

ПРИРОДНО МАТЕМАТИЧКИ ФАКУЛТЕТ ОДСЕК ЗА ФИЗИКУ УНИВЕРЗИТЕТ У НОВОМ САДУ

РЕНТГЕНСКА ФЛУОРЕСЦЕНТНА АНАЛИЗА (XRF) И ПРИМЕНЕ ЗА "IN SITU" ИЗУЧАВАЊЕ ОБЈЕКАТА КУЛТУРНЕ БАШТИНЕ

– мастер рад –

<u>МЕНТОРИ:</u> др. ЈОВАНА НИКОЛОВ др. МАЈА ГАЈИЋ – КВАШЧЕВ <u>КАНДИДАТ:</u> МАРИЈА СИРИШКИ

НОВИ САД, 2018.

Велико ХВАЛА професоркама Јовани Николов и Маји Гајић – Квашчев на помоћи и многобројним сугестијама. Велику захвалност такође дугујем и професору Андрићу и господину Стојићу. Без свих вас, овај рад не би видео светлост Сунца.

Садржај

Увод	6
1. Х – зраци	
1.1 Откриће рентгенских зрака	
1.2 Особине X – зрака	9
2. Интеракција рентгенских зрака са материјом	
2.1 Комптонов ефекат	
2.2 Фотоелектрични ефекат	14
2.3 Рејлијево расејање	
2.4 Слабљење снопа X – зрака	
2.5 Рентгенска флуоресценција	
3. Рентгенска флуоресцентна спектрометрија	
3.1 Мозлијево истраживање	
3.2 Уопштено о XRF	
3.3 Извори зрачења	
3.4 Секундарне мете	
3.5 Детектори	
3.6 Спектри X – зрачења	
3.7 Додатак: Табела са карактеристичним линијама	
4. Енергетски дисперзивна XRF	
4.1 Принцип рада EDXRF	
4.2 Упоредба са таласно дисперзивном XRF	
5. XRF систем који је коришћен у анализи	
5.1 Карактеристике спектрометра	
5.2 Мерење	
5.3 Резултати	

Литература	
6. Закључак	
5.5 Идентификација пигмената	
5.4 Анализа	

Списак слика, графика и табела

Слика 2.1: Кинематика Комптоновог ефекта	12
Слика 2.2: Клајн – Нишинина зависност ефикасног пресека	14
Слика 2.3: Кинематика фотоелектричног ефекта	14
Слика 2.4: Међудејство Х – зрака са материјом	16
Слика 2.5: Слабљење снопа Х – зрака приликом проласка кроз материју	17
Слика 2.6: Прелази између нивоа у атому, Зигбанова и IUPAC нотација	19
Слика 2.7: Флуоресценције вишег реда	21
Слика 3.1: Поларизација рентгенских зрака коришћењем секундарне мете	28
Слика 3.2: Принцип рада X – цеви	29
Слика 3.3: Кулиџова цев	29
Слика 3.4: Цев са прозором постранце	30
Слика 3.5: Цев са прозором на предњем крају	31
Слика 3.6: Разлика између упадних углова	33
Слика 4.1: Енергетски дисперзиван спектрометар	38
Слика 4.2: Si(Li) детектор	39
Слика 4.3: Четири врсте пигмената који се коришћени у непалском манускрипту	y41
Слика 4.4: Шема таласно дисперзивног спектрометра	42
Слика 4.5: Брагов закон	43
Слика 5.1: XRF на Институту за нуклеарне науке Винча	45
Слика 5.2: Изглед софтверског програма Mach3	46
Слика 5.3: Шема детекторског система	47
Слика 5.4: Кућиште са катодном цеви	47
Слика 5.5: Спектрометар "у акцији"	48
Слика 5.6: "Тврђава Зенита" Љубомира Мицића	49
Слика 5.7: Апстрактна композиција Михајла Петрова	50
Слика 5.8: Неки од пигмената који се анализирају у Винчи	51
Слика 5.9: Спектри за референтне тачке за црну боју; позиције 1, 3 и 17	52
Слика 5.10: Спектри за референтне тачке за црвену боју; позиције 2, 11 и 12	53
Слика 5.11: Спектри за референтне тачке за црвену боју; позиције 16 и 18	54
Слика 5.12: Спектри за референтне тачке за наранџасту; позиције 5, 8 и 14	55
Слика 5.13: Спектри за реф. тачке за зелену и тамнобраон (позиције 6, 9 и 4)	56
Слика 5.14: Спектри за референтне тачке за жуту боју; позиције 10, 13, 15 и 19.	57

График 1.1: Закочно зрачење или bremsstrahlung за тунгстен	10
График 2.1: Зависност ефикасног пресека за фотоефекат од енергије Х – зрака	15
График 2.2: Допринос флу оресценцији за три љуске за 3 \leq Z \leq 110	20
График 3.1: Мозлијев закон или Мозлијеве "степенице"	25
График 3.2: Суперпонирани спектар закочној и карактеристичног зрачења	32
График 3.3: Спектри карактеристичног зрачења за олово, цинк и бакар	33
График 3.4: Спектар месинга	35
График 4.1: Ефикасност Si(Li) детектора	38

Табела 3.1: Мозлијеви резултати	23
Табела 3.2: Табела са карактеристичним линијама	36,37
Табела 4.1: Особине две врсте рентгенске флуоресцентне спектрометрије	44
Табела 5.1: Детектовани хемијски елементи са слика 5.9 – 5.14	59

Увод

Рентгенска флуоресцентна анализа (XRF) је недеструктивна техника, односно метод изучавања уметнина и предмета који се сматрају културним добром. Она служи за одређивање елементног састава материјала.

Овај рад бавиће се рентгенском флуоресцентном анализом неколико слика из збирке господина Ненада Стојића. Мерења су извршена на Институту за нуклеарне науке Винча, у Лабораторији за хемијску динамику и перманентно образовање, уз асистенцију мр Велибора Андрића и др Маје Гајић – Квашчев.

У првом делу рада биће описана историја проналаска X – зрака и њихове најбитније особине.

У другом делу рада биће говора о интеракцији рентгенских зрака са материјом, понашању рентгенског снопа зрака приликом проласка кроз одређене средине, потом ће бити уведен појам рентгенске флуоресценције.

У трећем делу биће приказан историјат спектроскопије и спектрометрије. Биће дат уопштен преглед апаратуре која се користи приликом рентгенске флуоресцентне спектрометрије, притом детаљније описујући спецификације одређених делова апаратуре. Затим ће бити објашњени резултати који спектрометријска анализа даје, спектри, и сам начин њиховог обрађивања.

Четврти део рада укратко ће описати специфичности и могућности енергетски дисперзивне рентгенске спектрометрије, потом ће бити дат кратак преглед друге врсте спектрометрије, таласно дисперзивне, и њена упоредба са енергетски дисперзивном рентгенском спектрометријом.

Пети део описаће апаратуру која је коришћена у конкретним анализама које ће бити приказане у овом раду. Детаљно ће бити изнесено све што је мерено и биће дати резултати експеримента.

Шести и последњи део рада биће закључак, који ће се, у кратким цртама, осврнути на технику која је коришћена, резултате и њихову анализу.

[6]

<u>ТЕОРИЈСКИ ДЕО РАДА</u>

1. Х – зраци

1.1 Откриће рентгенских зрака

1895. године Вилхелм Рентген (Wilhelm Conrad Röntgen, 1845. – 1923.) проналази X – зраке сасвим случајно, експериментишући са Круксовом (William Crookes, 1832. – 1919.) цеви коју је закачио на индукциони калем. Окруживши цев црним картоном, приметио је флуоресценцију на папиру на који је нанесен баријум платиноцијанид. Флуоресценција је била видљива и на удаљености од два метра, те је Рентген закључио да се у цеви стварају некакви зраци који могу да продру кроз непрозирни картон и који имају велики домет.

Не знајући много о овим новим зрацима, дао им је ознаку X, да би их разликовао од других. Након низа малих огледа у којима је постављао различите материјале на пут X – зрака, закључио је да њихова продорност зависи од густине средине кроз коју пролазе. Његов први рад о X – зрацима, "On a new kind of rays", навео је одређене особине рентгенских у кратким цртама, али је рад других физичара ипак много више допринео томе шта се данас зна о њима.

Пре свега се постављало питање да ли су ови зраци присутни у катодном снопу, али та претпоставка била је одбачена када су целу апаратуру убацили у магнетно поље, скрећући катодне зраке и притом померајући извор ових нових X – зрака¹.

Оно што је мучило физичаре лежало је у чињеници да рентгенски зраци поседују велике енергије и да стога не могу бити окарактерисани методама које су коришћене за поимање особина зрака нижих енергија. Њихова високоенергетска природа указивала је на то да не могу бити поларизовани, нити рефрактовани, али је решење лежало у томе да се промене материјали који су коришћени у огледима.

Након кратког периода прилагођавања овој новој загонетки, наступа доба открића везаних за природу X – зрака, од којих су једна указивала на њихову таласну, а друга на честичну природу.

¹ видети литературу [1], страну 24.

Баркла (Charles Glover Barkla, 1877. – 1944.) је један од научника који су се детаљније бавили овом темом, пре свега секундарним Х – зрацима.

"Баркла (...) је открио да је за елементе мале атомске тежине коефицијент апсорпције секундарног зрачења исти као и за примарно; стога су примарно и секундарно зрачење истог типа, те се секундарно зрачење може посматрати као расејано примарно."²

Он је проучавао расејавање рентгенских зрака на гасовима и чврстим телима. Наиме, упућен му је предлог³ да проучава терцијерно зрачење и преко њега докаже да су зраци поларизовани, али је знао да је већ и секундарно зрачење које се добија из гасова веома малог интензитета. Идеја му је била да секундарно зрачење добије у металима и онда од њега добије терцијерно, али је онда приметио да се зраци добијени у гасовима и металима умногоме разликују. Метали су давали зраке високих интензитета, али је код њих поларизација, ако се дешавала, била другачија него код гасова.

Дакле, требало је пронаћи материјал који ће произвести зраке великих интензитета, а да то ипак не буде метал и Баркла је одабрао угљеник⁴ за ту намену. Угљеник је показао да интензитет терцијерног зрачења достиже максимум када су правци простирања примарних и терцијерних зрака паралелни и минимум када су нормални један на други. То је указало на чињеницу да је секундарно зрачење са правцем нормалним на правац примарног зрачења које потиче од мете поларизовано.

Баркла је доказао да се рентгенски зраци могу поларизовати, али је најзаслужнији за откриће карактеристичног зрачења.

1.2 Особине Х – зрака

- 1) припадају невидљивом делу спектра;
- 2) простиру се брзином светлости;
- 3) индиферентни су на електрично и магнетно поље;

² видети литературу [2], стр. 326.
³ в. литературу [3], стране 467. – 479.
⁴ в. литературу [4], стране 247. – 255.

4) приликом проласка кроз неку средину, делимично бивају апсорбовани, зависно од садржаја, густине и дебљине средине;

5) могу се рефлектовати, рефрактовати, дифрактовати и поларизовати;

6) јонизују гас кроз који пролазе;

7) утичу на електричне особине течности и чврстих тела;

8) затамњују фотографску плочу;

9) емитују континуални спектар чија је краткоталасна граница дефинисана напоном цеви;

10) емитују линијски спектар карактеристичан за хемијске елементе од којих су направљене мете.

Наиме, данас се зна да X – зрачење има малу таласну дужину (0.005 nm – 10 nm) и да је прилично слично гама зрачењу, са изузетком самог њиховог порекла – рентгенско зрачење потиче из околине језгра.

X – зрачење има велику енергију (100 eV – 100 keV) и доста мању таласну дужину од видљивог дела спектра, те се може користити за детаљнију анализу. Једна од намена рентгенских зрака је X – спектроскопија/спектрометрија, о којој ће касније бити више речи.

Дакле, Рентгенов оглед убрзавао је електроне у скоро вакуумском простору, где није било честица ваздуха да се сударају са њима и успоравају их, а велики напон између катоде и аноде омогућавао је да они постигну велике брзине.

Приликом удара у аноду, електрони су нагло губили на брзини и преко закочног зрачења (bremsstrahlung) производили X – зраке.

График 1.1: Закочно зрачење или bremsstrahlung за тунгстен (в. литературу [8], стр. 324.)

Само део њихове кинетичке енергије био је претакан у енергију рентгенских зрака, а остатак је претваран у топлотно зрачење. Зато катодне цеви високих енергија захтевају некакву врсту хлађења.

Обзиром на то да X – зраци припадају електромагнетном зрачењу, њихова енергија може се изразити преко:

$$\boldsymbol{E} = \boldsymbol{h}\boldsymbol{\nu} \tag{1.1}$$

где је h Планкова константа и износи 6,6260693(11)·10⁻³⁴ J·s, а v је фреквенција рентгенских зрака исказана у [Hz].

Енергија коју електрони добијају је одређена напоном катодне цеви преко формуле:

$$\boldsymbol{E}_{\mathrm{e}} = \boldsymbol{e}\boldsymbol{U} \tag{1.2}$$

где *е* представља наелектрисање електрона и износи 1,6021766208(98)·10⁻¹⁹С.

Имајући у виду да закочним зрачењем они производе X – зраке од неке минималне енергије па до свеукупне енергије коју поседују, може се на основу (1.1) и (1.2) закључити да катодни рентгенски зраци највеће енергије имају таласну дужину λ_g која одговара краткоталасној граници спектра X – зрака:

$$hv = eU$$

$$h\frac{c}{\lambda} = eU$$

$$\lambda_g = \frac{hc}{eU}$$
(1.3)

Обзиром на то да су у формули присутне три константе, где је c брзина светлости и износи 2,99792 $\cdot 10^8$ m/s, једначина (1.3) може се преиначити у:

$$\lambda_g = \frac{1.2397 \times 10^{-6}}{U} \left[\frac{Jm}{C} \right]$$
(1.4)

Дакле, континуални спектар закочног зрачења Х – цеви ограничен је краткоталасном границом, која се смањује са порастом напона међу катодама. Једначина (1.4) назива се Дјуејн – Хантов закон (William Duane, 1872. – 1935. и Franklin Hunt).

О дискретном спектру који се добија из катодне цеви биће речи мало касније.

2. Интеракција рентгенских зрака са материјом

Приликом проласка кроз материју, рентгенски зраци могу да предају део своје енергије или целу своју енергију средини. Х – зраци првенствено међудејствују са материјом преко Комптоновог (Arthur Holly Compton, 1892. – 1962.) ефекта, фотоефекта и Рејлијевог (Lord Rayleigh/John William Strutt, 1842. - 1919.) расејања.

2.1 Комптонов ефекат

Ha слици 1.1 приказано je Компотоново расејање: фотон енергије hv и импулса hv/c судара се са електроном, узрокујући да се дотични paceje под углом θ у односу на упадни правац фотона.

Електрон сада поседује кинетичку енергију T и импулс p, а фотон одлази под углом φ , измењеног импулса и енергије (*hv'/c* и *hv'*, респективно).

mom Ey=h» mom.=hv/c

Слика 2.1: Кинематика Комптоновог ефекта⁵

(2.2)

Важи закон одржања енергије⁶:

1

$$h
u = h
u' + T = h
u' + m_e c^2 \cdot \left(rac{1}{\sqrt{1-eta^2}}-1
ight)$$

или

$$\frac{m_e^2 c^4}{1-\beta^2} = m_e^2 c^4 + (h\nu)^2 + (h\nu')^2 + 2m_e c^2 h(\nu-\nu') - 2h\nu h\nu' \quad (2.1)$$

И важи закон одржања импулса:

⁵ в. литературу [5], страна 126. ⁶ в. литературу [6], стране 345. и 346.

$$\frac{m_e^2\beta^2c^4}{1-\beta^2}=(h\nu)^2+(h\nu')^2-2h\nu h\nu'\cos\varphi$$

Решавањем једначина (2.1) и (2.2), добија се:

$$\left(\frac{c}{\nu'}\right) - \left(\frac{c}{\nu}\right) = \frac{h}{m_e c} (1 - \cos \varphi)$$
$$\Delta \lambda = \lambda' - \lambda = \Lambda (1 - \cos \varphi) = 2\Lambda \sin^2 \frac{\varphi}{2}$$
(2.3)

или

где је Λ комптоновска таласна дужина електрона и износи 2,42x10⁻¹²m.

Граничан случај Комптоновог расејања је Томсоново (Joseph John Thompson, 1856. – 1940.) расејање, приликом ког расејани Х – фотон има исту енергију као и упадни, тојест не долази до предаје енергије и Х – зрак се еластично расејава под углом од 0°.

За Томсоново расејање важи следећи ефикасни пресек:

$$\sigma_T = \frac{8\pi e^4}{3m_e^2 c^4} = \frac{8\pi r_e^2}{3} = 0,\,64 \cdot 10^{-28} m^2$$
(2.4)

где је r_e класични радијус електрона и износи 2,8x10⁻¹⁵m.

Томсоново расејање, које је кохерентно, дешава се на орбиталном електрону када фотон има мању енергију од енергије везе, а Комптоново, некохерентно, када је енергија већа. Обзиром на то да Х – фотони поседују велике енергије, може се рећи да Томсоново расејање важи само за фотоне видљиве светлости, а Комптоново важи за рентгенске и гама фотоне.

Ефикасни пресек за Комптоново расејање је дат Клајн – Нишинином (Oskar Benjamin Klein, 1894. – 1977.; Yoshio Nishina, 1890. – 1951.) формулом, коју је независно дефинисао и Там (И́горь Евге́ньевич Тамм, 1895. – 1971.).

Диференцијални ефикасни пресек дат је поменутом формулом:

$$d\sigma(\varphi) = r_e^2 \cdot \frac{1 + \cos^2 \varphi}{2} \cdot \frac{d\Omega}{\left(1 + \varepsilon \cdot (1 - \cos \varphi)\right)^2} \\ \cdot \left(1 + \frac{\varepsilon^2 \cdot (1 - \cos \varphi)^2}{\left(1 + \cos^2 \varphi\right) \cdot \left(1 + \varepsilon \cdot (1 - \cos \varphi)\right)}\right)$$
(2.5)

Слика 2.2: Клајн – Нишинина зависност ефикасног пресека од углова расејања за Комптонов ефекат (в. лит. [6], стр.346.)

где је $\varepsilon = \frac{hv}{m_ec^2}$. Из овога се, интеграљењем по свим угловима, може добити укупни ефикасни пресек за Комптонов ефекат:

$$\sigma = 2\pi r_e^2 \left(\frac{1+\varepsilon}{\varepsilon^2} \cdot \left(\frac{2(1+\varepsilon)}{1+2\varepsilon} - \frac{1}{\varepsilon} \ln(1+2\varepsilon) \right) + \frac{1}{2\varepsilon} \ln(1+2\varepsilon) - \frac{1+3\varepsilon}{(1+2\varepsilon)^2} \right)$$

За ову формулу (2.6) треба размотрити два случаја (видети литературу [6], стр.347.)::

1)
$$\varepsilon \ll 1$$
 даје $\sigma_{c} = \sigma_{T} \left(1 - 2\varepsilon + \frac{26}{5}\varepsilon^{2} + \cdots \right)$, где је σ_{T} дато једначином (2.4).
2) $\varepsilon \gg 1$ даје $\sigma_{c} = \pi r_{e}^{2} \frac{1}{\varepsilon} \left(\frac{1}{2} + \ln 2\varepsilon \right)$.

Ефикасни пресек за Комптонов ефекат на електрону је онда обрнуто сразмеран енергији фотона. Имајући у виду да у атому има Z електрона, ефикасни пресек за расејање на атому биће сразмеран броју електрона, те се израз (1.10) може свести на⁷:

$$\sigma \sim \frac{Z}{E}$$
 (2.7)

Дакле, вероватноћа ефекта опада са порастом енергије X – фотона, а расте са повећањем Z материјала.

2.2 Фотоелектрични ефекат

За разлику од Комптоновог расејања, овде фотон предаје целу своју енергију везаном електрону и престаје да постоји. Енергија фотона E_{γ} мора бити већа од везивне енергије електрона.

Слика 2.3: Кинематика фотоелектричног ефекта (видети литературу [5], стр.138.)

⁷ в. литературу [7], страну 60.

Након интеракције, електрон задобија кинетичку енергију T и импулс p и одлази под углом θ у односу на упадни правац фотона, а језгро, у чијем се пољу одвија међудејство, под углом φ .

Језгро служи као треће тело које преузима део импулса на себе зарад одржања закона импулса. Кинетичка енергија коју језгро задобија је занемарљива, док се његов импулс мора узети у обзир приликом писања једначина за закон одржања импулса.

$$T = E_{\gamma} - E_i \tag{2.8}$$

где је E_i јонизациони потенцијал i – те љуске атома, тј. везивна енергија електрона на том нивоу.

График 2.1: зависност ефикасног пресека за фотоефекат од енергије X – зрака (вид. лит. [6], стр. 339.)

Празнину која настаје након што фотоелектрон бива избачен попуњава неки од електрона са виших љусака, уз емисију Х – зрака (карактеристичних рентгенских зрака) или се дешава нешто слично унутрашњој конверзији: побуђени атом предаје вишак енергије трећем електрону, који такође бива емитован из атома.

То су такозвани Ожеови електрони (Pierre Victor Auger, 1899. – 1993.).

Са графика 2.1 види се да је ефикасни пресек за фотоефекат при високим енергијама фотона прилично мали. Са смањивањем енергије фотона, ефикасни пресек се повећава пратећи следећа правила:

$$\sigma_{ph} \sim \frac{Z^5}{E}$$

$$\sigma_{ph} \sim \frac{Z^5}{\frac{7}{E^2}}$$
(2.9)

за $E_f \gg E_v^K$ и $E_f > E_v^K$, респективно. Из једначина (2.9) јасно је да ефикасни пресек има снажну зависност од наелектрисања атома – у елементима са малим Z, електрони су слабије везани због мање Кулонове интеракције између језгра и електрона.

2.3 Рејлијево расејање

Ово је још један случај еластичног расејања на атому, попут Томсоновог, са разликом да ефикасни пресек Рејлијевог расејања има снажну зависност од фреквенције упадног зрачења. Упадни фотони бивају расејани са непромењеном фреквенцијом. За одређену таласну дужину λ упадног зрачења, ефикасни пресек може се изразити као:

$$\sigma_{\lambda} = \frac{128\pi^5}{3} \cdot \frac{\alpha^2}{\lambda^4} \tag{2.10}$$

где а означава поларизабилност.

На слици 2.5 приказани су процеси интеракције рентгенских зрака са материјом:

 А – зрак не међудејствује са материјом и пролази кроз њу без икаквих промена;

 В – дешава се фотоефекат и упадни зрак се губи, предајући своју енергију фотоелектрону, који излеће из атома;

Слика 2.4: Међудејство Х – зрака са материјом⁸

C – упадни зрак се еластично расејава на везаном електрону, без икаквих промена особина обе честице;

D – упадни зрак се комптонски расејава на електрону.

2.4 Слабљење снопа Х – зрака

Ослабљење (атенуација) снопа Х – зрака следи једначину:

$$I = I_0 e^{-\mu x}$$
 (2.11)

где x представља дебљину слоја кроз који зраци пролазе, I_0 је интензитет упадног снопа, а μ је линеарни атенуациони коефицијент. Овај коефицијент се повећава са редним бројем материјала, а смањује са повећањем енергије X – фотона. Може се сматрати вероватноћом да се деси некаква интеракција по јединичном метру.

⁸ преузето из литературе [8]

Атенуациони коефицијенти могу се израчунати за сваки материјал засебно, тако што се између извора рентгенских зрака и детектора стављају различите дебљине тог материјала и онда се мери ослабљење снопа у зависности од дебљине. Потребно је водити рачуна о томе да се у детектору занемаре фотони који се не апсорбују у материјалу потпуно и који се само расеју и оду у другом правцу са смањеним енергијама.

Некада се ослабљење снопа изражава преко масеног атенуационог коефицијента, уместо преко линеарног атенуационог коефицијента о коме је до сада било речи. Масени је количник *µ* и густине материјала од ког је атенуатор начињен:

$$\mu_m = \frac{\mu}{\rho} = \frac{\sigma n}{\rho} = \frac{\sigma N_A}{M}$$
(2.12)

где N_A представља Авогадров број (6.022140857(74) $\cdot 10^{23} \frac{1}{mol}$), а M је молекулска маса материјала кроз који се зрачење простире.

Слика 2.5: Сноп X – зрака пролази кроз више слојева атенуатора, слабећи за 20% приликом проласка кроз сваки слој појединачно. Ослабљење снопа дешава се експоненцијално, што је приказано на графицима доле (вид. лит. [8], стр. 6.).

Мерење интензитета снопа рентгенских зрака кроз низ атенуатора омогућава дефинисање полудебљине снопа (или HVL = half value layer). Полудебљина снопа $d_{1/2}$ је дебљина атенуатора која је потребна да би се интензитет упадног снопа преполовио.

Дакле, из једначине (2.11), вршећи замену $x = d_{1/2}$:

$$\frac{I_0}{I} = e^{\mu d_{1/2}} = 2$$

одакле следи, за атенуациони коефицијент:

$$\mu = \frac{\ln 2}{d_{1/2}} = \frac{0.693}{d_{1/2}}$$
(2.13)

2.5 Рентгенска флуоресценција

Треба се позабавити појмом флуоресценције, тј. емисије карактеристичног зрачења које је поменуто приликом описивања фотоелектричног ефекта. Наиме, Боров модел атома (Niels Henrik David Bohr, 1885. – 1962.) подразумева да се језгро састоји из љуски, које су означене словима К, L, M (...), идући од љуске најмање енергије. На К љуску стају 2 електрона, L љуска има 3 подљуске (L_I, L_{II}, L_{III}) и може да садржи 8 електрона, М има пет подљуски (M_I, M_{II}, M_{III}, M_{IV}, M_V) и на њу се могу сместити 18 електрона, итд. Енергија електрона зависи од тога на којој љуски се налази и ком елементу припада.

Приликом преласка са једне (под)љуске на другу, електрон емитује фотон чија је енергија једнака разлици енергија електрона на те две (под)љуске.

Енергија фотона дата је једначином:

$$E = E_i - E_f \tag{2.14}$$

где је са E_i означена енергија иницијалног (почетног) нивоа електрона, а са E_f енергија финалног (крајњег) нивоа електрона.

Са слике 2.6 види се да су прелази означени грчким словима α , β , γ , зависно од тога са ког нивоа електрони силазе. Прелази L \rightarrow K носе ознаке K α_1 и K α_2 , прелази M \rightarrow K ознаке K $_{\beta 1}$ и K $_{\beta 2}$ итд. Енергија за сваки од ових прелаза за сваки елемент може се наћи у литератури [9] или преко <u>http://xdb.lbl.gov/Section1/Periodic Table/X-ray_Elements.html</u>.

Слика 2.6: Прелази између нивоа у атому: дефинисане су две нотације, Зигбанова (Karl Manne Georg Siegbahn, 1886. – 1978.) и нотација по IUPAC – у (уоквирене плавом и наранџастом бојом, респективно)

Дакле, када иницијални X – зрак међудејствује са електроном из атома, предајући му део своје енергије, може доћи до израчивања енергије или до избацивања Ожеовог електрона, приликом чега се вишак енергије предаје електрону из омотача⁹ и не долази до емисије додатног зрачења. Постоји одређена вероватноћа да се деси фотоефекат и да неки од електрона са виших орбитала сиђу на ниже, притом

⁹ специјалан случај Ожеовог ефекта је Костер – Кронигов прелаз (Dirk Coster, 1889. – 1950. и Ralph Kronig, 1904. – 1995.), када се створена празнина попуњава електроном из исте љуске, не из омотача.

емитујући специфичну количину енергије, која представља разлику у енергијама та два нивоа. То је оно што се зове карактеристично зрачење, јер је посебно за сваки елемент – и зато је драгоцено, јер се на основу њега може одредити који је елемент у питању, када се зна тачан износ енергије који је израчен. Јасно је да се ова два процеса надмећу у томе шта се збива са енергијом побуде атома.

График 2.2: Допринос флуоресценцији за три љуске за $3 \le Z \le 110^{10}$

Допринос флуоресценцији (fluorescence yield) ω_i (i=K, L, M,...) је количник емитованих флуоресцентних фотона и иницијалних празнина у атому. ω_i је израчунато за сваку љуску засебно.

Због тога што су могућа два начина да се атом врати у своју првобитну конфигурацију, онда допринос флуоресценцији заправо даје вероватноћу да се емитује карактеристично зрачење.

Са графика 2.2 може се видети да је код атома са малим Z допринос флуоресценцији веома мали, те их је тешко идентификовати преко карактеристичног зрачења.

Детектор не прави разлику између примарне, секундарне и флуоресценције виших редова, већ их само сумарно детектује. На слици 2.7 може се видети процес којим долази до флуоресценција виших редова:

 а) примарна: Х – зраци производе карактеристично зрачење одређеног елемента у узорку;

 б) секундарна: карактеристично зрачење једног елемента индукује карактеристично зрачење другог;

 в) терцијерна: секундарна флуоресценција изазива карактеристично зрачење трећег елемента.

¹⁰ в. литературу [9], страну 36.

Секундарна флуоресценција може бити чак и до 20% примарне, а терцијарна и оне вишег реда укупно су до 3%.¹¹

Слика 2.7: Флуоресценције вишег реда

¹¹ в. литературу [10], стр. 49.

ЕКСПЕРИМЕНТАЛНИ ДЕО РАДА

3. Рентгенска флуоресцентна спектрометрија

3.1 Мозлијево истраживање

Мозли (Henry Gwyn Jeffreys Moseley, 1887. – 1915.) је био веома заинтересован за рентгенске зраке и њихове начине примене. Радећи са унуком (а уједно и имењаком) Чарлса Дарвина, објавио је први рад 1913. године под називом "The Reflection of X – Rays", описујући скретање рентгенских зрака на одређеним кристалима. Мозли и Дарвин су показали да "...зрачење из X – цеви са метом од платине има двоструку природу, (А) зрачење неодређене таласне дужине, аналогно белој светлости и (Б) пет врста монохроматског зрачења, које је вероватно карактеристично за платину..."¹².

Element.	Line.	θ_{2^*}	λ.	θ ₀ .	λ.	λα/λβ.	$Q = (\nu/\frac{3}{4}r_0)^{\frac{1}{2}}$	N atomic number,	Atomic weight.
Слестия.	α β	23.4° 21.4	3•357×10−8 3•035	36.7° 33.3	$3^{\circ}368 \times 10^{-8}$ $3^{\circ}094$	1.089	19 00	20	40.09
SCANDIC M.		••••				•••		21	44.1
TITANIUM.	α β	19·1 17·4	2·766 2·528	29·3 26·6	2·758 2·524	1.093	20.99	22	48.1
VARADIUM.	α β	17.35 15.8	2·521 2·302	$26.55 \\ 24.05$	2·519 2·297	1.097	21-96	23	51.06
Сикомия.	α β	15·75 14·3	2 ^{,295} 2 ^{,088}	$24.1 \\ 21.8$	2·301 2·093	1.100	22.98	24	52.0
MANGANESE.	α β	14∙5 13•15	2·117 1·923	22·0 19·9	2·111 1·918	1.101	23-99	25	54.93
IRON.	α β	$13.3 \\ 12.05$	1·945 1·765	20·2 18·25	1·946 1·465	1.103	24.99	26	53.85
COBALT.	α β	$\frac{12.25}{11.15}$	1·794 1·635	18.6 16.8	1·798 1·629	1.104	26.00	27	58.07
NICKEL.	α β	$11.35 \\ 10.25$	1.664 1.501	17.15 15.5	1.662 1.506	1.104	27.04	28	58 68
Copper,	,α β	10.55 9.55	1·548 1·403	15 [.] 95 14 [.] 4	1·549 1·402	1.105	28.01	29	63 57
Zinc.	`α β	9.85 not	1:446 found	14·85 13·4	1·445 1·306	1.106	29-01	30 -	65.37

Табела 3.1: Мозлијеви резултати

Након другог рада који је објавио самостално, те исте године, његов утицај на тадашње схватање атома је експоненцијално порастао. У том раду, под именом "The High-Frequency Spectra of the Elements" изучио је спектре више елемената и одвео Брагов рад корак даље, творећи табелу 3.1.

¹² в. литературу [11], страну 232.

Мозли је знао да се спектар сваког елемента састоји од две линије: a, снажније и **β**, слабије. Остале линије, које су детектоване, Мозли је приписао нечистоћама. Изучавањем месинга, Мозли је добио карактеристичне линије бакра и цинка, што га је навело на закључак да "...ово може бити моћан метод хемијске анализе. Његова предност у односу на уобичајене спектроскопске методе је једноставност спектра и немогућност да зрачење једне супстанце замаскира зрачење друге. Ово такоће може водити и открићу недостајућих елемената, пошто ће бити могуће предвидети положај њихових карактеристичних линија".

У табели 3.1 је заокружена формула $Q = \sqrt{\frac{\nu}{\frac{3}{4}\nu_0}}$, која је касније била трансформисана у чувени Мозлијев закон. У њој је са v означена фреквенција зрачења α , а са ν_0 "фундаментална фреквенција обичног линијског спектра". Мозли је увидео да се Q повећава редом, како се иде по Периодном систему елемената. Такође се повећавало са повећањем атомске тежине, сем за никл и кобалт, али је уочио да се Q мења униформно, док атомска тежина није имала неку уочљиво једноставну промену.

"Овде имамо доказ да у атому постоји фундаментална количина која се повећава у једнаким корацима од једног елемента до следећег. Ова количина може бити једино наелектрисање језгра...

...Радерфорд је показао, опсегом расејања α честица на материји, да нуклеус носи позитивно наелектрисање приближно једнако А/2 електрона, где је А атомска тежина. Баркла је, расејавањем Х зрака на материји, доказао да је број електрона у атому приближно А/2...

...ово снажно доказује да се N^{13} мења од атома до атома за једну електронску јединицу. Овим нас оглед, дакле, доводи до закључка да је N број места елемента у периодном систему...

...Поуздано можемо тврдити да се, у неколико случајева где се ред атомских тежина А не слаже са хемијским редом периодног система, хемијске особине покоравају N, док је А вероватно сложена функција N.¹⁴"

¹³ N представља атомски број, као што је означено у табели 3.1. ¹⁴ в. литературу [11], стр. 1031.

Захваљујући Мозлијевом истраживању, елементи у Периодном систему су пресложени тако да следе ред атомских бројева. На основу претходних изјава он је такође закључио и да "...Х зрачење потиче из унутрашњости атома и нема директну повезаност са сложеним светлосним спектром и хемијским особинама које одређује структура површине атома".

Следеће године Мозли је објавио рад једноставно назван "The High-Frequency Spectra od the Elements, Part II", где је изучавао елементе од алуминијума до злата. У овом раду је предвидео постојање технецијума, прометијума и ренијума (означено на графику 4.1 од доле ка горе, респективно), те је тиме остварио своју претпоставку из претходног рада.

График 3.1: Мозлијев закон или Мозлијеве "степенице"

¹⁵ в. литературу [12], стр.709.

У овом раду је Мозлијев закон добио свој познати облик:

$$\boldsymbol{\nu} = \boldsymbol{A}(\boldsymbol{N} - \boldsymbol{b})^2 \tag{3.1}$$

где су A и b дефинисани као константе карактеристичне за сваку линију. У раду је дато за K_a (где је b=1):

$$A = \left(\frac{1}{1^2} - \frac{1}{2^2}\right) \cdot \nu_0$$
 (3.2a)

и за линију *L*_{*a*} (где је *b*=7·4):

$$A = \left(\frac{1}{2^2} - \frac{1}{3^2}\right) \cdot \nu_0 \tag{3.2b}$$

На основу ових бројева он је закључио да *К* и *L* линије потичу из другачијих вибрационих система и да се другопоменуте налазе даље од језгра.

Данас се преко модела љусака лако описују особине рентгенских зрака, али треба имати на уму да су почетком 20. века физичари још увек расправљали о томе како атом изгледа. Заправо, Мозлијево истраживање било је једно од пресудних у корист Радерфордовог (а потом и Боровог) модела атома.

Једна од ствари које је Мозли урадио, а која је најбитнија за овај рад, је то што је први указао на спектроскопски/спектрометријски аспект карактеристичног зрачења.

За детаљније о његовим радовима, погледати литературу [11] и [12].

3.2 Уопштено о XRF

Рентгенска флуоресцентна спектрометрија је аналитички метод који одређује елементарни састав материјала. Мерењем одређених карактеристика зрачења које узорак емитује може се одредити који елементи су присутни у њему. Овај корак је *квалитативни* део анализе, док је *квантитативни* онај који на основу интензитета тих карактеристика одређује колико се апроксимативно тог елемента налази у узорку.

Иако се узорци могу анализирати без припреме (што је тема овог рада – недеструктивност зарад очувања културног добра), могу се постићи много квалитетнији и тачнији резултати уз укључивање малог пред – аналитичког стадијума мерења. Елем, припрема узорака може бити само чишћење или полирање (код метала и легура), мрвљење и пелетирање (код керамике, минерала, руда, земљишта), стапање узорка са другом врстом материјала (руде, керамика) или разлагање у киселини (метали, легуре). На овај начин се отклањају разне грешке које углавном потичу од нехомогености материјала који се изучава. Но, као што је наглашено, у овом раду ће тема бити недеструктивна XRF.

Због тога што припрема узорка (а уз то и његово оштећење) није неопходно, рентгенска флуоресцентна спектрометрија користи се за анализу уметничких и археолошких предмета попут манускрипта, слика, икона, керамике, античких стакала, оруђа/оружја и новчића. Спектрометрија може одредити, уз одређене пратеће методе, дебљину слојева одређеног елемента и састав разних материјала.

Изучавањем античког оруђа може се стећи јаснија слика о томе који су металуршки процеси коришћени да би оно било направљено и може се испратити које врсте метала су биле заступљене на том географском подручју.

Постоје *енергетски дисперзивна* и *таласно дисперзивна* рентгенска флуоресцентна спектрометрија; прва мери енергије зрачења које потиче од узорка који се изучава, а друга таласне дужине тог зрачења. Постоји много разлика између ове две методе (о којима ће бити речи у каснијим деловима овог рада), али се принципијелно своде на исти механизам: некакав извор одашиље зрачење које изазива емитовање карактеристичних X – зрака у узорку, те се потом то карактеристично зрачење прикупља у детекторском систему, који обрађује сигнал и приказује га као преко софтвера на компјутеру.

У обе методе се углавном користи директно побуђивање узорка и резултат су спектри са великим шумом, због великог расејања зрачења. Код EDXRF се појављује лош однос пик/шум, а код WDXRF је то превазиђено коришћењем високоенергетских цеви – мада то онда захтева систем за хлађење, који цео систем чини тешким и непогодним за in situ анализу.

Побољшање односа пик/шум врши се поларизацијом X – зрака: уместо да директно буду уперени ка узорку, они се прво шаљу ка секундарној¹⁶ мети и притом се рефлектују или расејавају под углом од 90° у односу на узорак. Поларизовани рентгенски зраци налазе се у истој равни као секундарна мета, узорак и детектор.

¹⁶ Примарна мета је анода унутар цеви.

Након што ударе о узорак, расејавају се ортогонално на раван; пошто је детектор у равни, детектоваће једино флуоресцентно зрачење.

Слика 3.1: Поларизација рентгенских зрака коришћењем секундарне мете¹⁷

XRF методом могу се анализирати елементи од Ве до U; за прву класу, од натријума до церијума, користе се К линије, а за другу, од празеодимијума до уранијума, L линије. Трећу класу чине елементи од берилијума до флуора, који се могу анализирати само одређеним техникама и то у врло специфичним случајевима.18

3.3 Извори зрачења

Да би нешто било погодан извор зрачења за ову технику, потребно је да емитује честице енергија довољних за ексцитацију узорка који се изучава. Побуђивање узорка електронима користи се у електронској микроанализи EPMA (electron probe microanalysis), док се протони користе као побуђивачи у PIXE (proton induced X – ray emission). Код XRF извори могу бити некакав радиоактивни материјал, синхротрон или католне цеви.

¹⁷ Преузето са <u>https://ars.els-cdn.com/content/image/1-s2.0-S0584854716302476-gr1.jpg</u> (6th of July, 19:03) ¹⁸ Због чега у мноштву литературе пише да је опсег идентификације само Na – U.

Приликом коришћења радиоактивног изотопа као извора, добија се зрачење нижег интензитета него код катодних цеви, али је интензитет постојан и није потребно имати никакво напајање да би се зрачење изазвало. Са друге стране, радионуклиди имају ограничен животни век, те их је потребно обнављати, тојест купити нове, што некад испадне прилична инвестиција, обзиром на то да је, нпр. Fe – 55 са X – зрацима од 5.9 keV и 6.4 keV има полуживот од 2.7 година или Cd – 109 са зрацима од 22.2 keV и 22.5 keV има полуживот од 1.3 године. Један од погоднијих радионуклида је Am – 241, који служи за побуђивање елемената са вишим атомским бројем и има згодан полуживот од 433 године.

Синхротрон је најсавршенији извор за EDXRF, али је веома скуп и није преносив.

Но, углавном се као извори зрачења користе катодне цеви, којих има право мноштво, мада све оне дугују постојање Кулиџовој (William David Coolidge, 1873. – 1975.) цеви, приказаној на слици 3.3.

Слика 3.2: Принцип рада Х–цеви

Слика 3.3: Кулиџова цев¹⁹

Код Кулиџове цеви може да се контролише интензитет и енергија X – зрака засебно. Повећавањем јачине струје која се доводи катоди, она се загрева, што заузврат повећава број електрона које она емитује, појачавајући интензитет рентгенских зрака. Са друге стране, повећавање напона међу катодом и анодом резултује убрзавањем електрона, који производе рентгенске зраке већих енергија.

Поједностављено, X – цев је енергетски конвертер: она претвара електричну енергију у рентгенско зрачење и толотну енергију. Електрони се убрзавају у електричном пољу, потом нагло успоравају код аноде и производе X – зраке. Област кроз коју пролази сноп електрона требало би да буде вакуумирана, да се они не би сударали са атомима гаса и губили енергију. Из вакуумираног кућишта зраци излазе кроз танки берилијумски прозор.

¹⁹ преузето са Science Museum Group: Coolidge X-ray tube, 1913.-1923. (<u>https://collection.sciencemuseum.org.uk/objects/co32415</u>, 5th of July, 18:53)

Ефикасност аноде дефинише се као однос броја електрона који ударе у њу и броја електрона који творе рентгенско зрачење. Ефикасност зависи од атомског броја елемента од ког је анода направљена и енергије самих електрона. Већина катодних цеви користи тунгстен, јер има висок атомски број и, сем што добро трпи високе температуре, има високу тачку топљења и релативно споро испарава. У свим ранијим цевима користио се чист тунгстен, док је код новијих заступљенија његова легура са родијумом (барем на површини аноде). Коришћењем легуре повећава се животни век аноде.

Само део аноде се користи за производњу рентгенских зрака – та мала површина зове се фокална тачка. Величина фокалне тачке зависи од дебљине снопа електрона који стиже до аноде. Када је мала, сноп је мање замрљан, а кад је велика, долази до већег расипања топлоте.

Катодне цеви имају две геометрије: прву, где је прозор кроз који излази сноп рентгенских зрака смештен са стране цеви (side window tube) и другу, где се налази на самом крају цеви (end window tube).

Слика 3.4: Цев са прозором постранце²⁰

У цевима са прозором постранце, катода се налази на негативном потенцијалу, а анода на нултом. Стога, потенцијал аноде се не разликује од потенцијала околног кућишта и прозора поред.

Део електрона који се емитују са загрејане катоде расејава се на аноди; колики ће проценат створеног електронског снопа то бити, зависи од анодног материјала (али број није занемарљив, обзиром на то да иде и до 40%). Обзиром на то да се берилијумски прозор налази тик поред аноде, он мора поднети велико термално оптерећење, те је минимална дебљина прозора код ових цеви 300 µm. Лоша страна дебљег прозора је апсорпција нискоенергетских рентгенских зрака, те ове цеви имају мању вероватноћу да побуде атоме лакших елемената.

²⁰ в. литературу [13], стр. 9.

Код цеви са прозором на крају катода је на нултом потенцијалу и налази се око аноде, која је на позитивном. Поново постоји напон између кућишта и аноде, али овај пут расејани електрони бивају навођени назад до аноде, те не повећавају температуру околине. Берилијумски прозор остаје на оптималној температури и може бити тањи него код претходних цеви (75 µm – 125 µm).

Слика 3.4: Цев са прозором на предњем крају

Лоша страна свих катодних цеви које користе висок напон је неопходност хлађења целог система. Са слика 3.4 и 3.5 види се да је унутар кућишта спроведен систем за хлађење. Због специфичног положаја катоде у цевима са прозорима постранце, потребно је хладити и "главу" цеви.

3.4 Секундарне мете

Као што је већ напоменуто у 3.1, секундарне мете служе за поларизацију зрачења којим се потом зрачи узорак који се изучава. Постоје три врсте: флуоресцентне, Барклине и Брагове мете²¹.

Флуоресцентне мете углавном се састоје од тежих елемената, који емитују карактеристично зрачење, које потом пада на узорак. Да би се постигла најефикаснија флуоресценција у њему, енергија зрака који долазе из секундарне мете треба да буде тик изнад везивне енергије електрона у атомима узорка. Најбоље је да спектрометри имају флуоресцентне мете од различитих материјала, које се мењају у зависности од тога који елементи се анализирају.

Барклине мете направљене су од лакших елемената попут Al₂O₃ и концентришу се на искоришћење расејаног зрачења из катодне цеви. Оне такође емитују флуоресцентно зрачење, али ниског интензитета. Ове мете расејавају велики спектар енергија, али се углавном користе за идентификацију тежих. Поларизовано зрачење које потиче од Барклиних секундарних мета је полихроматско.

²¹ в. литературу [14], стр. 30.

Брагове мете су кристалне и расејавају зрачење одређене енергије у неком правцу. Оне врше диференцијацију зрачења које изађе из катодне цеви и, за разлику од Барклиних мета, усмеравају поларизовано монохроматско зрачење ка узорку. Рефлектовани X – зраци су интензивнији него код Барклиних мета.

Секундарне мете повећавају вредност и габарит спектрометра. Један од заобилазника мета је коришћење филтера који се постављају на пут између катодне цеви и узорка.

3.5 Детектори

Пропорционални бројач је најједноставнији детектор који се користи и има најмању резолуцију. Полупроводнички (углавном је то Si – PIN диода) има много већу резолуцију, док је од њих најефикаснији SDD (silicon drift detector). Наравно, не своди се све на резолуцију, некад је битније имати осетљивост: уколико је потребно детектовати један елемент који се не преклапа са другим, најбоље је изабрати бројач. Са друге стране, ако постоје линије које се преклапају, решење је полупроводнички детектор. Но, ако је потребно анализирати и главне линије и линије у траговима, треба користити SDD или Si(Li).

Обзиром на то да је за EDXRF потребно имати добру резолуцију, за њу се углавном користе полупроводнички детектори. Са друге стране, код WDXRF дифракциони кристал омогућава коришћење гасних и сцинтилационих детектора. Гасни детектори имају добру осетљивост на ниске енергије, а сцинтилациони на високе, те WDXRF углавном користи комбинацију та два детектора.

Детектори трпе још две врсте артефаката: *escape peaks* и *pile – up peaks*. Први брегови се појављују када рентгенски зраци изазову емитовање карактеристичног зрачења елемената од којих је детектор направљен, те губе део енергије пре детектовања. Промена енергије једнака је енергији линије детекторског елемента – за силицијум је то 1.7 keV, за германијум 10 keV, а аргон око 3 keV. Дакле, биће детектован део зрачења ниже енергије и као резултат ће се појавити главни и *escape* брег.

Друга врста пикова појављује се приликом истовременог уласка два X – фотона у детектор, који их не разликује, већ само даје излазни импулс који је сразмеран збиру њихових енергија.

3.6 Спектри Х – зрачења

Спектар који дају катодне цеви дефинисан је волтажом између катоде и аноде. Наиме, енергија електрона не може бити већа од енергије сразмерне напону у цеви. Волтажа некада варира, те се дефинише максимални напон KV_P (kilovolt peak). KV_P одређује колико ће зрачења бити произведено за одређен број електрона јер се ефикасност производње рентгенских зрака повећава са повећањем енергије електрона. Променом KV_P мења се и спектар закочног зрачења (видети слику 1.1, спектар *bremsstrahlung* – а за тунгстен).

Дакле, катодне цеви дају континуални спектар који потиче од закочног зрачења суперпониран са линијским спектром, који се добија због карактеристичног зрачења.

График 3.2: Суперпонирани спектар закочног и карактеристичног зрачења

Слика 3.5: Разлика између упадних углова

На графику 3.2 види се суперпозиција спектара за родијум и рутенијум. Глатки део графика је закочно зрачење, а пикови су из карактеристичног спектра.

Упадни угао је означен као "grazing angle" јер се посматра угао између снопа зрачења и површине на коју пада, не између снопа и нормале на ту површину. Овакво дефинисање угла врши се када је сноп скоро паралелан површини на коју пада. На слици 3.6 описана је разлика између дефиниција "grazing" и "incidence" углова.

Да би доспело до атома који ће емитовати карактеристично зрачење, X – зрачење мора да прође кроз слој изнад њега. Карактеристично зрачење такође мора да прође кроз тај слој када напушта узорак који се изучава, што значи да у оба смера долази до апсорпције зрачења.

Апсорпција се повећава са повећањем пута који зрачење мора да пређе и густином и атомским бројем узорка, а смањује са повећањем енергије зрачења. Наравно, унутар узорка се дешава и емисија секундарних рентгенских зрака, тако да је немогуће, приликом мерења емитованог зрачења, одредити који део је примарно, а који секундарно.

График 3.3: Спектри карактеристичног зрачења за олово, цинк и бакар; на графику су означени пикови који потичу од одређених прелаза²²

Приликом идентификације елемента из неког узорка, снимају се спектри, очитавају енергије пикова и на основу елемената који се очекују врши се њихово упоређивање са енергијама из табеле 3.7. На графику 3.3 приказана су три спектра чистих елемената, што наравно није реална ситуација. Нешто што се заправо добија много је сличније графику 3.4 (приказан је месинг), с тим што је на овом графику уклоњен шум (background).

²² преузето из [15]

График 3.4: Спектар месинга у којем се види суперпозиција три спектра са претходног графика

Месинг је легура бакра и цинка и некада има и одређену количину олова у себи. Због тога су пикови олова тако малог интензитета у односу на пикове друга два елемента. Међутим, однос "већа количина елемента → већи интензитет" није баш тако једноставан. Нпр. могуће је да рентгенски зраци добијени из цинка међудејствују са бакром, тиме појачавајући интензитет другог, а смањујући интензитет првог, стварајући тзв. матрични ефекат (matrix effect). Резултујући спектар показује како одређена компонента у узорку има другачију концентрацију од стварне. Случај може бити назван матричним ефектом уколико је промена концентрације компоненте већа од 0,5%.

Битно је напоменути да обе врсте рентгенске флуоресцентне спектроскопије омогућавају спознају само елементарног састава површинског слоја (нехомогеног) узорка. Да би анализа била потпунија, потребно је користити додатне методе које су јој комплементарне.

[35]

3.7 Додатак: Табела са карактеристичним линијама

Atomic	K-series						L-series											
element		112223	2022	10000	1350	220		2022	10000			21.201			21.125	29 10021		
	K edge	KR	KA	KBn	KLIII	KLII	L _I edge				L _{II} edge	LIINIV		L _{III} edge	LIIINV	LIIIMV		LIIIMI
Intensity		2-5	~20	~10	100	50-53		~5	50-35	20		~5	~50	-	~5	~90	10	20-5
4 Be 5 B	0.115 0.188				0.1 0.1	.09 .83								0.006				
6 C	0.282				0.2	277								0.005				
7 N	0.397				0.3	93								0.004				
8 0	0.533				0.5	525								0.008				
9 F 10 Ne	0.692		0.8	858	0.6	577 848								0.015				
11 Na	1.080		1.0	071	1.0	041								0.039				
12 Mg	1.309		1.3	802	1.2	53	0.062							0.056				
13 Al	1.562		1.5	57	1.487	1.486	0.087				0.076			0.075				
14 Si 15 P	1.840 2.143		1.8 2.1	136 139	1.740 2.014	1.739 2.013	0.118 0.153				0.101 0.130			0.100 0.129				
16 S	2.471		2.4	64	2.308	2.307	0.193				0.164			0.163				
17 Cl	2.824		2.8	816	2.622	2.620	0.237				0.204			0.202				
18 Ar	3.203		3.3	90	2.958	2.956	0.286				0.247			0.245				
20 Ca	4.034		4.0	013	3.692	3.688	0.403				0.346			0.342			6	
21 Sc	4.486		4.4	61	4.090	4.086	0.462				0.400		0.400	0.396		0.3	95	0.348
22 II 23 V	4.965		4.9	32	4.511	4.505	0.529		0.9	95	0.460		0.458	0.454		0.4	11	0.395
24 Cr	5.987		5.9	47	5.415	5.405	0.694		0.6	554	0.582		0.583	0.572		0.5	573	0.500
25 Mn	6.537		6.4	190	5.899	5.888	0.768		0.7	721	0.649		0.649	0.638		0.6	537	0.556
26 Fe	7.112		7.0	58	6.404	6.391	0.846		0.3	792	0.721		0.719	0.708		0.7	05	0.615
27 Co	7.712		7.6	549	6.930	6.915	0.929		0.8	370	0.797		0.791	0.782		0.7	76	0.678
28 Ni	8.339		8.2	265	7.478	7.461	1.016		0.9	941	0.878		0.869	0.861		0.8	352	0.743
29 Cu 30 Zn	8.993 9.673	9.658 ¹	8.905 9.572	8.903 9.567	8.048 8.639	8.028 8.616	1.109		1.023	1.1019	1.057		1.035	1.034		1.0) 12	0.811
31 Ga	10.386	10.366 ¹	10.271	10.261	9.252	9.231	1.316		1.197	1.191	1.155		1.125	1.134		1.0	98	0.957
32 Ge	11.115	11.101	10.983	10.978	9.887	9.856	1.426		1.294	1.289	1.259		1.218	1.228		1.1	.88	1.036
33 AS	12.666	12.6521	12,496	12,489	11.222	11.181	1.662		1.492	1.485	1.485		1.419	1.333		1.2	179	1.204
35 Br	13.483	13.470 ¹	13.292	13.285	11.924	11.878	1.791		1.600	1.593	1.605		1.523	1.559		1.4	80	1.294
36 Kr	14.330	14.315 ¹	14.113	14.105	12.650	12.598	1.923		1.706	1.698	1.732		1.637	1.680		1.5	86	1.386
37 Rb	15.202	15.185 ¹	14.962	14.952	13.396	13.336	2.067	2.051 ²	1.827	1.817	1.866		1.752	1.806		1.694	1.692	1.482
38 Sr	16.106	16.085 ¹	15.836	15.826	14.166	14.098	2.217	2.1972	1.947	1.937	2.008		1.872	1.940		1.806	1.804	1.582
39 Y 40 Zr	17.037	17.015 ¹ 17.963 ¹	16.737	16.725	14.958	14.882 15.692	2.372	2.347 ² 2.503 ²	2.200	2.060	2.155	2.292	2.118	2.079	2.215	2.043	2.040	1.685
41 Nb	18.985	18.947 ¹	18.623	18.606	16.615	16.521	2.698	2.6602	2.336	2.319	2.464	2.449	2.257	2.370	2.357	2.166	2.163	1.902
42 Mo	20.002	19.960	19.608	19.590	17.479	17.374	2.867	2.825 ²	2.473	2.455	2.628	2.611	2.396	2.523	2.508	2.295	2.291	2.016
43 Tc	21.048	21.002	20.619	20.599	18.367	18.251	3.047	3.001 ²	2.618	2.598	2.797	2.778	2.537	2.681	2.664	2.424	2.421	2.131
44 Ru 45 Rh	22.123 23.229	22.072 23.173	21.656 22.723	21.637 22.698	19.279 20.216	19.150 20.073	3.230 3.421	3.179 ² 3.365 ²	2.763 2.915	2.744 2.890	2.973 3.156	2.952 3.132	2.683 2.835	2.844 3.013	2.825 2.992	2.556 2.698	2.554 2.692	2.253 2.377
46 Pd	24.365	24.303	23.819	23.792	21.178	21.021	3.619	3.557	3.073	3.046	3.344	3.318	2.990	3.187	3.163	2.838	2.833	2.503
47 Ag	25.531	25.463	24.943	24.912	22.163	21.991	3.822	3.754	3.234	3.203	3.540	3.511	3.151	3.368	3.342	2.985	2.979	2.634
48 Cd	26.727	26.653	26.095	26.061	23.173	22.985	4.034	3.960	3.402	3.368	3.742	3.710	3.319	3.554	3.525	3.134	3.131	2.767
49 In 50 Sn	27.953 29.211	27.872 29.122	27.275 28.491	27.237 28.439	24.209 25.272	24.002 25.044	4.250 4.475	4.169 4.377	3.572 3.750	3.534 3.703	3.951 4.167	3.915 4.127	3.487 3.661	3.744 3.939	3.712 3.903	3.288 3.442	3.280 3.433	2.905 3.045
Intensity	_	5-15	~20	~10	100	53-65	-	~5	35-20	20		5-25	100	-	5-20	~90	10	20-5
E1 Ch	20.400	20 405	20 725	20 677	26.256	76 110	4 705	4 600	3 035	2.001	4 300	4.745	3.045			7 604	2 504	3 100
51 SD 52 Te	30.499	30.402	29.725 30.00F	29.6/7	20.359	20.110	4.706	4.609	3.932	3.884	4.389	4.345	3.843	4.140	4.101	3.604	3.594	3.189
53 I	33.168	33.054	32.295	32.239	28.612	28.317	5.186	5.072	4.313	4.257	4.851	4.799	4.221	4.556	4.509	3.938	3.926	3.485
54 Xe	34.551	34.428	33.625	33.562	29.779	29.459	5.442	5.319	4.516	4.453	5.092	5.035	4.415	4.772	4.720	4.110	4.095	3.625
55 Cs	35.966	35.833	34.985	34.918	30.973	30.625	5.700	5.567	4.719	4.652	5.341	5.278	4.619	4.993	4.936	4.289	4.271	3.795
56 Ba	37.414	37.270	36.378	36.303	32.194	31.817	5.964	5.820	4.928	4.853	5.597	5.529	4.827	5.220	5.158	4.470	4.450	3.954
57 La	38.894	38.739	37.802	37.721	33.442	33.034	6.235	6.080	5.143	5.062	5.860	5.786	5.037	5.452	5.385	4.651	4.629	4.122
58 Ce 59 Dr	40.410	40.243	39.258	39.170	34.720	34.279	6 802	6.577	5.364	5.276	6 400	6 321	5.261	5.690	5.617	4.839	4.820	4.289
60 Nd	43.538	43.345	42.272	42.166	37.361	36.847	7.095	6.902	5.829	5.723	6.691	6.597	5.722	6.177	6.091	5.231	5.208	4.633
61 Pm	45.152	44.947	43.825	43.713	38.725	38.171	7.398	7.193	6.071	5.959	6.981	6.880	5.962	6.427	6.334	5.433	5.408	4.785
62 Sm	46.801	46.584	45.413	45.289	40.118	39.523	7.707	7.490	6.319	6.195	7.278	7.169	6.205	6.683	6.582	5.635	5.610	4.995
63 Eu	48.486	48.256	47.036	46.902	41.542	40.902	8.024	7.794	6.574	6.440	7.584	7.467	6.455	6.944	6.835	5.843	5.815	5.177
64 Gd	50.207	49.964	48.696	48.554	42.996	42.309	8.343	8.100	6.832	6.690	7.898	7.772	6.713	7.211	7.034	6.058	6.026	5.362
65 Tb	51.965	51.709	50.382	50.228	44.481	43.744	8.679	8.423	7.096	6.942	8.221	8.086	6.976	7.484	7.358	6.273	6.239	5.547

Табела са карактеристичним линијама: наставак²³

Atomic	K-series						L-series											
element	K	KNIII	КМIII	КМII	KLIII	KLII	LI	LINIII		LIMI	LII eda	LIINI	V LIIM			IV LIIIN		
	euge	κβ2	Кβ1	κβ3	Ka1	Κα2	euge	L _{Y3}	Lβ ₃	Lβ ₄	euge	Ly ₁	Lβ1	eug	Lβ2	Laj	La ₂	Lj
Intensity		2-5	~20	~10	100	50-53	<u></u>	~5	50-35	5 20	- 10 <u>-</u>	~5	~50) –	~5	~9	0 10	20-5
66 Dy	53.761	53.491	52.119	51.956	45.999	45.208	9.013	8.743	7.371	7.208	8.553	8.409	7.249	7.762	7.627	6.496	6.458	5.743
67 Ho	55.593	55.308	53.878	53.707	47.547	46.699	9.365	9.080	7.650	7.479	8.894	8.740	7.529	8.046	7.901	6.719	6.681	5.944
68 Er	57.464	57.164	55.681	55.491	49.128	48.221	9.725	9.425	7.942	7.752	9.243	9.078	7.813	8.336	8.180	6.951	6.906	6.153
70 Yb	59.374 61.322	60.991	57.513	57.303	52,389	49.773	10.097	9.782	8.230	8.314	9.601	9.420	8.103	8.932	8.465	7.181	7.134	6.546
70 10	01.522	00.551	55.57	59.157	52.505	51.551	10.175	10.110	0.551	0.511	5.500	5.701	0.102	0.555	0.755	7.115	7.507	0.510
71 Lu	63.311	62.960	61.286	61.049	54.070	52.965	10.869	10.518	8.844	8.607	10.346	10.144	8.709	9.241	9.049	7.655	7.604	6.753
72 Hf	65.345	64.973	63.236	62.979	55.790	54.611	11.262	10.890	9.153	8.896	10.734	10.517	9.016	9.555	9.348	7.891	7.837	6.960
73 Ta	67.405	67.011	65.221	64.946	57.533	56.277	11.672	11.278	9.488	9.213	11.128	10.894	9.345	9.872	9.649	8.147	8.089	7.173
74 W	69.517	69.100	67.244	66.951	59.318	57.982	12.092	11.675	9.819	9.526	11.535	11.284	9.671	10.199	9.959	8.396	8.335	7.388
75 Re	/1.6/0	71.230	69.309	68.994	61.140	59.718	12.522	12.082	10.161	9.846	11.952	11.682	10.005	10.530	10.273	8.651	8.584	7.604
76 Os	73.869	73.404	71.416	71.077	63.001	61.487	12.968	12.503	10.515	10.176	12.382	12.092	10.349	10.868	10.592	8.905	8.835	7.822
77 Ir	76.111	75.620	73.560	73.203	64.896	63.287	13.416	12.925	10.865	10.508	12.824	12.514	10.705	11.215	10.919	9.175	9.096	8.046
78 Pt	78.400	77.883	75.751	75.364	66.832	65.123	13.880	13.363	11.231	10.844	13.277	12.944	11.073	11.568	11.251	9.439	9.364	8.271
79 Au	80.729	80.182	77.985	77.580	68.804	66.990	14.353	13.806	11.609	11.204	13.739	13.383	11.432	11.925	11.585	9.705	9.618	8.494
80 Hg	83.109	82.532	80.261	79.822	70.819	68.894	14.835	14.258	11.987	11.548	14.215	13.834	11.823	12.290	11.927	9.999	9.898	8.722
81 TI	83.532	84.924	82.575	82.384	72.872	70.832	15.344	14.736	13.387	12.196	14.700	14.293	12.217	12.660	12.272	10.271	10.117	8.953
82 Pb	88.008	87.367	84.936	84.450	74.969	72.804	15.863	15.222	12.791	12.305	15.204	14.769	12.618	13.039	12.625	10.555	10.453	9.185
83 Bi	90.540	89.866	87.354	86.831	77.118	74.815	16.391	15.717	13.205	12.682	15.725	15.261	13.031	13.422	12.981	10.836	10.728	9.421
84 Po	93.113	92.403	89.801	89.250	79.301	76.863	16.940	16.230	13.628	13.077	16.250	15.756	13.452	13.812	13.342	11.131	11.014	9.664
85 At	95.730	94.983	92.302	91.722	81.523	78.943	17.495	16.748	14.067	13.487	16.787	16.262	13.882	14.207	13.708	11.427	11.302	9.858
86 Rn	98.402	97.617	94.866	94.246	83.793	81.065	18.047	17.262	14.511	13.891	17.337	16.777	14.323	14.609	14.079	11.727	11.595	10.085
87 Fr	101.131	100.306	97.477	96.807	86.114	83.231	18.630	17.805	14.976	14.306	17.900	17.307	14.775	15.017	14.456	12.031	11.892	10.340
88 Ra	103.909	103.039	100.130	99.432	88.476	85.434	19.222	18.352	15.443	14.745	18.475	17.848	15.238	15.433	14.839	12.340	12.196	10.622
89 AC	106.738	105.837	102.846	102.101	90.884	87.675	19.823	18.922	15.931	15.186	19.063	18.402	15./11	15.854	15.227	12.652	12.502	10.835
90 111	109.041	100.090	105.011	104.031	93.350	69.952	20.449	19.490	10.419	15.039	10.009	10.995	10.215	10.205	15.022	12.970	12.009	11.119
91 Pa	112.599	111.606	108.435	107.606	95.883	92.287	21.088	20.095	16.924	16.095	20.312	19.581	16.715	16.716	16.022	13.300	13.119	11.366
92 U	115.606	114.561	111.303	110.424	98.440	94.659	21.757	20.712	17.454	16.575	20.947	20.167	17.219	17.166	16.429	13.614	13.438	11.619
93 Np	118.678	117.591	114.243	113.312	101.068	97.077	22.427	21.340	17.992	17.061	21.601	20.785	17.751	17.610	16.840	13.944	13.760	11.890
94 Pu	121.818	120.703	117.261	116.277	103.761	99.552	23.097	21.982	18.540	17.556	22.266	21.417	18.293	18.057	17.256	14.279	14.084	12.124
95 AM	125.027	123.891	120.360	119.317	106.523	102.083	23.773	22.637	19.105	18.063	22.944	22.065	18.852	18.504	17.676	14.617	14.412	12.384
Intensity		~15	~20	~10	100	~65	-	~5	~20	20	(777)	~25	~100	30.00	~20	~90	10	20-5
96 Cm	128.220	127.066	123.423	122.325	109.290	104.441	24.460	23.306	19.663	18.565	23.779		19.552	18.930		14.959	14.703	
97 BK	131.590	130.355	130.851	129.601	116.030	110.710	25.275	24.040	20.348	19.128	24.385		20.019	19.452		15.520	15.085	
99 Es	139,490	138,169	134.238	132,916	119.080	113,470	26.900	25.579	21.648	20.326	26.020		21.390	20.410		16.036	15.780	
100 Fm	143.090	141.724	137.693	136.347	122.190	116.280	27.700	26.334	22.303	20.957	26.810		22.044	20.900		16.402	16.134	
	146 700	145 070	141.001	100 761	105 000	110 170	20 522	27 122	22.001		77.610		22 707	21.202		10 700	16 407	
101 Md	146.780	145.370	141.234	139.761	125.390	119.170	28.530	27.120	22.984	21.511	27.610		22.707	21.390		15.768	16.487	
103 I w	154.380	152.900	148.670	146.920	132.020	125.100	30.240	28.760	24.530	22.135	29.280		24.130	22.360		17.500	17.210	
100 EN	25 11000	102.000		101520	252.020	120.100	SUIL IU	201700	2 11000	22.7.50	25.200		- 11100	22.000		27.000		

²³ преузето са сајта <u>http://www.kayelaby.npl.co.uk/atomic and nuclear physics/4 2/4 2 1.html</u> (8th of July, 22:40)

4. Енергетски дисперзивна XRF

4.1 Принцип рада EDXRF

EDXRF има опсег детекције од натријума до уранијума, a WDXRF мало већи – од берилијума до уранијума. Оба опсега која су наведена подразумевају рад у вакуумском режиму, што у овом раду није био случај.

У EDXRF која је коришћена приликом експерименталног дела овог рада, опсег почиње од силицијума.

Код ове методе идентификација карактеристичних линија врши се користећи детекторе који директно мере енергију карактеристичних X – фотона. Најчешће се користе силицијумски детектори, мада су у употреби и германијумски.

Слика 4.1: Уобичајена поставка енергетски дисперзивног спектрометра²⁴

Основне компоненте приказане су на слици 4.1: извор, узорак, детектор, претпојачавач, појачавач сигнала и вишеканални анализатор. Цео тај систем привезан је на компјутер који садржи софтвер за анализирање спектра који се добија.

Код EDXRF спектрометара углавном се користе катодне цеви са прозором постранце, које имају снагу до 100 W. Оне су веома компактне, јефтине и углавном имају ваздушно хлађење.

²⁴ в. литературу [16]

На графику 4.1 приказана је зависност ефикасности Si(Li) детектора од енергије рентгенских зрака, узимајући у обзир дебљину силицијумског дела и берилијумског прозора.

График 4.1: Ефикасност Si(Li) детектора²⁵

Si(Li) детектор се састоји од p и n типа силицијумских раздвојених плоча литијумски облашћу. дрифтованом Карактеристични фотони бивају апсорбовани унутрашњости y силицијумског кристала, што производи број парова електрон – шупљина сразмеран упадној енергији.

P – i – n (positive – intrinsic – negative) структура силицијумског детектора прикупља наелектрисања дуж паралелних линија силе електричног поља међу р – и n – силицијума и контактних слојева под инверзним високим напоном. Током експеримента који је извршен коришћен је баш овакав детектор.

Импулс се иначе конвертује у напонски сигнал који пролази кроз низ који се састоји од претпојачавача, појачавача и ADC – a (analog to digital converter), док се код новије апаратуре сигнал одмах конвертује (DSP = digital signal processing).

 ²⁵ преузето са <u>https://www.researchgate.net/publication/253239411</u> (July 10th, 16:45)
 ²⁶ преузето са <u>https://slideplayer.com/slide/9078164/#</u> (September 16th, 12:43)

Друга врста детектора која је јако заступљена је SDD (silicon drift detector). Њихове површине су 10 – 100 mm², а дебљине 300 – 500 μ m², док је код *pin* детектора површина иста, али дебљина је 3 – 4 mm. Дакле, ефикасност код *pin* типа је боља (процењено је да код првих почиње да опада на 10 keV, а код других на око 20 keV).

Процесуирање детектора је углавном у опсегу 1 – 50 kcps (kilocounts per second), те је битно, због ограничености детектора, максимално искористити информацију која се добија. Могуће је да ограниченост коју детектор има код одброја онемогући "хватање" целог енергетског спектра, при чему се онда мењају услови побуђивања, да би се снимили и одсечени делови спектра. Једно од решења је употреба више материјала код мете унутар катодне цеви (углавном Мо и W) или коришћење више катодних цеви да би се симултано снимили сви делови спектра.²⁷

Дакле, може се вршити квалитативна и квантитативна анализа. О првој ће више речи бити касније, обзиром на то да сама тема рада подразумева такву врсту анализе. Квантитативна анализа је прилично компликован процес, поготово када се узме у обзир да постоје две врсте узорака, хомогени и хетерогени.

Хомогени узорци су погоднији за мерење, јер површински слој, који се најлакше анализира, представља целу запремину узорка. Сам термин хомогено подразумева да је узорак исти по саставу по целој својој запремини.

Међутим, код предмета попут оног који је анализиран у овом раду, уметничке слике, немогуће је поседовати хомоген узорак без оштећења уметнине. Било би потребно узети цео слој боја до платна (или било каквог материјала на који је боја наношена) и хомогенизовати га.

²⁷ в. литературу [18], стр. 200.

Слика 4.3: Четири врсте пигмената који су коришћени у непалском манускрипту²⁸

Хетерогени узорци, који cy обухваћени овим радом, много су компликованији. Најбољи начин да се уради квантификација хетерогених узорака је да се изврши додатна анализа која се сматра пропратном уз EDXRF анализу (микро – Раманска XRD, FTIR спектроскопија, спектроскопија).

Разлог зашто EDXRF није довољан лежи у томе што сам површински слој заправо није репрезентативан за цео узорак.

То важи поготово приликом проучавања слика, где је наношено више слојева који су потпуно другачији (нпр. креч бела као подлога, која се састоји од калцијум карбоната, потом оловком сликана скица, која садржи угљеник, па тек онда слојеви пигмента од разних елемената који се наносе преко свега тога).

На слици 4.3 приказана је XRF анализа једног непалског манускрипта на коме је нацртан Амида, целестијални Буда. Четири слике испод приказују XRF елементно мапирање за Hg, Au, Cu и Pb.

У црвеном оквиру на слици детектована је жива, која је главни састојак вермилиона, пигмента који је коришћен овде. Злато је нанешено на Будину кожу, ауру и његов ореол, што се може видети на другој елементној мапи. Бакар на трећој слици указује на зелени пигмент на бази бакра на листовима и плави пигмент са истом базом на једном делу ауре, а олово на четвртој показује да је Будина одора насликана оловно црвеним пигментом.²⁹

Још један врло конкретан проблем који се јавља код предмета који су осликавани (фреске, иконе, слике) је рестаурација. Наиме, уколико дело у време рестаурације није сматрано културним добром, рестауратор није морао да користи исте пигменте

 ²⁸ преузето са <u>http://www.webexhibits.org/pigments/intro/spectroscopy.html</u> (September 16th, 15:51)
 ²⁹ в. референцу 28

које је користио оригинални уметник, те се слојеви, чак и ако су потпуно исте боје, хемијски не морају слагати. Такође, постоје примери током историје³⁰ у којима је исти или чак други уметник додавао нове елементе на саме слике након одређеног времена, што дело можда чини употпуњенијим, али анализу самог дела чини много компликованијом.

Технички проблем код свих врста узорака, али поготово код хетерогених, је сама нехомогеност интензитета снопа X – зрака. Савршен сноп би требало да има исти интензитет на целој површини који покрива и да нагло опадне на нулу изван њених граница, што није случај. Дакле, сама расподела интензитета снопа није савршена; када ни узорак није такав, онда се јавља двострука грешка коју треба имати на уму.

4.2 Упоредба са таласно дисперзивном XRF

Постоје две врсте таласно дисперзивних спектрометара, секвенцијални (појединачни) и симултани (истовремени). Секвенцијални мере зрачење одређене таласне дужине тако што постављају детектор на гониометар, а симултани мере сво зрачење одједном тако што се састоје од скупа фиксираних детекционих система, код којих сваки има детектор и кристал за издвајање појединачних таласних дужина.

Слика 4.4: Шема таласно дисперзивног спектрометра

³⁰ в. литературу [20]

WDXRF је најстарији спектрометријски метод и ослања се на кристал који дифрактује рентгенске зраке следећи Брагов закон.

Слика 4.5: Брагов закон³¹

Мерењем угла θ , може се одредити таласна дужина λ , а потом и хемијски елемент (ако је позната константа решетке) и обратно – може се одредити d ако је позната λ . Зависно од тога шта се идентификује мерењем овог угла, може се вршити квантитативна или квалитативна анализа хемијских елемената и кристалних структура.

Детектори који се користе у WDXRF су пропорционални бројачи и сцинтилациони детектори.

Дакле, таласно дисперзивна спектрометрија као излазни сигнал даје зависност интензитета X – зрака од њихове таласне дужине.

³¹ преузето са <u>https://www.researchgate.net/publication/283068066</u> (July 10th, 16:42)

	Енергетски дисперзивна XRF	Таласно дисперзивна XRF			
Идентификациони опсег елемената	Na – U	Be – U			
Граница детекције	Релативно добра за лакше елементе, а одлична за теже	Релативно добра за много лакше елементе, а одлична за све остале			
Осетљивост	Релативно добра за лакше елементе, а одлична за теже	Добра за лакше елементе, а одлична за теже			
Резолуција	Релативно добра за лакше елементе, а одлична за теже	Одлична за лакше елементе, а релативно добра за теже			
Цена	Приуштива	Релативно скупа			
Потрошња енергије	5W - 1000W	200W - 4000W			
Мерење	Истовремено	Појединачно/истовремено			
Преносност	Лако преносно	Постоје критични делови приликом преноса, попут гониометра, кристала и расхладног система			

Табела 4.1: Особине две врсте рентгенске флуоресцентне спектрометрије³²

³² в. литературу [14] и [16], стр. 26. и стр. 59., респективно

5. XRF систем који је коришћен у анализи

5.1 Карактеристике спектрометра

У Институту за нуклеарне науке Винча, у Лабораторији за хемијску динамику и перманентно образовање, развијен је и користи се преносни енергетски дисперзиван спектрометар, који се састоји од катодне цеви са родијумском анодом и Si – PIN детектора, који детектује карактеристично рентгенско зрачење.

Слика 5.1: Рентгенски флуоресцентни спектрометар на Институту за нуклеарне науке Винча

На кућишту са хладњаком налази се оловни колиматор снопа X – зрачења и два ласера која служе као помоћ приликом финог подешавања растојања између узорка и система, као и прецизну визуализацију мерног места. Цео систем, са детектором, смештен је на покретну платформу која може да се помера у три правца. У геометрији која је коришћена, укрштени ласерски снопови били су подешени тако да је растојање између извора зрачења и објекта мерења постављено на 22 mm, чиме је омогућено да се одржава константним у току свих мерења.

Систем се помера помоћу степ – мотора који се контролишу преко software – a Mach3. Дакле, пре почетка мерења, на компјутеру се подесе две осе, а трећа се подешава ручно, котуром који главу спектрометра приближава или удаљава од објекта мерења, помажући се тачком коју творе ласерски снопови.

Слика 5.2: Изглед софтверског програма за компјутерско подешавање положаја детекторског система

Детекторски систем је AMPTEC X – 123, који се састоји од рентгенског детектора XR – 100CR, претпојачавача, процесора дигиталног импулса DP5, вишеканалног анализатора (MCA = multi channel analyzer) и PC5 напајања.

Опсег температура на ком најбоље ради је од -35°С до +80°С.

Оптимални опсег енергија за овај систем је 1 keV – 40 keV. X – зраци међудејствују са силицијумом у Si – PIN фотодиоди и творе просечно један пар електрон – шупљина на сваких 3.62 eV предатој силицијуму. Вероватноћа или ефикасност детектора да интерагује са X – фотоном повећава се са дебљином силицијума.

Термоелектрични хладњак хлади фотодиоду и улазни FET транзистор код претпојачавача, чиме је шум целог система умањен.

Слика 5.3: Шема детекторског система

DP5 процесор дигитализује импулс претпојачавача без икакве временске задршке током конверзије.

Слика 5.4: Кућиште у коме се налази катодна цев; изнад се виде ласери, а поред је детекторски систем

Катода која се користи је OXFORD Apogee 5500 Series, са максималном струјом од 1 mA и оптималним опсегом напона 10 kV – 50 kV, фокалном тачком од 35 μm и берилијумским прозором дебљине 127 μm.

Спектри се учитавају у АМРТЕС – овом програму ADMCA, а могу се анализирати или у њему или у Origin – у.

5.2 Мерење

Приликом увођења кандидата у принцип рада преносног EDXRF спектрометра, вршена су мерења спектара три слике из колекције господина Стојића. Слике које су у питању су "Тврђава зенита" Љубомира Мицића (1904. – 1971.), "Надреална птица рађа женку кита" Радојице Живановић – Ноа (1903. – 1944.) и једна апстракција Михајла Петрова (1902. – 1983.).

Слика 5.5: Спектрометар "у акцији"; на овој слици најбоље се види покретна платформа

За анализу слика користи се струја 0.1 mA – 0.3 mA и напон од 40 kV, док се за изучавање металних предмета може применити и експериментална поставка са јачом струјом на катодној цеви.

Пре почетка мерења идентификоване су циљне тачке: углавном се бирају три за сваку боју. Светлија и тамнија нијанса исте боје су интересантније за изучавање јер служе као показатељ градијента на слици и тога колико је беле умешано да би била добијена светлија нијанса.

За Мицићеву "Тврђаву зенита", за коју се сматра да је насликана 1922. године, одабрано је 20 тачака које су означене на слици 5.6.

Тачке 1), 3) и 17) одабране су као референтне за црну боју. Уз њих је одабрана још једна тачка код потписа уметника, означена бројем 20).

Тачке 2), 11), 12), 16) и 18) су референтне за црвену боју.

Тачка 4) је референтна за браон, а 5), 8) и 14) за наранџасту боју.

Слика 5.6: "Тврђава Зенита" Љубомира Мицића Тачке 6), 7) и 9) су одабране за зелену боју, а 10), 13), 15) и 19) за жуту.

Сама слика веома је специфична јер се неке боје појављују на врло малим сегментима дела, те је тешко одабрати по неколико тачака за појединачне боје.

Обзиром на то да је у средини коришћена титанијумска бела боја (TiO₂), која је у Србији почела да се користи након 1917. године, то потврђује да је слика најраније из 20. века. Наравно, на основу коришћених пигмената не може се тачно одредити година у којој је дело створено, сем у неким веома специфичним ситуацијама, али проналазак пигмента који се не уклапа временски у неко доба или географски у неки простор свакако може да служи за одбацивање нетачних тврдњи везаних за културно добро.

Референтне тачке за другу слику, апстракцију Михајла Петрова, означене су на слици 5.7.

Слика 5.7: Апстрактна композиција Михајла Петрова

5.3 Резултати

На наредним страницама биће приказани спектри који су добијени мерењем "Тврђаве зенита" Љубомира Мицића. На слици је било 20 референтних тачака за 6 боја и једна посебна тачка за црну боју код потписа уметника.

Када се изврши идентификација неких пигмената који су били коришћени, могу се такође и одбацити одређене тврдње везане за старост слике које се не поклапају са чињеницама када су и како одређене нијансе прављене. На пример, присуство пруско плаве ($Fe_4[Fe(CN)_6I_3]$) на слици, која је почела да се производи 1704. године, указује на то да слика не може датирати из 15. века.

На слици 5.8 може се видети мноштво пигмената који се изучавају на Институту.

Наиме, разлог зашто су уметници користили толико различитих пигмената веома је једноставан и интересантан: титанијум бела, која је употребљена на претходној слици, веома је агресивна и лако може да посветли боју. Користећи малу количину титанијум беле уметник може да претвори сваку боју у пастелну, што није увек оно што он тражи. Зато се уместо ње некада користи цинк бела (ZnO), која је доста више провидна од титанијум беле и лако се слаже са другим бојама, не нарушавајући уметников дојам и дајући му више контроле при мешању. Сем њих, бели пигменти који су у употреби су оловно бела (2PbCO₃·Pb(OH)₂), баријум сулфатна бела (BaSO₄) и калцијум карбонатна бела (кречњак бела, CaCO₃). Сваки од ових пигмената има своје предности и мане.

Слика 5.8: Неки од пигмената који се анализирају у Винчи

Слика 5.9: Спектри за три референтне тачке за црну боју; позиције 1, 3 и 17

Слика 5.10: Спектри за три референтне тачке за црвену боју; позиције 2, 11 и 12

Слика 5.11: Спектри за преостале две референтне тачке за црвену боју; позиције 16 и 18

Слика 5.12: Спектри за три референтне тачке за наранџасту боју; позиције 5, 8 и 14

Слика 5.13: Спектри за две референтне тачке за зелену боју (позиције 6 и 9) и спектар за тамнобраон боју (позиција 4)

Слика 5.14: Спектри за четири референтне тачке за жуту боју; позиције 10, 13, 15 и 19

5.4 Анализа

Као излазни податак добија се зависност интензитета од енергије. Интензитет означава број X – зрака доспелих у детектор и регистрованих у описаном детекторском систему.

На сваком од спектара јасно се види пик на 2.9 keV, што је карактеристична К – линија за аргон; наиме, обзиром на то да узорак и читав мерни систем нису у вакууму, рентгенски зраци међудејствују са аргоном из ваздуха, побуђујући га. Дакле, тај брег (пик) врло јасно представља ману спектрометара који раде у невакуумском режиму. Међутим, ту ману је тешко заобићи, обзиром на то да би савршени услови подразумевали узимање дела узорка и стављање истог у неку врсту кућишта из ког се може отклонити гас. Имајући у виду да су узорци у овом случају дела културне баштине, оштећење предмета не долази у обзир и због тога се у мерењу морају узети у обзир међудејства Х – зрака са ваздухом.

Но, обзиром на то да се спектрометар у Винчи користи пре свега за квалитативну анализу, овај пик аргона не игра велику улогу у целом процесу, поготово што не односи велики део енергије рентгенских зрака, нити било чиме утиче на информацију о коришћеном пигменту.

Он је коришћен за енергетску калибрацију спектрометра, заједно са линијом на 20.2 keV за родијум у катодној цеви.

5.5 Идентификација пигмената

Идентификација коришћених пигмената врши се на основу хемијских елемената који су детектовани у спектру приликом анализе одређене боје на слици. У табели 5.1 биће дат преглед сниманих тачака, боја које су анализиране и елемената који су идентификовани преко добијених спектара.

Табела 5.1: Детектовани хемијски елементи у EDXRF спектрима снимљеним у тачкама приказаним на сликама 5.9 – 5.14.

Тачка	Анализирана боја	Идентификовани елементи
1.	Црна	Ca, S, Cr, Fe, Zn, Pb i Sr
2.	Црвена	Ca, Ti, Zn, Pb i Sr
3.	Црна	Ca, S, Cr, Fe, Zn, Pb i Sr
4.	Тамно браон	Ca, Ti, S, Fe, Zn, Pb i Sr
5.	Наранџаста	Ca, Ti, Pb, Sr
6.	Зелена	Ca, Ti, Fe, Zn, S, K, Pb, Sr
7.	Зелена	Ca, Ti, Fe, Zn, S, K, Pb, Sr
8.	Наранџаста	Ca, Ti, Fe, Zn, Pb i Sr
9.	Зелена	Ca, Ti, Zn, Fe, S, Pb i Sr
10.	Жута	Ca, Ti, Fe, Zn, Pb i Sr
11.	Црвена	Ca, Ti, Zn, S, K, Fe, Pb i Sr
12.	Црвена	Ca, Ti, Fe, Zn, Pb i Sr
13.	Жута	Zn, Ti, Ca, S, Pb i Sr
14.	Наранџаста	Zn, Ti, Ca, S, Pb i Sr
15.	Жута	Ca, Zn, Ti, S, Fe, Pb i Sr
16.	Црвена	Ca, Ti, S, Fe, Zn, Pb i Sr
17.	Црна	Ca, Ti, Fe, Zn, Pb i Sr
18.	Црвена	Ca, S, Ti, Mn, Fe, Zn, Pb i Sr
19.	Жута	Ti, Zn, Ca, S, Pb i Sr
20.	Потпис	Ca, Ti, S, Fe, Zn, Pb i Sr

Анализа снимљених спектара је показала да су у скоро сваком спектру детектовани пикови који одговарају хемијским елементима: Са (калцијум), Ті (титанијум), Zn (Цинк), Pb (олово), Fe (гвожђа) и Sr (стронцијум), у различитим међусобним односима. Такође су, у одређеним анализираним позицијама на слици, детектовани и пикови који одговарају следећим елементима: Мn (манган), Cr (хром) и S (сумпор). На основу ових анализа се може закључити да је подлога на којој је сликано припремљена вероватно од калцијум карбоната, обзиром да је сигнал калцијума уједначен на свим позицијама. Детектовани пигменти цинк бела и титанијум бела су коришћени спорадично на одређеним светлим позицијама на слици, док је као црни, односно тамни пигмент вероватно коришћен препарат на бази угљеника (графита). Присуство стронцијума у сваком спектру се може објаснити чињеницом да он хемијски у природи прати калцијум, који је најзаступљенији у свим спектрима. Обзиром да на интензивно обојеним позицијама нису детектовани елементи који одговарају пигментима тих боја, закључујемо да су коришћене одређене органске боје и пигменти које се не могу детектовати коришћеном инструменталном техником.

6. Закључак

У овом раду описана је рентгенска флуоресцентна анализа слике "Тврђава Зенита" Љубомира Мицића, једног од првих авангардних српских песника и оснивача зенитизма у Србији.

XRF је недеструктивна метода, односно техника за одређивање елементног састава материјала и зато је савршена за изучавање предмета који се сматрају културним добром.

Мерења су вршена преносним енергетски дисперзивним спектрометром који је развијен на Институту за нуклеарне науке Винча. Детекторски систем који је коришћен био је AMPTEC X – 123, а за калибрацију спектрометра су биле коришћене карактеристичне линије за аргон на 2.9 keV и родијум на 20.2 keV.

У овом раду је извршена квалитативна анализа дела, док је, уз додатне методе попут микро – Раманске спектроскопије, XRD и FTIR спектроскопије могуће урадити и квантитативну анализу.

Господин Стојић, који је био љубазан да нам допусти коришћење података везаних за мерења његове колекције, желео је да зна да ли су уметнине које је донео оригинали.

Нажалост, за анализу нису биле доступне уметничке слике потврђене веродостојности и приписане аутору на основу којих би била урађена провера коришћених пигмената и аутентификација анализиране слике.

Но, на основу анализе спектара снимљених на изабраним позицијама на предметној слици, можемо закључити да детектовани пигменти одговарају периоду из којег се претпоставља да потиче уметничко дело.

[61]

Литература

[1] G. W. C. Kaye: "X Rays", 4th edition, 1923. (Longmans, Green and Co.) <u>https://archive.org/details/xrays4thed00kayeuoft</u>

[2] J. J. Thomson: "Conduction of electricity through gases", 2nd edition, 1906.(Cambridge University Press)

https://ia802700.us.archive.org/28/items/conductionofele00thomuoft/conductionofele00tho muoft.pdf

[3] Charles Barkla: "Polarised Röntgen Radiation", Philosophical Transactions of the Royal Society of London, Series A, Containing Papers of a Math. or Phys. Character, 1905. (Royal Society of London)

https://archive.org/details/philtrans02560481

[4] Charles Barkla: "Polarisation in Secondary Röntgen Radiation", Philosophical Transactions of the Royal Society of London, Series A, Containing Papers of a Math. or Phys. Character vol.77, 1906. (Royal Society of London)

[5] Frank Herbert Attix: "Introduction to Radiological Physics and Radiation Dosimetry",2004. (WILEY – VCH Verlag GmbH & Co.)

http://paramedfac.tbzmed.ac.ir/uploads/User/28/pira/%DA%A9%D8%AA%D8%A8%20 %D9%81%DB%8C%D8%B2%DB%8C%DA%A9%20%D9%BE%D8%B2%D8%B4%D A%A9%DB%8C/Introduction%20to%20Radiological%20Physics%20and%20Radiation% 20Dosimetry%20by%20Frank%20Herbert%20Attix%201986.pdf

[6] Konstantin Nikiforovich Mukhin: "Experimental Nuclear Physics, vol 1: Physics of atomic nucleus", 1987. (Mir publishers)

https://www.scribd.com/archive/plans?doc=376219806&metadata=%7B%22context%22% 3A%22archive%22%2C%22page%22%3A%22read%22%2C%22action%22%3Afalse%2 C%22platform%22%3A%22web%22%2C%22logged_in%22%3Atrue%7D

[7] Миодраг Крмар: "Увод у нуклеарну физику", 2013. (ПМФ, Универзитет у Новом Саду) [8] Anthony Seibert, John Boone: "X – Ray imaging Physics for Nuclear Medicine Technologists, pt.2: X – Ray interactions and image formation" (Society of Nuclear Medicine and Molecular Imaging)

http://tech.snmjournals.org/content/33/1/3.full.pdf+html

[9] "X Ray Data Booklet", 2009. (Lawrence Berkeley National Laboratory) http://cxro.lbl.gov/x-ray-data-booklet

[10] <u>https://www.tau.ac.il/~lab3/XRF/XRF5.pdf</u>

[11] "The London, Edinburgh, and Dublin Philosophical magazine and Journal of Science", vol.26, 6th series, 1913. (Taylor and Francis) https://archive.org/details/londonedinburg6261913lond

[12] "The London, Edinburgh, and Dublin Philosophical magazine and Journal of Science", vol.27, 6th series, 1914. (Taylor and Francis) <u>https://archive.org/details/londonedinburg6271914lond</u>

[13] Schlotz, Uhlig: "Introduction to X – Ray Fluorescence Analysis (XRF)", 2004.(Bruker AXS GmbH)

http://www.fem.unicamp.br/~liqcqits/facilities/xrf/%5BBruker_2006%5D%20Introduction %20to%20X-ray%20Fluorescence%20(XRF).pdf

[14] Peter Brouwer: "Theory of XRF – Getting acquainted with the principles", 3rd edition, 2003. (PANalytical, BV.)

https://docplayer.net/20307544-Theory-of-xrf-getting-acquainted-with-the-principlespeter-brouwer.html

[**15**] AMPTEC's "XRF: Understanding X-Rays" https://amptek.com/pdf/characteristic_xrays.pdf

[16] Moussa Bounakhla, Mounia Tahri: "X ray Fluorescence Analytical Tehniques" (CNESTEN) <u>http://www.cnstn.rnrt.tn/afra-ict/NAT/xrf/XRF%20V1.pdf</u>

[**17**] Peter Wobrauschek, Christina Streli, Eva Selin Lindgren: "Energy Dispersive, X – ray Fluorescence Analysis", Encyclopedia of Analytical Chemistry, 2010. (John Wiley & Sons Ltd)

https://pdfs.semanticscholar.org/5c65/eb4e9d75d5f20fac2c7fe30199d9195a231f.pdf

[18] René Van Grieken, Andrzej Markowicz: "Handbook of X-Ray Spectrometry", 2nd edition, 2001. (Marcel Dekker, Inc.)

[19] Hermann Haken, Hans Christoph Wolf: The Physics of Atoms and Quanta, 7th edition, 2005. (Springer – Verlag) http://kfe.fjfi.cvut.cz/~holec/EDU/AF/Haken%20H.,%20Wolf%20H.C.%20The%20physic s%20of%20atoms%20and%20quanta%20(7th%20ed.,%20Springer-Verlag,%202005)(600dpi)(T)(526s)_PQm_.pdf

[20] Andrić, Gajić-Kvaščev, Crkvenjakov: "The reconstruction of the lost data on the 19th century painting "La grande Isa" – characterization of pigments by portable XRF spectrometry" (European Conference on X – Ray Spectrometry, 2014.)

Биографија

Марија Сиришки рођена је у Ваљеву 6. јуна 1988. године. Основну школу започела је у Ваљеву, а завршила у Србобрану, где је касније завршила и Гимназију "Светозар Милетић". 2007. године уписала је Природно – математички факултет у Новом Саду на смеру Медицински физичар, али се убрзо пребацила на смер Физичар – истраживач.

2017. године уписала је мастер студије на Нуклеарној физици. Већ пет година ради као наставник и професор физике у Ваљеву.

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET

KLJUČNA DOKUMENTACIJSKA INFORMACIJA

Redni broj:	
RBR	
Identifikacioni broj:	
IBR	
<i>Tip dokumentacije:</i>	Monografska dokumentacija
	T-1-+1-: *+::-1
T t p z a p i s a : TZ	Tekstuaini stampani materijai
Vrsta rada:	Master rad
VR	
Autor:	Marija Siriški
AU	
Mentor:	Prof.dr Jovana Nikolov i dr Maja Gajić-Kvaščev
MN	
Naslov rada:	Rentgenska fluorescentna analiza (XRF) i primene za "in
NR	situ" izučavanje objekata kulturne baštine
Jezik publikacije:	srpski (cirilica)
JP	1./ 1.1.
Jezik izvoda:	srpski/engleski
JI Zamlia publikovanja:	Subject
Ze mija publikovanja: ZP	Stotja
Uže geografsko područje: UGP	Vojvodina
Godina:	2018
GO	
Izdavač:	Autorski reprint
IZ	-
Mesto i adresa:	Prirodno-matematički fakultet, Trg Dositeja Obradovića 4,
MA	Novi Sad
Fizički opis rada:	32 slike/8 grafika/4 tabele/67 strana/32 literaturna navoda
FO	
Naučna oblast:	fizika
NO	
Naučna disciplina:	Nuklearna fizika
ND	
Predmetna odrednica/	XRF, elementna analiza
ključne reči:	
Čuva sa:	Biblioteka departmana za fiziku PME-a u Novom Sadu
ČU	Bionoteka departmana za nziku, i ivii -a u novolli Sadu
Važna nanomena:	nema
VN	nemu

Izvod:	Rentgenska fluorescentna analiza (XRF) je nedestruktivna
IZ	tehnika, odnosno metod izučavanja umetnina i predmeta
	koji se smatraju kulturnim dobrom. Ona služi za
	određivanje elementnog sastava materijala. U radu su prikazani rezultati XRF analize jednog umetničkog dela.
Datum prihvatanja teme	
od NN veća:	09.07.2018.
DP	
Datum odbrane:	21 10 2018
DO	51.10.2018
Članovi komisije:	
КО	
Predsednik:	Prof.dr Dušan Mrđa
član:	Doc.dr Lazar Gavanski
član:	Prof.dr Jovana Nikolov, dr Maja Gajić-Kvaščev - mentori

UNIVERSITY OF NOVI SAD FACULTY OF SCIENCE AND MATHEMATICS

KEY WORDS DOCUMENTATION

Accession number: ANO	
Identification number: INO	
Document type:	Monograph publication
DT	
Type of record: TR	Textual printed material
Content code:	Final paper
CC	
Author:	Marija Siriški
AU	
Mentor/comentor:	Prof.dr Jovana Nikolov and dr Maja Gajić-Kvaščev
MN	
Title:	The X-ray fluorescence analysis (XRF) and application
TI	for "in situ" studies of cultural heritage
Language of text:	Serbian (Latin)
LT	
Language of abstract:	English
LA	
<i>Country of publication:</i> CP	Serbia
Locality of publication:	Vojvodina
Publication year:	2018
PY	
Publisher:	Author's reprint
PU	
Publication place:	Faculty of Science and Mathematics, Irg Dositeja
PP	Obradovica 4, Novi Sad $5/192/02/071/0/2$
Physical description:	5/182/32/0/71/0/3
Scientific field:	Physics
SF	1 11 0100
Scientific discipline:	Nuclear Physics
SD	
Subject/ Key words: SKW	XRF, elemental analysis
UC	
Holding data:	Library of Department of Physics, Trg Dositeja
HD	Obradovića 4
Note:	None
Ν	

Abstract: AB	The X-ray fluorescence analysis (XRF) is a non- destructive technique and method of study of art and objects of cultural heritage. It is used to determine the elemental composition of materials. This paper presents the results of XRF analysis of a painting.
Accepted by the Scientific Board:	09.07.2018.
ASB	
Defended on:	31.10.2018.
DE	
Thesis defend board:	
DB	
President:	dr Dušan Mrđa, Full Professor
Member:	dr Lazar Gavanski, Assistant Professor
Member:	dr Jovana Nikolov, Associate Professor and dr Maja Gajić-Kvaščev, research associate - mentors