### UNIVERZITET U NOVOM SADU PRIRODNO – MATEMATIČKI FAKULTET INSTITUT ZA FIZIKU

УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТІ

| ПРИМЉЕНС     | - 7 XII 1008 |
|--------------|--------------|
| ОРГАНИЗ ЈЕД. | БРÓЈ         |
| 0603         | 9/314        |

# NUMERIČKA ANALIZA MAGNETIZACIJE U POLUBESKONAČNOM FEROMAGNETU U APROKSIMACIJI SREDNJEG POLJA – Diplomski rad –

Kandidat: Lidija Josić

Mentor: Dr. Mario Škrinjar

NOVI SAD, DECEMBAR 1998

# SADRŽAJ

| UVOD                                                                                              | 1  |
|---------------------------------------------------------------------------------------------------|----|
| 1. FEROMAGNET SA BIKVADRATNOM INTERAKCIJOM IZMENE<br>I FAZNI PRELAZI                              | 2  |
| 1.1. BESKONAČAN FEROMAGNET                                                                        | 2  |
| 1.1.1. Ising-ov model                                                                             | 4  |
| 1.1.2. Izotropni model                                                                            | 7  |
| 1.1.3. Kubni model                                                                                | 8  |
| 1.2. POLUBESKONAČAN FEROMAGNET                                                                    | 11 |
| 2. NUMERIČKO IZRAČUNAVANJE MAGNETIZACIJE I<br>KVADRUPOLNOG MOMENTA POLUBESKONAČNOG<br>FEROMAGNETA | 21 |
| 2.1. FEROMAGNETNO UREĐENJE                                                                        | 21 |
| 2.2. FEROKVADRUPOLNO UREĐENJE                                                                     | 23 |
| ZAKLJUČAK                                                                                         | 41 |
| LITERATURA                                                                                        | 42 |
| PRILOG                                                                                            | 43 |

### UVOD

Razvoj tehnologije, naročito računarske opreme, doprineo je sve većem interesovanju za magnetizam na površinama i tankim filmovima. Razvijeno je više analitičkih teorijskih metoda, među prvima metod molekulskog (srednjeg) polja, koji je primenjen u ovom radu.

Cilj ovog diplomskog rada je analitičko i numeričko ispitivanje magnetizacije i kvadrupolnog momenta kod polubeskonačnog Heisenberg – ovog feromagneta sa bikvadratnom interakcijom i spinom S=1, u aproksimaciji molekulskog polja.

U prvom poglavlju ovog rada opisan je Hamiltonijan sa bikvadratnom interakcijom za beskonačan i polubeskonačan feromagnet i analizirani su parametri sistema – magnetizacija i kvadrupolni momenti.

U drugom poglavlju dati su rezultati numeričkog rešavanja sistema nelinearnih diferencnih jednačina za magnetizaciju i kvadrupolni moment, kao i rezultati numeričkog izračunavanja magnetizacije u blizini tačke faznog prelaza u zapremini, kod polubeskonačnog feromagneta za slučaj feromagnetnog uređenja. Takođe je numerički rešen sistem nelinearnih diferencnih jednačina za kvadrupolne momente kao i kvadrupolni moment u zapremini za ferokvadrupolnu fazu.

Programi napisani u programskom paketu *Matematica* 2.0 for Windows, koji računaju magnetizaciju i kvadrupolne momente dati su u prilogu.



### 1. FEROMAGNET SA BIKVADRATNOM INTERAKCIJOM IZMENE I FAZNI PRELAZI

Osnovna karakteristika feromagneta je pojava magnetnog momenta i u odsustvu primenjenog magnetnog polja. Magnetni moment potiče od uređenosti sopstvenih magnetnih momenata elektrona. Ova uređenost je posledica interakcije izmene koja deluje među elektronima. Interakcija izmene je elektrostatičkog porekla, a javlja se usled identičnosti čestica. Pored ove interakcije, u feromagneticima postoje magnetne interakcije sopstvenih magnetnih momenata međusobno i sa lokalnim elektrostatičkim poljem u kristalu. Obe ove interakcije su relativističke prirode, pa su po veličini zanemarljive u odnosu na interakciju izmene. One određuju pravac orijentacije spinova, odnosno, pravac kome odgovara minimum energije sistema.[1]

Bikvadratna interakcija izmene opisuje se spinskim operatorima višeg reda. Neke karakteristike magnetnih sistema, posebno kod jedinjenja retkih zemalja, pokazale su da je uticaj bikvadratne interakcije na moguće magnetno uređenje i fazne prelaze uporediv sa uticajem bilinearne interakcije.

### 1.1 BESKONAČAN FEROMAGNET

Prvo se analizira beskonačan Heisenberg–ov feromagnet sa prostom kubnom strukturom, bilinearnom  $(J'_{ij})$  i bikvadratnom  $(K'_{ij})$  interakcijom izmene i spinom S=1, sledeći uglavnom rad [2].

Hamiltonijan ovakvog sistema može se pisati u formi:

$$\hat{H} = -\sum_{ij} \left( \sum_{l=x,y,z} J_{ij}^{t} \hat{S}_{i}^{t} \hat{S}_{j}^{t} + \sum_{l=0,2,xy,yz,xz} K_{ij}^{t} \hat{Q}_{i}^{t} \hat{Q}_{j}^{t} \right)$$
(1.1)

gde su:

 $\hat{S}^{x}, \hat{S}^{y}, \hat{S}^{z}$  dipolni momenti,

a  $\hat{Q}^0 = 3(\hat{S}^z)^2 - 2$ ,  $\hat{Q}^2 = (\hat{S}^x)^2 - (\hat{S}^y)^2$ ,  $\hat{Q}^{xy} = \hat{S}^x \hat{S}^y + \hat{S}^y \hat{S}^x$  kvadrupolni momenti sistema.

U toku daljeg rada analiza sistema se vrši u aproksimaciji molekulskog (srednjeg) polja, u kojoj se interakcija među spinovima svodi na interakciju jednog spina sa srednjim poljem ostalih spinova. U obzir se uzimaju samo najbliži susedi.

Imajući u vidu translacionu invarijantnost kristala, Hamiltonijan dat jednačinom (1.1) za slučaj interakcije jednog jona, u aproksimaciji molekulskog polja dobija oblik:

$$\hat{H}_{0} = -I\left(\sum_{\ell=x,y,z} \alpha' \langle \hat{S}' \rangle \hat{S}' + \sum_{\ell=0,2,xy,yz,xz} \beta' \langle \hat{Q}' \rangle \hat{Q}'\right)$$
(1.2)

gde su:

$$I\alpha' = \sum_{j} J'_{ij}$$
,  $I\beta' = \sum_{j} K'_{ij}$ ,  $\beta_0 = \frac{1}{3}$ 

Slobodna energija sistema je:

$$F = -kT\ln Z_0 - \frac{1}{2} \langle \hat{H}_0 \rangle \tag{1.3}$$

gde je  $Z_0$  statistička suma data kao:

$$Z_0 = Tr \exp(-\frac{\hat{H}_0}{kT}) \tag{1.4}$$

Član  $\frac{1}{2}\hat{H}_0$  je unutrašnja energija sistema po jonu koja je funkcija dipolnih i kvadrupolnih momenta, pa mora biti uključena u izraz za slobodnu energiju. Prema tome, konačan izraz za Hamiltonijan u aproksimaciji molekulskog polja je:

$$\hat{H}_{MF} = \hat{H}_0 - \frac{1}{2} \langle \hat{H}_0 \rangle \tag{1.5}$$

Srednje vrednosti dipolnih i kvadrupolnih momenta  $\langle \hat{S}' \rangle$  i  $\langle \hat{Q}' \rangle$  određuju se iz uslova minimuma slobodne energije:

$$\frac{\partial F}{\partial \langle \hat{S}' \rangle} = \frac{\partial F}{\partial \langle \hat{Q}' \rangle} = 0 \tag{1.6}$$

Iz uslova (1.6) dobijaju se jednačine:

$$\langle \hat{S}' \rangle = \frac{kT}{I\alpha'} \frac{\partial \ln Z_0}{\partial \langle \hat{S}' \rangle}$$

$$\langle \hat{Q}' \rangle = \frac{kT}{I\beta'} \frac{\partial \ln Z_0}{\partial \langle \hat{Q}' \rangle}$$

$$(1.7)$$

koje mogu imati više rešenja. Rešenje koje odgovara minimumu slobodne energije opisuje ravnotežno stanje sistema.

U aproksimaciji molekulskog polja na temperaturi  $T=0^{\circ}K$ , sistem se nalazi u čistom stanju. Talasna funkcija sistema je oblika:

$$\psi = a |1\rangle + b |0\rangle + c |-1\rangle \tag{1.8}$$

Poznato je da su fazni prelazi uslovljeni uređenjem dipolnih momenata. Prisustvo kvadrupolnih momenata može dovesti i do dodatnih faznih prelaza. Za pozitivne vrednosti bilinearne ( $I\alpha'$ ) i bikvadratne ( $I\beta'$ ) konsante izmene, dipolni i kvadrupolni momenti jona teže da se urede duž određenog pravca.

Pokazano je da sistemi sa Ising-ovom , izotropnom i kubnom simetrijom imaju, u pravcu uređivanja, iste termodinamičke osobine. Oni poseduju samo jednu tačku faznog prelaza u zavisnosti od parametara sistema: ili se dipolni i kvadrupolni momenti uređuju istovremeno, pa se javlja prelaz iz paramagnetne u feromagnetnu fazu, ili se dipolni momenti ne uređuju, pa se vrši prelaz iz paramagnetne u ferokvadrupolnu fazu. Sistemi sa aksijalnom simetrijom imaju dva odvojena fazna prelaza. Prvo se uređuju kvadrupolni momenti, a zatim dipolni na nižoj temperaturi.

### 1.1.1 Ising-ov model

Ising-ova simetrija podrazumeva sledeće srednje vrednosti dipolnih i kvadrupolnih momenata:

$$\begin{split} &\langle \hat{S}^z \rangle = \sigma \ , \quad \langle \hat{S}^x \rangle = \langle \hat{S}^y \rangle = 0 \\ &\langle \hat{Q}^0 \rangle = q_0 \ , \quad \langle \hat{Q}^2 \rangle = \langle \hat{Q}^{xy} \rangle = \langle \hat{Q}^{yz} \rangle = \langle \hat{Q}^{xz} \rangle = 0 \end{split}$$

gde je  $\langle \hat{S}^z \rangle = \sigma$  magnetni moment po jonu, odnosno magnetizacija.

Hamiltonijan sa Ising-ovom simetrijom u aproksimaciji molekulskog polja je oblika:

$$\hat{H}_{0} = -I \left( \alpha \sigma \hat{S}^{z} + \frac{1}{3} q_{0} \hat{Q}^{0} \right).$$
(1.9)

Za statističku sumu se dobija izraz:

$$Z_0 = Tr \exp(-\frac{\hat{H}_0}{kT}) = \exp(\frac{q_0 K}{3}) \left(\exp(-q_0 K) + 2\cosh(K\alpha\sigma)\right)$$
(1.10)

pa je slobodna energija sistema:

$$\frac{F}{I} = -\frac{1}{K} \ln Z_0 + \frac{1}{2} \alpha \sigma^2 + \frac{1}{6} (q_0)^2$$
(1.11)

gde je K = I/kT.

Iz uslova za minimum slobodne energije dobijaju se jednačine:

$$\sigma = \frac{2\sinh(K\alpha\sigma)}{\exp(-q_0K) + 2\cosh(K\alpha\sigma)}$$

$$q_0 = 1 - \frac{3\exp(-q_0K)}{\exp(-q_0K) + 2\cosh(K\alpha\sigma)}$$
(1.12)

Pošto je statistička suma parna funkcija po  $\sigma$ , rešenja  $\langle \hat{S}^z \rangle = \pm |\sigma|$  imaju iste osobine pa se može smatrati da je  $\sigma > 0$ . Sistem jednačina (1.12) ima tri rešenja:

1.  $\sigma \neq 0, q_0 \neq 0$ 

2. 
$$\sigma = 0, q_0 \neq 0$$
  
3.  $\sigma = 0, q_0 = 0$ 

U zavisnosti od vrednosti  $\alpha$ , rešenja kojima odgovara minimalna vrednost slobodne energije su sledeća:

1.) za  $\alpha > 1$  rešenje  $\sigma > q_0 > 0$  ima najnižu energiju.

Na niskim temperaturama  $\sigma$  i  $q_0$  su aproksimativno:

$$\sigma = 1 - \exp(-K(\alpha + 1))$$

$$q_0 = 1 - 3\exp(-K(\alpha + 1))$$
(1.13)

Na temperaturama u blizini tačke faznog prelaza  $(T < T_c)$  magnetizacija je mala  $(\sigma << 1)$ , pa se može koristiti razvoj:

$$\frac{k}{I}(T_c - T) = A\sigma + B\sigma^2 + \dots$$
(1.14)

Eliminacijom  $q_0$  iz jednačina (1.12) i razvojem rezultujućeg izraza po  $\sigma$ , za konstante A i B dobijaju se vrednosti A = 0 i  $B = \alpha(\alpha - 2)/4(\alpha - 1)$ . Izrazi za magnetizaciju i kvadrupolni moment su u ovom slučaju:

$$\sigma = \sqrt{\frac{4(\alpha - 1)k(T_c - T)}{\alpha(\alpha - 2)I}}$$

$$q_0 = \frac{3}{(\alpha - 2)} \frac{k}{I} (T_c - T)$$
(1.15)

Iz gornjih jednačina se vidi da za  $\alpha > 2$  postoji fazni prelaz druge vrste iz paramagnetne u feromagnetnu fazu i sistem se ponaša kao uobičajeni Izingov model sa temperaturom faznog prelaza  $kT_c/I = \alpha S(S+1)/3 = 2\alpha/3$ . Za  $\alpha < 2$  javlja se fazni prelaz prve vrste iz paramagnetne u feromagnetnu fazu na temperaturi  $kT/I > 2\alpha/3$ .

U faznom dijagramu (sl.1.1.1), tačka sa koordinatama ( $\alpha=2, kT/I = 4/3$ ) je trikritična tačka.

2.) 
$$za \alpha < 1$$
 i  $\frac{kT}{I} < \frac{1}{\ln 4} = 0.72$  rešenje  $\sigma = 0, q_0 < 0$  ima najnižu slobodnu energiju, a  $za \alpha < 1$  i  $\frac{kT}{I} > \frac{1}{\ln 4} = 0.72$  rešenje  $\sigma = 0, q_0 = 0$ .

Za utvrđivanje tipa faznog prelaza definiše se pozitivna funkcija Q(kT/I):

$$Q(\frac{kT}{I}) = \begin{cases} -\frac{1}{2}\bar{q}_{0} & \text{za} & \frac{kT}{I} < \frac{1}{\ln 4} \\ -\frac{1}{2}\bar{q}_{0} & \text{za} & \frac{kT_{Q}}{I} = \frac{1}{\ln 4} \\ 0 & \text{za} & \frac{kT}{I} > \frac{1}{\ln 4} \end{cases}$$
(1.16)

gde je  $\overline{q}_0 < 0$  rešenje  $q_0$  jednačina (1.12) za  $\alpha = 0$ , a  $T_Q$  temperatura faznog prelaza.

Na niskim temperaturama funkcija Q(kT/I) je oblika:

$$Q(\frac{kT}{I}) = 1 - 3\exp(-\frac{2I}{kT})$$
(1.17)

dok je u blizini tačke faznog prelaza  $T_o$ :

$$Q(\frac{kT}{I}) = \frac{1}{2} + \frac{(\ln 4)^2}{(3 - 2\ln 4)} \frac{k}{I} (T_Q - T)$$
(1.18)

Na  $T = 0^{\circ} K$  jednačina (1.17) daje Q = 1, a na  $T = T_Q$  se iz jednačine (1.18) dobija Q = 1/2, pa su vrednosti kvadrupolnog momenta  $\overline{q}_0$ :

$$\overline{q}_{0} = \begin{cases} -2 & \text{za} & T = 0^{\circ} K \\ -1 & \text{za} & T = T_{Q} \\ 0 & \text{za} & T > T_{Q} \end{cases}$$
(1.19)

Može se zaključiti da je  $kT_Q/I = 1/\ln 4$  temperatura faznog prelaza prve vrste iz paramagnetne u ferokvadrupolnu fazu.

3.) za  $\alpha = 1$  postoje dva rešenja sa istom minimalnom vrednošću slobodne energije:

1. 
$$\sigma = q_0 = Q(\frac{kI}{I})$$
  
2.  $\sigma = 0, q_0 = -2Q(\frac{kT}{I})$ 

Oba rešenja postoje na svim temperaturama  $T < T_o$ .

Fazni dijagram koji opisuje Ising-ov Hamiltonijan prikazan je na slici 1.1.1. Oblast 1 odgovara paramagnetnoj fazi, oblast 2 feromagnetnoj, a oblast 3 ferokvadrupolnoj fazi. Na jednostrukim linijama se javljaju fazni prelazi prve vrste, a na dvostrukoj fazni prelaz druge vrste.



(sl.1.1.1)

#### 1.1.2 Izotropni model

U analizi sistema sa izotropnom simetrijom, za osu uređivanja dipola može se izabrati z-osa, pa su srednje vrednosti dipolnih i kvadrupolnih momenata:

Hamiltonijan sa izotropnom simetrijom je oblika:

$$\hat{H} = -\sum_{\vec{i}\vec{j}} \left( J_{\vec{i}\vec{j}} \hat{\vec{S}}_{\vec{i}} \cdot \hat{\vec{S}}_{\vec{j}} + K_{\vec{i}\vec{j}} (\hat{\vec{S}}_{\vec{i}} \cdot \hat{\vec{S}}_{\vec{j}})^2 \right)$$
(1.20)

a u aproksimaciji molekulskog polja:

$$\hat{H}_{0} = -I \left( \alpha \sigma \hat{S}^{z} + q_{2} \hat{Q}^{2} + \frac{1}{3} q_{0} \hat{Q}^{0} \right)$$
(1.21)

gde su  $I = \frac{1}{2} \sum_{j} K_{ij}$ ,  $(\alpha + 1)I = \sum_{j} J_{ij}$ ,  $q_2 = \langle \hat{Q}^2 \rangle$  i  $q_0 = \langle \hat{Q}^0 \rangle$ .

Za statističku sumu se dobija izraz:

$$Z_0 = Tr \exp(-\frac{\hat{H}_0}{kT}) = \exp(\frac{q_0 K}{3}) \left(\exp(-q_0 K) + 2\cosh(K\sqrt{q_2^2 + \alpha^2 \sigma^2})\right) \quad (1.22)$$

pa je slobodna energija sistema:

$$\frac{F}{I} = -\frac{1}{K} \ln Z_0 + \frac{\alpha}{2} \sigma^2 + \frac{1}{2} (q_2)^2 + \frac{1}{6} (q_0)^2 \quad .$$
(1.23)

Uslov minimuma slobodne energije:

$$\frac{\partial F}{\partial \sigma} = \frac{\partial F}{\partial q_2} = 0$$

daje jednakost:

$$(\alpha - 1)\sigma q_2 = 0 \tag{1.24}$$

Analizom gornje jednačine dobijaju se sledeći rezultati:

1.) za  $\alpha \neq 1$  postoje tri rešenja:

1. 
$$\sigma \neq 0, q_2 = 0$$

$$2. \quad \sigma = 0, q_2 \neq 0$$

$$3. \quad \sigma = 0, q_2 = 0$$

Za  $q_2 = 0$ , Hamiltonijan dat jednačinom (1.21) prelazi u Ising-ov Hamoltonijan, pa se razmatra samo rešenje sa  $q_2 \neq 0$ .

Za  $\sigma = 0$  i  $q_2 \neq 0$  jednačine za  $q_2$  i  $q_0$  su:

$$q_{2} = \frac{2\sinh(Kq_{2})}{\exp(-q_{0}K) + 2\cosh(Kq_{2})}$$

$$q_{0} = 1 - \frac{3\exp(-q_{0}K)}{\exp(-q_{0}K) + 2\cosh(Kq_{2})}$$
(1.25)

Gornji sistem jednačina prelazi u sistem (1.12) za  $\alpha = 1$  i  $\sigma \rightarrow q_2$ . Iz analize Isingovog Hamiltonijana je poznato da u slučaju  $\alpha = 1$  postoje dva degenerisana rešenja, pa su rešenja sistema (1.25):

1. 
$$q_2 = q_0 = Q(\frac{kT}{I})$$
  
2.  $q_2 = 0, q_0 = -2Q(\frac{kT}{I})$ 

Ova dva rešenja su ekvivalentna, pošto rotacija koja prevodi y u z osu transformiše rešenje  $q_2 = q_0 = Q(kT/I)$  u rešenje  $q_2 = 0, q_0 = -2Q(kT/I)$ . Prema tome, uvek se mogu izabrati takve koordinate da je  $q_0 \neq 0$  i  $\sigma \neq 0$ .

Može se zaključiti, da za  $\alpha \neq 1$  izotropni Hamiltonijan ima iste osobine kao i Ising-ov: za  $\alpha > 1$  dipoli i kvadrupoli se uređuju istovremeno, dok se za  $\alpha < 1$  dipoli ne uređuju. Jedina razlika između Ising-ovog i izotropnog modela je u tome što se kod izotropnog modela dipoli i kvadrupoli mogu uređivati u bilo kom pravcu, dok se kod Ising-ovog modela oni uređuju samo duž z-ose.

2.) za  $\alpha = 1$ ,  $\sigma$  i  $q_2$  se ne mogu odrediti jednoznačno, ali su povezani relacijom:

$$\sqrt{\sigma^2+q_2^2}=q_0=Q(\frac{kT}{I})\,.$$

Ovo rešenje ima istu slobodnu energiju kao i rešenje:

$$\sigma = q_2 = 0$$
 ,  $q_0 = -2Q(\frac{kT}{I})$  .

#### 1.1.3 Kubni model

U aproksimaciji molekulskog polja Hamiltonijan sa kubnom simetrijom je oblika:

$$\hat{H}_{0} = -I \left( \alpha \vec{\sigma} \cdot \hat{\vec{S}} + \beta \hat{H}^{(1)} + \hat{H}^{(0)} \right)$$
(1.26)

gde su:

$$\hat{H}^{(0)} = q_2 \hat{Q}^2 + \frac{1}{3} q_0 \hat{Q}^0$$
$$\hat{H}^{(1)} = q_{xy} \hat{Q}^{xy} + q_{yz} \hat{Q}^{yz} + q_{xz} \hat{Q}^{xz}$$

i

$$\sigma_{i} = \langle \hat{S}^{i} \rangle \qquad i = x, y, z$$
  

$$q_{0} = \langle \hat{Q}^{0} \rangle, q_{2} = \langle \hat{Q}^{2} \rangle, q_{ij} = \langle \hat{Q}^{ij} \rangle \qquad i \neq j \qquad i, j = x, y, z$$

U zavisnosti od vrednosti β, za kubni Hamiltonijan se dobijaju sledeći rezultati:

1.) za  $\beta=0$ , kubni Hamiltonijan (1.26) prelazi u izotropni (1.21). Iz analize date u delu 1.1.2 je poznato da se za  $\alpha>1$  dipolni i kvadrupolni momenti uređuju duž jedne od ivica elementarne ćelije, dok se za  $\alpha<1$  uređuju samo kvadrupolni momenti  $q_0$ .

2.) za  $\beta$ >>1, kubni Hamiltonijan (1.26) prelazi u Hamiltonijan oblika:

$$\hat{H}_0 = -I\left(\alpha\vec{\sigma}\cdot\vec{S} + \beta\hat{H}^{(1)}\right) \tag{1.27}$$

koji ima dva stabilna stanja.

1. Za  $\alpha < \beta$  rešenje sa najnižom slobodnom energijom je:  $\sigma = q_2 = q_0 = 0$  $q_{xy} = q_{yx} = q_{xz} = -\frac{2}{3}Q(\frac{kT}{I\beta})$ 

pa se sistem nalazi u ferokvadrupolnoj fazi sa osom simetrije koja je paralelna pravcu [111].

2. za  $\alpha > \beta$  rešenje sa najnižom slobodnom energijom je:

$$q_{2} = q_{0} = 0$$
  

$$\sigma_{x} = \sigma_{y} = \sigma_{z} = \sigma/\sqrt{3}$$
  

$$q_{xy} = q_{yx} = q_{xz} = q/3$$

i sistem se nalazi u feromagnetnoj fazi sa dipolnim i kvadrupolnim momentima usmerenim duž [111] pravca.

U ovom slučaju q i  $\sigma$  dati su relacijama:

$$\sigma = \frac{2\sinh(K\alpha\sigma)}{\exp(-q\beta K) + 2\cosh(K\alpha\sigma)}$$

$$q = 1 - \frac{3\exp(-q\beta K)}{\exp(-q\beta K) + 2\cosh(K\alpha\sigma)}$$
(1.28)

Ako se uvedu smene  $K\beta \rightarrow K'$ i  $\alpha/\beta \rightarrow \alpha'$  sistem jednačina (1.28) prelazi u sistem (1.12). Prema tome, Hamiltonijan opisan jednačinom (1.27) ima iste karakteristike kao Ising-ov Hamiltonijan sa bilinearnom i bikvadratnom konstantom interakcije  $I\alpha$  i  $I\beta/3$ . Jedina razlika je u tome što se kod Ising-ovog Hamiltonijana uređivanje vrši duž z-ose.

3.) za  $\beta >1$ , Hamiltonijan (1.26) pogodno je napisati u obliku:

$$\hat{H}_{0} = -I(\hat{H}^{(1)} + \hat{H}^{(0)}) - I(\alpha \vec{\sigma} \cdot \hat{\vec{S}} + (\beta - 1)\hat{H}^{(1)})$$
(1.29)

pa su sve konstante  $I, \alpha, \beta - 1$  pozitivne. Prvi član u gornjem Hamiltonijanu je sfernosimetričan i ne podrazumeva ni jedan pravac uređivanja. Pravac uređivanja određen je drugim članom. Iz prethodnog razmatranja je poznato da drugi član podrazumeva uređivanje duž [111] pravca. Kada se sistem uređuje duž [111] pravca  $q_2 = q_0 = 0$ , pa je i  $\hat{H}^{(0)} = 0$ . Može se zaključiti da za  $\beta > 1$  kubni Hamiltonijan prelazi u Hamiltonijan (1.27) za slučaj  $\beta >> 1$ .

4.) za  $\beta < 1$ , kubni Hamiltonijan je pogodno napisati u obliku:

$$\hat{H}_{0} = -I\beta \left( \hat{H}^{(1)} + \hat{H}^{(0)} \right) - I \left( \alpha \vec{\sigma} \cdot \hat{\vec{S}} + (1 - \beta) \hat{H}^{(0)} \right)$$
(1.30)

pa su konstante  $I\beta$ ,  $I\alpha$ ,  $I(1-\beta)$  pozitivne. Pošto je prvi član sferno-simetričan, pravac uređivanja je određen drugim članom koji podrazumeva uređivanje duž [100] pravca. Prema tome, za  $\beta < 1$  su  $q_{xy} = q_{yz} = q_{xz} = 0$  i kubni Hamiltonijan prelazi u izotropni Hamiltonijan dat jedačinom (1.21).

Može se zaključiti da se kubni Hamiltonijan uređuje ili duž [111] ili duž [100] pravca. Sistem može imati istovremeno i dipolno i kvadrupolno uređenje ili se javlja samo kvadrupolno uređenje.

Na slici 1.1.2. prikazani su tipovi uređenja sistema za različite vrednosti  $\alpha$  i  $\beta$ . Oblasti 1 i 4 odgovaraju ferokvadrupolnoj fazi, a 2 i 3 feromagnetnoj. Momenti se uređuju duž [100] pravca u oblastima 1 i 2, dok se u oblastima 3 i 4 uređuju duž pravca [111]. Fazni prelazi su drugog reda u šrafiranoj oblasti, a prvog u svim ostalim.



(sl.1.1.2)

### 1.2 POLUBESKONAČAN FEROMAGNET

Analizira se polubeskonačan Heisenberg-ov feromagnet sa prostom kubnom strukturom, bilinearnom  $(I_{i\bar{j}})$  i bikvadratnom  $(K_{i\bar{j}} = aI_{i\bar{j}})$  interakcijom izmene u aproksimaciji najbližih suseda. Za spin S=1, analiza se vrši u aproksimaciji molekulskog polja ([3] - [5]).

Posmatrani feromagnet ispunjava deo prostora z>0 sa ravni (001) kao graničnom površi.

Hamiltonijan ovakvog sistema je oblika:

$$\hat{H} = -\frac{1}{2} \sum_{\bar{I}\bar{J}} I_{\bar{I}\bar{J}} \hat{\vec{S}}_{\bar{I}} \cdot \hat{\vec{S}}_{\bar{J}} - \frac{a}{2} \sum_{\bar{I}\bar{J}} I_{\bar{I}\bar{J}} (\hat{\vec{S}}_{\bar{I}} \cdot \hat{\vec{S}}_{\bar{J}})^2 - g\mu_B \mathscr{X} \sum_{\bar{I}} \hat{S}_{\bar{I}}^z$$
(1.31)

Uvođenjem kvadrupolnih momenata može se pokazati da gornji Hamiltonijan prelazi u Hamiltonijan dat jednačinom (1.1).

Veličina  $I_{ij}$  u Hamiltonijanu (1.31) je konstanata izmene koja ima vrednost  $I_s$  za susede na površini, a vrednost I u svim ostalim slučajevima, dok je veličina  $\mathcal{X}$  primenjeno magnetno polje usmereno duž z–ose. Ovo polje uvodi Ising–ovu simetriju u Hamiltonijan:

$$\sigma_{n} = \langle \hat{S}_{\bar{n}}^{z} \rangle \quad , \quad \langle \hat{S}_{\bar{n}}^{x} \rangle = \langle \hat{S}_{\bar{n}}^{y} \rangle = 0$$

$$q_{n} = \langle \hat{Q}_{\bar{n}}^{0} \rangle = \langle 3(\hat{S}_{\bar{n}}^{z})^{2} - S(S+1) \rangle \quad , \quad \langle \hat{Q}_{\bar{n}}^{2} \rangle = \langle \hat{Q}_{\bar{n}}^{xy} \rangle = \langle \hat{Q}_{\bar{n}}^{yz} \rangle = \langle \hat{Q}_{\bar{n}}^{xz} \rangle = 0$$

gde su  $\sigma_n$  i  $q_n$  magnetizacija i kvadrupolni moment , veličine karakteristične za svaki sloj feromagneta.

Imajući u vidu Ising-ovu simetriju i translacionu invarijantnost kristala u XYravni, Hamiltonijan sistema u aproksimaciji molekulskog polja je oblika:

$$\hat{H}_{MF} = \hat{H}_0 - \frac{1}{2} \langle \hat{H}_0 \rangle \tag{1.32}$$

gde je

$$\hat{H}_{0} = -N_{xy} \sum_{n=1}^{N} (\overline{\mathscr{D}}_{n} \hat{S}_{n}^{z} + \overline{\mathscr{R}}_{n} \hat{Q}_{n}^{0})$$
(1.33)

U gornjem Hamiltonijanu  $N_{xy}$  je broj čvorova u XY–ravni, a N je broj slojeva u z– pravcu. Veličine  $\overline{\boldsymbol{\alpha}}_n$  i  $\overline{\boldsymbol{x}}_n$  su srednja polja izmene koja deluju na magnetizaciju  $\sigma_n$ i kvadrupolni moment  $q_n$ . Ako se uvedu oznake:

$$\varepsilon = \frac{I_s}{I}$$
 i  $\alpha = \frac{2-a}{a}$ 

 $\overline{\boldsymbol{\alpha}}_n$  i  $\overline{\boldsymbol{\varkappa}}_n$  su oblika:

$$\overline{\mathscr{X}}_{1} = (1 - \frac{a}{2})IS_{1} \qquad \overline{\mathscr{X}}_{n \ge 2} = (1 - \frac{a}{2})IS_{n}$$
(1.34a)

$$\overline{\boldsymbol{\mathcal{X}}}_{1} = \left(\frac{2-a}{6\alpha}\right) I Q_{1} \qquad \overline{\boldsymbol{\mathcal{X}}}_{n\geq 2} = \left(\frac{2-a}{6\alpha}\right) I Q_{n} \tag{1.34b}$$

gde su:

i

$$S_1 = 4\varepsilon\sigma_1 + \sigma_2 \qquad S_{n\geq 2} = 4\sigma_n + \sigma_{n-1} + \sigma_{n+1} \qquad (1.35a)$$

$$Q_1 = 4\epsilon q_1 + q_2$$
  $Q_{n\geq 2} = 4q_n + q_{n-1} + q_{n+1}$  (1.35b)

Statistička suma je oblika:

$$Z = \left(\prod_{n=1}^{N} Z_{n}\right)^{N_{xy}}$$
(1.36)

gde je:

$$Z_n = \sum_{i=-1}^{1} \langle i | \exp(-\frac{1}{kT}(\overline{\mathscr{D}}_n \hat{S}_n^z + \overline{\mathscr{R}}_n \hat{Q}_n^0)) | i \rangle$$

pa je slobodna energija sistema:

$$F = -kT\ln Z - \frac{1}{2}\langle \hat{H}_0 \rangle = -kTN_{xy} \sum_{n=1}^N \ln Z_n + \frac{N_{xy}}{2} \sum_{n=1}^N (\overline{\mathcal{X}}_n \sigma_n + \overline{\mathcal{X}}_n q_n)$$

Za slobodnu energiju po čvoru XY-ravni, na osnovu prethodne relacije, dobija se izraz:

$$\frac{F}{N_{xy}} = -kT \sum_{n=1}^{N} \left( \frac{1}{kT} \,\overline{\boldsymbol{\mathcal{R}}}_{n} + \ln(\exp(-\frac{3}{kT} \,\overline{\boldsymbol{\mathcal{R}}}_{n}) + 2\cosh(\frac{1}{kT} \,\overline{\boldsymbol{\mathcal{R}}}_{n})) \right) + \frac{1}{2} \sum_{n=1}^{N} (\overline{\boldsymbol{\mathcal{R}}}_{n} \sigma_{n} + \overline{\boldsymbol{\mathcal{R}}}_{n} q_{n})$$
(1.37)

Magnetizacija  $\sigma_n$  i kvadrupolni moment  $q_n$  određuju se iz uslova minimuma slobodne energije:

$$\frac{\partial F}{\partial \sigma_n} = \frac{\partial F}{\partial q_n} = 0 \tag{1.38}$$

Uslov (1.38) daje sistem jednačina:

$$\sigma_n = \frac{2\sinh(\frac{S_n}{4t})}{\exp(-\frac{Q_n}{4\alpha t}) + 2\cosh(\frac{S_n}{4t})}$$
(1.39a)

$$q_n = \frac{6\cosh(\frac{S_n}{4t})}{\exp(-\frac{Q_n}{4\alpha t}) + 2\cosh(\frac{S_n}{4t})} - 2$$

koji se na osnovu (1.35a) i (1.35b) može napisati u obliku: za n =1

$$\sigma_{1} = \frac{2\sinh(\frac{4\varepsilon\sigma_{1}+\sigma_{2}}{4t})}{\exp(-\frac{4\varepsilon q_{1}+q_{2}}{4\alpha t}) + 2\cosh(\frac{4\varepsilon\sigma_{1}+\sigma_{2}}{4t})}$$

$$q_1 = \frac{6\cosh(\frac{4\varepsilon\sigma_1+\sigma_2}{4t})}{\exp(-\frac{4\varepsilon q_1+q_2}{4\alpha t}) + 2\cosh(\frac{4\varepsilon\sigma_1+\sigma_2}{4t})} - 2$$

 $za n \ge 2$ 

(1.39b)

$$\sigma_{n} = \frac{2\sinh(\frac{4\sigma_{n}+\sigma_{n-1}+\sigma_{n+1}}{4t})}{\exp(-\frac{4q_{n}+q_{n-1}+q_{n+1}}{4\alpha t}) + 2\cosh(\frac{4\sigma_{n}+\sigma_{n-1}+\sigma_{n+1}}{4t})}$$

$$q_{n} = \frac{6\cosh(\frac{4\sigma_{n}+\sigma_{n-1}+\sigma_{n+1}}{4t})}{\exp(-\frac{4q_{n}+q_{n-1}+q_{n+1}}{4\alpha t}) + 2\cosh(\frac{4\sigma_{n}+\sigma_{n-1}+\sigma_{n+1}}{4t})} - 2$$

gde je  $t = \frac{kT}{2(2-a)I}$ .

Gornji sistem jednačina može se tačno rešiti samo numerički, pa se dalje sistem analizira na  $T = 0^{0} K$  i na temperaturama u blizini tačke faznog prelaza.

1.) Na  $T = 0^{\circ} K$  feromagnet se nalazi u osnovnom stanju sa energijom koja je jednaka minimalnoj vrednosti energije:

$$E_{0} = \langle \hat{H}_{MF} \rangle = \frac{1}{2} \langle \hat{H}_{0} \rangle = -\frac{N_{xy}}{2} \sum_{n=1}^{N} (\overline{\mathcal{X}}_{n} \sigma_{n} + \overline{\mathcal{X}}_{n} q_{n}) \quad .$$
(1.40)

Da bi se našla rešenja sistema (1.39a) u ovom slučaju, uspostavlja se veza između prve i druge relacije u (1.39a) :

$$3\sigma_n = (q_n + 2) \tanh(\frac{S_n}{4t}) \tag{1.41}$$

koja za  $T \rightarrow 0^{\circ} K$  prelazi u jednačinu:

$$q_n(0) = 3\sigma_n(0) - 2 \tag{1.42}$$

Rešenja jednačine (1.42) kojima odgovara minimum energije  $E_0$  su:

1. za  $\alpha > 1$   $\sigma_n(0) = q_n(0) = 1$ , pa se sistem nalazi u feromagnetnoj fazi

i

2. za  $\alpha < 1$   $\sigma_n(0) = 0, q_n(0) = -2$ , i sistem se nalazi u ferokvadrupolnoj fazi. Za  $\alpha = 1$  oba uređenja imaju istu energiju, pa se javljaju dva degenerisana rešenja.

2.) Na temperaturama u blizini tačke faznog prelaza magnetizacija i kvadrupolni moment teže nuli, pa je moguće naći približno analitičko rešenje sistema (1.39a).

Da bi se izračunala temperatura faznog prelaza u površinskom sloju  $t_c^s$  koja se može razlikovati u odnosu na zapreminsku  $t_c$ , kao i da bi se našla temperaturna zavisnost magnetizacije i kvadrupolnog momenta u blizini  $t_c$ , neophodno je izvršiti dva razvoja sistema jednačina (1.39a).Za temperaturu faznog prelaza u zapremini usvaja se vrednost  $t_c = 1$ .

Prvo se jednačine (1.39a) linearizuju po članovima  $\sigma_n$  imajući u vidu  $q_n \sim \sigma_n^2 = 0$ . Kao rezultat se dobija sistem:

$$3\sigma_{1} = \frac{1}{2t} (4\varepsilon\sigma_{1} + \sigma_{2})$$

$$3\sigma_{n\geq 2} = \frac{1}{2t} (4\sigma_{n} + \sigma_{n-1} + \sigma_{n+1})$$
(1.43a)

odnosno, za n = 1

$$(6t - 4\varepsilon)\sigma_1 - \sigma_2 = 0$$

 $za n \ge 2$ 

$$-\sigma_{n-1} + (6t-4)\sigma_n - \sigma_{n+1} = 0$$

Jednačine (1.43b) se mogu pretstaviti u matričnom obliku :

(1.43b)

$$(6t\hat{\mathbf{I}} - \hat{\mathbf{A}})\vec{\boldsymbol{\sigma}} = 0 \tag{1.44}$$

gde su

$$\hat{\mathbf{I}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 1 & 0 & \cdots \\ 0 & 0 & 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \qquad \hat{\mathbf{A}} = \begin{pmatrix} 4\varepsilon & 1 & 0 & 0 & 0 & \cdots \\ 1 & 4 & 1 & 0 & 0 & \cdots \\ 0 & 1 & 4 & 1 & 0 & \cdots \\ 0 & 0 & 1 & 4 & 1 & \cdots \\ 0 & 0 & 0 & 1 & 4 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \qquad \vec{\boldsymbol{\sigma}} = \begin{pmatrix} \boldsymbol{\sigma}_1 \\ \boldsymbol{\sigma}_2 \\ \boldsymbol{\sigma}_3 \\ \boldsymbol{\sigma}_4 \\ \boldsymbol{\sigma}_5 \\ \vdots \end{pmatrix}$$
(1.45)

U drugom razvoju zadržavaju se članovi koji su srazmerni  $\sigma_n^3$  i članovi  $q_n \sim \sigma_n^2$ , pa se dobijaju jednačine:

$$q_n = \frac{Q_n}{6\alpha t} + \frac{3}{4} \left(\frac{S_n}{6t}\right)^2$$

$$\sigma_n \left(1 - \frac{Q_n}{12\alpha t} + \frac{3}{4} \left(\frac{S_n}{6t}\right)^2\right) = \frac{S_n}{6t} + \frac{3}{8} \left(\frac{S_n}{6t}\right)^3$$
(1.46)

Za temperature  $t \approx t_c \approx 1$  važi aproksimacija  $q_n \approx q_{n-1} \approx q_{n+1}$  i  $\sigma_n \approx \sigma_{n-1} \approx \sigma_{n+1}$ , pa jednačine (1.46) prelaze u :

$$q_{n} = \frac{3\alpha\sigma_{n}^{2}}{4t(t\alpha - 1)}$$

$$\sigma_{n} \cdot \left(1 - \frac{q_{n}}{2\alpha t} + \frac{3}{4} \left(\frac{\sigma_{n}}{t}\right)^{2}\right) = \frac{\sigma_{n}}{t} + \frac{3}{8} \left(\frac{\sigma_{n}}{t}\right)^{3}$$
(1.47)

Za  $t \approx t_c \approx 1$  prva jednačina u (1.47) je oblika:

$$q_n = \frac{3\alpha \sigma_n^2}{4(\alpha - 1)} \tag{1.48}$$

Iz poslednje jednakosti se može zaključiti da za:

1.  $\alpha > 1$  postoji feromagnetno uređenje sa  $\sigma_n \neq 0$  i  $q_n > 0$ a za

2.  $\alpha < 1$  potrebno je koristiti drugi razvoj sa  $\sigma_n = 0$  što pretstavlja ferokvadrupolno uređenje sa  $q_n < 0$ .

Kombinacijom prve jednačine u (1.46) sa izrazima (1.35a) i (1.35b), dobija se sistem: za n = 1

$$(x - 4\varepsilon)Q_1 - Q_2 = \frac{\alpha}{8t} \left( 4\varepsilon S_1^2 + S_2^2 \right)$$
(1.49)

$$(x-4)Q_n - Q_{n-1} - Q_{n+1} = \frac{\alpha}{8t} \left( 4S_n^2 + S_{n-1}^2 + S_{n+1}^2 \right)$$

gde je  $x=6 \alpha t$ . Ako se uvede matrica:

za n > 1

$$\hat{\Delta} = x\hat{I} - \hat{A} \tag{1.50}$$

a jednačine (1.35a) i (1.35b) napišu u obliku:

$$\vec{Q} = \hat{A} \vec{q}$$
 ,  $\vec{S} = \hat{A} \vec{\sigma}$  (1.51)

$$\vec{Q} = \begin{pmatrix} Q_1 \\ Q_2 \\ Q_3 \\ \vdots \end{pmatrix} \qquad \vec{q} = \begin{pmatrix} q_1 \\ q_2 \\ q_3 \\ \vdots \end{pmatrix} \qquad \vec{S} = \begin{pmatrix} S_1 \\ S_2 \\ S_3 \\ \vdots \end{pmatrix} \qquad \vec{\sigma} = \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \vdots \end{pmatrix}$$

tada se sistem jednačina (1.49) može pretstaviti u matričnoj formi:

$$\hat{\Delta}\vec{Q} = \frac{\alpha}{8t} \hat{A} (\vec{S})^2 , \qquad (\vec{S})^2 = \begin{pmatrix} S_1^2 \\ S_2^2 \\ S_3^2 \\ \vdots \end{pmatrix}. \qquad (1.52)$$

Jednačina (1.52) se može transformisati na sledeći način:

$$\vec{Q} = \frac{\alpha}{8t} \hat{\Delta}^{-1} \hat{A} (\vec{S})^2$$
$$\hat{\Delta} = \hat{T} + \hat{G} = \hat{T} (\hat{I} + \hat{T}^{-1} \hat{G})$$
$$\hat{\Delta} = \hat{T} \hat{C} , \quad \hat{C} = \hat{I} + \hat{B} \hat{G} , \quad \hat{B} = \hat{T}^{-1}$$
$$\vec{Q} = \frac{\alpha}{8t} \hat{C}^{-1} \hat{B} \hat{A} (\vec{S})^2$$

Matrice  $\hat{G}, \hat{C}, \hat{C}^{-1}$  su oblika:

$$\hat{\mathbf{G}} = \begin{pmatrix} \gamma & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} , \qquad \hat{\mathbf{C}} = \begin{pmatrix} \mathbf{C}_{11} & 0 & 0 & 0 & \cdots \\ \mathbf{C}_{21} & 1 & 0 & 0 & \cdots \\ \mathbf{C}_{31} & 0 & 1 & 0 & \cdots \\ \mathbf{C}_{41} & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$\hat{\mathbf{C}}^{-1} = \frac{1}{\mathbf{C}_{11}} \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots \\ -\mathbf{C}_{21} & \mathbf{C}_{11} & 0 & 0 & \cdots \\ -\mathbf{C}_{31} & 0 & \mathbf{C}_{11} & 0 & \cdots \\ -\mathbf{C}_{41} & 0 & 0 & \mathbf{C}_{11} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

sa matričnim elementima:

$$\gamma = 4(1 - \epsilon)$$
  $C_{11} = 1 + B_{11}\gamma$   $C_{n1} = B_{n1}\gamma$   
 $i$   $B_{nm} = \frac{y^{n+m} - y^{|m-n|}}{1 - \frac{1}{y}}$  (1.53)

gde je:

$$1 + \frac{1}{y} = x - 4 = 6\alpha t - 4 \tag{1.54}$$

Sada se jednačina (1.52) može napisati u obliku:

$$\vec{Q} = \frac{\alpha}{8t} \hat{C}^{-1} \hat{B} \hat{A} (\vec{S})^2 = \frac{\alpha}{8t} \frac{1}{C_{11}} (\hat{C}^{-1})' \frac{1}{1 - \frac{1}{y}} (\hat{B})' \hat{A} (\vec{S})^2.$$
(1.55)

Temperature faznih prelaza određene su singularitetima matrica  $\,\hat{C}^{-1}\,\,i\,\,\,\hat{B}\,:$ 

1. singularitet matrice  $\hat{C}^{-1}$  određuje se iz uslova:

$$C_{11} = 1 + B_{11}\gamma = 0 \tag{1.56}$$

Pošto je  $B_{11} = y$ , dobija se pol

$$y_{c}^{s} = -\frac{1}{\gamma}$$
(1.57)

koji određuje temperaturu faznog prelaza u površinskom sloju  $t_c^s$ .

2. singularitet matrice  $\hat{B}$  se dobija za:

$$1 - \frac{1}{y_c} = 0 \tag{1.58}$$

i iznosi :

i

$$y_{c} = 1$$
 . (1.59)

On određuje temperaturu faznog prelaza u zapremini  $t_c$ .

Da bi veličina  $\vec{Q}$  u izrazu (1.55) bila određena, mora  $(\vec{S})^2 \rightarrow 0$ , pa se temperature faznih prelaza određuju iz jednačine (1.54) za  $\alpha = 1$ . Kao rezultati se dobijaju izrazi:

$$t_{c}^{s} = \frac{16\varepsilon(1-\varepsilon)-1}{24(1-\varepsilon)}$$

$$t_{c} = 1$$
(1.60)

Iz jednačina (1.60) može se zaključiti:

1.  $za \quad \varepsilon \le \frac{5}{4}$ ,  $t_c^s = t_c$ 2.  $za \quad \varepsilon > \frac{5}{4}$ ,  $t_c^s > t_c$ 

Prema tome, temperatura faznog prelaza u površinskom sloju može biti jednaka ili veća od temperature faznog prelaza u zapremini, što zavisi od odnosa konstanti izmene u površini i u zapremini kristala ( $\varepsilon = I_x/I$ ).

Da bi se našla temperaturna zavisnost magnetizacije i kvadrupolnog momenta u blizini  $t \approx t_c = 1$ , za slučaj feromagnetnog uređenja ( $\alpha > 1$ ), pretpostavlja se rešenje u obliku:

$$\sigma_n = a \tanh((n+b)\Psi)$$

$$q_n = \frac{3}{4} \frac{\alpha}{\alpha - 1} a^2 \tanh^2((n+b)\Psi)$$
(1.61)

Konstanta a pretstavlja magnetizaciju u zapremini, a dobija se rešavanjem sistema jednačina (1.47). Kao rezultat se dobija izraz:

$$a = \sigma_B = 2\sqrt{\frac{2}{3}}\sqrt{\frac{\alpha - 1}{\alpha - 2}}\sqrt{1 - t}$$
(1.62)

U izvođenju gornjeg izraza izvršena je smena  $t \rightarrow t_c = 1$  u članovima koji su linearni po t, a u članovima~ $t^2$  smena  $t^2 \rightarrow t \cdot t_c = t$ . Za n=1 i n=2 prva jednačina u (1.61) daje relacije:

$$\sigma_{1} = a \tanh((1+b)\Psi) \approx a(1+b)\Psi$$

$$\sigma_{2} = a \tanh((2+b)\Psi) \approx a(2+b)\Psi$$
(1.63)

koje u kombinaciji sa prvom jednačinom sistema (1.43b) za  $t_c = 1$  daju vrednost konstante b :

$$b = -\frac{4(1-\varepsilon)}{4(1-\varepsilon)+1} \tag{1.64}$$

Veličina  $\Psi$  se dobija zamenom izraza za  $\sigma_n$  i  $q_n$  iz (1.61) u drugu jednačinu sistema (1.46). Kao rezultat se dobija izraz:

$$\Psi = \sqrt{3}\sqrt{1-t} \tag{1.65}$$

U izvođenju gornjeg izraza koriste se aproksimacije  $\tanh^2((n+b)\Psi) \approx ((n+b)\Psi)^2$  i  $\tanh(n+b)\Psi \approx (n+b)\Psi - \frac{((n+b)\Psi)^3}{3}$ . Članovi ~ $\Psi^n$  za n>2 se zanemaruju, a u nelinearnim članovima po t uvodi se smena  $t \rightarrow t_c = 1$ .

Prema tome, približna rešenja sistema (1.39a) na temperaturama u blizini tačke  $t_c = 1$  data su relacijama:

$$\sigma_n = 2\sqrt{\frac{2}{3}\frac{\alpha-1}{\alpha-2}}\sqrt{t_c - t} \tanh\left(\left(n - \frac{4(1-\varepsilon)}{4(1-\varepsilon) + 1}\right)\sqrt{3}\sqrt{t_c - t}\right)$$

$$q_n = 2\frac{\alpha}{\alpha-2}(t_c - t) \tanh^2\left(\left(n - \frac{4(1-\varepsilon)}{4(1-\varepsilon) + 1}\right)\sqrt{3}\sqrt{t_c - t}\right)$$
(1.66)

Ako se uvedu smene:

$$t_c = 1, \tau = 1 - t$$
,  $\delta = -\frac{4(1-\varepsilon)}{4(1-\varepsilon)+1}$  i  $\xi = a_0 \tau^{-\upsilon}$ 

gde je ξ korelaciona dužina, jednačine (1.66) dobijaju oblik:

$$\sigma_{n} = 2\sqrt{\frac{2}{3}\frac{\alpha-1}{\alpha-2}}\tau^{\beta} \tanh(\frac{\sqrt{3}(n+\delta)a_{0}}{\xi})$$

$$q_{n} = 2\frac{\alpha}{\alpha-2}\tau \tanh^{2}(\frac{\sqrt{3}(n+\delta)a_{0}}{\xi})$$
(1.67)

Razvojem jednačina (1.67), za n=1, mogu se dobiti temperaturne zavisnosti magnetizacije i kvadrupolnog momenta u površinskom sloju. One su date relacijama:

$$\sigma_{1} \approx 2\sqrt{\frac{2}{3}\frac{\alpha-1}{\alpha-2}}\tau^{\beta}\frac{\sqrt{3}(1+\delta)a_{0}}{\xi} = C_{1}(\alpha,\varepsilon)\tau^{\beta+\upsilon} \approx \tau^{\beta+\upsilon}$$
(1.68)

$$q_{1} \approx 2 \frac{\alpha}{\alpha - 2} \tau \left( \frac{\sqrt{3}(1 + \delta)a_{0}}{\xi} \right)^{2} = C_{2}(\alpha, \varepsilon) \tau^{2\nu + 1} \approx \tau^{2\nu + 1}$$

U aproksimaciji molekulskog polja,  $\beta = \upsilon = \frac{1}{2}$ . To znači da na temperaturama  $t \approx t_c$ 

površinska magnetizacija linearno zavisi od temperature, a kvadrupolni moment u površinskom sloju kvadratno.

Tačna teorija za koeficijente  $\beta$  i  $\upsilon$  daje vrednosti  $\beta \approx \frac{1}{3}$  i  $\upsilon \approx \frac{2}{3}$ , pa je  $\beta + \upsilon = 1$  i

 $2\upsilon + 1 = 2$ , odnosno daje iste zavisnosti površinske magnetizacije i kvadrupolnog momenta od temperature kao i aproksimacija molekulskog polja.

Potrebno je naglasiti da je linearna zavisnost površinske magnetizacije od temperature potvrđena i eksperimentalno preko magnetnog rasejanja elektrona na antiferomagnetiku NiO ( LEED – eksperimenti, rasejanje nisko energetskih elektrona) [6].

Iz sistema (1.67) i (1.68) se može videti da:

1. za  $\alpha$  > 2 postoji fazni prelaz druge vrste

а

2. za  $1 < \alpha < 2$  fazni prelaz prve vrste iz paramagnetne u feromagnetnu fazu.

 $Za \alpha = 2$  dobija se trikritična tačka.

Kod Heisenberg-ovog feromagneta sa bilinearnom interakcijom izmene, fazni prelazi iz paramagnetne u feromagnetnu fazu predstavljaju fazne prelaze druge vrste. Iz prethodnog izlaganja može se zaključiti da se uticaj bikvadratne interakcije ogleda u pojavi kako faznih prelaza druge tako i faznih prelaza prve vrste, u zavisnosti od parametra  $\alpha$ .

### 2. NUMERIČKO IZRAČUNAVANJE MAGNETIZACIJE I KVADRUPOLNOG MOMENTA POLUBESKONAČNOG FEROMAGNETA

Programi za izračunavanje magnetizacije i kvadrupolnog momenta napisani su u programskom paketu *Matematica* 2.0 for Windows ([7] - [10]).

Odabrani parametri programa su:

parametar bikvadratne interakcije a, konstante izmene u površini–I<sub>s</sub> i u zapremini–I sistema i broj slojeva sistema n, koji su dati u tabeli 1.

| Tabela 1. |     |                |   |    |
|-----------|-----|----------------|---|----|
| ime fajla | а   | I <sub>s</sub> | I | n  |
| indat1    | 0.5 | 1              | 1 | 25 |
| indat11   | 0   | 1              | 1 | 25 |
| indat2    | 0.5 | 3              | 4 | 25 |
| indat22   | 0   | 3              | 4 | 25 |
| indat3    | 0.5 | 3              | 5 | 25 |
| indat33   | 0   | 3              | 5 | 25 |
| indat4    | 0.5 | 3              | 2 | 25 |
| indat44   | 0   | 3              | 2 | 25 |

Za zapreminsku temperaturu faznog prelaza u feromagnetno uređenje usvaja se vrednost  $t_c = 1$ , a u ferokvadrupolno uređenje vrednost  $t_0 = 2$ .

Programi rešavaju:

- a) sistem nelinearnih transcedentnih jednačina za  $\sigma_n$  i  $q_n$  i nelinearnu transcedentnu jednačinu za  $\sigma_n^A$  magnetizaciju u blizini  $t_c = 1$  za feromagnetno uređenje
- b) sistem nelinearnih transcedentnih jednačina za  $q_n$  i nelinearnu transcedentnu jednačinu za  $q_B$  kvadrupolni moment u zapremini kod ferokvadrupolnog uređenja.

Rezultati izračunavanja dati su u vidu grafika, koji predstavljaju temperaturne zavisnosti magnetizacije i kvadrupolnog momenta.

### 2.1. FEROMAGNETNO UREĐENJE

Feromagnetno uređenje karakteriše vrednost parametra bikvadratne interakcije

a < 1

i vrednosti magnetizacije i kvadrupolnog momenta

 $\sigma_n \neq 0 \quad , \quad q_n \neq 0 \, ,$ 

koje su date sistemom jednačina:

$$\begin{aligned} \sigma_{1} &= \frac{2\sinh(\frac{4\varepsilon\sigma_{1}+\sigma_{2}}{4t})}{\exp(-\frac{4\varepsilonq_{1}+q_{2}}{4\alpha t}) + 2\cosh(\frac{4\varepsilon\sigma_{1}+\sigma_{2}}{4t})} \\ q_{1} &= \frac{6\cosh(\frac{4\varepsilon\sigma_{1}+\sigma_{2}}{4\alpha t})}{\exp(-\frac{4\varepsilonq_{1}+q_{2}}{4\alpha t}) + 2\cosh(\frac{4\varepsilon\sigma_{1}+\sigma_{2}}{4t})} - 2 \\ \sigma_{n} &= \frac{2\sinh(\frac{4\sigma_{n}+\sigma_{n-1}+\sigma_{n+1}}{4\alpha t})}{\exp(-\frac{4q_{n}+q_{n-1}+q_{n+1}}{4\alpha t}) + 2\cosh(\frac{4\sigma_{n}+\sigma_{n-1}+\sigma_{n+1}}{4t})} \\ q_{n} &= \frac{6\cosh(\frac{4\sigma_{n}+\sigma_{n-1}+\sigma_{n+1}}{4\alpha t}) + 2\cosh(\frac{4\sigma_{n}+\sigma_{n-1}+\sigma_{n+1}}{4t})}{\exp(-\frac{4q_{n}+q_{n-1}+q_{n+1}}{4\alpha t}) + 2\cosh(\frac{4\sigma_{n}+\sigma_{n-1}+\sigma_{n+1}}{4t})} - 2 \quad , \quad n = 2,..., 25 \end{aligned}$$

$$q_{26} = q_{25}$$
  
gde su  $\varepsilon = I_s / I$ ,  $\alpha = (2 - a)/a$ ,  $\sigma_{26} = \sigma_{25}$  i  $q_{26} = q_{25}$ .

Gornji sistem rešen je programom PROGRAM 1.

Odabrane vrednosti parametara programa su:

- n = 25
- temperaturni interval t = {0.75, 1.02, 0.005}, koji daje 55 temperaturnih tačaka, za ulazne fajlove indat1, indat11, indat2, indat22, indat3 i indat33
- temperaturni interval t = {0.75, 1.1, 0.007}, koji daje 51 temperaturnu tačaku, za ulazne fajlove indat4 i indat44.

PROGRAM 1 rešava sistem (2.1) za svaku temperaturnu tačku Newton – ovom metodom. Za pretpostavljenu početnu vrednost  $\sigma_0 = q_0 = 1$ , ostvaruje se konvergencija metoda u svim slučajevima. PROGRAM 1 dat je u prilogu.

Karakteristike programa:

1. visoki memorijski zahtevi za ispitivanje konvergencije pri proizvoljnom odabiru početnih vrednosti, pa se kao kriterijum konvergencije usvaja odziv *Matematica*-e 2. relativno kratko vreme računanja  $\approx 30$  min. na računaru sa 32 Mb RAM-a i procesorom Intel P-133 MHz.

Rezultati izračunavanja dati su na slikama 2.1.1-2.1.16.

PROGRAM 2 rešava jednačinu:

$$\sigma_n^A = 2\sqrt{\frac{2}{3}\frac{\alpha-1}{\alpha-2}}\sqrt{1-t}\tanh((n-\frac{4(1-\varepsilon)}{4(1-\varepsilon)+1})\sqrt{3}\sqrt{1-t})$$
(2.2)

Odabrane vrednosti parametara programa su:

• n = 1,2,...,25

• temperaturni interval t = {0.9, 1.0, 0.001}, koji daje 101 temperaturnu tačku, za ulazne fajlove indat1, indat11, indat2, indat22, indat3 i indat33

PROGRAM 2 kao rezultat izračunavanja daje zavisnost  $\sigma_n^A = \sigma_n^A(t)$  zajedno sa  $\sigma_n = \sigma_n(t)$  iz programal.

Rezultati izračunavanja dati su na slikama 2.2.1 – 2.2.6, a PROGRAM 2 u prilogu.

#### 2.2. FEROKVADRUPOLNO UREĐENJE

Ferokvadrupolno uređenje karakteriše:

a > 1 ,  $\sigma_n = 0$  ,  $q_n < 0$ .

Sistem:

$$q_1 = \frac{6}{\exp(-\frac{4\varepsilon q_1 + q_2}{4\alpha t}) + 2} - 2$$

(2.3)

 $q_n = \frac{6}{\exp(-\frac{4q_{n+}q_{n-1}+q_{n+1}}{4\alpha t}) + 2} - 2 \qquad n = 2,...,25$ 

gde su  $\varepsilon = I_s / I$ ,  $\alpha = (2 - a)/a$   $\sigma_{26} = \sigma_{25}$  i  $q_{26} = q_{25}$ , i jednačinu:

$$q_{B} = \frac{6}{\exp(-\frac{3q_{B}}{2\alpha t}) + 2} - 2$$
(2.4)

rešava program PROGRAM 3.

PROGRAM 3 rešava (2.3) i (2.4) za:

• n = 25, a = 1.298

- temperaturni interval t = {0.1, 2.1, 0.105}, koji daje 20 temperaturnih tačaka, za ulazne fajlove indat1, indat2, indat3 i indat4
- interval {-2, 0, 0.1} za odabir početnih vrednosti iteracije

Newton – ovom metodom. Iz intervala  $\{-2, 0, 0.1\}$  se biraju početne vrednosti za kvadrupolne momente. Prva kombinacija za koju se ostvaruje konvergencija, koristi se kao početna u Newton – ovom metodu. Kao kriterijum konvergencije usvaja se odziv *Matematica*–e

#### Karakteristike programa:

- 1. za n = 25, vreme izračunavanja se naglo povećava sa povećanjem broja temperaturnih tačaka iznad 20
- 2. izračunavanje rešenja za prvu kombinaciju početnih vrednosti za koju se konvergencija ostvaruje, usled čega se eventualno postojeća druga rešenja ne nalaze. Ovo je posledica same prirode naredbi Cath i Throw koje se u programu koriste.
- 3. kratko vreme računanja

PROGRAM 3 dat je u prilogu, a rezultati izračunavanja na slikama sl.2.3.1 – sl.2.3.8.

























































sl. 2.3.3 zavisnost  $q_B = q_B(t)$  za n = 25, a = 1.298,  $\varepsilon = 0.75$ 



sl. 2.3.4 zavisnost  $q_n = q_n(t)$  i  $q_B = q_B(t)$  za n = 25, a = 1.298,  $\varepsilon = 0.75$ 



sl. 2.3.5 zavisnost  $q_B = q_B(t)$  za n = 25, a = 1.298,  $\varepsilon = 0.6$ 



sl. 2.3.6 zavisnost  $q_n = q_n(t)$  i  $q_B = q_B(t)$  za n = 25, a = 1.298,  $\varepsilon = 0.6$ 



sl. 2.3.7 zavisnost  $q_B = q_B(t)$  za n = 25, a = 1.298,  $\varepsilon = 1.5$ 





Zavisnosti magnetizacije i kvadrupolnih momenata (sl. 2.1.1 - sl. 2.1.16) i (sl.2.2.1 - sl. 2.2.6) potvrđuju rezultate koji su analitički dobijeni u delu 1.2.

Grafici prikazani na slikama sl.2.1.1 – sl.2.1.12 , za vrednosti parametara a < 1 i  $\epsilon < 5/4$ , pokazuju sledeće:

1. temperatura faznog prelaza u površinskom sloju jednaka je temperaturi faznog prelaza u zapremini  $t_c^s = t_c$ 

2. zavisnost magnetizacije od temperature u površinskom sloju je linearna, dok kvadrupolni moment u površinskom sloju pokazuje kvadratnu temperaturnu zavisnost.

Sa grafika prikazanih na slikama sl.2.1.13 – sl.2.1.16, za vrednosti parametara a < 1 i  $\varepsilon > 5/4$ , se vidi:

1. temperatura faznog prelaza u površinskom sloju je veća od temperature faznog prelaza u zapremini  $t_c^s > t_c$ 

 $q_{26} = q_{25}$ 

2. zbog uvedene aproksimacije  $\sigma_{26} = \sigma_{25}$  i  $q_{26} = q_{25}$  izbegava se efekat smanjenja magnetizacije i kvadrupolnog momenta za  $n_B < n \le 25$ , gde je  $n_B$  sloj u kome magnetizacija i kvadrupolni moment imaju zapreminske vrednosti  $\sigma_B$  i  $q_B$ . Ovaj efekat bi bio posledica rešavanja sistema konačnih dimenzija n = 25, za vrednosti  $\sigma_{26} = q_{26} = 0$ . Tada su srednja polja izmene koja deluju na  $\sigma_{25}$  i  $q_{25}$  manjeg intenziteta (broj suseda je manji) u odnosu na vrednosti u zapremini, a manjeg intenziteta su i u odnosu na površinski sloj pošto je  $\varepsilon = 1.5 > 1$ . Ovaj uticaj bi se dalje prenosio i na slojeve  $n_B < n < 25$ .

Grafici prikazani na slikama sl.2.2.1 – sl.2.2.6 pokazuju dobro slaganje približnog analitičkog rešenja za magnetizaciju  $\sigma_n^A$ , sa tačnim rešenjem  $\sigma_n$ , u temperaturnom intervalu  $0.9 \le t \le t_c = 1$ .

Zavisnosti kvadrupolnih momenata od temperature za ferokvadrupolno uređenje, koje su prikazane na slikama sl. 2.3.1 - sl. 2.3.8, pokazuju da je fazni prelaz iz paramagnetne u ferokvadrupolnu fazu prve vrste. U svakom sloju u feromagnetu prelaz se javlja na istoj temperaturi  $t_Q = 2$ , na kojoj se vrednosti kvadrupolnih momenata u svakom sloju razlikuju.

# ZAKLJUČAK

Imajući u vidu postavljeni cilj ovog rada, može se zaključiti da je on u potpunosti ostvaren.

U prvom poglavlju ovog rada analitički su izračunati izrazi za magnetizaciju i kvadrupolni moment beskonačnog i polubeskonačnog Heisenberg – ovog feromagneta sa bikvadratnom interakcijom i spinom S=1, u aproksimaciji molekulskog polja. Određen je uticaj bikvadratne interakcije na magnetno uređenje i fazne prelaze. Za polubeskonačan feromagnet nađeno je približno analitičko rešenje sistema jednačina za magnetizaciju i kvadrupolni moment u blizini tačke faznog prelaza u zapremini i nađene su temperature faznih prelaza u površinskom sloju i u zapremini sistema.

U drugom poglavlju izvršena je numerička analiza sistema nelinearnih diferencnih jednačina za magnetizaciju i kvadrupolni moment i magnetizacije u blizini tačke faznog prelaza u zapremini, za slučaj feromagnetnog uređenja kod polubeskonačnog feromagneta. Zavisnost magnetizacije i kvadrupolnog momenta od temperature prikazana je grafički za više vrednosti parametara sistema. Pokazano je, takođe da se približna analitička rešenja u okolini  $t_c$  dobro slažu sa numeričim rezultatima u oblasti temperatura  $0.9t_c < t < t_c$ . Numerički je rešen i sistem nelinearnih diferencnih jednačina za kvadrupolne momente i kvadrupolni moment u zapremini u slučaju ferokvadrupolnog uređenja. Temperaturne zavisnosti kvadrupolnih momenata u ovom slučaju ukazuju na fazni prelaz prve vrste iz paramagnetne u ferokvadrupolnu fazu, koji se za svaki sloj javlja na istoj temperaturi na kojoj se vrednosti kvadrupolnih momenata po slojevima razlikuju.

### LITERA TURA

- [1] M.S.Milošević: Uvod u kvantnu teoriju sistema mnoštva čestica, Institut za fiziku, Beograd, 1968
- [2] H.H.Chen, P.M.Levy, Phys. Rev. B7, 4267, 1973
- [3] Mario J.Škrinjar, Olivera Ciraj, Milica Pavkov i Stanoje Stojanović, SFIN IX (1) 78, (1996)
- [4] Svetislav Lazarev, Mario J.Škrinjar, Darko Kapor and Stanoje Stojanović, Physica A 250 453, (1998)
- [5] Olivera Ciraj: Diplomski rad, Institut za fiziku, Novi Sad, 1995
- [6] P.W.Palmberg, R.E. De Wames and L.A.Vredevoe, Phys. Rev. Lett. <u>21</u> 682 (1968)
- [7] G.V.Milovanović: Numerička analiza I deo, Naučna knjiga, Beograd, 1988
- [8] D.Herceg, Numeričke i statističke metode u obradi eksperimentalnih podataka, Institut za matematiku, Novi Sad, 1989
- [9] D.Herceg, Z.Stojaković: Numeričke metode linearne algebre, Institut za matematiku Sad, 1988
- [10] N.Krejić, Đ.Herceg: Matematika i *Matematica*, Institut za matematiku, Novi Sad, 1993

# PRILOG

| (*                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *) |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (*                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *) |
| (*                                                  | PROGRAM 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *) |
| (*                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *) |
| (*                                                  | rešavanje sistema jednačina (2.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *) |
| (*                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *) |
| (*                                                  | ulazni podaci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *) |
| (*                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *) |
| (*                                                  | indat – fajl sa vrednostima: a , Is , I , n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *) |
| (*                                                  | p1 – donja granica temperaturnog intervala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *) |
| (*                                                  | p2 – gornja granica temperaturnog intervala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *) |
| (*                                                  | p3 – temperaturni korak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *) |
| (*                                                  | brt – broj temperaturnih tačaka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *) |
| (*                                                  | <b>J</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *) |
| Clear[t.tt.tal,a,aa                                 | a.a1.a2.a3.a4.a41.b1.b2.b3.b4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| cac.cal.ca2.ca3.cal                                 | <pre>c, can, r, rez, 11, 12, lg1, lg2, g1, g2, p1, p2, p3, brt]</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| aa=ReadList["indat"                                 | "];                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| a=aa[[1]];                                          | - <i>'</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| a1:=a[[1]]                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| a2:=a[[2]]                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| a3:=a[[3]]                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| a4:=a[[4]]                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| a41=a4/2;                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| p1=;                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| p2=;                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| p3=;                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| brt=;                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| b1[k ,i ]:=                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| (*                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *) |
| (*                                                  | bl[n.t] - iednačine za on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *) |
|                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *) |
| <br>Tf[k==1 (2*Sinb[(2.                             | -a1)*(4*a2*x[1]+a3*x[2])/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •  |
| $(2 \times (2 \times (2 - 21) \times 23 \times 1))$ | (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) / (1) |    |
| $(2^{-1}(2^{-1}(2^{-1}a))^{-1})^{-1}$               | ]+a3*v[2])/(2*(2*(2-a1)*a3*i))]+2*Cosh[(2-a1)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| $(A \times 2 \times 1) + 3 \times 12$               | (2*(2*(2-a1)*a3*i))) -x[1] == 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| Tf[k==a41]                                          | $(2 \times \sinh (2 - a1) \times (4 \times a3 \times a41) + a3 \times a41 - 1))/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| (2*(2*(2-a1)*a3*i))                                 | $(2 \times 10^{-1})$ (Exp[-a1*(4*a3*v[a41]+a3*v[a41-1])/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| (2*(2*(2-a1)*a3*i))                                 | )]+2*Cosh[                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| (2-a1)*(4*a3*x[a41])                                | +a3*x[a41-1])/(2*(2*(2-a1)*a3*i))])-x[a41]==0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| (2*Sinh(2-a1)*(4*a))                                | $a_3 x[k] + a_3 x[k-1] + a_3 x[k+1])/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| (2*(2*(2-a1)*a3*i))                                 | )))/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| (Exp[-a1*(4*a3*v[k])])                              | ]+a3*y[k-1]+a3*y[k+1])/(2*(2*(2-a1)*a3*i))]+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 2*Cosh[(2-a1)*(4*a)]                                | 3*x[k]+a3*x[k-1]+a3*x[k+1])/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| (2*(2*(2-a1)*a3*i))                                 | )]) - x[k] == 0]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| b2[k ,i ]:=                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| (*                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *) |
| (*                                                  | b2[n,t] - jednačine za gn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *) |
| (*                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *) |
| If[k==1.(6*Cosh[(2                                  | -a1)*(4*a2*x[1]+a3*x[2])/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| (2*(2*(2-a1)*a3*i))                                 | )))/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| (Exp[-a1*(4*a2*v[1                                  | 1+a3*v[2])/(2*(2*(2-a1)*a3*i))]+2*Cosh[(2-a1)*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| (4*a2*x[1]+a3*x[2])                                 | )/(2*(2*(2-a1)*a3*i))])-2-v[1]==0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| If[k==a41                                           | (6*Cosh[(2-a1)*(4*a3*x[a41]+a3*x[a41-1])/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| (2*(2*(2-a1)*a3*i)                                  | )])/( $Exp[-a1*(4*a3*y[a41]+a3*y[a41-1])/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |

```
(2-a1)*(4*a3*x[a41]+a3*x[a41-1])/(2*(2*(2-a1)*a3*i))])-2-y[a41]==0,
(6*Cosh[(2-a1)*(4*a3*x[k]+a3*x[k-1]+a3*x[k+1])/
(2*(2*(2-a1)*a3*i))])/
(Exp[-a1*(4*a3*y[k]+a3*y[k-1]+a3*y[k+1])/(2*(2*(2-a1)*a3*i))]+
2*Cosh[(2-a1)*(4*a3*x[k]+a3*x[k-1]+a3*x[k+1])/
(2*(2*(2-a1)*a3*i))])-2-y[k]==0]]
b3[i ]:=Table[b1[k,i],{k,1,a41}]
b4[i_]:=Table[b2[k,i],{k,1,a41}]
cac[i ]:=Union[b3[i],b4[i]]
ca1[i]:=Table[{x[k],1},{k,1,a41}]
ca2[i]:=Table[{y[k],1}, {k,1,a41}]
ca3[i ]:=Union[ca1[i],ca2[i]]
cak[i]:=Prepend[ca3[i],cac[i]]
c[k]:=cak[i][[k]];
can=cak[i][[1]];
r[i_]={};
Do[r[i]=FindRoot[can,c[2],c[3],c[4],c[5],c[6],c[7],c[8],c[9],c[10],
c[11],c[12],c[13],c[14],c[15],c[16],c[17],c[18],c[19],c[20],c[21],
c[22],c[23],c[24],c[25],c[26],c[27],c[28],c[29],c[30],c[31],c[32],
c[33],c[34],c[35],c[36],c[37],c[38],c[39],c[40],c[41],c[42],c[43],
c[44],c[45],c[46],c[47],c[48],c[49],c[50],c[51]],
{i,p1,p2,p3}];
rez:=Table[r[i], {i,p1,p2,p3}]
t=Table[i,{i,p1,p2,p3}];
tt[i ]:=t[[i]]
11[i<sup>-</sup>]:=x[i]/.rez
12[i]:=y[i]/.rez
g1[i_,k_]:=l1[k][[i]]
g2[i_,k_]:=12[k][[i]]
ta1[k_]:=Table[{tt[i],g1[i,k]},{i,brt}]
Do[ta1[i]>>>outdat1, {i,1,a41}]
                                                                      *)
(*
                                                                      *)
       outdat I - fajl sa vrednostima magnetizacije u temperaturnim tačkama
(*
                                                                      *)
(*
ta2[k ]:=Table[{tt[i],g1[i,k]},{i,brt}]
Do[ta2[i]>>>outdat2, {i,1,a41}]
                                                                      *)
(*
                                                                      *)
(*
       outdat2 – fajl sa vrednostima kvadrupolnog momenta u temperaturnim tačkama
                                                                      *)
(*
gr1[i_]:=ListPlot[ta1[i],AxesLabel->{"t","on"
},AxesOrigin->{p1,0},PlotStyle->{RGBColor[1,0,0]},
PlotJoined->True]
                                                                      *)
(*
                                                                      *)
(*
       gr1[n] - grafici zavisnosti magnetizacije od temperature
(*
                                                                      *)
gr2[i ]:=ListPlot[ta2[i],AxesLabel->{"t","qn"
},AxesOrigin->{p1,0},PlotStyle->{RGBColor[0,0,1]},
PlotJoined->True]
                                                                       *)
(*
                                                                       *)
(*
       gr2[n] - grafici zavisnosti kvadrupolnog momenta od temperature
                                                                       *)
(*
Show[gr1[1],gr1[2],gr1[3],gr1[4],gr1[5],gr1[6],gr1[7],gr1[8],
gr1[9],gr1[10],gr1[11],gr1[12],gr1[13],gr1[14],gr1[15],gr1[16],
gr1[17],gr1[18],gr1[19],gr1[20],gr1[21],gr1[22],gr1[23],gr1[24],
gr1[25]]
Show[gr2[1],gr2[2],gr2[3],gr2[4],gr2[5],gr2[6],gr2[7],gr2[8],
gr2[9],gr2[10],gr2[11],gr2[12],gr2[13],gr2[14],gr2[15],gr2[16],
gr2[17],gr2[18],gr2[19],gr2[20],gr2[21],gr2[22],gr2[23],gr2[24],
gr2[25]]
```

```
*)
(*
(*
                                                                             *)
(*
                                  PROGRAM 2
                                                                             *)
(*
                                                                             * )
(*
                           rešavanje sistema jednačina (2.2)
                                                                             *)
(*
                                                                             *)
(*
                                  ulazni podaci
                                                                             *)
(*
                                                                             *)
(*
                         indat - fajl sa vrednostima: a , Is , I , n
                                                                             *)
                           p1 – donja granica temperaturnog intervala
(*
                                                                             *)
(*
                           p2 – gornja granica temperaturnog intervala
                                                                             *)
(*
                           p3 – temperaturni korak
                                                                             *)
(*
                           p4 – donja granica temperaturnog intervala kod programa1
                                                                             *)
(*
                                                                             *)
Clear[t,t1,t2,a,aa,a1,a2,a3,a4,a41,p11,p22,x,11,12,13,14,dim,dim1,
gr1,gr2,p1,p2,p3,p4]
aa=ReadList["indat"];
a=aa[[1]];
a1:=a[[1]]
a2:=a[[2]]
a3:=a[[3]]
a4:=a[[4]]
a41=a4/2;
p1=;
p2=;
p3=;
p4=;
t=ReadList["outdat1"];
                                                                             *)
     outdat1- fajl sa vrednostima magnetizacije u tačkama temperature iz programal
(*
(*
              koristi se zbog zajedničkog prikazivanja rešenja programal i programa2
                                                                             *)
t1[i ]:=t[[i]]
t2[i ]:=ListPlot[t1[i],AxesLabel->{"t","on"
(*
              t2[n] - grafici zavisnosti on od temperature
                                                                             *)
},AxesOrigin->{p4,0},PlotStyle->{RGBColor[1,0,0]},
PlotJoined->True]
gr1[1]:=Show[t2[1],t2[2],t2[3],t2[4],t2[5],t2[6],t2[7],t2[8],
t2[9],t2[10],t2[11],t2[12],t2[13],t2[14],t2[15],t2[16],
t2[17],t2[18],t2[19],t2[20],t2[21],t2[22],t2[23],t2[24],
t2[25]]
p11=Sqrt[3.];
p22=2*Sqrt[(2*(2-2*a1))/(3*(2-3*a1))];
x[i_,j_]:=p22*Sqrt[1-i]*Tanh[p11*Sqrt[1-i]*(j-(4*(1-a2/a3))/
          (1+4*(1-a2/a3)))
(*
                                                                             *)
                            x[t,n] - \sigma_{na}
l=Table[x[i,j],{j,1,a41},{i,p1,p2,p3}];
11[i ]:=1[[i]]
l2=Table[i,{i,p1,p2,p3}];
dim=Dimensions[12];
dim1=dim[[1]];
13[k ]:=Table[{12[[i]],11[k][[i]]},{i,1,dim1}]
14[i ]:=ListPlot[13[i],AxesLabel->{"t","ona"
                                                                            *)
            14[n] – grafici zavisnosti \sigma_{na} od temperature
(*
},AxesOrigin->{p1,0},PlotStyle->{RGBColor[0,0,0]},
PlotJoined->True]
gr2[1_]:=Show[14[1],14[2],14[3],14[4],14[5],14[6],14[7],14[8],
14[9],14[10],14[11],14[12],14[13],14[14],14[15],14[16],
14[17],14[18],14[19],14[20],14[21],14[22],14[23],14[24],
14[25]
Show[gr1[1],gr2[1]]
                                                                            *)
(*
```

| (*                                   |                                                         | *)        |
|--------------------------------------|---------------------------------------------------------|-----------|
| (*                                   | PROGRAM 3                                               | *)        |
| (*                                   |                                                         | *)        |
| (*                                   | <ul> <li>– rešavanje sistema jednačina (2.3)</li> </ul> | *)        |
| (*                                   | – rešavanje jednačine (2.4)                             | *)        |
| (*                                   |                                                         | *)        |
| (*                                   | ulazni podaci                                           | *)        |
| (*                                   |                                                         | *)        |
| (*                                   | indat – fajl sa vrednostima: a , Is , I , n             | *)        |
| (*                                   | p1 = 1                                                  | *)        |
| (*                                   | p2 – broj temperaturnih tačaka                          | *)        |
| (*                                   | p3 – donja granica temperaturnog intervala              | *)        |
| (*                                   | p4 – gornja granica temperaturnog intervala             | *)        |
| (*                                   | p5 – temperaturni korak                                 | *)        |
| (*                                   |                                                         | *)        |
| (*                                   | rešavanje sistema jednačina (2.3)                       | *)        |
| (*                                   |                                                         | *)        |
| Timing[                              |                                                         |           |
| Clear[aa,a,a1,a2,a3                  | 3,a4,a41];                                              |           |
| Clear[qq1,qq2,qq3,q                  | [q4 , qq5 , qq6 , qq , qqq , q1 ] ;                     |           |
| Clear[r,rr,rez1,rre                  | z];                                                     |           |
| Clear[p,p1,p2,p3,p4                  | ,p5];                                                   |           |
| Clear[b1,b2,t,tt];                   |                                                         |           |
| Clear[bb1,bb2,bb3,b                  | b4,b1b2];                                               |           |
| Clear[gr,ggr];                       |                                                         |           |
| Clear[m1,m2,11,111,                  | 122,d,dd];                                              |           |
| Clear[j,dm,dmm,lst1                  | ];                                                      |           |
| aa=ReadList["indat"                  | ];                                                      |           |
| a=aa[[1]];                           |                                                         |           |
| a1:=N[8/(3/Log[4.]+                  | ·4),6];                                                 |           |
| a2:=a[[2]];                          |                                                         |           |
| a3:=a[[3]];                          |                                                         |           |
| a4:=a[[4]];                          |                                                         |           |
| a41=a4/2;                            |                                                         |           |
| p1=1;                                |                                                         |           |
| p2=;                                 |                                                         |           |
| p3=;                                 |                                                         |           |
| $p_{4=}$ ;                           |                                                         |           |
| $p_{5=N[2./(p_{2-1})];}$             |                                                         |           |
| tt=Chop[N[Table[t, {                 | t,p3,p4,p5}],6]];                                       |           |
| (*                                   | · · · ·                                                 | *)        |
| (* qql                               | [n,t] – sistem koji se rešava                           | *)        |
| (*                                   |                                                         | *)        |
| qq1[k_,t_]:=                         |                                                         |           |
| If[k==1,                             |                                                         |           |
| -2+6/(Exp[-(a1*(4*a                  | 2*q[1]+a3*q[2]))/(4*(2-a1)*a3*t)]+2)-q[1]==0,           |           |
| If $[k==a41,$                        |                                                         |           |
| -2+6/(Exp[-(al*(a3*)))               | q[a41-1]+5*a3*q[a41]))/(4*(2-a1)*a3*t)]+2)-q[a          | 41] == 0, |
| -2+6/(Exp[-(a1*(a3*))]               | 'q[k-1]+4*a3*q[k]+a3*q[k+1]))/(4*(2-a1)*a3*t)]+         | 2)        |
| -q[k]==0]];                          |                                                         |           |
| qq2[t_]:=Table[qq1[                  | .K,t],{K,1,a41}];                                       |           |
| TOT TOT                              |                                                         |           |
| τ=ττ[[]];<br>lat1=Chon [][[]=h] + [= |                                                         |           |
| isti≕cnop[N[Table[1                  | -, (⊥, <sup>-</sup> ∠., U., U.⊥}], O]];                 |           |
| dmm-dm[[1]].                         | ,                                                       |           |
| umm-um[[1]];<br>hh2[i]-Catab[Da[     |                                                         |           |
| DDS[]]-Catch[DO[                     | •                                                       |           |
| $aa3= \pi abla[(albl - lb])$         | (1) (b 1 $-1$ )                                         |           |
| $qq_{2}$ -rapre[( $q[k]$ , $Z[k]$    | ,<br>+2                                                 |           |
| ddafr ]stebeng[dd                    | 12,994,[v]],                                            |           |

```
qq5[k_]:=qq4[t][[k]];
qq6=qq4[t][[1]];
r[j
    ]:=FindRoot[qq6,
qq5[2],qq5[3],qq5[4],qq5[5],qq5[6],qq5[7],
qq5[8],qq5[9],qq5[10],qq5[11],qq5[12],qq5[13],
qq5[14],qq5[15],qq5[16],qq5[17],qq5[18],qq5[19],
qq5[20],qq5[21],qq5[22],qq5[23],qq5[24],qq5[25],qq5[26]];
p[j ]:=Check[r[j],failr[j]];
If[p[j]==r[j],Throw[r[j]]]
, {1[1],1,dmm}, {1[2],1,dmm}, {1[3],1,dmm}, {1[4],1,dmm}, {1[5],1,dmm}
, {1[6],1,dmm}, {1[7],1,dmm}, {1[8],1,dmm}, {1[9],1,dmm}, {1[10],1,dmm}
, {1[11],1,dmm}, {1[12],1,dmm}, {1[13],1,dmm}, {1[14],1,dmm}
, {1[15],1,dmm}, {1[16],1,dmm}, {1[17],1,dmm}, {1[18],1,dmm}
, {1[19], 1, dmm}, {1[20], 1, dmm}, {1[21], 1, dmm}, {1[22], 1, dmm}
, {1[23],1,dmm}, {1[24],1,dmm}, {1[25],1,dmm}]];
,{j,p1,p2}];
rez=Table[bb3[j],{j,p1,p2}];
qq[i ]:=q[i]/.rez;
qqq[i_]:=Table[{tt[[j]],qq[i][[j]]},{j,p1,p2}];
gr[i]:=ListPlot[qqq[i],AxesLabel->{"t","qn"
},PlotStyle=>{RGBColor[1,0,0]},PlotJoined=>True,
PlotRange = \{ \{0,2\}, \{0,-2\} \} \};
                                                                        *)
(*
                                                                        *)
(*
                      rešavanje jednačine (2.4)
(*
                                                                        *)
m1 = -2.;
m2 = -1.;
Do[rr[i]:=FindRoot[6/(Exp[-(3*a1*q1)/(2*(2-a1)*i)]+2)-2-q1==0,
{q1,{m1,m2}}],
{i,p3,p4,p5}];
rrez:=Table[rr[i], {i,p3,p4,p5}];
ll=q1/.rrez;
l11[i ]:=l1[[i]];
d=Dimensions[tt];
dd=d[[1]];
l22=Table[{tt[[i]],l11[i]},{i,1,dd}];
ggr=ListPlot[122,AxesLabel->{"t","qB"
},PlotStyle->{RGBColor[0,0,0]},PlotJoined->True,
PlotRange > \{ \{0,2\}, \{0,-2\} \} \};
Show[ggr,gr[1],gr[2],gr[3],gr[4],gr[5],gr[6],
gr[7],gr[8],gr[9],gr[10],gr[11],gr[12],gr[13],
gr[14],gr[15],gr[16],gr[17],gr[18],gr[19],gr[20],
gr[21],gr[22],gr[23],gr[24],gr[25],
PlotRange->{{0,2},{0,-2}},AxesLabel->{"t","qn,qB"}];
Chop[rez]]
```