0. U radu |2| detaljno su analizirani uslovi stabilnosti datog Hamiltonijana. Pokazano je da su ose lake magnetizacije u kristalu ose četvrtog reda (npr. Z-osa |0 0 1|) i da se stabilna feromagnetna konfiguracija dobija kada su ispunjeni uslovi:

(1.8)
$$J_{T} < 0 \quad i \quad J_{TT} < 0$$

Za sve ostale kombinacije vrednosti J $_{II}$ i J $_{II}$ javiće se antiferomagnetna konfiguracija.

Grinove funkcije anizotropnog feromagnetika

Kao što je u radu |2| pokazana najniža vrednost energije osnovnog stanja anizotropnog feromagnetika odgovara pravcu ose lake magnetizacije $|0 \ 0 \ 1|$ tj. z -osi. Za slučaj kada nema spoljašnjeg magnetnog polja svi spinovi će biti usmereni u tom pravcu a magnetizacija će za vrednost spina S = 1/2 imati oblik

(1.9)
$$\sigma = \frac{\langle S_{n}^{4} \rangle}{S} = 2 \langle \hat{S}_{n}^{2} \rangle$$

Da bi izračunali magnetizaciju i energiju elementarnih ekscitacija u feromagnetiku koristićemo se metodom Grinovih funkcija.

- 4 -

Polazi se od dvovremenskih, temperaturski zavisnih, retardovanih, komutatorskih Grinovih funkcija oblika

$$(1.10) << s^{\alpha}(t) [s^{\beta}(t') >> = \Theta(t-t') < [s^{\alpha}(t), s^{\beta}(t')] >$$

Ovde je $\Theta(t-t')$ Hevisajdova "step" funkcija definisana na sledeći način

$$\Theta(t-t') = \begin{cases} 1 & za & t > t' \\ 0 & za & t < t' \end{cases} \quad \alpha, \beta = x, y, z$$

Diferenciranjem (1.10) po t i Furije transformacijom po vremenu dobijamo jednačinu kretanja za Grinove funkcije u energetskoj reprezentaciji (pogledati |3[)

(1.11)
$$E << S^{\alpha}_{\stackrel{\rightarrow}{m}} | S^{\beta}_{\stackrel{\rightarrow}{n} \stackrel{\rightarrow}{E}} = \frac{1}{2\pi} < [S^{\alpha}_{\stackrel{\rightarrow}{n}}, S^{\beta}_{\stackrel{\rightarrow}{n}}] > + << [S^{\alpha}_{\stackrel{\rightarrow}{n}}, H] | S^{\beta}_{\stackrel{\rightarrow}{n}} >> E$$

Koristeći komutacione relacije za komponente spina

(1.12)
$$\begin{bmatrix} S^{\alpha}_{\downarrow}, S^{\beta}_{\downarrow} \end{bmatrix} = i \varepsilon_{\alpha\beta\gamma} S^{\gamma}_{\downarrow} \delta_{\downarrow}$$

gde je $\delta_{n,m}$ Kronekerov simbol, a $\epsilon_{\alpha\beta\gamma}$ simbol Levi čivita definisan izrazom

 $\varepsilon_{\alpha\beta\gamma} = \begin{cases} 1; ako su \alpha, \beta i \gamma u datom normalnom poretku$ ili nekoj cikličnoj permutaciji i svi medjusobno različiti.-1; ako su svi medjusobno različiti ali nisukao u gore navedenom normalnom poretku0; za sve ostale slučajeve

i izraz za Hamiltonijan (1.7) možemo izraz (1.11) napisati u obliku

$$(1.13) \quad E << S_{\vec{m}}^{\alpha} | S_{\vec{n}}^{\beta} >> = -\frac{1}{2\pi} \sum_{\gamma} \varepsilon_{\alpha\beta\gamma} < S_{\vec{m}}^{\gamma} > \delta_{\vec{n}} - \frac{1}{\gamma} \sum_{\gamma} \sum_{r} \sum_{\alpha\vec{r}\gamma} i\varepsilon_{\alpha\vec{r}\gamma} << S_{\vec{m}}^{\gamma} S_{\vec{r}}^{r} | S_{\vec{n}}^{\beta} >> + \frac{1}{j} \sum_{r} \sum_{\gamma} i\varepsilon_{\alphar\gamma} << S_{\vec{m}}^{\gamma} S_{\vec{n}}^{r} | S_{\vec{n}}^{\beta} >> + J^{\gamma} \sum_{\gamma} \sum_{\gamma} i\varepsilon_{\alphar\gamma} << S_{\vec{m}}^{\gamma} S_{\vec{m}}^{r} + e_{r}^{\beta} \sum_{\vec{n}} \sum_{r} \sum_{\gamma} i\varepsilon_{\alphar\gamma} << S_{\vec{m}}^{\gamma} S_{\vec{n}}^{r} + e_{r}^{\beta} \sum_{\vec{n}} \sum_{r} \sum_{\gamma} i\varepsilon_{\alphar\gamma} << S_{\vec{m}}^{\gamma} S_{\vec{n}}^{\beta} >> + J^{\gamma} \sum_{\gamma} \sum_{\gamma} i\varepsilon_{\alphar\gamma} << S_{\vec{m}}^{\gamma} S_{\vec{n}}^{\beta} >> + J^{\gamma} \sum_{\gamma} \sum_{\gamma} i\varepsilon_{\alphar\gamma} << S_{\vec{m}}^{\gamma} S_{\vec{n}}^{\beta} >> + J^{\gamma} \sum_{\gamma} \sum_{\gamma} i\varepsilon_{\alphar\gamma} << S_{\vec{m}}^{\gamma} S_{\vec{n}}^{\beta} >> + J^{\gamma} \sum_{\gamma} \sum_{\gamma} i\varepsilon_{\alphar\gamma} << S_{\vec{m}}^{\gamma} S_{\vec{n}}^{\beta} >> + J^{\gamma} \sum_{\gamma} \sum_{\gamma} i\varepsilon_{\alphar\gamma} << S_{\vec{m}}^{\gamma} S_{\vec{n}}^{\beta} >> + J^{\gamma} \sum_{\gamma} \sum_{\gamma} i\varepsilon_{\alphar\gamma} << S_{\vec{m}}^{\gamma} S_{\vec{n}}^{\beta} >> + J^{\gamma} \sum_{\gamma} \sum_{\gamma} i\varepsilon_{\alphar\gamma} << S_{\vec{m}}^{\gamma} S_{\vec{n}}^{\beta} >> + J^{\gamma} \sum_{\gamma} \sum_{\gamma} i\varepsilon_{\alphar\gamma} << S_{\vec{m}}^{\gamma} S_{\vec{n}}^{\beta} >> + J^{\gamma} \sum_{\gamma} \sum_{\gamma} i\varepsilon_{\alphar\gamma} << S_{\vec{m}}^{\gamma} S_{\vec{n}}^{\beta} >> + J^{\gamma} \sum_{\gamma} \sum_{\gamma} i\varepsilon_{\alphar\gamma} << S_{\vec{m}}^{\gamma} S_{\vec{n}}^{\beta} >> + J^{\gamma} \sum_{\gamma} \sum_{\gamma} i\varepsilon_{\alphar\gamma} << S_{\vec{m}}^{\gamma} S_{\vec{n}}^{\beta} >> + J^{\gamma} \sum_{\gamma} \sum_{\gamma} i\varepsilon_{\alphar\gamma} << S_{\vec{m}}^{\gamma} S_{\vec{n}}^{\beta} >> + J^{\gamma} \sum_{\gamma} i\varepsilon_{\alphar\gamma} << S_{\vec{m}}^{\gamma} S_{\vec{n}}^{\beta} S_{\vec{n}}^{\gamma} >> + J^{\gamma} \sum_{\gamma} i\varepsilon_{\alphar\gamma} << S_{\vec{m}}^{\gamma} S_{\vec{n}}^{\beta} S_{\vec{n}}^{\gamma} >> + J^{\gamma} \sum_{\gamma} i\varepsilon_{\alphar\gamma} << S_{\vec{n}}^{\gamma} S_{\vec{n}}^{\beta} S_{\vec{n}}^{\gamma} S_{$$

(Pogledati detaljnije izvodjenje u radu |4|). Izrazi oblika << $s_{\vec{n}}^{\vec{r}} | s_{\vec{n}}^{\beta} >>$ koji figurišu u (1.13) dekupluju se na sledeći način:

(1.14)
$$\langle \langle S_{\vec{n}}^{\gamma}S_{\vec{j}}^{r}| S_{\vec{n}}^{\beta} \rangle \rangle = \langle S_{\vec{n}}^{\gamma} \rangle G_{\vec{j}}^{r\beta} + \langle S_{\vec{j}}^{r} \rangle G_{\vec{n},\vec{n}}^{\gamma\beta}$$

i uvodi se sledeća oznaka $\langle S_{\downarrow}^{\alpha} | S_{\downarrow}^{\beta} \rangle = G^{\alpha\beta}$ (1.15)

Daljom transformacijom izraza (1.13)korišćenjem Furije transformacije oblika $A_{\vec{a}\vec{b}}^{\alpha\beta} = 1/N \sum_{\vec{k}} A_{\vec{k}\vec{b}}^{\alpha\beta}$ i uvodjenjem novih smena $\vec{k}_{\vec{k}}^{\alpha\beta} = 1/N \sum_{\vec{k}} A_{\vec{k}\vec{b}}^{\alpha\beta}$

$$(1.16) \begin{cases} \alpha_{\vec{q}}^{\dagger} = J_0 - J_{\vec{q}}^{\dagger}; \ \beta_{q_r} = J_0^{\dagger} - J_{\vec{q}}^{\dagger}; \ \lambda_r = \alpha_{\vec{q}}^{\dagger} - \beta_{q_r} \\ J_0 = 6J; \ J_{\vec{q}}^{\dagger} = J \sum_{\vec{m} - \vec{n}} e^{i\vec{q} \cdot (\vec{m} - \vec{n})} \\ J_0^{\dagger} = 2J^{\dagger}; \ J_{\vec{q}_r}^{\dagger} = 2J^{\dagger} \cos q_r a \end{cases}$$

izraz oblika (1.13) dobija jednostavniji oblik

$$(1.17) \quad EG^{\alpha\beta}(\vec{q}) + \sum_{\mathbf{r} \gamma} \sum_{\alpha \mathbf{r} \gamma} e^{\mathbf{r} \mathbf{r} \beta} (\vec{q}) (\alpha_{\vec{q}} - \beta_{\vec{q}}) + g\mu_{B}H \sum_{\gamma} i\epsilon_{\alpha \mathbf{r} \gamma} G^{\gamma\beta}(\vec{q}) = -\frac{1}{2\pi} \sum_{\gamma} \epsilon_{\alpha\beta\gamma} < S^{\gamma} >$$

Ovde je uvedena oznaka $\langle S_{\vec{1}}^{\alpha} \rangle = \langle S^{\alpha} \rangle$; (za $\alpha = x, y, z$), zbog translatorne invarijantnosti srednje vrednosti spina su iste u svim čvorovima rešetke. Izraz (1.17) se može napisati u matričnom obliku

(1.18)
$$\hat{T}(\vec{q}, E) \hat{G}(\vec{q}, E) = \hat{C}(\vec{q})$$

qde su matični elementi matrice $\hat{T}(\vec{q}, E)$ dati iztazom

(1.19)
$$T^{\alpha\beta}(\vec{q}, E) = E\delta_{\alpha, \gamma} + ig\mu_{B}H \sum_{r} \epsilon_{\alpha z \gamma} + i\sum_{r} \epsilon_{\alpha r \gamma} < S^{r} > (\alpha \neq \beta_{q})$$

a matrice $C(\vec{q})$ u obliku

(1.20)
$$C^{\alpha\beta}(\vec{q}) = -\frac{1}{2\pi} \sum_{\gamma} \epsilon_{\alpha\beta\gamma} < S^{\gamma} >$$

Da bi odredili Grinovu funkciju treba izraz (1.18) pomnožiti sa inverznom matricom $\hat{T}^{-1}(\vec{q}, E)$ odakle sledi:

(1.21)
$$\hat{G}(\hat{q}, E) = \hat{T}(\hat{q}, E) \hat{C}(\hat{q})$$

Polove Grinove funkcije dobijamo kad $\det \hat{T}(\hat{q}, E) = 0$ i oni nam odredjuju energiju elementarnih ekscitacija pod ranije navedenim uslovima da nema spoljašnjeg polja H = 0.

(1.22)
$$E_{2,3} = \frac{+}{-} \left[\langle S^{x} \rangle^{2} (\lambda x + \lambda y) \lambda z + \langle S^{z} \rangle^{2} \lambda x \lambda y \right]^{1/2}$$

Uvodjenjem smene $E_q \equiv E_{2,3}$ i uzimajući u obzir da je $\langle S^X \rangle \equiv \langle S^Y \rangle$ zbog simetrije Hamiltonijana dolazimo do izraza za Grinovu funkciju u matričnom obliku gde je prvi član dat izrazom

(1.23)
$$G^{XX}(\dot{q}, E) = -\frac{i}{2\pi} \frac{\langle S^{Z} \rangle^{2} \lambda_{Y} + \langle S^{X} \rangle^{2} \lambda_{Z}}{2E_{q}} \left[\frac{1}{E + E_{q}} - \frac{1}{E - E_{q}} \right]$$

Da bi odredili realni deo Grinove funkcije koji nam je potreban za izračunavanje srednje vrednosti magnetizacije preko spektralne intenzivnosti koristićemo relaciju iz kompleksne analize.

(1.24)
$$\left[\frac{1}{x_{\pm i\delta}^{\pm}}\right]_{\delta \to 0} = \frac{1}{x} - \frac{1}{x} + \frac{1}{x} \delta(x)$$

Spektralna intenzivnost I^{XX}(\vec{q}, E) se računa po opštoj formuli (1.25) I^{XX}(\vec{q}, E) = 2Re[G^{XX}(\vec{q}, E)] $\frac{1}{e^{E/\Theta}-1}$ a srednja vrednost $\langle S_{\vec{m}}^{X} S_{\vec{n}}^{X} \rangle$ po formuli (1.26) $\langle S_{\vec{m}}^{X} S_{\vec{n}}^{X} \rangle = \frac{1}{N} \sum_{\vec{q}} \int_{-\infty}^{\infty} I^{XX}(\vec{q}, E) e^{-i\vec{q}(\vec{m}-\vec{n})} dE$ Ako stavimo u (1.26) $\vec{m} = \vec{n}$ i $\langle S_{\vec{p}}^{X2} \rangle = \frac{1}{4}$ dobijamo (1.27) $\frac{1}{4} = \frac{1}{N} \sum_{\vec{q}} \int_{-\infty}^{\infty} \frac{\langle S^{Z} \rangle^{2} \lambda_{Y} + \langle S^{X} \rangle^{2} \lambda_{Z}}{2E_{q}} |\delta(E+E_{q}) - \delta(E-E_{q})| = \frac{1}{e^{E/\Theta}-1}$

Posle integracije i nakon algebarskih transformacija dobijamo (1.28a) $\frac{1}{2} = \frac{1}{N} \sum_{\substack{q \ q}} \frac{\langle S^{X} \rangle^{2} \lambda_{z} + \langle S^{Z} \rangle^{2} \lambda_{y}}{E_{q}} \operatorname{cth} \frac{E_{q}}{\frac{2S}{2S}}$

Na sličan način možemo odrediti Grinove funkcije $G^{YY}(\vec{q},E)$ i $G^{ZZ}(\vec{q},E)$ odakle dobijamo

(1.28b)
$$\frac{1}{2} = \frac{1}{N} \sum_{\vec{q}} \frac{\langle S^{Z} \rangle^{2} \lambda_{x} + \langle S^{X} \rangle^{2} \lambda_{z}}{E_{q}} \operatorname{cth} \frac{E_{q}}{2\Theta}$$

(1.28c) $\frac{1}{2} = \frac{1}{N} \sum_{\vec{q}} \frac{\langle S^{X} \rangle^{2} \lambda_{x} + \langle S^{X} \rangle^{2} \lambda_{y}}{E_{q}} \operatorname{cth} \frac{E_{q}}{2\Theta}$

8 -

U radu |4| ove jednačine rešavane su u aproksimaciji Tjablikova $\langle S^X \rangle = \langle S^Y \rangle = 0$, i u slučaju slabe anitropije ($\delta < 1$) za konačne temperature. Nas je zanimalo opšte rešenje ovog sistema za proi-zvoljnu vrednost parametara anizotropije ($\delta \leq 1$). To je izuzetno složeno stoga smo se odlučili za izračunavanje osnovnog stanja tj. $\Theta = 0$ k, medjutim, i tada, sistem se mora proučavati numerič-ki. Srednje vrednosti spina $\langle S^{\alpha} \rangle$ tj. magnetizacije u osnovnom stanju, dobijamo iz sistema jednačina (1.28) stavljajući $\Theta = 0$ tj. cth $\frac{Eq}{2\Theta} = 1$.

(1.29a)
$$\frac{1}{2} = \frac{1}{N} \sum_{\substack{i=1\\j \neq i}}^{\infty} \frac{\langle S^{x} \langle 2_{\lambda_{z}} + \langle S^{z} \rangle^{2} \lambda_{y}}{E_{q}}$$

(1.29b) $\frac{1}{2} = \frac{2}{N} \sum_{\substack{i=1\\j \neq i}}^{\infty} \frac{\langle S^{x} \rangle^{2} \lambda_{x}}{E_{q}}$

jer su prve dve jednačine (1.28a i 1.28b) invarijantne na promenu mesta x 5 y.

Koristeći smene koje u sebi sadrže parametar anizotropije

(1.30)
$$\lambda_{i} = J_{0} - J_{q} - J_{0} + J_{q}; \quad J_{0} = 6J; \quad J_{q} = 2J(\cos x + \cos y + \cos z)$$

 $J_{0} = 2\delta J; \quad J_{q} = 2\delta J \cos q_{i}$

možemo sistem jednačina (1.29) napisati u obliku

$$(1.31) \quad \frac{1}{2} = 2J < S^{X} >^{2} \frac{1}{N} \sum_{\vec{q}} \frac{6 - 2\delta - 2[(1 - \delta)\cos x + \cos y + \cos z]}{E_{q}}$$
$$\frac{1}{2} = J < S^{X} >^{2} \frac{1}{N} \sum_{\vec{q}} \frac{6 - 2\delta - 2[\cos x + \cos y + (1 - \delta)\cos z]}{E_{q}} + J < S^{Z} >^{2} \frac{1}{N} \sum_{\vec{q}} \frac{6 - 2\delta - 2[\cos x + \cos y + (1 - \delta)\cos z]}{E_{q}}$$

U ovom sistemu se, prelazom sa sume na integral, dobijaju trostruki integrali oblika:

$$\mathbf{I}^{O} = \frac{1}{8\pi^{3}} \mathbf{J} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{1}{-\pi} \frac{1}{E_{q}} dxdydz; \quad \mathbf{I}^{X} = \frac{1}{8\pi^{3}} \mathbf{J} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{\cos x dx dy dz}{E_{q}} \equiv \mathbf{I}^{Y};$$
$$\mathbf{I}^{Z} = \frac{1}{8\pi^{3}} \mathbf{J} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{\pi}{-\pi} \frac{\pi}{-\pi} \frac{\cos z dx dy dz}{E_{q}}$$

koji će se rešavati G**aus**ovom kvadraturnom formulom. Izraz za energiju E_g posle uvodjenja smene (1.30) postaje

- 9 -

(1.32)
$$E_q = 2J\{\langle S^x \rangle^2 [6-2\delta - (2-\delta)(\cos x + \cos y) - 2\cos z] [3-\delta - \cos x - \cos y - (1-\delta)\cos z] + \langle S^z \rangle^2 [3-\delta - (1-\delta)\cos x - \cos y - \cos z] [3-\delta - \cos x - (1-\delta)\cos y - \cos z] \}^{1/2}$$

za proizvoljne vrednosti δ metodom običnih iteracija (koje će biti detaljno analizirane u II delu) i primenom Gausove kvadraturne formule za izračunavanje integrala možemo napisati program za računanje srednje vrednosti magnetizacije $\langle S^X \rangle$ i $\langle S^Z \rangle$. U daljem radu su korišćene oznake $E_q \equiv E$; $\langle S^X \rangle^2 \equiv XX$; $\langle S^Z \rangle^2 \equiv zz$.

Sistem jednačina napisan u ovim oznakama je

$$(1.33) \quad \frac{1}{8} = XX \left[(3-\delta) I^{O} - (2-\delta) I^{X} - I^{Z} \right]$$
$$\frac{1}{4} = XX \left[(3-\delta) I^{O} - 2I^{X} - (1-\delta) I^{Z} \right] + ZZ \left[(3-\delta) I^{O} - (2-\delta) I^{X} - I^{Z} \right]$$

Dalje se uvode smene

(1.34)

$$TR1 \equiv (3-\delta)I^{O} - 2I^{X} - (1-\delta)I^{Z}$$

$$TR2 \equiv TR3 = (3-\delta)I^{O} - (2-\delta)I^{X} - I^{Z}$$

koje se kasnije koriste u programu.

II DEO

1. Iterativni postupak

Dati sistem jednačina (1.31) u matričnom obliku je $X = \phi(x)$ gde je $X = \begin{bmatrix} x & x \\ z & z \end{bmatrix}$ a $\phi(x) = \begin{bmatrix} 1/8TR2 \\ (0, 25-xx \cdot TR1)/TR2 \end{bmatrix}$ (2.1)

i on je rešavan opštim iterativnim postupkom oblika

(2.2)
$$X_n = \phi(x_{n-1})$$
 , $n=1,2,3,...$

 x_{o} - je zadata početna približna vrednost.

U našem slučaju imamo nelinearne integralne jednačine dosta složenog tipa pa je ispitivanje uslova konvergencije postupka (2.2) vrlo komplikovano pa ga nismo ispitivali, već smo zaključili na osnovu dobijenih vrednosti da postupak konvergira (razlika izmedju dve susedne iteracije se smanjuje).

2. Gausova metoda integracije

U jednačini (2.1) figurišu trostruki integrali koje približno rešavamo (vidi 5) Gausovom kvadraturnom formulom oblika

(2.3)
$$\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} f(x,y,z) dx dy dz \sim \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} A_i A_j A_k f(x_i,x_j,x_k)$$

 A_i, A_j, A_k - su koeficijenti koji se mogu pronaći u tablicama i njihove vrednosti zavise od broja čvorova integracije koje odaberemo.

Algebarski stepen tačnosti formula tipa Gausa je 2n-1 i one su u odnosu na druge kvadraturne formule najbolje, jer su najveće moguće tačnosti.

U tački $(0,0,0,\delta)$ imamo nulu u imeniocu podintegralnih funkcija (prividan singularitet). Imenioc se tada približno ponaša kao $\sin^2 \frac{x}{2}$ tj. kao nula drugog reda.

Pošto računar ne može da prihvati takav oblik podintegralne funkcije,treba uzeti paran broj čvorova kod Gausove kvad-

- 10 -

raturne formule. U tom slučaju nula nije čvor pa nemamo deljenje sa nulom. Medjutim, čvor mora biti blizu nule npr. za N=8 čvorova najmanji čvor je X(4) = 0.183434642495649 a za N = 12; X(6) = 0.125233408511468, a on je još bliži nuli. (Naime, ako se ove vrednosti čvorova X uvrste u približnu formulu $\sin^2 \frac{x}{2}$ dobijaju se još manje vrednosti 2.56 x10⁻⁶ i 1,19 x10⁻⁶).

Pošto deljenje računarom sa tako malim brojevima dovodi do nestabilnosti numeričkog postupka, **mi**smo podintegralnu funkciju transformisali u pogodniji oblik. Tada se funkcija u tački (0,0,0, δ) svodi na oblik $\frac{0}{0}$, i pri tome je stepen nule u brojiocu veći (ili jednak) od stepena nule u imeniocu). Na taj način je postignuto računanje integrala sa visokom tačnošću. Integracija po kocki $|0,\pi|x|0,\pi|x|0,\pi|$ je prevedena na integraciju po šest tetraedara. Zbog nesimetričnosti podintegralnih funkcija vrednosti integrala na svakom tetraedu se razlikuju. Naši trostruki integrali su oblika

$$I = \frac{1}{\pi^3} \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\pi} f(x, y, z, \delta) dx dy dz$$

i oni se transformišu smenom promenljivih na sledeći način:

$$(2.4) \quad \frac{1}{\pi^3} \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\pi} f(x,y,z) \, dx \, dy \, dz = \frac{1}{\pi^3} \left[\int_{0}^{\pi} dx \int_{0}^{x} dy \int_{0}^{y} dz \, f(x,y,z) + \right]_{0}^{\pi} dx \int_{0}^{x} dz \int_{0}^{z} dz \int_{0}^{z} dy \, f(x,y,z) + \int_{0}^{\pi} dy \int_{0}^{y} dz \int_{0}^{z} dx \, f(x,y,z) + \int_{0}^{\pi} dz \int_{0}^{z} dx \, f(x,y,z) + \int_{0}^{\pi} dz \int_{0}^{z} dx \, f(x,y,z) + \int_{0}^{\pi} dz \int_{0}^{z} dx \int_{0}^{x} dy \, f(x,y,z) + \int_{0}^{\pi} dz \int_{0}^{z} dx \int_{0}^{x} dy \, f(x,y,z) + \int_{0}^{\pi} dz \int_{0}^{z} dx \int_{0}^{x} dy \, f(x,y,z) + \int_{0}^{\pi} dz \int_{0}^{z} dx \int_{0}^{x} dy \, f(x,y,z) + \int_{0}^{\pi} dz \int_{0}^{z} dx \int_{0}^{x} dy \, f(x,y,z) + \int_{0}^{\pi} dz \int_{0}^{z} dx \int_{0}^{x} dy \, f(x,y,z) + \int_{0}^{\pi} dz \int_{0}^{z} dx \int_{0}^{x} dy \, f(x,y,z) + \int_{0}^{\pi} dz \int_{0}^{z} dy \, f(x,y,z) + \int_{0}^{\pi} dz \, f(x,y,z) + \int_{0}^$$

Svaki integral na desnoj strani (2.4) transformišemo pomoću smena na oblik

1.
$$\mathbf{x} = \pi\xi$$
 $\mathbf{y} = \pi\xi\eta$ $\mathbf{z} = \pi\xi\eta\phi$
 $d\mathbf{x} = \pi d\xi$ $d\mathbf{y} = \pi\xi d\eta$ $d\mathbf{z} = \pi\xi\eta\phi$
 $\mathbf{I}_{1} = \int_{0}^{1} d\xi \int_{0}^{1} d\eta \int_{0}^{1} d\phi\pi^{3}\xi^{2}\eta f(\pi\xi,\pi\xi\eta,\pi\xi\eta\phi)$

2.
$$\mathbf{x} = \pi\xi$$
 $\mathbf{y} = \pi\xi\eta\phi$ $\mathbf{z} = \pi\xi\eta$
 $d\mathbf{x} = \pi d\xi$ $d\mathbf{y} = \pi\xi\eta\phi$ $d\mathbf{z} = \pi\xi\eta$
 $\mathbf{I}_2 = \int_0^1 d\xi \int_0^1 d\eta \int_0^1 d\phi \pi^3 \xi^2 \eta \mathbf{f}(\pi\xi, \pi\xi\eta\phi, \pi\xi\eta)$
3. $\mathbf{x} = \pi\xi\eta\phi$ $\mathbf{y} = \pi\xi$ $\mathbf{z} = \pi\xi\eta$
 $d\mathbf{x} = \pi\xi\eta\phi$ $d\mathbf{y} = \pi d\xi$ $d\mathbf{z} = \pi\xi\eta\eta$
 $\mathbf{I}_3 = \int_0^1 d\xi \int_0^1 d\eta \int_0^1 d\phi \pi^3 \xi^2 \eta \mathbf{f}(\pi\xi\eta\phi, \pi\xi, \pi\xi\eta)$
4. $\mathbf{x} = \pi\xi\eta$ $\mathbf{y} = \pi\xi$ $\mathbf{z} = \pi\xi\eta\phi$
 $d\mathbf{x} = \pi\xi\eta\eta$ $d\mathbf{y} = \pi\xi$ $d\mathbf{z} = \pi\xi\eta\phi$
 $\mathbf{I}_4 = \int_0^1 d\xi \int_0^1 d\eta \int_0^1 d\phi \pi^3 \xi^2 \eta \mathbf{f}(\pi\xi\eta, \pi\xi, \pi\xi\eta\phi)$
5. $\mathbf{x} = \pi\xi\eta$ $\mathbf{y} = \pi\xi\eta\phi$ $\mathbf{z} = \pi\xi$
 $d\mathbf{x} = \pi\xi\eta\eta$ $d\mathbf{y} = \pi\xi\eta\phi\phi$ $d\mathbf{z} = \pid\xi$
 $\mathbf{I}_5 = \int_0^1 d\xi \int_0^1 d\eta \int_0^1 d\phi \pi^3 \xi^2 \eta \mathbf{f}(\pi\xi\eta, \pi\xi\eta\phi, \pi\xi)$
6. $\mathbf{x} = \pi\xi\eta\phi$ $\mathbf{y} = \pi\xi\eta$
 $\mathbf{z} = \pi\xi\eta\phi$ $\mathbf{z} = \pi\xi\eta$
 $\mathbf{z} = \pi\xi\eta\phi\phi$ $\mathbf{z} = \pi\xi\eta\phi$
 $\mathbf{z} = \pi\xi\eta\phi\phi$ $\mathbf{z} = \pi\xi\phi$
 $\mathbf{z} = \pi\xi\phi$
 $\mathbf{z} = \pi\xi$
 $\mathbf{z} = \pi\xi\phi$
 $\mathbf{z} = \pi\xi\phi$

$$I = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f(xv, yv, zv) + f(xv, zv, yv) +$$

$$(2.5) + f(zv, xv, yv) + f(yv, xv, zv) + f(yv, zv, xv) +$$

$$+ f(zv, yv, xv) | \xi^{2} \eta d\xi d\eta d\phi$$

Na ovaj način je dobijena nula "reda tri" u brojiocu čime je integral postao regularan.

dati in-

- 12 -


```
N - je broj čvorova integracije (za ovaj slučaj N=8)
XX,ZZ - tražene vrednosti magnetizacije koje se izračunavaju
EPS - tačnost integracije (ne sme biti veća od \delta^2)
DEL - vrednost parametara anizotropije \delta u intervalu [-1,1]
DTEST - prepoznavanje kraja ulaznih podataka
SUBROUTINE KOEF (N2, A, X) - potprogram za odredjivanje čvorova
i koeficijenata za Gausovu kvadraturnu formulu
2*N2 = N - broj čvorova integracije
A(I) - koeficijenti uz odgovarajuće čvorove integracije
X(I) - vrednosti čvorova
SUBROUTINE APROX(N,A,X,TR1,TR2) - potprogram za izračunavanje
vrednosti trostrukih integrala
N,A,X - opisani u SUBROUTINE KOEF (N2,A,X)
TR1,TR2 - vrednosti odgovarajućih izraza koji sadrže integrale
(definisani sa 1.34). Ovaj potprogram poziva drugi potprogram
SUBROUTINE FALFA(X,Y,Z,DEL,F1,F2,F3) - koji izračunava vrednosti
podintegralnih funkcija
X,Y,Z - su argumenti funkcije
DEL = \delta - je ulazni parametar
CZ = cos Z
CX = cos X
F1 = F3 = (3.-DEL-(2.-DEL)*CX - CZ
F2 = F1 + DEL * (CZ - CX)
```

Posle završenog računa dobijeni su numerički rezultati za srednje vrednosti magnetizacije $\langle S^X \rangle$ i $\langle S^Z \rangle$ uz odgovarajuće vrednosti parametara anizotropije δ , koji su prikazani u tabeli 1. Na osnovu datih podataka prikazana je pomoću grafika funkcionalna zavisnost srednjih vrednosti magnetizacije od parametra anizotropije na sl. 1.

- 14 -

	- 15 -	
δ	$\langle S^{X} \rangle = \sqrt{ XX }$	$\langle S^{\mathbf{Z}} \rangle = \sqrt{ \mathbf{Z}\mathbf{Z} }$
0.0001	0.3404977205270809	0.3404913798578173
0.001	0.3405187462558448	0.3404525242297791
0.01	0.3407175359679198	0.3400652622208052
0.02	0.3409306381059322	0.3396324483909039
0.03	0.3411452707459954	0.3391926213453523
0.04	0.3413610787074574	0.3387458055792420
0.05	0,3415781449167556	0.3382918841690345
0.06	0.3417964792276395	0.3378307740919376
0.07	0.3420161100137242	0.3373621580716218
0.08	0.3422332087711906	0.3368950012643775
0.09	0.3424593363988787	0.3364021726317993
0.1	0.3426828733822639	0.3359106512787895
0.2	0.3449782772095794	0.3305233418724054
0.5	0.3529445665444163	0.3073970283011589
0.8	0.3634648948055627	0.2644993878205771
0.9	0.3679972794592927	0.2412050354879814
0	0.3404911648528362	0.3405119185662707
-0.0001	0.3404935124858426	0.3404998638955191
-0.001	0.3404725197229865	0.3405376074004172
-0.01	0.3402851955535625	0.3409160893171398
-0.03	0.3398673830602103	0.3417366793773187
-0.05	0.3394539078595843	0.3425316781366320
-0.08	0.3388422549384812	0.3436785708824257
-0.1	0.3384398601411219	0.3444163637660365
-0.5	0.3312073714034816	0.3554251904855680
-0.8	0.3265767581778588	0.3604939624142952
-1	0.3238039652586228	0.3628887872605232
1	0.3734413905133082	0.2089956729424614

TABELA 1.

SL.1

- 16 -

- 17 -

SL.3

- 18 -

- 19 -

SL.5

III DEO

1. Analiza dobijenih rezultata

Na bazi numeričkog programa možemo analizirati rezultate. Ova analiza će obuhvatiti vrednosti $\langle S^X \rangle$ i $\langle S^Z \rangle$ kao i diskusiju zakona disperzije u funkciji parametra anizotropije.

Pre svega uočimo prirodu anizotropije Hamiltonijana. Naime, u otsustvu spoljašnjeg polja (H=0), on je anizotropan jer postoje privilegovani pravci – pravci duž koordinatnih osa duž kojih postoje dopunske interakcije. S druge strane sve tri ose su u ovom pogledu ravnopravne. Naš rezultat za zakon disperzije već nije takav, naime, u izrazu za $E(\vec{k})$ su "ravnopravne" komponente k_x i k_y , ali se zavisnost od k_z razlikuje. Ovo je posledica aproksimacije u kojoj radimo. Drugim rečima, čak i dekuplovanje potpuno simetrično po komponentama, ne daje simetričan rezultat, već se pravac z-ose oseća kao privilegovan pravac. Ovo se najbolje može videti iz dobijenog grafika (sl. 1)

Rezultati za $\langle S^X \rangle$ i $\langle S^Z \rangle$, za H=O su posledica "kompromisa" ove dve tendencije. S jedne strane, za δ =O, ove vrednosti su praktično jednake (sl. 2) kao posledica ekvivalentnosti pravaca, ali čim δ počinje da raste, dolazi do značajnih promena, $\langle S^Z \rangle$ opada, a $\langle S^X \rangle$ počinje da raste. Naime, anizotropija prigušuje uredjenost koja se javila duž z-ose. Znači kvalitativno ponašanje za $\delta \neq 0$ se dobro uklapa u očekivane rezultate, dok izotropija $\delta = 0$ ustvari označava da nismo korektno istrajali u izračunavanju kvadrata srednjih vrednosti spina. Naime, ispravan put bi bio da se odrede prvo polovi Grinovih funkcija a zatim korelacione funkcije i srednje vrednosti za H \neq O, a tek potom posmatra limes H \rightarrow O. U ovom slučaju, to je komplikovano, i verovatno bi zahtevalo primenu numeričkih metoda već na nivou Grinovih funkcija.

Numerički rezultati za č =0 se mogu uporediti sa egzaktnim vrednostima koje se dobijaju iz sistema jednačina (1.29),

- 21 -

gde se posle uvrštavanja izraza za energiju (1.22) i $\lambda_{i} = \alpha = \lambda$ (zbog $\delta = 0$) dobija sledeći sistem jednačina:

(3.1a)
$$\frac{1}{2} = \frac{\langle S^{z} \rangle^{2} + \langle S^{x} \rangle^{2}}{\sqrt{2 \langle S^{x} \rangle^{2} + \langle S^{z} \rangle^{2}}}$$

(3.1b)
$$\frac{1}{2} = \frac{2 \cdot \langle S^{X} \rangle^{2}}{\sqrt{2 \langle S^{X} \rangle^{2} + \langle S^{Z} \rangle^{2}}}$$

Iz sistema (3.1) se dobijaju sledeće vrednosti $\langle s^{X} \rangle = \langle s^{Z} \rangle = \sqrt[\sqrt{3}]{4} = 0.4330127$ koje se razlikuju od onih u tabeli 1, za $\delta = 0$.

Ovo neslaganje pokazuje da postoje problemi ^u primeni direktnog deklupovanja spinskih Grinovih funkcija na niskim temperaturama.

Veoma je interesantno posmatrati zakon disperzije za različite vrednosti parametara anizotropije. Već smo napomenuli da neki rezultati nisu verni, kao npr. lim $E(\vec{k}) = 0$. što je u $\vec{k} \rightarrow 0$

kontradikciji sa rezultatima dobijenih metodom Bozonskih operatora na niskim temperaturama.

Ako se u izraz za energiju (1.22) stave smene $k_x = k_y$; ($\lambda_x = \lambda_y$) i $k_z = 0$; ($\lambda_z = 0$) dobija se energija duž pravca [110] u obliku

(3.2)
$$E[1 \ 1 \ 0] = \langle S^{Z} \rangle \lambda_{X}$$

Razvijajući λ_x preko izraza (1.30) dobijamo izraz za energiju u funkciji parametra anizotropije δ

(3.3)
$$E[1 \ 1 \ 0] = 4J < S^{Z} > (2-\delta)\cos^{2}\frac{k_{x}a}{2}$$

Analognim postupkom uz smene $k_x = k_z$; $(\lambda_x = \lambda_z)$ i $k_y = 0$; $(\lambda_y = 0)$ dobijamo izraz za energiju duž pravca [1 0 1] u obliku

(3.4)
$$E[1 \ 0 \ 1] = 4J < S^{X} > (2-\delta) \cos^{2} \frac{k_{x}a}{2}$$

Sa mzim fulleronin indeusing

Za sve ostale pravce izrazi za energiju su nule.

Grafička zavisnost veličine E/J za δ = const u funkciji k_xa/2 data je na sl. 2 i sl. 3 (k_xa/2[°] uzima vrednosti iz intervala 0 do π)

Konačno, dajemo poredjenje izračunatih devijacija spina prema radu [7] i naših rezultata. U radu [7] je metodom Bozonskih Grinovih funkcija pokazano da važi relacija

$$(3.5) \quad \Delta \sigma = 0.007172\delta^2 + 0.012831\delta^3 + 0.002518\delta^4$$

koja je grafički prikazana na sl. 4. Naša relacija $\Delta \sigma^{z} = 1-2 < S^{z} >$ dobijena metodom spinskih Grinovih funkcija prikazana je grafički na sl. 5. (Pošto se računske vrednosti devijacija spina, izračunate prema navedenim formulama razlikuju za nekoliko redova veličine iz tehničkih razloga nije sve prikazano na jednom grafiku).

Numeričke vrednosti su date u tabeli 2. na osnovu kojih je prikazana i grafička zavisnost na sl. 4 i sl. 5

Δσx10 ⁻⁵	$\Delta \sigma^{\mathbf{Z}} = 1 - 2 \langle \mathbf{S}^{\mathbf{Z}} \rangle$
0.0730	0.3198696
0.2972	0.3207352
0.6803	0.3216148
1.2302	0.3225084
1.9549	0.3234164
2.8623	0.3243386
3.9604	0.3252758
5.2573	0.3262100
6.7612	0.3271956
8.4802	0.3281780
	Δσx10 ⁻⁵ 0.0730 0.2972 0.6803 1.2302 1.9549 2.8623 3.9604 5.2573 6.7612 8.4802

TABELA 2.

Poredjenje dobijenih rezultata pokazuje znatno odstupanje, mada je kvalitativno ponašanje slično, u odnosu na ranije rezultate koji su više prilagodjeni radu na niskim temperaturama. I ova činjenica, kao i one ranije navedene nam ukazuju da korišćeni metod nije sasvim adekvatan za opisivanje ponašanja osnovnog stanja feromagnetika.

ZAKLJUČAK

U radu je razvijen numerički metod za rešavanje jednačina koje se javljaju u problemima anizotropnih magnetika. Metod je primenjen za nalaženje srednjih vrednosti $\langle S^X \rangle$ i $\langle S^Z \rangle$ u osnovnom stanju. Rezultati su zadovoljavajući ako se uzme u obzir da su dobijeni u vrlo nepogodnoj aproksimaciji. Stoga se može proceniti da će metod biti dobar i za dalje proračune u složenijim situacijama na $\theta \neq 0$ k u prisustvu spoljašnjeg polja.

LITERATURA

- 1 B.Tošić, Statistička fizika, Novi Sad (1978).
- [2] E.Beloritzky, R. Casalegno and P.Fries, Phus. Stat. Sol.,(b) 77, 495 (1976).
- [3] M.Škrinjar, D.Kapor, Zbirka zadataka po odabranim poglavljima statističke fizike, Novi Sad, (1982).
- 4 Jovo M.Mihajlović, Diplomski rad (1980).
- [5] A.H.Strond Don Secrest, Gaussian Quadrature Formulas (1966) Prentice - Hall.
- |6| Nedeljko Parezanović, Algoritmi i programski jezik FORTRAN IV; Beograd (1970).
- [7] D.V.Kapor, K.R.Surla, D.J.Surla, J.P.Šetrajčić and M.J.
 Škrinjar; Anisotropy Effects in an Anisotropic
 Hajsenberg Model, biće objavljeno u physica status
 solidi (b) Vol. 117, N. 1 (1983).

