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Abstract

The work considers the possibility of determination of the crystallization mech-
anisms in the liquid phase epitaxial growth. On the basis of the components
distribution and their behavior in the liquid phase, established in previous
works, it was investigated how the epitaxial growth occurs in the case of dif-
ferent LPE growth techniques. The approach is based on the investigations of
how the crystal growth rate depends on the cooling rate. It has been shown
that in the case of normal growth mechanism the growth rate depends linearly
on the cooling rate. In the case of screw dislocations growth mechanism this
dependence is parabolic. This approach allows one to clearly distinguish the
normal growth mechanism from that of screw dislocations growth. The two-
dimensional nuclei growth can not be established by this approach. In this
case the mode of the dependence of the growth rate on the cooling rate can not
be derived analytically, which hinders the determination of this crystallization
mechanism.

Key words: liquid phase epitaxy, crystallization mechanisms, LPE growth techniques

1. Introduction

The crystal growth processes are generally classified into two groups: gas phase meth-

ods and liquid phase methods, depending on the phase the transition is carried out.

The most widely used gas phase epitaxial methods are Molecular Beam Epitaxy (MBE),

Metallo-Organic Chemical Vapor Deposition (MOCVD) and Atomic Layer Epitaxy (ALE).

These methods allow one to grow on a large substrate area of many epitaxial layers in only

one process. This is the main advantage of the gas phase epitaxial methods. The main

advantages of the Liquid Phase Epitaxy (LPE) methods are the high quality of the grown

material in scope of structural perfection and electro-physical properties of the layer. Be-

cause of that for some materials oxides, garnets, high temperature superconductors [1-14]

their use is preferable. The growth of very thin layers by LPE is quite possible - layers

with thickness of about 50 − 100 Å are successfully grown [16-19]. Nowadays, there are
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developed LPE methods allowing the growth of layers onto a 3 inches wafer [9]. Concern-

ing the single crystal growth, the liquid phase methods are preferable [13-15]. All of these

circumstances show that the liquid phase growth methods are still very important and

there are many other ways to improve them. Because of that their study and elaboration

are still actual.

Three crystallization mechanisms of crystal growth are known: normal mechanism

of growth, growth by screw dislocations, and growth by two-dimensional nuclei [20-23,

28]. The normal mechanism of growth takes place when onto the phase boundary a

large amount of crystals growth steps is continuously available and the ad-atoms may

incorporate into the crystal almost immediately. If the growth steps are not sufficient,

the growth process can be assisted by the steps of the screw dislocations, permanently

available on the crystal surface. If the above requirements are not fulfilled, then the

crystal growth occurs by formation of two-dimensional nuclei onto the phase boundary.

During migration on the crystal surface the ad-atoms form two-dimensional nuclei, which

serve as crystal growth steps. The different mechanisms of growth in different manner

depend on the supersaturation [20-23, 28].

Depending on the manner of how the supersaturation has been created, there are

different LPE techniques: supercooling technique, equilibrium cooling technique, step

cooling technique and transient cooling technique [11, 24-28]. The last two modes are alike

- the growth temperature is constant and the liquid phase is preliminarily supercooled.

Because of that they will be in the sequel called ‘step cooling technique’.

Starting from the previously established effects [27-31, 34], the aim of the present work

was to find out relations that would allow the determination of the crystal growth mech-

anism. In previous investigations [34] the effect of the initial supersaturation ∆CL
i0 on

the growth rate vgr was discussed with the aim to determine the crystallization mecha-

nism. This approach is applicable only for the step cooling and supercooling techniques.

However, it can not be applied for the equilibrium cooling technique, because no initial

supercooling is needed there.

2. Theory

The case of n-component solid phase grown from n-component liquid phase is con-

sidered. We assume that the evaporation of the liquid phase is negligible. No chemical

reactions and no convective mass transport take place in the liquid phase. The mass of

the components passing from the liquid to the solid phase and forming the epitaxial layer

is dmL
i . This mass is always equal to the mass incorporated into the grown layer dm

S
i :

dmS
i = −dmL

i . The solid phase has a constant composition, determined by the stochiom-

etry of the grown compound. Thus, the change of mass of the components in the liquid

phase correlates exactly with the stochiometry of the grown compound [27-31]:

dmL
i

Migi
=

dmL
j

Mjgj
. (1)

Mi and Mj are the atomic masses of the corresponding components, gi and gj are their

stochiometry coefficients in the grown compound. Equation (1) provides relation between

the changes of the masses dmL
i of the components in the liquid phase within a time interval

dt, and they must strongly correlate with the stochiometry of the grown compound.
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The equilibrium concentration follows closely the temperature of the system:

dCL
i.eq =

dT

ki
=

vTdt

ki
, (2)

where ki is the slope of the liquidus surface with respect to the i-component:

ki = dT/dCL
i.eq.

During the growth, the change of the actual concentration dCL
i of an arbitrary

i-component and the change of the mass dmL
k of the basic k-component within the time

dt correlate as follows [27-31]:

dCL
i =

CL
k

CS
k

³
CS
i − CL

i

´ dmL
k

mL
k

, (3)

where k is an arbitrary component of the system used as basic [27-31]. The notations used

here are introduced in previous works [27-31, 34]. By the subscript “i ” are denoted those

components for which the concentration in the solid phase exceeds the concentration in the

liquid phase: CS
i > CL

i . During the growth, the liquid phase depletes with time in respect

to these components - their concentration CL
i in the liquid phase decreases in consequence

of crystallization [27, 28]. By the subscript “j ” are denoted those components for which

the concentration in the liquid phase exceeds that in the solid phase: CL
i > CS

i . During

the growth, the liquid phase enhances in respect to these components - their concentration

increases in consequence of crystallization.

In the present work, only the case of i-component is considered. Nevertheless, the rela-

tions derived are valid for the j-components. It is worth to be mentioned that in the term

(CS
i −CL

i ) of equation (3) the order of the two concentrations has been changed compared

to that in the previous works [29]. It is so because the decrease of the concentration CL
i

with time has been taken into account previously by a minus sign.

3. Stationary Growth Process

Stationary growth is possible only in the case of equilibrium cooling technique and in

the supercooling technique. In the step cooling technique it is not possible, because of

the peculiarities of the process - the growth takes place at a constant temperature, with

preliminary supercooling, and the process is unsteady all the time.

During stationary growth, the supersaturation above the phase boundary remains

constant. It means that the rise of the supersaturation due to the temperature cooling is

fully compensated for by the crystallization process. In other words, within the time dt,

the decrease of the equilibrium concentration dCL
i.eq due to the cooling (given by equation

(2)) must be fully compensated for by the decrease of the actual concentration dCL
i due to

the layer deposition (given by equation (3)). It is worth to be pointed out that in equation

3 the change of the actual concentration dCL
i depends on the growth rate vgr through the

change of the mass dmL
i : vgr ≈ dmL

i /dt [27, 29]. The equality of both equations ((2) and

(3)) leads to the following relation, valid for the stationary growth regime:

ṽgr =
M0m̃

L
k

γS0Migiki

CS
k

C̃L
k

³
CS
i − C̃L

i

´vT . (4)



4 Nikolay Peev

A linear relation between the growth rate and the cooling rate is observed in case of

stationary growth. By C̃, m̃ and ṽ are denoted the stationary values of the concentration,

of the mass and of the growth rate respectively. Equation (4) coincides exactly with the

expression obtained in another way in [34], concerning the stationary regime of growth.

4. Transient Growth Process

The crystal growth is governed mainly by two processes: 1) the diffusive mass transport

of the components through the volume of the liquid phase, and 2) the surface kinetics of the

atoms adsorbed onto the crystal surface till their incorporation into the crystal (into the

kinks of the crystal edges, available continuously on the phase boundary). The growth rate

is determined by the slower of the two processes. In the case of a diffusion limited growth,

the concentration gradient and the diffusion coefficient determine the growth rate. In the

case of growth limited by the surface kinetics, the rate is determined by the density of the

growth steps (the kinks available along the crystal edges) and by the surface migration

rate of the adsorbed particles.

In some LPE methods, it is not difficult to determine the growth regime. For example,

in the case of temperature gradient zone melting it is well known that for thick zones

the growth rate is determined by the diffusive mass transport and vice versa - the use of

thin zones leads to a kinetics limited growth [32, 35]. In this way, the effect of the zone

thickness l0 on the growth rate vgr provides information about the zone migration regime.

At the beginning of growth, the process is unsteady. If the process starts with pre-

liminary supercooling (∆CL
i0 6= 0), the actual concentration initially (at t = 0) exceeds

greatly the equilibrium one. The initial supercooling enables a growth rate unattainable

for the diffusive mass transport, because just at the beginning the concentration gradient

is almost zero. During this period, the growth rate is much greater than the stationary

one. In the phase boundary region, there is plenty matter to enable a high growth rate

(the actual concentration exceeds much the equilibrium one). Because of that, the diffu-

sive mass transport can not limit the growth rate. During this period, the growth rate

will be limited by the phase boundary kinetics.

If the growth is carried out by equilibrium cooling technique, no initial supercooling

is available: ∆CL
i0 = 0 at t = 0. In consequence of the cooling, the liquid phase becomes

supersaturated and the growth starts. At the beginning, the supersaturation is negligible

- much lower than the stationary one. The growth rate is very slow - for keeping up the

growth process a very slight mass transport is needed. The mass transport does not limit

the growth process and the growth rate is determined by the surface kinetics again.

Hence, during the transient regime the growth is limited by the surface kinetics and,

consequently, it provides information concerning the crystal growth mechanism. Because

of that, the knowledge of how the transient process occurs, is very important.

With this aim, the growth time has been split into very small intervals δt. During

these periods the quantities CL
i , C

L
k , m

L
k , ki, vT , C

L
i.eq are assumed to remain constant.

The end values of the equilibrium and actual concentrations and the growth rate within

the intervals were determined by equations (2) and (3). The obtained end values are used

as initial values for the next step, concerning the next time interval. In this way, the

transient process may be studied.

Firstly, the supercooling technique is considered, because all the others can be derived
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from this technique. The equilibrium cooling technique may be derived from the super-

cooling technique by setting the preliminary super saturation to be zero (∆CL
i0 = 0). The

step cooling technique one may obtain from the supercooling technique at zero cooling

rate (vT = 0).

4.1. Supercooling Technique

In the case of supercooling technique, the liquid phase is initially supersaturated:

∆CL
i (t = 0) = ∆CL

i0 = CL
i0 − CL

i.eq0. Simultaneously with bringing the two phases into

contact (at t = 0) the cooling starts and the growth begins. At the end of the first

interval δt the temperature of the system will be: T (δt) = T0 − vT δt/ki1 (Figure 1). The

equilibrium concentration is lowered to the value CL
i.eq(δt) = CL

i.eq1 = CL
i.eq0 − vT δt/ki1.

In consequence of crystallization, the true concentration of the i-component decreases in

accordance with equation (3):

CL
i (δt) = CL

i1 = CL
i0 − δCL

i1 =

= CL
i0 −

γS0Migi
M0mL

k0

CL
k0

CS
k

³
CS
i − CL

i0

´
vgr1δt.

(5)

For the supersaturation one obtains:

∆CL
i (δt) = ∆CL

i1 = CL
i1 −CL

i.eq1 =

= ∆CL
i0 +

vT δt

ki1
− γS0Migi

M0mL
k0

CL
k0

CS
k

³
CS
i − CL

i0

´
vgr1δt.

(6)

In this case the supersaturation decreases initially to its stationary value ∆CL
i.st and

then remains constant (Figure 1). In equation (6), the growth rate vgr depends also on the

supersaturation ∆CL
i . For the different mechanisms of growth, the growth rate depends

in a different manner on the supersaturation.

Figure 1. Supersaturation versus time for the supercooling technique.
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4.1.1. Normal Growth Mechanism

In this case the growth rate depends on the supersaturation linearly:

vgr = μ”i∆T = μ”iki∆C
L
i . (7)

∆CL
i is the supersaturation just above the phase boundary, which determines the growth

rate. By equations (6) and (7) one obtains the value of ∆CL
i1:

∆CL
i1 =

Ai1

1 +Bi1
=

∆CL
i0 +

vT δt

ki1

1 +
γS0Migi
M0mL

k0

CL
k0

CS
k

³
CS
i − CL

i0

´
μ”i1ki1δt

,

Ai1 = ∆C
L
i0 +

vT δt

ki1
; Bi1 =

γS0Migi
M0mL

k0

CL
k0

CS
k

³
CS
i −CL

i0

´
μ”i1ki1δt.

(8)

Using the value of ∆CL
i1 from equation (8) one determines the true concentration at

t = δt. It is the initial value for the next time interval. In the same way one may
investigate the system in the time interval t ∈ (δt, 2δt). For the n-th interval δt (at
t = nδt) one obtains:

∆CL
in =

Ain

1 +Bin
=

∆CL
in−1 +

vT δt

kin

1 +
γS0Migi
M0mL

kn−1

CL
kn−1
CS
k

³
CS
i − CL

in−1
´
μ”inkinδt

,

Ain = ∆C
L
i0 +

nX
j=1

vT δt

kij
−

n−1X
j=1

γS0Migi
M0mL

kj−1

CL
kj−1
CS
k

³
CS
i − CL

ij−1
´
μ”ijkij∆C

L
ijδt =

= ∆CL
in−1 +

vT δt

kin
;

Bin =
γS0Migi
M0mL

kn−1

CL
kn−1
CS
k

³
CS
i −CL

in−1
´
μ”inkinδt.

(9)

During the n-th interval the regime of transient growth is up (as shown on Figure 1),
the system goes over to stationary growth. Then the equality ∆CL

in−1 = ∆C
L
in must

be valid, and from equations (7) and (9) follows exactly equation (4), holding for the
stationary growth.

4.1.2. Screw Dislocations Growth Mechanism

In this case the growth rate depends by a quadratic relation on the supersaturation
[20, 32, 35]:

vgr = μik
2
i

³
∆CL

i

´2
. (10)

By expressions (10) and (6) one obtains a quadratic equation concerning the supersat-
uration ∆CL

i1:
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Hi1∆C
L
i1
2
+∆CL

i1 −
µ
∆CL

i0 +
vT δt

ki1

¶
= 0,

Hi1 =
γS0Migi
M0mL

k0

CL
k0

CS
k

³
CS
i − CL

i0

´
μi1k

2
i1δt.

(11)

The value of the supersaturation at the end of the time interval is as follows:

∆CL
i1 =

"
−1 +

s
1 + 4Hi1

µ
∆CL

i0 +
vT δt

ki1

¶#
1

2Hi1
. (12)

The next time intervals are treated in a similar way. For the n-th interval one obtains
the expression:

Hin∆C
L
in
2
+∆CL

in −
µ
∆CL

in−1 +
vT δt

kin

¶
= 0,

∆CL
in =

"
−1 +

s
1 + 4Hin

µ
∆CL

in−1 +
vT δt

kin

¶#
1

2Hin
.

(13)

Hin =
γS0Migi
M0mL

kn−1

CL
kn−1
CS
k

³
CS
i −CL

in−1
´
μink

2
inδt. (14)

In the case of stationary growth (∆CL
in−1 ≡ ∆CL

in), from equation (13) one obtains

again equation (4), by taking into account equation (10).

4.1.3. Two-dimensional Nuclei Growth

In the case of two-dimensional nuclei growth the growth rate depends on the super-

cooling by an exponential relation [32, 35]:

vgr = μ0exp

Ã
πλσ2slvTT

kB∆HTeq∆T

!
. (15)

μ0 is the kinetic coefficient, characterizing the processes of two-dimensional nuclei forma-
tion, taking place on the phase boundary. λ is the elementary jump of the particles toward

the crystal surface within the interface region. The particle adsorbs onto the crystal sur-

face and migrating over it, forms with the other particles a two-dimensional nucleus. σsl is

the surface tension at the phase boundary liquid-solid, vT is the cooling rate, T , Teq, ∆T

are the true temperature, the equilibrium temperature and the supercooling respectively:

(Teq = T + ∆T ). ∆H is the value of the enthalpy of the phase transition that takes

place,and kB is the Boltzmann constant. Equation (15) can be rewritten in the following
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form:

vgr = μ0exp
µ
A

T

¶
exp

µ
− A

∆T

¶
,

A =
πλσ2slvT
kB∆H

.

(16)

At the end of the first time interval the value of the equilibrium concentration will

be: CL
i.eq(δt) = CL

i.eq1 = CL
i.eq0 − vT δt/ki1. The values of the actual concentration and the

supersaturation are given by equations (5) and (6). By equations (6) and (16) one obtains

the supersaturation ∆CL
i1:

∆CL
i1 = ∆CL

i0 +
vT δt

ki1
− γS0Migi

M0mL
k0

CL
k0

CS
k

³
CS
i − CL

i0

´
μ0i1exp

µ
A

T0

¶
exp

Ã
− A

ki1∆CL
i1

!
δt =

= B1i1 −B1i2exp

Ã
− A

ki1∆CL
i1

!
,

B1i1 = ∆C
L
i0 +

vT δt

ki1
,

B1i2 =
γS0Migi
M0mL

k0

CL
k0

CS
k

³
CS
i − CL

i0

´
μ0i1exp

µ
A

T0

¶
δt,

f1 ≡ ∆CL
i1 = B1i1 −B1i2exp

Ã
− A

ki1∆CL
i1

!
≡ f2.

(17)

In equation (17), T0 is the initial value of the temperature. The epitaxial process usually

occurs in a very small temperature interval, and because of that the quantities before the

exponent may be considered as constants. Equation (17) may be solved in a graphic way.

The point of intersection of the two functions f1 and f2 provides the value of ∆C
L
i1.

During the n-th δt-time interval the supersaturation is ∆CL
in:

∆CL
i (nδt) = ∆C

L
in = CL

i (nδt)− CL
i.eq(nδt) = Bn

i1 −Bn
i2exp

Ã
− A

kin∆CL
in

!
,

Bn
i1 = ∆C

L
i0 +

nX
j=1

vT δt

kij
−

−
n−1X
j=1

γS0Migi
M0mL

kj−1

CL
kj−1
CS
k

³
CS
i − CL

ij−1
´
δtμ0ijexp

µ
A

T0 − (j − 1)vT δt

¶
exp

Ã
− A

k∆CL
ij

!
,

Bn
i2 =

γS0Migi
M0mL

kn−1

CL
kn−1
CS
k

³
CS
i − CL

in−1
´
δtμ0inexp

µ
A

T0 − (n− 1)vT δt

¶
.

(18)

In the case of stationary growth, from equation (18) follows exactly equation (4), by

taking into account equation (16). In all the next considerations equation (4) follows

exactly, so that this fact will not be pointed out explicitly.
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4.2. Equilibrium Cooling Technique

The crystal growth by this technique occurs at very small deviations from equilibrium -

at the onset the true concentration is equal to the equilibrium one: CL
i.eq0 = CL

i0 and∆C
L
i0 =

CL
i0−CL

i.eq0 = 0. At t = 0 starts the cooling and the growth begins - in consequence of the

cooling a supersaturation arises. The supersaturation increases with time continuously

(Figure 2) - this is the transient growth regime. At the end of the transient growth, the

supersaturation and the growth rate stop to increase and remain almost constant.

Figure 2. Supersaturation versus time for the equilibrium cooling technique.

By setting to zero the initial supersaturation (∆CL
i0 = 0), this epitaxial technique can

be derived from the expressions of the supersaturation technique. Expressions for the

equilibrium concentration, for the actual concentration and for the supersaturation are

given below (equation (19)):

CL
i.eq(δt) = CL

i.eq1 = Ci.eq0 −
vT δt

ki1
,

CL
i (δt) = CL

i1 = CL
i0 − δCL

i1 = CL
i0 −

γS0Migi
M0mL

k0

CL
k0

CS
k

³
CS
i − CL

i0

´
vgr1δt,

∆CL
i (δt) = ∆CL

i1 = CL
i1 − CL

i.eq1 =
vT δt

ki1
− γS0Migi

M0mL
k0

CL
k0

CS
k

³
CS
i −CL

i0

´
vgr1δt.

(19)

At ∆CL
i0 = 0 equations (6) and (7) coincide exactly with equations (19).

4.2.1. Normal Growth Mechanism

In this case the growth rate changes linearly with the supersaturation as already men-

tioned (equation (7)). By substituting equation (7) in (19) one obtains the value of the

supersaturation ∆CL
i1 at the end of the first time interval t = δt:
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∆CL
i1 =

vT δt

ki1
− γS0Migi

M0mL
k0

CL
k0

CS
k

³
CS
i − CL

i0

´
μ”i1ki1∆C

L
i1δt = A0i1 −B0i1∆C

L
i1,

∆CL
i1 =

A0i1
1 +B0i1

,

A0i1 =
vT δt

ki1
= Ai1 −∆CL

i0,

B0i1 = Bi1.

(20)

The last equation follows exactly from equation (8) at ∆CL
i0 = 0. The value of ∆C

L
i1

allows the determination of the value of the true concentration. In this way, step by

step one may examine the transient growth regime. For the n-th period one obtains the

expression:

∆CL
in =

A0in
1 +B0in

=
∆CL

in−1 +
vT δt

kin

1 +
γS0Migi
M0mL

kn−1

CL
kn−1
CS
k

³
CS
i −CL

in−1
´
μ”inkinδt

,

A0in =
nX

j=1

vT δt

kij
−

n−1X
j=1

γS0Migi
M0mL

kj−1

CL
kj−1
CS
k

³
CS
i − CL

ij−1
´
μ”ijkij∆C

L
ijδt,

B0in =
γS0Migi
M0mL

kn−1

CL
kn−1
CS
k

³
CS
i −CL

in−1
´
μ”inkinδt ≡ Bin.

(21)

4.2.2. Screw Dislocations Growth Mechanism

With the aid of equations (10) and (21) one obtains a quadratic equation concerning

the supersaturation:

∆CL
i1 =

vT δt

ki1
− γS0Migi

M0mL
k0

CL
k0

CS
k

³
CS
i − CL

i0

´
μi1k

2
i1∆C

L
i1
2
δt =

=
vT δt

ki1
−Hi1∆C

L
i1
2
.

(22)

The solution of the quadratic equation provides the value of ∆CL
i1:

∆CL
i1 =

Ã
−1 +

s
1 + 4Hi1

vT δt

ki1

!
1

2Hi1
. (23)

This is in fact equation (12) at no initial supersaturation: ∆CL
i0 = 0. For the super-

saturation during the n-th time interval one obtains the expression:
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∆CL
in = vT δt

nX
j=1

1

kij
− γS0Migi

M0

nX
j=1

CL
kj−1
CS
k

³
CS
i − CL

ij−1
´ μj
mL

kj−1

⎡⎣ jX
l=1

kil∆C
L
il

⎤⎦2 δt =
= ∆CL

in−1 +
vT δt

kin
− γS0Migi

M0mL
kn−1

CL
kn−1
CS
k

³
CS
i −CL

in−1
´
μn

"
nX
l=1

kil∆C
L
il

#2
δt

Hin∆C
L
in
2
+Gin∆C

L
in −Din = 0,

(24)

where

Din = vT δt
nX

j=1

1

kij
− γS0Migi

M0

n−1X
j=1

CL
kj−1
CS
k

³
CS
i − CL

ij−1
´ μj
mL

kj−1

⎡⎣ jX
l=1

kilδ
³
∆CL

il

´⎤⎦2 δt−
− γS0Migi

M0

CL
kn−1
CS
k

³
CS
i − CL

in−1
´ μn
mL

kn−1

⎡⎣n−1X
j=1

kijδ
³
∆CL

ij

´⎤⎦2 δt,
Hin =

γS0Migi
M0mL

kn−1

CL
kn−1
CS
k

³
CS
i −CL

in−1
´
μnk

2
inδt,

Gin = 1 + 2
γS0Migi
M0mL

kn−1

CL
kn−1
CS
k

³
CS
i − CL

in−1
´
μnkin

n−1X
j=1

kijδ
³
∆CL

ij

´
δt,

∆CL
in =

1

2Hin

µ
−Gin +

q
G2in + 4DinHin

¶
.

(25)

4.2.3. Two-dimensional Nuclei Growth

The relation between the growth rate and the supersaturation in this case is provided

by equation (16). Substituting it into equation (19) one obtains expression for the super-

saturation:

∆CL
i1 =

vT δt

ki0
− γS0Migi

M0mL
k0

CL
k0

³
CS
i − CL

i0

´
CS
k

μ0exp
µ
A

T0

¶
exp

Ã
− A

ki1∆CL
i1

!
δt. (26)

The last equation may be solved graphically as already mentioned.

f11 = ∆CL
i1 = B1

0
i1 −B1

0
i2 exp

Ã
− A

ki1∆CL
i1

!
≡ f21,

f11 = ∆C
L
i1; f21 = B1

0
i1 −B1

0
i2 exp

Ã
− A

ki1∆CL
i1

!
,

B1
0

i1 =
vT δt

ki1
= B1i1 −∆CL

i0,

B1
0

i2 =
γS0Migi
M0mL

k0

CL
k0

³
CS
i − CL

i0

´
δt

CS
k

μ0i1exp
µ
A

T0

¶
≡ B1i2.

(27)
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For the n-th time interval one obtains respectively:

f1n ≡ ∆CL
in = Bn0

i1 −Bn0
i2 exp

⎛⎜⎜⎜⎝− A
nP

j=1
kij∆CL

ij

⎞⎟⎟⎟⎠ ≡ f2n,

Bn0
i1 = ∆C

L
in−1 +

vT δt

kin
,

Bn0
i2 =

γS0Migi
M0mL

kn−1

CL
kn−1

³
CS
i − CL

in−1
´
δt

CS
k

μ0inexp
µ

A

T0 − (n− 1)vT δt

¶
.

(28)

4.3. Step Cooling Technique

Before the growth is to start, the solid and the liquid phases are not in contact with each

other. The liquid phase is supersaturated in respect to the solid phase: ∆T0 = ki∆C
L
i0.

Due to the preliminary supersaturation the growth process starts immediately with the

contact between the two phases. The growth occurs at constant temperature. The sta-

tionary growth is not possible in this technique - the process is unsteady. The growth rate

and the supersaturation change continuously with time, tending to zero (Figures 3-1 and

3-2).

Figure 3-1. Concentration versus time for
the step cooling technique.

Figure 3-2. Supersaturation versus time for
the step cooling technique.

If the contact between the two phases is long enough, the growth process terminates and

the phases come to equilibrium. During the entire process, the equilibrium concentration

remains constant (because of the constant temperature). Consequently, the change of the

supersaturation is equal to the change of the true concentration: δCL
i ≡ δ(∆CL

i ):

CL
i.eq(t) = CL

i0 −∆CL
i0 = CL

i.eq0 = const. (29)
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CL
i1 = CL

i0 − δCL
i1 = CL

i0 −
γS0Migi
M0mL

k0

CL
k0

CS
k

³
CS
i −CL

i0

´
vgr1δt. (30)

The value of the supersaturation at the same time will be as follows:

∆CL
i (δt) = ∆C

L
i1 = CL

i1 − CL
i.eq = ∆C

L
i0 −

γS0Migi
M0mL

k0

CL
k0

CS
k

³
CS
i − CL

i0

´
vgr1δt. (31)

Relations for the step cooling technique may be obtained from the corresponding rela-

tions of the supercooling technique by setting the cooling rate to be equal to zero: vT = 0.

4.3.1. Normal Growth Mechanism

Using equations (7) and (31), one obtains a linear expression concerning the supersat-

uration:

∆CL
i (δt) = ∆CL

i1 = ∆C
L
i0 −

γS0Migi
M0mL

k0

CL
k0

CS
k

³
CS
i −CL

i0

´
μ”i1ki1∆C

L
i1δt,

∆CL
i1 =

∆CL
i0

1 +
γS0Migi
M0mL

k0

CL
k0

CS
k

³
CS
i − CL

i0

´
μ”i1ki1δt

.
(32)

For the n-th interval one obtains:

∆CL
in = ∆CL

in−1 −
γS0Migi
M0mL

kn−1

CL
kn−1
CS
k

³
CS
i − CL

in−1
´
μ”inkin∆C

L
inδt,

∆CL
in =

∆CL
in−1

1 +
γS0Migi
M0mL

kn−1

CL
kn−1
CS
k

³
CS
i − CL

in−1
´
μ”inkinδt

.
(33)

Equations (32) and (33) follow exactly from equations (8) and (9) at vT = 0.

4.3.2. Screw Dislocations Growth Mechanism

By equations (10) and (31) one obtains the corresponding relations:
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δCL
i1 = δ

³
∆CL

i1

´
=

γS0Migi
M0mL

k0

CL
k0

CS
k

³
CS
i −CL

i0

´
vgr1δt =

=
γS0Migi
M0mL

k0

CL
k0

CS
k

³
CS
i − CL

i0

´
μik

2
i1

h
∆CL

i0 − δ
³
∆CL

i1

´i2
δt =

= Hi1

h
∆CL

i0 − δ
³
∆CL

i1

´i2
,

Hi1

h
∆CL

i0 − δ
³
∆CL

i1

´i2
+
h
∆CL

i0 − δ
³
∆CL

i1

´i
−∆CL

i0 = 0.

(34)

From the quadratic equation (34) one obtains the value of the supersaturation:

∆CL
i0 − δCL

i1 =
1

2Hi1

∙
−1 +

³
1 + 4Hi1∆C

L
i0

´1/2¸
. (35)

For the n-th interval, the value of the supersaturation is as follows:

∆CL
i0 −

nX
j=1

δ
³
∆CL

ij

´
= ∆CL

in =

=
1

2Hin

⎧⎪⎨⎪⎩−1 +
⎡⎣1 + 4Hin

⎛⎝∆CL
i0 −

n−1X
j=1

δ
³
∆CL

ij

´⎞⎠⎤⎦1/2
⎫⎪⎬⎪⎭ .

(36)

4.3.3. Two-dimensional Nuclei Growth

In this case equations (16) and (31) provide the expression:

∆CL
i (δt) ≡ ∆CL

i1 = CL
i1 − CL

i.eq0 = ∆C
L
i0 − δCL

i1 =

= ∆CL
i0 −

γS0Migi
M0mL

k0

CL
k0

CS
k

³
CS
i − CL

i0

´
vgr1δt =

= ∆CL
i0 −

γS0Migi
M0mL

k0

CL
k0

CS
k

³
CS
i − CL

i0

´
μ0i1δtexp

µ
A

T0

¶
exp

Ã
− A

ki1∆CL
i1

!
.

(37)

The supersaturation is determined graphically. For the n-th interval: t ∈ [(n−1)δt, nδt]
one obtains:

∆CL
in = Bn”

i1 −Bn”
i2 exp

Ã
− A

kin∆CL
in

!
,

Bn”
i1 = ∆C

L
i0 −

n−1X
j=1

γS0Migi
M0mL

kj−1

CL
kj−1
CS
k

³
CS
i − CL

ij−1
´
μ0ijδtexp

µ
A

T0

¶
exp

Ã
− A

kij∆CL
ij

!
,

Bn”
i2 =

γS0Migi
M0mL

kn−1

CL
kn−1
CS
k

³
CS
i − CL

in−1
´
μ0inδtexp

µ
A

T0

¶
.

(38)
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5. Discussion

These considerations allow one to distinguish the normal growth mechanism from the

screw dislocations growth mechanism. For this purpose, the knowledge of the function

vgr(vT ) is needed. The effect of the cooling rate vT on the growth rate vgr is substantially

different for the two growth mechanisms. The effect depends on the used growth technique.

In the case of two-dimensional nuclei growth the function vgr(vT ) in analytic form is

unknown - the problem is solved graphically. This circumstance hinders the determination

of this mechanism of growth.

In the case of normal growth mechanism, the growth rate increases with the cooling

rate linearly in any of the growth techniques. In the case of supercooling technique, by

substituting the value of the supersaturation ∆CL
i1 from equation (8) into equation (7) for

the growth rate one obtains:

vgr = μ”i1ki1∆C
L
i =

∆CL
i0 +

vT δt

ki1

1 +
γS0Migi
M0mL

k0

CL
k0

CS
k

³
CS
i − CL

i0

´
μ”i1ki1δt

μ”i1ki1. (39)

Relation vgr − vT is obviously linear (Figure 4).

Figure 4. Growth rate vgr versus cooling rate vT in the case of normal growth mechanism by
supercooling technique .

Last equation allows the determination of the initial growth rate vgr0 at vT → 0 and

the slope of the curve: dvgr/dvT = tanα.

tanα =
μ”i1δt

1 +
γS0Migi
M0mL

k0

CL
k0

CS
k

³
CS
i − CL

i0

´
μ”i1ki1δt

=
M0m̃

L
kn−1

γS0Migikin

CS
k

C̃L
kn−1

³
CS
i − C̃L

in−1
´ .

(40)
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vgr0 =
μ”i1ki1∆C

L
i0

1 +
γS0Migi
M0mL

k0

CL
k0

CS
k

³
CS
i − CL

i0

´
μ”i1ki1δt

.
(41)

At small values of the cooling rate, the growth rate is determined by the initial su-

persaturation ∆CL
i0, as expected. The quantities ∆C

L
i0 and δt are as a rule well known,

the ratio vgr0/ tanα provides the slope of the liquidus surface ki1 with respect to the

i-component: vgr0/ tanα = ki1∆C
L
i0/δt.

In the case of normal mechanism of growth realized by equilibrium cooling technique

the relation vgr(vT ) is linear again (Figure 5). Substituting equation (20) into (7), one

obtains the relation between the growth rate and the cooling rate:

vgr = μ”i1ki1∆C
L
i1 =

μ”i1vT δt

1 +
γS0Migi
M0mL

k0

CL
k0

CS
k

³
CS
i − CL

i0

´
μ”i1ki1δt

.
(42)

Figure 5. The effect of the cooling rate vT on the growth rate vgr in case of normal growth
mechanism by equilibrium cooling technique.

The function vgr(vT ) in the coordinates vgr − vT is linear. The point (vgr = vT = 0)

belongs to the function, because no initial supersaturation is available. Equation (42) may

be derived from equation (39) at ∆CL
i0 = 0. The slope of the line dvgr/dvT = tanα from

Figure 5, obtained from equation (42), is the same as the slope of the line from equation

(40).

In the case of screw dislocations growth mechanism the situation is substantially differ-

ent. For the supercooling technique, from equations (12) and (10) one obtains the relation

vgr(vT ). In general, it has the form:

vgr1 = μi1k
2
i1∆C

L
i1
2
= A(1) +B(1)vT −

q
C(1)

2
+D(1)vT . (43)
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At vT
∗ = [(D(1)/2B(1))2 − C(1)2]/D(1) = −ki1∆CL

i0/δt there is a minimum (Figure

6). This minimum is devoid of sense, because a negative value of the cooling rate vT
∗ is

impossible - in an epitaxial process it would mean that no cooling but a heating takes

place.

In this case the function vgr(vT ) is parabolic at low values of the cooling rate. At high

values of the cooling rate the function vgr(vT ) is linear. Using equation (43), one may

obtain the parameters vgr0, α1 and α2, shown in Figure 6.

Figure 6. Growth rate versus cooling rate for the case of screw dislocations growth mechanism
using the supercooling technique.

vgr0 = A(1) − C(1) =
μi1k

2
i1

2H2
i1

∙³
1 + 2Hi1∆C

L
i0

´
−
³
1 + 4Hi1∆C

L
i0

´1/2¸
,

(dvgr/dvT )vT→∞ = tanα2 = B(1) =
μi1ki1δt

Hi1
,

(dvgr/dvT )vT→0 = tanα1 = B(1) − D(1)

2
√
C(1)

=
[(∆i1 − 1)/∆i1]μi1ki1δt

Hi1
,

(44)

where ∆i1 =
q
1 + 4Hi1∆CL

i0 and Hi1 =
γS0Migi
M0mL

k0

CL
k0

CS
k

³
CS
i − CL

i0

´
μi1k

2
i1δt (equation (12)).

The initial growth rate vgr0 depends on the initial supersaturation ∆C
L
i0 reasonably. By

the quantities CL
i0, C

L
k0 and mL

k0 it depends also on the process temperature and on the

slope of the liquidus surface ki in respect to the i-component. By the kinetic coefficient

μi the initial growth rate vgr0 depends on the process of ad-atoms surface migration.

An analogous situation arises in the case of equilibrium cooling technique. By sub-

stituting the supersaturation ∆CL
i1 from equation (23) into equation (10) one obtains the

relation vgr(vT ) for the case of equilibrium cooling technique and screw dislocations growth

mechanism.

vgr1 = μi1k
2
i1∆C

L
i1
2
= A(0) +B(0)vT −

q
A(0)

2
+D(0)vT . (45)
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It is again a parabolic relation with minimum at vgr = vT = 0 (Figure 7). The

parabolic relation is observed at low values of the cooling rate (vT → 0). At high values

of the cooling rate this dependence is linear again. Using equation (45), the slope of the

curve at large values of the cooling rate one may determine:

tanα = (dvgr/dvT ) ≈ B(0) =
μi1ki1δt

Hi1
. (46)

The last relation is the same as in the case shown on Figure 6 (eq. (44)): dvgr/dvT =

tanα2.

Relation vgr(vT ) in the case of two-dimensional nuclei growth is unknown, because the

problem is solved graphically. Because of that, this growth mechanism can not be revealed

clearly (in an analytical form).

Figure 7. Relation vgr(vT ) in the case of screw dislocations mechanism of growth
using equilibrium cooling technique.

Relation vgr(vT ) may be established experimentally. In all the experiments the initial

temperature T0, the area of the grown layer, the thickness of the liquid phase above the

substrate, the duration of the process δt, must remain constant. The cooling rate only

must be changed in these experiments. Of special importance in these experiments is the

region of low values of the cooling rate: vT → 0. This way only, one may establish the

availability of a parabolic relation between the growth rate and the cooling rate.

In previous work [34] it has been demonstrated the possibility of determining the

crystallization mechanism in an LPE process by the relation vgr −∆CL
i0. In the case of

screw dislocations growth mechanism this relation provides a sigmoidal form, while in the

case of normal growth mechanism it is linear. Hence, using the relation vgr(∆C
L
i0) one may

determine the crystal growth mechanism in all the cases in which the crystal growth starts

by an initial supersaturation (∆CL
i0 6= 0) - these are the step cooling technique and the

supercooling technique. By the equilibrium cooling technique this approach is not usable

(∆CL
i0 = 0).
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The present work has demonstrated the possibility of determining the crystallization

mechanism by the relation vgr(vT ). In the case of screw dislocation growth this relation

is parabolic at low values of the cooling rate. In the case of normal growth, it is linear.

Therefore, this approach allows the determination of the crystallization mechanism in all

the cases in which the crystal growth is caused by temperature cooling (vT 6= 0) - these
are the supercooling technique and the equilibrium cooling technique. This approach is

not usable in the case of step cooling technique (vT = 0).

6. Conclusion

The objective of the present work was to discuss the possibility of determining the

crystallization mechanisms in the case of all the three liquid phase epitaxy techniques,

used in the practice - the step cooling technique, the supercooling technique and the

equilibrium cooling technique. For these purposes the transient growth process has been

investigated. It has been shown that the use of the relation vgr(vT ) allows one to determine

the crystallization mechanism and make clear distinction between the two crystal growth

mechanisms - the normal growth and by the screw dislocations assisted growth. In the

case of linear relation between the growth rate vgr and the cooling rate vT , a normal

growth mechanism takes place. If this relation is parabolic, a screw dislocations growth

mechanism is involved. One must point out that this parabolic relation may be observed

only at low cooling rates - at large values of the cooling rate the relation vgr(vT ) is linear

again. By this approach one may not reveal the two-dimensional nuclei growth mechanism

- the equations obtained here can not be solved analytically but graphically, which hinders

one to reveal the relation vgr(vT ) in an analytical form. It is worth to be pointed out that

the supersaturation above the phase boundary increases with increasing cooling rate -

equations (9), (12), (22) and (25). Large values of the supersaturation may cause the

occurrence of three-dimensional nuclei in the volume of the liquid phase. These nuclei will

substantially reduce the growth rate of the epitaxial layer on the substrate, and herewith

the shape of the curve vgr(vT ) may prove to be different.
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Abstract

We derive ground state wave functions of superconducting instabilities on the
honeycomb lattice induced by nearest-neighbor attractive interactions. They
reflect the Dirac nature of electrons in the low-energy limit. For the order
parameter that is the same irrespective of the direction to any of the nearest
neighbors we find weak pairing (slowly decaying) behavior in the orbital part
of the Cooper pair with no angular dependence. At the neutrality point, in the
spin-singlet case, we recover a strong pairing behavior.

1. Introduction

The advent of graphene [1] opened a door for exploration of new phenomena in two-
dimensional Dirac-like condensed matter systems. One of the intriguing questions is con-
cerned with superconducting correlations of electrons on the honeycomb lattice system.
Superconductivity has been induced in short graphene samples through proximity effect
with superconducting contacts [2]. This indicates that Cooper pairs can propagate coher-
ently in th graphene. In principle, superconductivity on the graphene honeycomb lattice
can be induced by short-range attractive interactions and explorations of allowed possibil-
ities were given in [3, 4, 5]. Among the most interesting is the so-called p+ ip supercon-
ducting instability introduced in [3]. It is supported by the most natural nearest-neighbor
attractive interaction and have distinct features of the Dirac electrons. Later, it has been
shown [5], by a restricted (low-energy) analysis, that this state may be less energetically
favorable with respect to Kekule-like order parameter arrangements. Nevertheless, the
p+ ip instability seems, though an exotic state, a very attractive possibility because of its
underlying symmetry of the order parameter, the same as for Pfaffian quantum Hall state
[6] or p+ip spinless superconductor [7]. The latter systems support non-Abelian statistics,
which is at the heart of the idea of the topological computing [8]. There is an important
difference between these states and the proposed graphene state. The superconducting
instability in graphene does not break time-reversal symmetry and those systems do. Due
to the valley degeneracy we effectively have two (p±ip) order parameters and this requires
additional understanding of intertwined correlations and underlying symmetries. One way,
just as in the Pfaffian state [7], is to look for the ground state wave function and recognize
the structures and symmetries.
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In this paper we derive an effective (long-distance) expression for the ground state
wave function of the p + ip spin-singlet instability described in Ref. 3 and display the
pertinent symmetries in this case. Also, a spinless case will be discussed. We will use the
BCS mean-field formalism. In the following section we will set up the BCS formalism,
solve the Bogoliubov - de Gennes (BdG) equations and find the expression for the ground
state wave functions. The last section is devoted to conclusions.

2. Superconductivity on honeycomb lattice and its ground states

The Hamiltonian for free electrons on the honeycomb lattice is

H0 = −t
X
hiji

X
σ=↑,↓

(a†i,σbj,σ + h.c.)− μ
X
i

n̂i, (1)

where t is the hopping energy between nearest neighbor C (carbon) atoms, ai,σ(a
†
i,σ) is

the on-site annihilation (creation) operator for electrons in the sublattice A with spin

σ =↑, ↓, and bi,σ(b
†
i,σ) for sublattice B, n̂i is the on-site number operator, and μ is the

graphene chemical potential. We use units such that h̄ = 1. Diagonalization of Eq.(1)
leads to a spectrum given by: k

= ±t|S(k)|, where k is the two-dimensional momentum,
and S(k) =

P
δ
exp{ikδ} with δ’s defined as δ1 = a(0, 1/

√
3), δ2 = a/2(1,−1/

√
3), and

δ3 = a/2(−1,−1/
√
3), and a =

√
3 acc, acc is the distance between C atoms and a is

the next to nearest neighbor distance. At the corners of the hexagonal Brillouin zone,
K± = (2π)/a(2/3, 0), we have S(K± + k) ≈ ∓a

√
3/2(kx ∓ iky), and the band has the

shape of a Dirac cone: (K± + k) = ±vF |k|, where vF = (
√
3at)/2 is the Fermi-Dirac

velocity.
For the sake of simplicity we will consider only nearest-neighbor attractive interac-

tions among electrons. The on-site repulsive interactions can be introduced and will not
change our conclusions. Therefore the complete Hamiltonian will include nearest-neighbor
interactions as follows,

HI = g
X
hiji

X
σ,σ0

a†i,σai,σb
†
j,σ0

bj,σ0 , (2)

where g < 0. We will assume the spin-singlet pairing among nearest-neighbors and apply
the BCS ansatz with ∆ij = hai,↓bj,↑ − ai,↑bj,↓i, the superconducting order parameter.
Furthermore we assume one and the same ∆ij = ∆ for all nearest neighbors, which, due
to global gauge (U(1)) transformations on a’s and b’s, can be chosen real and positive.
The interaction part, HI , becomes

H̃BCS = {g
X
hiji
∆(a†i,↑b

†
j,↓ − a†i,↓b

†
j,↑) + h.c.}− 3g|∆|2. (3)

The order parameter in the momentum space is

∆
k
=
X
hiji
∆ exp{ik(i− j)} = ∆

X
δ

exp{ikδ} = ∆S(k). (4)

Therefore nearK points∆K±+k
∼ ∓(kx∓iky), which then describes two p-wave like super-

conducting order parameters in a low effective description. The complete BCS Hamiltonian
can be now cast in the following form in the momentum space,
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HBCS =
X
k

φ†
k
M

k
φ
k
, (5)

where

φ†
k
= (a†

k↑, b
†
k↑a−k↓, b−k↓), (6)

with defined a
kσ
=
P

i aiσ exp{ik i} and b
kσ
=
P

i biσ exp{ik i}, and, with g∆ ≡ ∆ for
short,

M
k
=

⎡⎢⎢⎢⎢⎣
−μ −tS(k) 0 ∆S(k)

−tS∗(k) −μ ∆S(−k) 0

0 ∆S∗(−k) μ tS(k)

∆S∗(k) 0 tS∗(k) μ

⎤⎥⎥⎥⎥⎦ .
We look for the solution in the form of a diagonalized Bogoliubov BCS Hamiltonian,

HBCS =
X

k,γ=±

ωα
k,γ

α†
k,γ

α
k,γ
+

X
k,γ=±

ωβ
k,γ

β†
k,γ

β
k,γ
+E0, (7)

where α
k,γ
and β

k,γ
, γ = ± are new quasiparticles at momentum k. For the dispersions

we have:

ωα
k,γ
= γωα

k
and ωβ

k,γ
= γωβ

k
, (8)

where γ = ±. We define a general solution α as

α
k
= u

k,↑ak,↑ + v
k,↑bk,↑ + u

k,↓a
†
−k,↓ + v

k,↓b
†
−k,↓. (9)

Next we have to solve the Bogoliubov - de Gennes (BdG) equations, which follow from
the following condition,

[αk,HBCS] = Eαk. (10)

From this matrix eigenvalue problem we obtain energies of the Bogoliubov quasiparticles,

ωp
k
= ±

q
(vF |S(k)|+ pμ)2 + |∆S(k)|2, (11)

where ± stands for the particle and hole branches respectively for two kinds of excitations
p = −1(α) and p = +1(β). For μ = 0 the system is gapless and we need a coupling g
larger than a critical value for the superconducting instability to exist [3]. This can be
found considering in the BCS formalism the consistency or gap equation.

For each valley we have to solve the Bogoliubov problem using the expansion
S(K± + k) ≈ ∓a

√
3/2(kx ∓ iky). Near K+ we need to diagonalize the following matrix,

M∗
k
, that comes out from Eq. (10):⎡⎢⎢⎢⎣

−μ vFk 0 sk
vFk

∗ −μ sk∗ 0
0 sk μ −vFk
sk∗ 0 −vFk∗ μ

⎤⎥⎥⎥⎦ ,
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where s = s∗ = −∆a
√
3/2 > 0. Its eigenvectors (after normalization) enter the following

expressions for Bogoliubov quasiparticles:

α
k,+

=
1

2
p
Eα[Eα − (μ− vF |k|)]

{[Eα − (μ− vFk)](

s
k

k∗
a+↑ + b+↑) +

+ s|k|(
s

k

k∗
a†−↓ + b†−↓)}, (12)

and

β
k,+

=
1

2
q
Eβ[Eβ − (μ+ vF |k|)]

{[Eβ − (μ+ vFk)](

s
k

k∗
a+↑ − b+↑)−

− s|k|(
s

k

k∗
a†−↓ − b†−↓)}, (13)

and quasiholes:

α
k,− =

1

2
p
Eα[Eα + (μ− vF |k|)]

{−[Eα + (μ− vFk)](

s
k

k∗
a+↑ + b+↑) +

+ s|k|(
s

k

k∗
a†−↓ + b†−↓)}, (14)

and

βk,− =
1

2
q
Eβ[Eβ + (μ+ vF |k|)]

{−[Eβ + (μ+ vFk)](

s
k

k∗
a+↑ − b+↑)−

− s|k|(
s

k

k∗
a†−↓ − b†−↓)}, (15)

for the Bogoliubov solution near point K+, where we denoted a
K±±k,σ ≡ a±σ and

bK±±k,σ ≡ b±σ.

The natural eigenstates of chirality appeared in our expressions. For example,

(
q

k
k∗a+↑ + b+↑) represents the spinor:

χ =

" q
k∗
k

1

#
, (16)

which is the eigenstate of the chirality operator σk
|k| , defined with σ = (σx, σy) Pauli matri-

ces, i.e. the pseudospin (due to two sublattices) is along the momentum vector. The state

(
q

k∗
k a−↓+b−↓) represents the same spinor because of the interchanged roles of sublattices
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at the K− point. To see this in more detail we would like to remind the reader that instead
of the Dirac free electron representation by the spinor

χ†
k
= (a†

K++k,σ
, b†

K++k,σ
b†
K−+k,σ

, a†
K−+k,σ

), (17)

and the chirality operator defined as ⎡⎣ σk
|k| 0

0 −σk
|k|

⎤⎦ , (18)

in the BdG formalism we work with

φ†
k
= (a†

K++k↑
, b†

K++k↑
a
K−−k↓, bK−−k↓)

≡ (a†+↑, b
†
+↑a−↓, b−↓). (19)

Note the reversed order of sublattices and the change of the sign of the momentum k near
K− point in the BdG formalism with respect to the free one. Thus, the lower 2×2 matrix
on the diagonal of the Hamiltonian matrix in the free Dirac case can be read off from:

h
b†
K−+k,σ

a†
K−+k,σ

i " −μ −vFk∗
−vFk −μ

# "
b
K−+k,σ

a
K−+k,σ

#
, (20)

i.e. it is equal to −vFkσ − μ. Note that if we change the sign of k vector in Eq.(20)
i.e. k → −k the off-diagonal elements in the matrix will change the sign, so that in this
basis in the free representation the chirality operator will not have minus sign in the lower

right entry of the matrix representation in Eq.(18). Therefore, (
q

k∗
k a−↓+ b−↓) represents

the same spinor (up to a phase factor) as in Eq.(16) and the same chirality eigenstate
(with positive eigenvalue) as we pointed out earlier. Nevertheless, in the Bogoliubov
representation we still have

h
a−↓ b−↓

i " μ −vFk∗
−vFk μ

# "
a+−↓
b+−↓

#
, (21)

i.e. the matrix is −vFkσ+μ, and the representation of the chirality operator remains the
same as in Eq.(18). We will use this fact later on. On the other hand, the combinations

in Eqs. (13) and (15): (
q

k
k∗a+↑ − b+↑) and (

q
k∗
k a−↓ − b−↓) have the pseudospin vector

in the opposite direction of the momentum vector k.
It is thus natural to introduce the following notation:

s
k

k∗
a+↑ + b+↑ ≡ c+↑v, (22)s

k

k∗
a†−↓ + b†−↓ ≡ c†−↓v, (23)s

k

k∗
a+↑ − b+↑ ≡ c+↑w, (24)
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−
s

k

k∗
a†−↓ + b†−↓ ≡ c†−↓w, (25)

where v and w denote the chirality, i.e. whether the pseudospin vector is along or in the
opposite direction with respect to the k vector, respectively. We have to note that these

electron operators are defined up to a phase factor, most importantly, the
q

k
k∗ phase. This

degree of freedom should not influence the physics, but we chose the definitions so that the
symmetry under exchange of particles in the ground state wave function is transparent.

The α and β sectors are obviously decoupled in the Bogoliubov description, and we
can concentrate on and examine closely the α sector first. Furthermore, we do not have
to consider K− point separately as the symmetry considerations tell us that the BdG
equations around this point will induce the coupling or states of an electron around K+

point with ↓ projection of spin and those around K− point with ↑ projection of spin.
Thus it suffices to consider the α sector first (with c+↑v and c−↓v) and then use the

symmetry arguments, more precisely antisymmetry under real spin exchange, to recover
the whole ground state wave function. We can rewrite α’s in the following form,

αk,+ = upkc+↑v + vpkc
†
−↓v, (26)

αk,− = uhkc+↑v + vhkc
†
−↓v. (27)

We should demand αk,+|Gi = 0 and α†k,−|Gi = 0, for any k, if |Gi is to represent the
ground state vector. That implies that in the α sector of K+ point we have the following
contribution to the ground state,Y

k

(upk − vpkc
†
+↑vc

†
−↓v)|0i, (28)

where |0i denotes the vacuum. This state is annihilated with both, αk,+ and α†k,−. The
symmetry arguments demand that we should get a similar expression considering the BdG

equations at K− point. If we denote by gα(k) = −
vp
k

upk
, the ground state vector in the α

sector should look like:

Y
k

(1 + gα(k)c
†
+↑vc

†
−↓v)(1 + gα(k)c

†
−↑vc

†
+↓v)|0i =

=
Y
k

{1 + gα(k)[c
†
+↑vc

†
−↓v + c†−↑vc

†
+↓v] +

g2α(k)

2
[c†+↑vc

†
−↓v + c†−↑vc

†
+↓v]

2|0i

= exp{
X
k

gα(k)[c
†
+↑vc

†
−↓v + c†−↑vc

†
+↓v]}|0i. (29)

Now we can identify gα(k) to represent a Fourier transform of the wave function of a
Cooper pair of electrons, which is a spin-singlet with respect to spin degree of freedom
and a triplet state (symmetric under exchange) with respect to the valley (K±) degree of
freedom. If we defined differently our electron operators, there would be the possibility

for gα(k) to acquire the phase factor
q

k
k∗ , which would make the identification of the

antisymmetry under exchange harder.
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Taking into account the β sector (with the chirality in the opposite direction of the
momentum: w) the complete ground state vector is

exp{
X
k

gα(k)[c
†
+↑vc

†
−↓v + c†−↑vc

†
+↓v] +

X
k

gβ(k)[c
†
+↑wc

†
−↓w + c†−↑wc

†
+↓w]}|0i, (30)

where

gα(k) = −
s|k|

Eα − (μ− vF |k|)
and gβ(k) = −

s|k|
Eα − (μ+ vF|k|)

. (31)

Using the long-distance (low-momentum) expansions for Eα and Eβ, for a finite μ,

Eα(β) ≈ μ∓ vF |k|+
s2|k|2
2μ

, (32)

we find the long-distance behavior of the pair wave function to be

lim
|r|→∞

gα(r) = lim
|r|→∞

gβ(r) ∼
1

|r| , (33)

i.e. we have a case for a weak coupling [7]. As emphasized in Ref. 7, the term weak pairing
does not mean also weak coupling; it stands for a phase with an unusual large spread of
the Cooper pairs. On the other hand, for μ = 0 we have that gα(k) and gβ(k) are two
constants and the Cooper pairs are localized on a short scale ∼ a in the graphene system
at the neutrality point. Thus for μ = 0 we have a case for a strong pairing.

The ground state vector (wave function) in Eq.(30) displays two kinds of Cooper pairs,
each antisymmetric under combined exchange of (a) orbital, (b) valley (K±), and (c) spin
(↑, ↓) degree of freedom. Two kinds of Cooper pairs stem from the chirality (sublattice)
degree of freedom intimately connected with the Dirac-nature of the electron with both,
particles and holes. They both, particles (with positive chirality v at K+) and holes
(with negative chirality w at K+), constitute Cooper pairs, which are symmetric under
v ↔ w, vF → −vF transformation.

In the long distance limit we recover the form of the wave function of ordinary s-wave
superconductor as given in Ref. 9, though with more, two-component, degrees of freedom.
The Cooper pair wave function is antisymmetric under spin exchange and symmetric under
exchange of valley (K±), sublattice (v, w), and orbital degrees of freedom.

Next we will discuss the spin-triplet case, more precisely we will assume that the system
is spin-polarized and not consider spin in the following. Therefore, fermions are spinless
just like in the Pfaffian case, but they live on the honeycomb lattice. We will assume
haibji = ∆. In this case the Bogoliubov problem in Eq.(5) for the spin-singlet pairing
transforms into a similar one with a

k,σ
≡ a

k
and b

k,σ
≡ b

k
, and the matrix M

k
becomes

as follows

M
k
=

⎡⎢⎢⎢⎢⎣
−μ −tS(k) 0 ∆S(k)

−tS∗(k) −μ −∆S(−k) 0

0 −∆S∗(−k) μ tS(k)

∆S∗(k) 0 tS∗(k) μ

⎤⎥⎥⎥⎥⎦ .
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Around the K+ point we have⎡⎢⎢⎢⎣
−μ vFk

∗ 0 sk∗

vFk −μ −sk 0
0 −sk∗ μ −vFk∗
sk 0 −vFk μ

⎤⎥⎥⎥⎦ ,

where s = −∆a
√
3
2 > 0 as before. The problem around the K− point is a copy of the

problem around the K+ point.

Now the M
k matrix around K+ point cannot be cast, as in the spin-singlet case, in

the following form, "
vFσk − μI2 sσk

sσk −vFσk + μI2

#
,

where I2 is the 2× 2 identity matrix, which commutes with the chirality matrix (Eq.18).
M

k
around K+ point can be compactly written as"

vFσk − μI2 sik × σ

−sik × σ −vFσk + μI2

#
,

and it does not commute with the chirality operator. The eigenstates of the Bogoliubov
problem do not have to be the eigenstates of chirality. We find the following eigen-

values Ep = ±
r
μ2 + |k|2s2 + |k|2v2F + p 2

q
μ2v2F |k|2 + s2v2F |k|2, where p = +1(α) and

p = −1(β) are two branches as before. The associated eigenvectors can be written as
sums of fermionic particle eigenstates of chirality only at the low-momentum limit and we
list those connected with positive eigenvalues,

α
k,+

=
1q

2(1 + |k|2s2
4μ2

)
[
|k|s
2μ
(−
s

k

k∗
a+ + b+) + (

s
k

k∗
a†− + b†−)], (34)

and

βk,+ =
1q

2(1 + |k|2s2
4μ2 )

[− |k|s
2μ
(

s
k

k∗
a+ + b+) + (−

s
k

k∗
a†− + b†−)], (35)

and negative eigenvalues,

αk,− =
1q

2(1 + 4μ2

|k|2s2 )
[
2μ

|k|s(
s

k

k∗
a+ + b+) + (−

s
k

k∗
a†− + b†−)], (36)

and

β
k,− =

1q
2(1 + 4μ2

|k|2s2 )
[
2μ

|k|s(
s

k

k∗
a+ − b+) + (

s
k

k∗
a†− + b†−)]. (37)
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Similarly as before we can define s
k

k∗
a+ + b+ ≡ c+v, (38)s

k

k∗
a†− + b†− ≡ c†−v, (39)s

k

k∗
a+ − b+ ≡ c+w, (40)

−
s

k

k∗
a†− + b†− ≡ c†−w, (41)

and the ground state vector can be cast in the following form,

exp{
X
k

2μ

s|k|(c
†
+,vc

†
−,w + c†+,wc

†
−,v)}|0i. (42)

In this case, each Cooper pair is antisymmetric under exchange of K± points, i.e. valley
degree of freedom and symmetric under exchange of sublattices, i.e. chirality (v ↔ w).
Depending on our definitions for c’s two degrees of freedom can exchange the symmetry
properties. We find again the weak pairing (∼ 1

r ) behavior in the orbital part.

6. Conclusion

We derived the ground state wave functions for the superconductivity on the honey-
comb lattice induced by nearest-neighbor attractive interactions and with order parameter
independent of the direction to any of the nearest neighbors. Although the order para-
meter in momentum space has the p ± ip form in a low effective description the Cooper
pair wave function behaves as an s-wave (with no angular dependence) and decays as
∼ 1

r . Other (discrete) degrees of freedom combine to make the Cooper pair antisymmetric
under exchange. At the point of the transition, μ = 0, in the spin-singlet case, a strong
pairing (of the order of lattice spacing) occurs.
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Abstract

In this work we report new Stark shift data of several doubly ionized krypton
lines from UV region (253 nm - 300 nm). A low-pressure arc with a mixture of
8% of krypton and 92% of helium was used as a plasma source. The obtained
results are compared with simplified modified semi-empirical calculations.

Key words: Spectral line, Stark shift

1. Introduction

Investigation of ionized krypton spectra is of interest for many reasons. Generally,
spectra of inert gases are important for different physics areas, like laser physics, fusion
plasma diagnostics, photoelectron spectroscopy, collision physics, astrophysics, etc. Kryp-
ton plays an important role in applications like, for example, the development of the
spectral lamps [1], developing of lasers and laser techniques [2]. Furthermore, there is an
interest in spectroscopic and atomic data of krypton ions. Stark shifts and width of the
spectral lines are usually employed for plasma diagnostic purposes, as well as for testing
the theoretical calculations. In addition, Stark parameters data of Kr III lines can be
useful for the investigation and verification of the regularities and systematic trends [3] in
case of doubly ionized noble gases.

In this work, we report 10 measured Stark shifts of UV Kr III spectral lines, all of them
being low intensity lines. This is an extension of our work on doubly ionized krypton line
Stark parameters [4]. The measurements are performed in a low pressure pulsed arc plasma
under the following plasma conditions: electron density (0.7−2.0) ×1023 m−3 and electron
temperature (16000− 22000) K.

For determining the Stark shifts, special attention was paid to both experimental and
data treatment procedures. Other broadening mechanisms were taken into account, as
well.

The present data are new in the literature, and they make a contribution to the existing
database of measured Kr III Stark shifts. Up to now, only two papers reported the Kr III
Stark shift data [5, 6]. In Di Rocco et al. [5] plasma diagnostics data are missing. On the
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other hand, in Milosavljevic et al. [6], all observed spectral lines were above 300 nm. The
conclusion is that there are no corresponding experimental data in the literature for the
comparison with our results.

2. Experimental setup and plasma diagnostics

Measurements were performed in the pulsed arc plasma. Pulses were created by dis-
charging a capacitor bank, charged up to 8.2 kV, through a cylindrical Pyrex tube. A
mixture of krypton (8%) and helium (92%) was flowing continuously through the tube at a
pressure of 2.6 kPa. The experimental set-up is described in detail in our previous papers
[7, 8]. Electron density, determined by a two-wavelength laser interferometer method, was
in the range (0.7− 2.0) ×1023 m−3. Error of the electron density measurements was esti-
mated to be lower than 10%. Electron temperature, determined by the Boltzmann-plot,
was in the range (16000 − 22000) K. Experimental uncertainty for this parameter was
estimated to be lower than 15%.

3. Results and discussion

Measured Stark shifts of several Kr III spectral lines are given in Table 1. In the first
three columns, the table contains configurations, terms and wavelengths of the observed
spectral lines. In the next two columns, measured shifts, dm, and estimated accuracy, Acc.,
are presented. The multiplets notation is the same as in the NIST atomic spectra database
[9]. Data are normalized to the electron density Ne = 1 × 1023 m−3 and the electron
temperature Te = 18000 K. The last column of the table contains the ratio between the
measured and the calculated shifts, dm/dSMSE. Theoretical data were obtained from the
simplified modified semi-empirical shift formula [10].

Table 1. Experimental Stark shifts, dm, normalized to electron density Ne = 1×1023 m−3
and electron temperature Te = 18000 K. Estimated accuracy, Acc, is given in
a separate column. Experimental results are compared with the theoretical data
[10], dm/dSMSE.

No. Configurations Terms Wavelength dm Acc.

(nm) (pm) (%)
dm

dSMSE
1. 4s24p3(4So)4d− 4s24p3(4So)5p 5Do

1 −5P2 267.962 1.58 58 1.07

2. 4s24p3(2Do)4d− 4s24p3(2Do)5p 3F o
4 −3D3 253.757 1.22 80 0.69∗

3. 3F o
4 −1F3 257.119 1.12 48 -

4. 3Go
4 −1F3 289.368 2.11 37 0.91

5. 4s24p3(2Do)5s− 4s24p3(2Do)5p 3Do
1 −3P0 281.448 - 2.20 49 0.69∗

6. 3Do
2 −3P2 290.004 - 2.47 27 0.72∗

7. 1Do
2 −3P1 299.660 2.34 38 0.88∗

8. 4s24p3(2Do)5s− 4s24p3(2P o)5p 1Do
2 −3P1 260.435 |d| < 2 - -

9. 4s24p3(2P o)4d− 4s24p3(2Do)5p 3P o
1 −3S1 280.607 |d| < 2 - -

10. 4s24p3(4So)5p− 4s24p3(4So)6s 5P3 −5So
2 256.325 8.70 22 0.94

As already mentioned, in this experiment only low intensity lines were considered. As
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an example, a part of the recorded spectrum is shown in Figure 1. In this figure, the
profile of the 267.962 nm line is shown together with two more intense lines and another
separated line. Similar situation is with other considered spectral lines.

Figure 1. Part of the ionized krypton spectrum.

All spectral lines were checked on self-absorption effect, using an external mirror [8].
The chosen percentage of krypton in the krypton-helium mixture ensured the absence of
self-absorption for all the lines taken into consideration.

Apart from taking care of experimental conditions and applied plasma diagnostics,
attention was also paid to the proper fitting procedure. The spectra were fitted to the sum
of Lorentzian functions (for spectral lines) and a linear function (for continuum emission)
[11]. The deconvolution procedure used is described in [12].

Under these experimental conditions, Stark broadening is the dominant broadening
mechanism. Two other pressure broadening mechanisms, resonance and van der Waals,
were found to be negligible. Therefore, only Gaussian (instrumental + Doppler) and Stark
broadening were taken into account in the deconvolution procedure.

Stark shift of the Kr III 267.962 nm line as a function of electron density is shown
in Figure 2. Stark shifts were obtained using a method described in Aparicio et al. [13].
Firstly, it was assumed that there was no Stark shift when electron density was Ne = 0.
Since the exact position of an observed spectral line at Ne = 0 is unknown, this value
was obtained by extrapolating the linear fit of the lines center positions versus electron
density to zero electron density. Once this value was subtracted from the measured lines
center positions, the resulting differences multiplied by the inverse linear dispersion of
the spectroscopic system gave us the measured Stark shift values (in pm) of the studied
spectral lines.

All possible errors in the line shape recording, transmittance correction, as well as
fitting and deconvolution procedure were included in the final experimental accuracy es-
timation given in Table 1. Relatively large experimental errors and consequently large



36 M. Ćirǐsan, R. J. Peláez, S. Djurović, J. A. Aparicio and S. Mar

scatter of the experimental points (see Figure 2) are due to the low signal/noise ratio,
since we deal with low intensity spectral lines. Furthermore, it is well known that Stark
shift measurements are, in general, less accurate than Stark halfwidth measurements, es-
pecially in cases where shifts are very small.

Figure 2. Example of Stark shift measurement.

In the 8th and 9th row of Table 1, shift results for the lines 260.435 nm and 280.607 nm
are given in the form |d| < 2. This means that the measured shift is very small, practically
null, while the dispersion of the points is within ±2 pm for these lines.

In cases where it was possible, experimental shift results were compared to the theo-
retical data obtained from the simplified modified semi-empirical shift formula [10]. The
comparisons are given in the last column of Table 1. One should keep in mind that there is
a certain restriction for using formula [10]. In order to use this formula, it is necessary that
the nearest perturbing level Ej0 is situated far enough from the observed transition level
Ej . This is expressed by the condition E/∆Ejj0 = 2, where E = 3kT/2 is the energy of
perturbing electron and ∆Ejj0 = |Ej −Ej0 |. This condition is not satisfied for the 257.119
nm line, so the comparison is omitted. In the other four cases, where dm/dSMSE ratio is
denoted with asterisk, the necessary conditions for the calculations are at the upper limit.
The dm/dSMSE ratios vary between 0.69 and 1.07. This can be considered as a very good
agreement, if one takes into account relatively large experimental errors and a fact that
the shift formula [10] gives only rough shift estimations. The most important is that signs
of the experimental and theoretical shifts are in agreement in all cases. It is obvious that
the estimated values for the lines 260.435 nm and 280.607 nm could not be compared with
the theoretical results.

Among the presented results, there is only one spectral line per multiplet and super-
multiplet, so the Stark shifts regularity check can be done only for transition arrays. In
Wiese and Konjevic [3] it was found that Stark shifts of the lines belonging to the same
transition array normally have values within ±25%. In cases when the shift makes a rela-
tively large fraction of the halfwidth, the variation is within approximately ±50%. Here,
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we have a variation of Stark shifts from −26% to +40% around the average value, for
4d−5p transition array. Within the 5s−5p transition array there are different shift signs,
which is also theoretically predicted (see Table 1).

The presented Stark shift data, in general, can be used for diagnostic purposes, demon-
stration of regularities and similarities of line shifts within the transition arrays or, by
combining them with the future experimental results, within the multiplets or supermul-
tiplets [3]. In addition, these results can be used for theory testing, and they are also of
interest in astrophysics.
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We thank S. González for his work on the experimental device, the Spanish Ministerio de
Ciencia y Tecnologa and the Consejera de Educación y Cultura de la Junta de Castilla
y Leon for their financial support under contracts No. FIS2005− 03155 and V A015A05
respectively. Dr J. A. Aparicio wants to express his personal acknowledgement to the
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Abstract

The paper describes results of the research carried out with the aim of estab-
lishing chemical stability of the glasses of the SbxAs37−xS48I15 type.
Samples were synthesized and investigated in order to determine the influence
of the substitution of As atoms with Sb atoms on thermally induced SbSI
ferroelectric centers.
Chemical stability of glasses was estimated on the basis of their dissolution
rate in potassium hydroxide solution of different concentrations. It was found
that the rate of dissolution decreases with the increase of antimony content in
the glass. The dissolution rate also depends on the concentration of the basic
solution. It was found that the dependence of the dissolution rate on time
and on base concentration can be described satisfactorily by an exponential
function.

Key words: glasses, chalcohalides, dissolution rate, chemical stability

1. Introduction

The unique properties of chalcogenides, which are different from those of oxide and
halide glasses, have led to a long-term high scientific and industrial interest. Investiga-
tions of mechanical, electrical, optical and other physical properties of amorphous semi-
conducting materials have shown that these properties depend substantially on the system
composition. The addition of halides leads to the formation of chalcohalide glasses with
new features. Four- and five-component systems show exceptional potential regarding the
possibility of modifying selected properties relevant to applications in a desired way. This
results from the strong influence of materials properties on chalcogenide glass composition
[1-4].

The current study focuses on the investigation of the ternary system SbxAs37−xS48I15
for x = 0, 7 and 22 at%. The primary goal is to determine the influence of the substitution
of As atoms with Sb atoms on thermally induced SbSI ferroelectric centers, i.e. on selected
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ferroelectric characteristics of glass-ceramics material (sital). It is known that SbSI can be
obtained in (partially) amorphous phase only under special conditions [5]. On the other
hand, the presence of arsenic is expected to improve the amorphization process of the
above ferroelectric system.

The possibility that such materials could find viable applications is determined and
limited by their stability to various aggressive media. However, even the lower stabil-
ity in some reagents provides those chalcohalide materials certain advantages including:
the possibility of relief formation, removal of the surface layer and impurities by surface
treatment, enhancement of the optical contrast of amorphous films in the amplitude-phase
storage of optical information, surface preparation for metallographic examination, etc.

It has been shown that complex amorphous chalcogenides, in general, exhibit chemical
stability under ambient conditions; they are not hygroscopic and exhibit high chemical
stability with respect to most aggressive media. They do not interact with most acids and
dissolve very slowly in dilute nitric acid. However, they are less stable in basic solutions
and some solvents containing amino groups [6-9].

2. Experimental

The investigated glasses were synthesized from high-purity elements (99.99%). The
synthesis was carried out according to a method published elsewhere [10].

The experiments were performed in several stages. First of all, masses before treatment
in the basic solution and dimensions of prepared samples were measured, and then they
were treated in a basic solution of chosen concentration. Every ten seconds chemical
reaction was stopped by sinking the sample into distilled water. Then, the samples were
dried and their mass and dimensions were measured again. The procedure was successively
repeated ten times.

The rate of sample dissolution in a chemical reagent at various concentrations was
determined by an indirect method via weight loss, using the following equation:

w =
∆m

SM∆M
[mol m−2s−1] (1)

where ∆m is the mass change during the dissolution time ∆t, S is the sample surface
and M is the molecular mass of the conditional chemical unit. Samples were polished
mechanically, using carborundum powder of different grain fineness (260 − 28 mm) to
obtain regular geometric shapes (rectangle, cube). The chemical stability of glasses was
estimated on the basis of their dissolution rate in potassium hydroxide at concentrations
0.5 mol dm−3 (0.5 M), 1 mol dm−3 (1 M) and 2 mol dm−3 (2 M). The estimated accuracy
of dissolution rate is 5 − 10%. Samples with 0, 7 and 22 at% of antimony have been
investigated.

Since previous investigations [11, 12] showed that the stirring of the solution has only a
weak influence on the rate of dissolving of chalcogenide non-crystalline semiconductors, it
can be considered that the dissolving of chalcogenides in basic media is primarily governed
by the rate of heterogeneous chemical reaction on the sample surface.

This assumption enables the calculation of the dissolution rate of glasses of certain
compositions using Equation (1), where the change on the sample surface and the weight
loss are experimentally determined. During the dissolution experiments, the color of the
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basic solution was gradually changing from dark red to gray, depending on the chalcohalide
composition and the concentration of the base solution.

On the basis of the performed experiments, it was possible to determine the functional
dependence of the weight loss and change of the sample surface. The change of the sample
surface during the treatment with the aggressive media can be described by a linear
function with an accuracy which does not exceed the errors of directly measured values.
The mass change of the treated chalcohalide samples with time can be described by a very
weak exponential function.

3. Results and discussion

Representative curves showing the dependence of the dissolution rate on time for se-
lected samples from the SbxAs37−xS48I15 system for different concentration of the base,
at room temperature, are shown in Figures 1-3.

Figure 1. Dependence of the dissolution rate on time of SbxAs37−xS48I15 glasses in 0.5 M KOH.

Figure 2. Dependence of the dissolution rate on time of SbxAs37−xS48I15 glasses in 1 M KOH.
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Figure 3. Dependence of the dissolution rate on time of SbxAs37−xS48I15 glasses in 2 M KOH.

Dissolution rates in 0.5 M basic solution, for the sample without antimony, ranged
from 2.96 · 10−4 mol m−2 s−1 to 2.89 · 10−4 mol m−2 s−1 and for the sample with 22 at%
of antimony vary from 1.55 · 10−4 mol m−2 s−1 to 1.53 · 10−4 mol m−2 s−1. The values of
dissolution rate in 2 M basic solutions were in the range from 11.59 · 10−4 mol m−2 s−1 to
10.85·10−4 mol m−2 s−1 for the sample without antimony and in the range from 6.61·10−4
mol m−2 s−1 to 6.26 · 10−4 mol m−2 s−1 for the sample with 22 at% of antimony.

The three investigated samples have shown a relatively low dissolution rate and the
possibility of good control of the dissolution process for all three concentrations of potas-
sium hydroxide. Time dependence measurements have shown that the dissolution rate
decreases with time, which leads to a significant saturation of the basic solution in which
the samples were treated. Based on this finding, as well as on related observations of
similar chalcogenide glasses [12, 13], we have chosen to account for the observed time de-
pendence fitting the experimental data with the aid of an exponential function. As already
mentioned, in this experiment only low intensity lines were considered. As an example,
a part of the recorded spectrum is shown in Figure 1. In this figure, the profile of the
267.962 nm line is shown together with two more intense lines and another separated line.
Similar situation is with other considered spectral lines.

The dependence of the dissolution rate of glasses of the SbxAs37−xS48I15 type on the
base concentration is shown in Figure 4, for t = 50 s. As could be expected, it is clear
that the dissolution rate increases with increase of basic solution concentration and that
the dependence is of an exponential type.

Dependence of the dissolution rate on the antimony content in the glass composition
during the dissolution time of t = 50 s for different KOH concentrations is shown in
Figure 5. On the basis of the experimental data it was possible to describe this functional
dependence by a monotonic function. It may be noticed that the dissolution in 2 M KOH
exhibits significantly larger change in the dissolution rate with the change in the structural
composition compared with the more dilute solutions.

The dissolution rate decreases with the increase of atomic percentage of antimony in
the investigated materials, so it can be concluded that this element has a positive effect
on the chemical stability of the chalcogenide sample.
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Figure 4. Dependence of the dissolution rate on the basic concentration of SbxAs37−xS48I15
glasses.

Figure 5. Dependence of the dissolution rate of SbxAs37−xS48I15 glasses on the antimony
content.

This can be explained by the changes in the ionic-covalent share of bonds and by the
fact that the changes in the glass composition cause changes in the population of certain
structural units in the glass matrix. Previous results have shown that the dissolution of
binary amorphous As2S3 system is related to the capability of As and S atoms to form
anions of variable composition [14]. This binary amorphous system has a polymeric chain
structure made of As2S3 trigonal pyramidal units, with each arsenic atom surrounded by
three sulfur atoms [15]. A first step in the dissolution of these systems is the breaking of

the polymeric bonds −S−As<, and separation of the structural ring −S−As< S
S

>As−
from the polymeric molecule, which then enters a chemical reaction with the molecules of
the basic solution.

It is supposed that in the As−S−I glasses there are polymeric chains (−S−S−)n and the
iodine plays the role of a chain terminator. The structure can be regarded as a network of
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As2S3 pyramids interconnected by simple or double sulfur bridges or by−S−S− units. The
network would contain molecular species dissolved: S8, AsI3, etc. [16]. The introduction
of antimony instead of arsenic does not change the basic structure drastically because
Sb is an element analogous to As, as an element from the same group of the periodic
table of elements. They form similar structural units such as As2S3(Sb2S3), AsSI(SbSI),
etc. However, antimony raises the metallic character of the chemical bond in the system.
The Sb−S−I bonds are weaker than Sb−S bonds, as well as As−S−I compared to As−S,
because iodine increases the ionic contribution in the chemical bond [16].

Results of studying chemical stability study have shown the usual behavior of disso-
lution of the glasses from the investigated system in the basic solutions with specified
concentrations, and, accordingly, can be used for relief formation at surfaces after proper
photoinduced treatment.

4. Conclusion

The solubility of samples from the Sb−As−S−I system is determined by the rate of the
heterogeneous chemical reaction on the sample surface. The functional dependence of the
dissolution rate on time has been determined. The dissolution rate decreases with increase
of the antimony content in the glass. This parameter also depends on the concentration of
the basic solution. All three investigated samples have shown a relatively low dissolution
rate at the concentrations of the basic solutions used and, consequently, the dissolution
process can be well controlled for all three investigated basic solutions.
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