

LEA NIDERLENDER

ISPITIVANJE NISKOŠUMNE ZAŠTITE ZA GAMA-SPEKTROMETAR

DIPLOMSKI RAD

NOVI SAD, FEBRUAR 1985.

Ovaj diplomski rad je radjen u Laboratoriji za nuklearnu fiziku, Instituta za fiziku PMF-a u Novom Sadu.

Zahvaljujem se Dr Lazaru Marinkov, na savetima u izboru teme. Takodje, zahvaljujem se dr Ištvanu Bikit na korisnim sugestijama pri izradi ovog rada. Posebnu zahvalnost dugujem asistentu Miroslavu Vesković na svesrednoj pomoći u toku izrade eksperimentalnog dela ovog rada.

SADRŽAJ

U V O D		1
1. PRIMENE NIS 1.1. RADIOAKT 1.2. AKTIVACI	SKOŠUMNE MERNE TEHNIKE Ivno zračenje u prirodi Iona analiza	3 3 7
2. NAČINI NISH 2.1. LOKACIJA 2.2. PASIVNA 2.3. AKTIVNA	KOŠUMNE ZAŠTITE zaštita zaštita	10 10 11 13
3. OPIS SPEKTE TITE 3.1. OSNOVNE 3.2. OPIS NIS	ROMETARSKOG SISTEMA I GVOZDENE ZAŠ- KARAKTERISTIKE Ge/Li/ SPEKTROMETRA KOŠUMNE ZAŠTITE ZA Ge/Li/ SPEKTROMETAR	15 15 18
4. ISTRAŽIVAN 4.1. REZULTAT 4.2. ODREDJIV 4.3. ISPITIVA	IE STRUKTURE FONA I MERENJA SA KOMENTARIMA ANJE MINIMALNE AKTIVNOSTI NJE VARIJACIJE FONA	23 23 30 35
5. ZAKLJU	č A K	37
6, REFERE	ENCE	38
7. PRILOZ	<u>′</u> [39

U V O D

Niskošumna merenja (low-level counting) predstavljaju merenja niskih aktivnosti (kakvi postoje u prirodnim uzorcima). Pri merenjima ovako niskih aktivnosti jasno je da se mora obezbediti merni instrument visoke osetljivosti kao i zaštita od pozadinskog zračenja.

Pod pozadinskim zračenjem podrazumeva se svako zračenje koje dopire do efikasne zapremine detektora a ne potiče od uzorka koji se ispituje. Izvori pozadinskog zračenja mogu se grupisati u pet kategorija:

- prirodna radioaktivnost materijala samog detektora,
- prirodna radioaktivnost materijala zaštite i pomoćne

opreme,

- radioaktivnost okoline,
- primarna i sekundarna komponenta kosmičkog zračenja,
- atmosferska radioaktivnost.

Prirodna radioaktivnost materijala koji okružuju detektor potiče od članova radioaktivnog niza urana - torijuma, te izotop ⁴⁰K i dugoživeći fisioni produkti (koji su rasprostranjeni po celoj zemljinoj površini a posledica su nuklearnih eksplozija). Elementi koji dominiraju u pozadinskom zračenju a predstavljaju članove radioaktivnog niza urana i torijuma su: ²²⁸Ac, ²²⁴Ra, ²¹²Bi, ²¹¹Pb i ²⁰⁸Tl (u torijumovom nizu) ²²⁶Ra, ²¹⁴Pb i ²¹⁴Bi (u uranijumovom nizu). O dugoživećih fisionih produkata u pozadinskom zračenju dominira ¹³⁷Cs. Neki materijali kao što je, na primer, Pirex staklo sadrže torijum i kalijum kao normalne konstituente i kao takvi daju veliki doprinos zračenju pozadine. Većina drugih materijala sadrži ove elemente kao nečistoće a njihov doprinos zračenju pozadine može śe smanjiti izborom visoko prečišćenih uzoraka. Izvor pozadinskog zračenja takodje predstavlja i radioaktivnost samog ambijenta u kome se nalazi detektor (konstrukcioni materijal laboratorije, vazdušni ambijent). Radon i toron su kratkoživeći radioaktivni gasovi koji potiču iz niza urana i torijuma a prisutni su u kon-

strukcionom materijalu laboratorije (zidovi, podovi).

Značajnu komponentu pozadinskog zračenja predstavljaju sekundarne radijacije koje nastaju interakcijom kosmičkih zraka i zemljinom atmosferom. Visoki energetski kosmički zraci u zemljinoj atmosferi indukuju kaskadno-lančane procese pri kojima nastaju µ-mezoni, elektroni, neutroni i gama-zraci.

Pored zračenja pozadine na odbroj detektora mogu uticati i parazitni električni impulsi nastali u lancu elektronskih uredjaja.

Pošto veličina pozadinskog zračenja odredjuje granicu detekcije odnosno minimalni nivo zračenja koji se može detektovati, ona je od posebnog značaja u svim merenjima niskih nivoa radioaktivnosti. Naime, radi se o tome da se granica detekcije može znatno smanjiti samo obezbedjenjem niskošumne zaštite od pozadinskog zračenja, kako je naglašeno u samom početku.

1. PRIMENE NISKOŠUMNE MERNE TEHNIKE

1.1. RADIOAKTIVNO ZRAČENJE U PRIRODI

Tehnika niskošumnih merenja je, može se slobodno reći, svoju najveću primenu našla na polju prirodne radioaktivnosti.

Radioaktivni elementi kao jonizujuća zračenja su prisutni svuda na našoj planeti i u svemiru. Zemljinu površinu kontinualno bombarduju čestice visokih energija kao i elektromagnetna zračenja različitih energija koja dolazi iz dubine kosmosa - kosmička zračenja. Do površine zemlje dospeva i radioaktivno zračenje radionuklida koji su dispergovani u zemljinoj kori. Ovi radioaktivni elementi migracijama dospevaju u vode i atmosferu a kroz njih i u živi svet na našoj planeti.

Kosmičko zračenje predstavlja fluks čestica izvanredno visoke energije koje dospevaju u zemljinu atmosferu iz kosmičkog prostranstva i koje izazivaju mnogobrojne nuklearne transmutacije. Po svojoj prodornosti razlikuju se dve komponente kosmičkog zračenja manje prodorna (meko) i višeprodorno (tvrdo). Meka komponenta kosmičkog zračenja sadrži naelektrisane čestice mase elektrona i energije reda veličine 10-10¹¹ eV, pa i više. Te čestice se proizvode u lavinama i pljuskovima koji su izazvani primarnim zračenjem u atmosferi zemlje. Pokazalo se da je proces stvaranja pljuskova proporcionalan sa Z^2 materijala u kome se on dešava. Zavisnost od Z^2 kod proizvodnje pljuskova je ukazivala na procese proizvodnje parova i elektromagnetnih procesa zakočnog zračenja. Utvrdjeno je da su čestice u pljusku meke komponente uglavnom elektroni izazvani visokoenergetskim fotonima koji nastaju raspadom π^0 - mezona u atmosferi. Primarne čestice su uglavnom protoni i α -čestice veoma visokih energija, Tvrda komponenta kosmičkog zračenja se sastoji od čestica koje imaju srednju masu (izmedju mase protona i elektrona). Te čestice su nazvane mezoni. Masa mezona jednaka je približno 200-300 masa elektrona. Oni mogu biti pozitivni i negativni (naelektrisanje mezona jednako je naelektrisanju elektrona). Srednja energija mezona na nivou mora $\sim 3 \cdot 10^9$ eV ali se sreću mezoni sa energijama od 10^{10} eV pa i više. Mezoni, kao i brzi elektroni su sposobni da izazivaju pljuskove. Dalja izučavanja svojstava mezona su pokazala da su oni nepostojani i da se raspadaju. Njihov kratak period života pokazuje da oni ne mogu biti primarne čestice, oni se radjaju u atmosferi pod uticajem nekih drugih čestica.

Od prirodnih radioaktivnih izotopa većina pripada jednoj od radioaktivnih familija koje postoje na zemlji: uranijumova, aktinijumova i torijumova familija. Uz te, docnije je veštački formirana neptunijumova familija. U svakoj familiji α i β emisija su glavni procesi raspada, tako formirani nizovi elemenata i izotopa su uglavnom slični kod familija, ali se javljaju odgovarajuće razlike. Pošto se mase menjaju samo usled α emisije članovi svakog niza imaju mase koje se razlikuju za umnožak od četiri jedinice. Nizovi koji se javljaju u prirodi nastaju od jezgara čiji je život dug u poredjenju sa starošću zemlje. Svaki niz se završava kada proces raspada dovede do formiranja stabilnog izotopa (krajnji član). Polazni i kranji članovi su dati u tabeli 1.

Ime niza	Maseni broj	Polazno jezgo	Poluživot (god.)	Krajnji član
Torijumov niz	4 [°] n	²³² Th	1,4.10 ¹⁰	208 РЬ
Neptunski niz	4n+1	237 Np	2,2·10 ⁶	209 Bi
Uranijumov niz	4n+2	238 _U	4,5·10 ⁹	206 РЬ
Aktiniju- mov niz	4n+3	235 _U	7,2·10 ⁸	207 РЪ

TABELA 1. - Polazni i krajnji članovi radioaktivnih nizova

Iz tabele 1 vidi se da se prirodni radioaktivni nizovi završavaju s izotopima olova i to objašnjava prisustvo olova u radioaktivnim rudama, kao i razlike u izotopskom sastavu tog "radiogenog"olova i običnog olova.

Od posebnog su interesa izotopi uranijuma i torijuma koji omogućavaju odredjivanje apsolutne starosti minerala, stenja i kosmičkih objekata. U tabeli 1.1. je data lista aktivnih elemenata koji nisu povezani sa glavnim familijama a koji su takodje od interesa za geološka merenja. To su sve niskoenergetski β emiteri ili jezgra koja podležu elektonskog zahvatu (osim samarijuma i neodijuma).

Radioaktivni izotop	Poluživot (god.)	Vrsta zračenja	Izmerena en.zračenja (MeV)
40 _K 50	$1, 3.10^9$	β -	1,46
87 _{Rb}	$5 \cdot 10^{10}$	β	1,19
	$5 \cdot 10^{10}$	β	0,273
¹¹⁵ In	6 · 10 ¹⁴	β_	0,600
¹³⁸ La	1 · 10 ¹¹	β_	0,21
¹⁴⁴ Nd	3 · 10 ¹⁵	α	1,8
¹⁴⁷ Sm	1,3·10 ¹¹		2,2
176 _{Lu}	4,5·10 ¹⁰	β	0,43
187 _{Re}	4 · 10 ¹²	β	0,043

TABELA 1.1. - Prirodna radioaktivnost izotopa koji nisu povezani sa glavnom familijom.

Ako imamo niz radioaktivnih izotopa (N_1, N_2, N_3) koji se raspadaju jedan u drugi konstantama radioaktivnog raspada $(\lambda_1, \lambda_2, \lambda_3)$, radioaktivni proces se može opisati sa tri diferencijalne jednačine u sledećem obliku:

$$\frac{dN}{dt}^{1} = -\lambda_{1}N_{1} \qquad -\frac{dN_{2}}{dt} = -\lambda_{1}N_{1} - \lambda_{2}N_{2} \qquad \frac{dN_{3}}{dt} = -\lambda_{2}N_{2} \qquad /1/$$

Uzmimo samo slučaj kad aktivno jezgro N_2 nastaje raspadom jezgra N_1 . Ovaj proces je opisan prvim dvema jednačinama sistema /1/.

$$\frac{dN_1}{dt} = -\lambda_1 N_1 \qquad \qquad \frac{dN_2}{dt} = -\lambda_1 N_1 - \lambda_2 N_2$$

U većini slučajeva potrebno je naći aktivnost raspada i za te veličine dobijamo:

Aktivnost od
$$N_1 = \lambda_1 N_1 = \lambda_1 N_1 (0) e^{-\lambda_1 t}$$

Aktivnost od $N_2 = \lambda_2 N_2 = \lambda_2 N_2 (0) e^{-\lambda_2 t} + \frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} N_1 (0) (e^{-\lambda_1 t} - e^{-\lambda_2 t})$
 $N_1(0)$ i $N_2(0)$ su količine atoma u trenutku t=0.

Ako u početku vremena nije bilo atoma N_2 , $N_2(0) = 0$, te u bilo kom vremenu:

$$\frac{\text{Aktivnost od N}_2}{\text{Aktivnost od N}_1} = \frac{\lambda_2}{\lambda_2^{-\lambda_1}} (1 - e^{-(\lambda_2^{-\lambda_1})t})$$
 /2/

Javljaju se 2 slučaja:

a) $\lambda_2 > \lambda_1$ (period poluraspada pretka veći od perioda poluraspada potomka)

Odnos aktivnosti /2/ teži ka konstantnoj vrednosti $\lambda_2/\lambda_2 - \lambda_1$, na kraju obe aktivnosti opadaju sa poluživotom polaznog jezgra. Kada je odnos $\lambda_2/\lambda_2 - \lambda_1$ postignut javlja se stanje prelazne ravnoteže.

b)
$$\lambda_2 \gg \lambda_1$$

Odnos aktivnosti /2/ teži ka jedinici, te se javlja vekovna ravnoteža (sekularna). U slučaju dugoživećeg polaznog jezgra aktivnosti sukcesivno

proizvedenih članova su dati u jednačinama:

$$\lambda_1 N_1(0) = \lambda_2 N_2 = \lambda_3 N_3 = \dots = konstanta$$

Sve aktivnosti su konstantne i relativne količine raznih proizvoda raspada su obrnuto proporcionalne njihovim konstantama raspada.

Aktivnost potomka je data sa:

$$A_{2} = \lambda_{2}N_{2} = \lambda_{1}N_{1}(0) (1 - e^{-\lambda_{2}t})$$

Vidi se da aktivnost potomka raste sa vremenom i posle nekoliko perioda poluraspada potomka njegova aktivnost će se izjednačiti sa aktivnošću pretka.

Prirodna radioaktivna ravnoteža je naročito poremećena posle nuklearnih eksplozija kada je oslobodjena velika količina radio izotopa. Neki od tih izotopa su fisioni produkti (¹³⁷Cs, ¹⁴⁴Ce, ⁹⁵Zr, ⁹⁵Nb, ¹³⁴Cs, ¹⁰⁶Ru ...), dok drugi potiču od interakcije neutrona sa elementima zemljine kore i atmosfere. Radioizotopi koji nastaju kao rezultat čovekovih aktivnosti (procesi fisije, ozračivanje stabilnih izotopa u nuklearnim reaktorima) danas predstavljaju nabrojnije izvore zračenja.

U poslednje vreme sve je veća upotreba radioizotopa u medicini, industriji i sve je brži razvoj nuklearnih elektrana. Samim tim zaštita čovekove sredine od radioaktivnog zračenja postaje sve aktuelnija. U tu svrhu potrebno je pratiti i registrovati i najmanje promene aktivnosti radioizotopa u prirodi, s obzirom da donji prag štetnog dejstva jonizujučeg zračenja na žive organizme ne postoji.

1.2. AKTIVACIONA ANALIZA

Jedna od najčešće korišćenih analitičkih metoda u nuklearnoj fizici je metoda aktivacione analize.

Aktivaciona analiza se bazira na merenju aktivnosti uzorka koja je indukovana neutronima, fotonima i naelektrisanim česticama. Najpogodnija je neutronska aktivacija termalnim i brzim neutronima (neutroni čija se energija kreće u intervalu 0,05 eV < En < 0,4 eV). Značajni izvori termalnih neutrona su nuklearni reaktori. Oni daju fluks neutrona \sim 10 $^{11} \rm n//S\cdot cm^2$.

Svako radioaktivno jezgro emituje nuklearno zračenje odredjene energije i odredjene konstante raspada. Kada jezgro zahvati neutron ono biva pobudjeno za iznos energije veze uhvaćenog neutrona. Prelaskom u oshovno stanje vrši se emisija gama-kvanata. Efikasni presek za radijativni zahvat termalnih neutrona ($\sigma \sim 10^{-3}$ - 10^{5} b) ponaša se kao 1/v, tako da je osnovni tip reakcije (n, γ).

Neka jezgra proizvoljnog izotopa A zahvatom neutrona prelaze u jezgro B. Jezgro B se dalje raspada sa karakterističnom konstantom $\lambda_{\rm B}$ u jezgro C (jezgro novog izotopa).

Integracijom ove jednačine dobićemo broj radioaktivnih jezgara izotopa B posle ozračivanja u vremenu t.

$$N_{B}^{0} = \frac{\sigma_{A} \Phi N_{A}}{\lambda_{B}} (1 - e^{-\lambda_{B}t})$$

Aktivnost posle ozračivanja je:

$$A_B^0 = \lambda_B N_B^0 = \sigma_A \Phi N_A (1 - \bar{e}^{\lambda} B^{\dagger})$$

Aktivnost posle vremena t' od ozračivanja:

$$A_{B} = \sigma_{A} \circ N_{A} e^{-\lambda_{B}t} (1 - e^{-\lambda_{B}t})$$

Na kraju merenja aktivnost je data sa:

$$A_B^* = \sigma_A \phi N_A e^{-\lambda_B t}$$
 (1 - $e^{-\lambda_B t}$) $e^{-\lambda_B t}$
t'' - vreme merenja.

Detektovana aktivnost, broj raspada po sekundi:

$$A_{B} - A_{B}^{*} = \sigma_{A} \Phi N_{A} (1 - e^{-\lambda}B^{t}) e^{-\lambda}B^{t}^{*} (1 - e^{-\lambda}B^{t}^{*})$$

$$N_{A} = \frac{1}{M_{A}} n_{A}m_{A} \Theta_{A} m_{A} = M_{A}N_{A}/\Theta_{A}n_{A}$$

$$n_{A} - Avogadrov broj$$

$$\Theta_{A} - izotopski sastav$$

M_A – atomska masa

m_A - masa izotopa koji se aktivira u uzorku.

$$A_{B} - A_{B}^{*} = \frac{\sigma_{A} \Phi_{A} m_{A} \Phi_{A} \Theta_{A}}{M_{A} e^{\lambda_{B} t}} (1 - e^{-\lambda_{B} t})(1 - e^{-\lambda_{B} t}) (1 - e^{-\lambda_{B} t$$

Na osnovu formule /3/, merenjem aktivnosti ($A_B - A_B^2$) mogu se odrediti nepoznate veličine na desnoj strani jednačine (m_A , σ_A , ϕ).

Ukoliko je neka od ovih veličina male vrednosti, tada je i ukupna aktivnost mala veličina i linija u spektru će biti slaba, te je za njeno odredjivanje potrebno da "fon" bude što niži (npr., merenje malih preseka ili merenje malih koncentracija pojedinih izotopa) što se može postići merenjem aktivnosti uzorka u niskošumnoj zaštiti.

Osetljivost ove metode, u opštem slučaju zavisi od: broja radioaktivnih jezgara nastalih ozračivanjem u reaktoru, vremena merenja aktivnosti i trajanja ozračivanja, efikasnog preseka za aktivaciju, efikasnosti mernog instrumenta za detekciju zračenja, itd. Preciznost i tačnost metode zavise od homogenosti i priprema uzorka, uslova zračenja, nuklearne konstante, i metoda merenja aktivnosti (odnosno od odnosa I_{vrh}/I_{fon} , tj. površine vrha prema površini fona za dati vrh, koji se može povećati merenjem aktivnosti u niskošumnoj zaštiti).

2. NAČINI NISKOŠUMNE ZAŠTITE

Poseban problem u merenju niskih aktivnosti predstavlja način na koji će se obezbediti zaštita spektrometarskog sistema od svih pomenutih izvora pozadinskog zračenja.

Detektor se od zračenja pozadine može zaštititi pomoću izolacionog materijala čija je radioaktivnost zanemarljivo mala. Ovaj način zaštite nazivamo pasivna zaštita. Koji će se materijal izabrati za ovu svrhu zavisi od karakteristika materijala zaštite kao što su: Zaštitna moć, čistoća i cena. Tvrdu komponentu kosmičkog zračenja ne možemo zaustaviti nikakvom izolacijom, te se u cilju zaštite detektora od kosmičnog zračenja primenjuje aktivna antikoicidentna zaštita.

Pri konstrukciji zaštite od primarnog značaja su izbor lokacije i konstrukcija same laboratorije.

2.1. LOKACIJA

Prirodni radioaktivni izotopi su široko rasprostranjeni u zemljinoj kori. Glavni izvori ovog radioaktivnog zračenja su uranijum, torijum i produkti njihovog radioaktivnog raspada, te ⁴⁰K kao i radioaktivni izotopi ugljenika ¹⁴C i vodonika ³H koji nastaju bombardovanjem kosmičkim zracima. Distribucija prirodnih radioaktivnih izotopa je uglavnom ravnomerna izuzev u oblastima koje su bogate granitnim ili monacitnim peskom gde je zabeležena povećana radioaktivnost od prirodnih izvora.

Poznato je da nuklearne elektrane oslobadjaju znatne količine radio izotopa. Da bi se pratila njihova distribucija u prirodi potrebna je osetljiva merna tehnika.

S toga je kao prva mera koja se preduzima pri izboru lokacije zaštita od svih izvora prirodne kao i veštački stvorene radio-aktivnosti.

Veoma dobra zaštita od kosmičkog zračenja se može postići izborom podzemne lokacije laboratorije. Tako, na primer, na 5 mWe (meters of water equivalent) intenzitet mezona može biti smanjen za faktor 1,4 na 60 mWe ovaj faktor iznosi 12, dok na 5000 mWe 10⁶.

Posebna pažnja se mora posvetiti da konstrukcioni materijali laboratorije budu radioaktivno "čisti". Kao prva mera koja se preduzima pri izgradnji to je zaštita od prirodne radioaktivnosti sredine (zemljište, stene). Ovo se uspešno može postići oblaganjem cele konstrukcije laboratorije slojem specijalnog betona - baritni beton koji se sastoji od materijala male specifične aktivnosti. Na ovakav način gama-aktivnost se može smanjiti i 20 puta. Pod ovakvim uslovima merenja Ge(Li) detektor (65 cm³, bez dodatne izolacione zaštite) koji je smešten u centru same laboratorije pokazuje da je iznos gama-odbroja (100-2000 keV) reduciran za faktor 13. Signal koji potiče od ⁴⁰K je čak 40 puta niži. Svaki materijal koji na bilo koji način dospeva u ovakvu laboratoriju (dodatni merni uredjaji, zaštitni izolacioni materijali) može se smatrati potencijalnim izvorom zračenja i samim tim utiče na odbroj sistema u zračenju pozadine.

2.2. PASIVNA ZAŠTITA

Najčešće korišćeni tip zaštite spektrametarskog sistema od zračenja pozadine je tzv. pasivna zaštita koja se sastoji u postavljanju nekog zaštitnog izolacionog materijala oko detektora. Pri izboru ovih materijala značajno je da oni poseduju zanemarljivo malu aktivnost, veliku gustinu, i visoki atomski broj Z (fotoelektrični proces je proporcionalan Z^4-Z^5 , proces produkcije parova $\sim Z^2$ i Comptonovog rasejanja $\sim Z$).

Elementi koji zadovoljavaju većinu ovih zahteva su sledeći: olovo, gvoždje, čelik, elektrolitički bakar, živa, beton, itd. Olovo se veoma često koristi kao zaštita detektora zbog visokog atomskog broja. Zbog svoje velike gustine dovoljna je debljina od samo nekoliko santimetara olova pa da se postigne znatna redukcija zračenja pozadine. Zaštita od olova se izradjuje u obliku višeslojnih ploča. Pre upotrebe olovo se mora prečistiti, jer ono može da sadrži značajne količine prirodne aktivnosti. Čak i prečišćeno olovo sadrži radioaktivne nečistoće kao što je olovo ²¹⁰Pb koji je proizvod raspada ²²⁶Ra. Ovaj izotop ima vreme poluraspada od 20,4 godine, i s tog razloga pri izboru olova kao zaštitnog materijala potrebno je da ono bude staro i do nekoliko desetina godina.

U novije vreme (posle nuklearnih eksplozija) olovo pokazuje radioaktivnost koja je prouzrokovana radioaktivnim "padavinama" kao i nečistoćama kao što su produkti raspada torijuma. Neki primerci pokazuju aktivnost i do 1,5 Bq/g. Čisto olovo koje se koristi u zaštiti pokazuje aktivnost koja je za 2-3 reda veličine niža.

Gvoždje ili čelik su materijali koji se, takodje, često koriste u zaštiti. Od posebnog je značaja čelik koji je fabrikovan pre 1950. godine (čelik koji je korišćen u konstrukciji ratnih brodova za vreme II svetskog rata široko se koristi u niskošumnoj zaštiti), jer čelik proizvedan u novije vreme pokazuje prisustvo radioaktivnih primesa kao što su: ${}^{60}_{Co}$, ${}^{106}_{Ru}$, Th.

Vrlo efektan zaštitni materijal je i živa. Ona može biti prečišćena do visokog stepena putem destilacije tako da pokazuje veoma nisku aktivnost. Kao zaštitni materijal živa se koristi kao unutrašnja komponenta masivnih zaštita od gama-zračenja. Na sobnim temperaturama živa se nalazi u tečnom stanju, tako da se smešta u odgovarajuće kontejnere. Ovi kontejneri su izradjeni od lucitnog stakla, materijala koji ima nisku aktivnost. Zbog svoje gustine koja je veća od gustine olova (isto važi i za atomski broj Z) dovoljna je debljina od nekoliko santimetara žive pa da se postigne efikasna zaštita od gama-zračenja.

Beton se često koristi u konstrukciji masivne zaštite i to kao njena spoljašnja komponenta. Njegova aktivnost može biti relativno visoka usled prisustva radioaktivnih nečistoća kao što su ⁴⁰K, U i radioaktivne "padavine". Zbog toga je pri korišćenju ovog materijala, kao zaštita

uobičajeno da se njegova unutrašnja površina obloži slojem čelika, olova, žive ili nekim drugim materijalom niske aktivnosti. Vrlo efikasna zaštita se može postići korišćenjem tzv. "baritnog betona". Ova"površinska aktivnost" kod drugih materijala, npr. gvoždja, može se smanjiti peskarenjem kao i bojenjem.

Zaštita od radioaktivnost samog ambijenta u kome se nalazi detektor, a koja je prouzrokovana prisustvom radioaktivne prašine, radioaktivnih gasova (radon, toron) može se µostići obezbedjenjem ventilacije i filtracije vazduha.

2.3. AKTIVNA ZAŠTITA

Značajna redukcija pozadinskog zračenja može se postići putem aktivne antikoincidentne zaštite, koja se sastoji u postavljanju zaštitnih (guard) detektora oko glavnog detektora, a koji rade u antikoinicdenciji sa glavnim (primarnim) detektorom. Opšta postavka antikoincidentne zaštite data je na slici 1.

14.

Primarni (Ge/Li/) detektor je okružen sekundarnim (guard) detektorom, a izlazni impuls primarnog detektora antikoincidentna kola prihvata samo ukoliko nije praćen koindicentnim impulsom spoljašnjeg detektora.

Na ovakav način antikoincidentna zaštita znatno eliminiše kosmičko zračenje koje prodire u oba detektora. Takodje se smanjuje Comptonov kontinuum, pošto rasejani comptonovi zraci iz primarnog detektora dospevaju do sekundarnog detektora. Antikoincidentni detektor može biti bilo koji tip detektora (NaI scintilacioni, GM brojač, itd.).

Potrebno je naglasiti da se spektri nekih radio izotopa kao što je, na primer, ⁶⁰Co koji se dobijaju pomoću ovakvih sistema ne mogu precizno analizirati, pošto se gama-zraci emituju u koincidenciji i na taj način interaguju u oba detektora. Ovakve dogadjaje antikoincidentno kolo odbacuje, a to dovodi do neželjene eliminacije nekih vrhova totalne apsorpcije (full-energy peaks).

3. OPIS SPEKTROMETARSKOG SISTEMA I GVOZDENE ZAŠTITE

3.1. OSNOVNE KARAKTERISTIKE (Ge/Li/) SPEKTROMETARA

Razvojem poluporovodničke diskretne integralne elektronike, kao i tehnologije nuklearnih detektora poluprovodnički (Ge/Li/) spektrometri su danas postali najkvalitetniji uredjaji za merenje gama-zračenja.

Mehanizam detekcije poluprovodničkih detektora u mnogome podseća na mehanizam rada jonizacione komore, a zasniva se na tri efekta: fotoefektu, Comptonovom efektu, i efektu proizvodnje para. Prolaskom nuklearnog zračenja kroz osetljivu zapreminu detektora, a to je u slučaju poluprovodničkog detektora sloj prostornog naelektrisanja ne kreiraju se laki i teški joni kao kod jonizacione komore nego par elektron - šupljina. Elektroni se kreću ka pozitivno polarisanom N-sloju i kada predaju svoja naelektrisanja dobija se impuls čija amplituda proporcionalna količini naelektrisanja sakupljenih iz unutrašnjeg sloja, odnosno energiji gama-zračenja ostavljenoj u efikasnoj zapremini detektora.

Povećanje efikasne zapremine može se postići kompenzovanjem akceptorskih centara u P-tipu poluprovodnika driftovanjem jona litijuma (donorske nečistoće). Litijum u germanijumu daje donorske nivoe, pa se koriste najpre za dobijanje PN-strukture, a zatim pod dejstvom jakog električnog polja litijumovi joni driftuju u P-deo kompenzujući akceptorske nečistoće i do debljine od nekoliko santimetara. Na ovaj način izmedju P i N dela stvoren je sloj koji ima osobine kristala bezprimesne čistoće. Pokretljivost litijumovih jona u germanijumu je znatna pa se kristal germanijuma mora kontinualno održavati na temperaturama tečnog azota (77K). Praktično to se postiže postavljanjem detektora u vakuum kriostat koji obezbedjuje termalni kontakt germanijumovog kristala i rezervoara tečnog azota.

Jedna od dobrih karakteristika ovih detektora je odlična energetska rezolucija uz zadovoljavajuću efikasnost. Energetsku rezoluciju odredjuju faktori kao što su: niska energija koja je potrebna za produkciju para elektron-šuljina kao i elektronski šumovi koji mogu poticati od samog detektora i pojačavačke opreme (ovi šumovi se mogu svesti na minimum izborom odgovarajuće elektronske opreme).

Energetska rezolucija ili moć razlaganja predstavlja sposobnost detektora da razlikuje dve energetski bliske linije:

 $R = \frac{\Delta E}{E}$

Apsolutna efikasnost detektora je definisana kao:

$$\varepsilon_{aps.} = \frac{N_{det.}}{N_{emit.}}$$

odnosno kao broj koji pokazuje koliki će broj emitovanih fotona biti registrovan u detektoru. Takodje se može definisati "intrinsična" efikasnost detektora, kao broj koji pokazuje koliki će broj upadnih fotona biti registrovan u detektoru:

$$\varepsilon_{\text{int.}} = \frac{N_{\text{det.}}}{N_{\text{up.}}}$$

Za izotropan izvor veza izmedju ove dve efikasnosti je

sledeća:

 $\varepsilon_{aps.} = \varepsilon_{int.} \cdot \frac{\Omega}{4\pi}$

Intrinsična efikasnost zavisi prvenstveno od: materijala detektora, energije zračenja, i od fizičke debljine detektora u pravcu upadnog zračenja.

Ge/Li/ spektrometri predstavljaju linearne sisteme, a to znači da se energija gama-kvanata u kristalu linearno pretvara u električ-

ne signale koji se dalje pojačavaju, beleže, sortiraju po visini i numerički obradjuju.

Analiza spektra koji dobijamo Ge/Li/ poluprovodničkim detektorom vrši se pomoću višekanalnog analizatora. Spektar koji dobijamo pomoću detektora prikazan je na slici 2.

Slika 2.

Kao što se vidi, on se sastoji od niza krivih koje predstavljaju struju signala u vremenu. Svaka od ovih krivih potiče od pojedinačnih dogadjaja. Amplituda (visina) signala je funkcija upadne energije u detektoru. Kada se vrši analiza ovakvog spektra, višekanalnim analizatorom, visina impulsne ose je izdeljena u odredjeni broj kanala (prozora) širine H i višekanalni analizator beleži koliki broj signala pada unutar odredjenog kanala. Posle ovakve analize dobijeni spektar (slika 3) predstavlja zavisnost broja signala unutar odredjene širine dN/dH u funkciji položaja kanala (svakom kanalu odgovara odredjena energija).

Merni sklop Ge/Li/ spektrometarskog sistema je prikazan na slici 4.

Slika 4.

3.2. OPIS NISKOŠUMNE ZAŠTITE ZA Ge/Li/ SPEKTROMETAR

Zadatak ovog rada bio je ispitivanje niskošumne zaštite za merenje gama-aktivnosti prirodnih uzoraka. Visoko rezoluciona gama-spektrometrija ima tu osobinu da omogućuje simultanu identifikaciju i kvantitativno odredjivanje svih gama-emitera. S obzirom na probleme koji se javljaju pri merenju niskih aktivnosti niskošumna zaštita ne sme da sadrži dugoživeće fisione produkte. Kao izolacioni materijal upotrebljeno je gvoždje koje je liveno pre II svetskog rata (ne sadrži fisione produkte koji potiču od nuklearnih eksplozija).

Komora je izradjena od gvozdenog lima debljine 1 cm. Ploče su od površinske kontaminacije očišćene peskarenjem, a zatim ispravljene i oblikovane. Kompletna montaža komore izvršena je bez varenja. Zbog toga je najpogodnije bilo izraditi komoru u obliku kocke sa bočnim pomičnim vratima za pristup detektoru i posebnim vratima za izmenu uzoraka. Zidovi komore su debljine 25 cm dok korisna zapremina iznosi 1 m³. Ukupna masa komore je 20 tona.

Pokretna vrata se pokreću na željezničkim šinama. Na njima se nalaze kružna vrata (Φ =15 cm) za postavljanje uzoraka koje merimo. Cela komora je uzdignuta sa betonskog postolja na visini od 0,5 m pomoću nosača izvedenih od starih željezničkih šina. Na taj način, izbegnuto je zračenje podloge. Na zidovima komore nalaze se samo otvori za dolivanje tečnog azota u Dewarov sud (Φ =20 mm) za vodjenje električnih kablova(Φ = 15 mm) i dva ventilaciona otvora(Φ =20 mm) radi sprečavanja izotopske frakcionacije u komori.

Da bi zaštitna komora mogla da primi različite detektore, a bez dodatne adaptacije detektor je zajedno sa Dewarovim sudom smešten u komoru, što je zahtevalo da komora ima veliku korisnu zapreminu. Nedostaci ovakvog rešenja (aktivnost iz Dewarovog suda nije izolovana, velika količina radona u komori, detektor "gleda" na veliku površinu) mogu se eliminisati kao što je planirano dodatkom antikoincidentne zaštite, ili sloja čistog izolacionog materijala oko kristala kao i rešavanjem problema ventilacije komore da bi se sprečila izotopska frakcionacija u komori.

Za lokaciju komore izabrana je prostorija u zgradi Instituta za fiziku koja je udaljena od svih izvora zračenja i u kojoj nije radjeno sa radioaktivnim izotopima. Presek komore je prikazan na slici 5.

Na slikama 6. i 7 (kao primer) predstavljena je još jedna mogućnost konstrukcije zaštite (Canberra Industries) sa svojim karakteristikama:

Slika 6.

Slika 7.

Karakteristike ove zaštite kao i Ge/Li/ detektora su slede-Unutrašnje dimenzije30,5 cm x 30,5 x 40,5 cmDebljina zidova10 cmMaterijalstaro gvoždje (od pre II
svetskog rata)Relativna efikasnost12%Rezolucija1,95 keV FWHM = 1.33 MeV
0,90 keV FWHM = 122 keVOdbroj "fona": 2,25 odbroja u sekundi u energetskom inter-
valu 50 keV do 2,7 MeV.

će:

Osetljivost: Uzimajući u obzir grešku od 50%, vreme merenja od 50.000 sekundi kao i udaljenost tačkastog izvora - detektor od 1 cm odredjene su sledeće osetljivosti za pojedine radio izotope:

Radioizotop	Energija	<u>Osetljivost</u>
57 _{Co}	122 keV	2 pCi
139 _{Ce}	165 keV	3 pCi
¹³⁷ Cs	662 keV	6 pCi
60 _{Co}	1332 keV	10 pCi

4. ISTRAŽIVANJE STRUKTURE FONA

Merenja performansi komore su izvedena pomoću Ge/Li/ spektrometra. Kristal germanijuma se stalno održava na temperaturi tečnog azota, a PN spoj ove diode je inverzno polarisan pri radu sa naponom od 3.500 V. Efikasnost detektora iznosi 13,7% (u odnosu na scintilacioni detektor NaI(T1) "3x3" na udaljenosti izvora od 25 cm), a moć razlaganja (FWHM) 1,89 keV.

4.1. REZULTATI MERENJA SA KOMENTARIMA

Ispitivanje kvaliteta zaštitne komore i prisustva radioaktivnih primesa u zaštitnom materijalu vršena su komparativnom metodom. To znači da su merenja vršena direktnim uporedjivanjem gama-spektara merenih detektorom smeštenim izvan komore i detektorom u komori.

Ova komparativna merenja su vršena diferencijalno (za najintenzivnije linije zračenja pozadine) i integralno (po odredjenim energetskim oblastima). Pri odredjivanju relativnih intenziteta gama-prelaza služile su površine pod vrhovima spektralnih linija.

Odredjivanje površine pod vrhovima je izvršeno tako što je izračunata suma odbroja N_p u kanalima koji se nalaze u domenu spektralne linije. Sa N_p je odredjena cela površina pod vrhom tako da od nje treba oduzeti površinu koja ne pripada posmatranom vrhu, tj. površinu fona.

Površina fona je izračunata tako što je uzeto nekoliko simetričnih tačaka u odnosu na spektralnu liniju a koje nisu u domenu vrha i izračunat je odbroj:

$$N_f(m) = \frac{N_{fL} + N_{fD}}{2}$$

N_f(m) odredjuje površinu fona za m kanala. Deo površine koji potiče od fona je:

$$N_f = n \cdot \frac{N_f(m)}{m} = n \cdot N_{fS}$$

gde je n - broj kanala pod vrhom.

Tražena površina vrha je izražena formulom:

$$A = N_p - N_f$$

ova površina je odredjena sa greškom:

$$\Delta A = \pm \sqrt{A + n(1 + \frac{n}{10}) \cdot N_{fS}}$$

Integralna merenja su vršena u energetskom intervalu od 0,025 Mev do 6 Mev. Rezultati ovih merenja su prikazani u tabeli I.

Iz tabele I vidimo da je faktor redukcije za celu energetsku oblast (0,023 do 6 Mev) 90. U energetskom intervalu od 0,023 do 2,7 Mev, koji je od praktičnog interesa detektor u komori ima fon od 1,06 Imp/s.

TABELA I - Rezultati integralnih merenja

En onseg (Mey)	Broj impulsa	Broj impulsa u 200 ks			
	1) van komore	2) u komori	1/2		
0,023 - 6	19940710	223456	89,2		
0,023 - 2,7	19922000	212000	93,9		
0,4 - 6	3586958	59731	60		
0,55 - 6	2574102	45325	57		
1 - 6	1104839	28632	39		
1,5 - 6	323307	19170	17		
2 - 6	151967	14448	10		
2,7 - 6	18138	1053	2		

U tabeli II prikazani su rezultati integralnih merenja sa detektorom u komori kod koje su svi kružni otvori zatvoreni olovom. Ova merenja su vršena u energetskom opsegu od 0,05 do 2,9 Mev. Integralni odbroj u komori u oblasti od 0,023 do 2,9 Mev smanjen je na vrednost 0,95 Imp/s. Faktor redukcije u poredjenju sa faktorom redukcije u komori sa kružnim otvorima u ovoj oblasti iznosi 105, znači da je fon redukovan za \sim 15%.

En.opseg (Mev)	Broj impulsa u 200 ks
0,05 - 2,9	190272
0,1 - 2,9	160925
0,2 - 2,9	100230
0,3 - 2,9	67142
0,55 - 2,9	36487
1 - 2,9	18890
1,5 - 2,9	10292
2 - 2,9	5587

TABELA II - Rezultati integralnih merenja

Diferencijalna analiza spektra vršena je utvrdjivanjem energija gama linija, a zatim identifikacijom odgovarajućih elemenata.

U analizi su najpre odredjeni položaji svih vrhova u spektru i odredjeni njihovi intenziteti. Na osnovu energetske kalibracije pomoću standardnih kalibracionih izvora odredjene su energije svih vrhova u spektru. Pomoću tablice izotopa najpre su za svaki pojedini vrh odredjeni svi mogući izotopi, a potom je na osnovu postojanja drugih vrhova mogućih izotopa i njihovih relativnih intenziteta tačno odredjen izotop kome pripada odgovarajući vrh.

Podaci za ove vrhove registrovani sa detektorom izvan i unutar komore su prikazani u tabeli III i IV. Spektri fona dobijenih sa detektorom smeštenim izvan i u komori dati su u prilogu II.

- .	F (1) 1)	Broj impulsa u 200 ks			- • • • • •	Broj impulsa u 200 kş			
120top E(KeV)	N p	Nf	A=Np ^{-N} f	Izotop .	E(keV)	Np	Nf	A=Np - Nf	
212 _{Pb}	239	466365	408939	57426	214 _{Pb}	295	268950	251584	17366
²²⁸ Ac	339	160203	149796	10407	214 _{Pb}	352	204748	166305	38443
²⁸ Ac	463	101746	98565	3181	²⁰⁸ T1	583	91705	67993	23712
14 _{Bi}	609	96352	60198	36154	137 _{Cs}	662	55873	52292	3581
12 _{Bi}	728	51193	46041	5152	214 _{Bi}	768	46330	41573	4757
²⁸ Ac	795	33687	30812	3055	208 ₇₁	860	37030	34175	2855
²⁸ Ac	911	50858	32298	18560	214 _{Pb}	933	32181	30167	2014
²⁸ Ac	969	43588	29059	14529	214 _{Bi}	1120	36273	26088	10185
14 _{Bi}	1154	27097	25936	1161	ANIH:	511	98885	83828	15057
14 _{Bi}	1238	29944	24488	5456	²¹⁴ Bi	1376	13788	11489	2299
14 _{Bi}	1407	15415	12965	2450	40 _K	1461	103790	8789	95001
²⁸ Ac	1495	7118	6348	770	214 _{Bi}	1509	7968	6348	1620
08 ₇₁	1591	11511	5178	6333	212 _{Bi}	1620	5971	1748	4223
14 _{Bi}	1661	5050	4561	4 8 9	214 _{Bi}	1729	5718	3944	1774
¹⁴ Bi	1764	13423	3817	9606	214 _{Bi}	1847	4901	3629	1272
08 ₁₁	2103	6005	3050	2955	214 _{Bi}	2117	3803	3140	663
¹⁴ Bi	2204	5812	3100	2712	214 _{Bi}	2449	2538	1807	731
08 _{T1}	2615	20228	502	197 26					

TABELA III - Rezultati merenja sa detektorom smeštenim izvan komore.

Izoton E(keV)		N Broj impulsa u 200 ks			Izotop	Izoton E(keV)	Broj impulsa u 80 ks*		
		N p	N _f	$A = N_p - N_f$			Np	Nf	A=Np-Nf
226 _{Ra}	185	9073	7580	1493	212 _{Pb}	239	1267	954	313
212 _{Pb}	239	5705	4870	835	²²⁸ Ac	339	427	385	42
²¹⁴ РЬ	295	3503	3216	287	214 _{Pb}	352	645	439	206
²¹⁴ РЪ	352	2905	2273	632	²²⁸ Ac	463	268	263	5
ANIH:	511	2755	1277	1478	ANIH:	511	779	243	536
²⁰⁸ T1	584	987	886	101	214 _{Bi}	610	338	164	174
214 _{Bi}	609	1217	766	451	²²⁸ Ac	911	93	66	27
²²⁸ Ac	911	562	455	107	²²⁸ Ac	969	83	74	9
²²⁸ Ac	969	418	350	68	⁴⁰ к	1461	97	33	64
²¹⁴ Bi	1120	349	264	85	*				
⁴⁰ к	1461	305	162	143	Detektor	u komori ((svi kru	žni otvo	ori zatvoreni
214 _{Bi}	1764	191	123	68	0100011				
²⁰⁸ T1	2615	149	75	74					

TABELA IV - Rezultati merenja sa detektorom smeštenim u komori

27,

٠

Iz tabela III i IV vidimo da su registrovani vrhovi koji potiču od prirodnih radioaktivnih izotopa. Ovu prirodnu radioaktivnost čine članovi koji potiču iz radioaktivnih familija urana, torijuma i aktinijuma, te izotop 40 K. Ovo nam potvrdjuje da materijal komore ne sadrži tragove veštačkih radioizotopa. Faktori redukcije za najintenzivnije linije iz prirodne aktivnosti date su u tabeli 5.

Izotop	E(kev)	Broj impu 1) van komore	lsa u 200 ks 2) u komori	3) u komori [*]	R ₁ 1/2	R ₂ 1/3
212 _{Pb}	239	57426	835	313	68	73
² ¹ ⁴ Pb	295	17366	287		60	
214Pb	352	38443	632	206	61	75
ANIH:	511	15057	1478	536	10	11
²⁰⁸ T1	584	23712	101		234	
²¹⁴ Bi	609	36154	451	174	80	83
²²⁸ Ac	911	18560	107	27	173	275
²²⁸ Ac	969	14529	68	9	213	645
²¹⁴ Bi	1120	10185	85		120	
40 _K	1461	95001	143	64	664	593
214 _{Bi}	1764	9606	68		141	
²⁰⁸ T1	2615	19726	74		266	

TABELA V - Faktori redukcije za najintenzivnije linije iz prirodne aktivnosti

* u komori (svi kružni otvori zatvoreni olovom).

Na osnovu faktora redukcije linije 40 K (E = 1461 keV) izračunata je efektivna debljina zaštite, a odatle i teorijski faktori redukcije:

 $R = \frac{A_1}{A_2} = \frac{95001}{143} = 664 \qquad \mu (E = 1461 \text{ keV}) = 0,39 \text{ cm}^{-1}$ $X = \frac{1}{\mu} \ln \frac{A_1}{A_2} = 16,7 \text{ cm}$

Ovi rezultati su prikazani u tabeli VI.

E(kev)	μ(cm ⁻¹)	I ₀ /I
100	2,82	3·10 ²⁰
200	1,13	1,56·10 ⁸
300	0,85	1,5 ·10 ⁶
400	0,73	197.10 ³
500	0,66	61.10 ³
600	0,60	$225 \cdot 10^{3}$
700	0,56	11,5·10 ³
800	0,52	5907
900	0,5	4230
1000	0,47	2563
1200	0,43	1314
1400	0,40	796
1600	0,37	482
2000	0,33	247
2600	0,30	150
3000	0,28	107

TABELA VI - Faktori redukcije (izračunato) X = 16,7 cm

Poredjenjem faktora redukcije dobijenih eksperimentalno (tabela V) sa teorijskim (tabela VI), vidi se da eksperimentalno dobijeni faktori redukcije ne prate jaku energetsku zavisnost koeficijenata totalne apsorpcije gama-zračenja.

Ovo nam direktno pokazuje da se izvori zračenja ne nalaze izvan komore (osim 40 K) ni u materijalu zaštite, nego najvećim delom potiču od gasovitih članova radioaktivnih nizova U i Th (prilog I).

U cilju ispitivanja radioaktivnosti reke Dunava vršena su merenja fona unapred predvidjenih radioizotopa i rezultati ovih merenja su prikazani u tabeli VII.

Izotop	E(keV)	Bro	j impuls	a u 80 ks	Broj	impulsa	a u 200 ks
		Np	N _f	A=Np - Nf	Np	^N f	A=N _p - N _f
¹⁴⁴ Ce	133	1915	1924	~ 9	5765	5720	26
214 _{Pb}	295	704	670	34	2340	1967	20 172
214 _{Pb}	352	619	439	180	1997	1217	473
125 _{Sb}	428	287	295	- 8	928	865	62
7 _{Be}	478	208	252	-44	745	760	- 15
103 _{Ru}	497	237	254	-17	696	627	- 15
¹²⁵ Sb	600	143	143	0	496	485	11
214 _{Bi}	609	283	143	140	850	485	365
106 _{Ru}	622	156	142	14	408	485	-77
¹³⁷ Cs	662	128	130	- 2	394	380	14
⁹⁵ Zr	724	124	108	16	341	363	-22
⁹⁵ Zr	757	115	89	26	318	320	- 2
95 _{Nb}	766	120	89	31	343	320	23
¹³⁴ Sc	796	93	105	-12	317	283	34
²²⁸ Ac	911	118	73	45	357	234	123
²²⁸ Ac	969	85	66	19	274	210	64
⁶⁰ со	1173	64	57	7	157	162	- 5
⁶⁰ Co	1333	42	32	10	156	111	45
⁴⁰ к	1461	101	42	59	266	128	138
ANIH:	511	825	261	564	2099	627	1472

TABELA VII - Rezultati merenja sa detektorom u komori sa nosačem uzoraka

4.2. ODREDJIVANJE MINIMALNE AKTIVNOSTI

Radioaktivni raspad je slučajan proces, i kao takav on ima statistički karakter. Merenja koja se baziraju na posmatranju emitovanog zračenja pri nuklearnom raspadu, uključuju izvestan stepen statističkih fluktuacija koje predstavljaju neizbežan izvor nejasnoća, nepreciznosti ili greške pri merenju.

Statistika brojanja (counting statistics) podrazumeva statističku analizu rezultata koji se dobijaju pri nuklearnim merenjima, kao i predvidjanja očekivane preciznosti'i tačnosti veličina koje se dobijaju iz eksperimenta.

Preciznost, a samim tim i osetljivost merenja odredjena je Poissonovom greškom, na koju bitno utiče pozadinsko zračenje tj. odbroj u pozadinskom zračenju i koja zavisi od ukupnog odbroja izvora. Definisaćemo sledeće veličine:

S - odbroj koji potiče od samog izvora,
B - odbroj koji potiče od fona (pozadinsko zračenje),
T_{S+B}- vreme merenja samog izvora,
T_B - vrenje merenja fona,
δ = σ_S/S - relativna standardna devijacija u odbroju koji potiče od izvora (S).

Standardna devijacija $\boldsymbol{\sigma}_S$ je data sledećom formulom:

$$\sigma_{S} = \sqrt{\frac{S+B}{T_{S+B}} + \frac{B}{T_{B}}}$$
 4.1

= 0

Definisaćemo ukupno vreme merenja: T = $T_{S+B} + T_B$. Pomoću jednačine 4.1. može se naći uslov da za datu preciznost merenja ovo vreme postane minimalno:

$$\sigma_{S}^{2} = \frac{S+B}{T_{S+B}} + \frac{B}{T_{B}}$$

$$2\sigma_{S}^{d\sigma}\sigma_{S} = -\frac{S+B}{T_{S+B}^{2}} dT_{S+B} - \frac{B}{T_{B}^{2}} dT_{B}$$

(pošto je T=const. sledi $dT_{S+B} + dT_B = 0$).

Odavde vidimo da T postaje minimalno ako je:

$$\frac{T_{S+B}}{T_B} = \sqrt{\frac{S+B}{B}}$$
 4.2.

Kao procena kvaliteta mernog sistema definisana je veličina koja je inverzno proporcionalna veličini T, tj. vremenu koje je potrebno da se postigne data statistička preciznost u ukupnom odbroju. Ova veličina se naziva FOM (figure of merit) a izrežane je kao:

$$\frac{1}{T} = \delta^2 \cdot \frac{S^2}{(\sqrt{S+B} + \sqrt{B})^2}$$
 4.3.

Od interesa su sledeći slučajevi:

1) Ukupan odbroj je mali u poredjenu sa odbrojem fona, tj. S<< B, što je slučaj kod niskošumnih merenja, tada je 1/T $\sim \delta^2 \cdot S^2/4B$.

2) Ukupan odbroj S >>B, fon tada ne utiče na statističku grešku i 1/T \sim $\delta^2\cdot$ S.

Kod niskošumnih merenja FOM, tj. 1/T je dato kao S²/4B.FOM sistema se može poboljšati ili smanjenjem pozadinskog zračenja, ili povećanjem apsolutne efikasnosti brojanja, odnosno korišćenjem većih uzoraka. U slučaju niskošumnih merenja količina uzorka (sa aktivnošću A) je ograničena tako da FOM postaje $\varepsilon^2 A^2/4B$, gde je ε efikasnost brojanja.

Prema jednačini 4.3. može se izračunati minimalni odbroj uzorka S, da bi se postiglo merenje date preciznosti δ u vremenu T i u prisustvu pozadinskog zračenja B:

$$S = \frac{1}{\delta \sqrt{T}} + 2 \sqrt{B}/\delta \sqrt{T} \qquad 4.4.$$

Na osnovu rezultata merenja fona u komori (svi kružni otvori zatvoreni olovom) izračunate su granice detekcije za fisione i korozione produkte koji se mogu javiti kao zagadjivači od nuklearnih elektrana, korišćenjem jednačine:

$$A_{m} = \frac{1}{\varepsilon \cdot p_{\gamma}}, \quad \frac{(\delta \sqrt{T})^{1} + 2\sqrt{B}}{\delta \sqrt{T}}$$

9de je: ϵ - efikasnost detektora,

p_y - broj emitovanih gama kvanata po raspadu,

$$\delta' = \sigma_S / S = 1/3$$

B - odbroj fona na mestu datog vrha.

Ovi rezultati su prikazani u tabeli VIII i na grafiku 1.

TABELA VIII - Granice detekcije za fisione i korozione produkte

Izotop	e(keV)	A _m (B _q)	p _y (%)
144	133	0 195	11 1
214 _{Pb}	295	0,105	10.0
214 _{Db}	290	0,24	18,9
125 ₆₁	352	0,12	36,7
50 75	428	0,153	30
Be 103	478	0,47	10,3
125 Ru	497	0,06	86,4
12 Sb	600	0,27	17,9
²¹⁴ Bi	609	0,108	46
Ru	622	0,52	9,8
^{13/} Cs	662	0,06	85
95 _{Zr}	724	0,12	44,2
⁹⁵ Zr	757	0,09	34,6
95 _{Nb}	766	0,05	99,8
¹³⁴ Cs	796	0,067	85,4
²²⁸ Ac	911	0,19	27
²²⁸ Ac	969	0,33	16
⁶⁰ Со	1173	0,067	99,9
60 _{Co}	133 3	0,062	99,9
⁴⁰ к	1461	0,68	10,7

Grafik 1.

4.3. ISPITIVANJE VARIJACIJE FONA

Pri merenju niskih aktivnosti, kao poseban problem javljaju se nepredvidljive i dugoročne varijacije fona. Ove nestatističke promene mogu biti prouzrokovane: varijacijom fluksa kosmičkog zračenja, izotopske frakcionacije u blizini detektora (izdvajanje radioaktivnog gasa radona) i parazitnim električnim impulsima.

Zaštita od ovakvih uticaja može se postići ograničavanjem trajanja vremena merenja, dok u slučaju varijacija koje su prouzrokovane izotopskom frakcionacijom u vidu izdvajanja radioaktivnog gasa radona zaštita se može postići obezbedjenjem ventilacije oko detektora, mada i tada treba očekivati varijacije od nekoliko procenata.

Ovi rezultati su prikazani na grafiku 2. Iz navedenih rezultata ne može se zaključiti da postoje veće vremenske varijacije fona.

5. ZAKLJUČAK

Na osnovu dobijenih rezultata, vidimo da se ovakvim načinom zaštite okoline postiže znatna redukcija u pozadinskom zračenju koja ne potiče od samog materijala zaštite (faktor redukcije linije 40 K $_{\circ}$ 700). Da bi zaštitna komora mogla da primi bez dodatne adaptacije različite detektore i dodatne elemente zaštite komora ima veliku efikasnu zapreminu i masu. Usled toga se u spektru zapaža vrlo intenzivna linija koja potiče od procesa anihilacije. Nedostaci komore kao što je velika količina radona u komori mogu se rešiti obezbedjenjem ventilacije i filtracije vazduha, kao i produvavanjem gasovitog azota. Ovakav način zaštite može se poboljšati dodatnom pasivnom zaštitom detektora unutar komore (elektrolitički bakar) kao i antikoincidentnom zaštitom (NaI detektor).

6, REFERENCE

1. L.Marinkov

Osnovi nuklearne fizike, PMF Novi Sad, 1976.

2. H.Oeschger and M.Wahlen

Physikalisches Institut, Universität Bern, Bern, Switzerland Low level counting techniques, 1975, Ann. Rev. of Nucl. Sci.

3. M.Vesković

Diplomski rad, PMF Novi Sad, 1981.

4. Glenn F. Knoll

Radiation Detection and Measurement, John Wiley & Sons, Inc., 1979.

5. Herbert Inhaber

Physics of the Environment, Ann rbor Science Publishers, Inc. 1978.

6. Adams and Dams

Applied Gamma-ray Spectrometry, Argone, Argone Nat.Lab., 1975.

PRILOG I - RADIOAKTIVNE FAMILIJE

TORIJUMOVA SERIJA

URANIJUMOVA SERIJA

URANAKTINIJUMOVA SERIJA

NEPTUNIEVA SERIJA

(et

24

و چ