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Abstract

In this paper the origination of the Davydov’s soliton in the linear polymer
chain, both ideal and with a single impurity, is considered applying numerical
analysis to discrete equations. It is demonstrated explicitely that the soliton
velocity is inversly proportional to the soliton amplitude. The different soliton
behavior is observed after the exiton creation at the begining and in the bulk
of the linear polymer chain.
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1. Introduction

It is the fact that the Davydov‘s soliton model [1] was a subject of intensive theoret-
ical investigations during the last three decades. Its importance lies in the attempts to
understand and describe energy transport process in α-helix proteins and peptides. The
main idea in the Davydov model is the coupling between exciton and phonon of the poly-
mer chain. Due to the nonlinear and strong exciton-phonon interaction, auto-localized
excitations solitons appear in the system [2,3].

Davydov’s model is of methodological importance: it aims to explain the localization
and the transport of energy in α-helix proteins. Numerous scientists have investigated
the above idea: the soliton mechanism of the energy transport in the protein molecules
(cf. [4-7] and refs. therein) including the foundation and accuracy of the theory, the
quantum and classical properties and the thermal stability and lifetime of the Davydov’s
soliton. Some recent studies throw new light on the topic [8-15].

However, in the majority of the papers, Davydov’s soliton is created “artificially”. All
existing numerical analyses and inverse scattering method studies of launching the soliton
were based on the assumption that the soliton is already existing in the chain [4].

Continual approximation in the Davydov’s soliton model (under condition when the
soliton appears in the linear polymer chain) always gives fixed shape of the soliton, with
well-known velocity (analytic solution of the differential equation (11-13)).

The dynamic equations of motion (9) and (10) give possibility for the numerical simu-
lation of the soliton creation, its time evaluation and propagation along the linear polymer
chain.
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The aim of this paper is to show, using the numerical analysis of equations (9) and (10),
that the soliton features and behavior in a linear polymer chain depend on the position
where it is created: at the beginning or in the “bulk” of the chain.

The paper is organized as follows: Section 2 presents the model Hamiltonian of the
ideal polymer chain and the polymer chain with a single impurity at arbitrary site. Basic
discrete equations for exciton and phohon amplitudes are formulated in Section 3. Next
section describes the elements of the calculation procedure for solving the system of coupled
difference equations. The results of the numerical analysis, both for ideal chain and single
impurity are given in Section 5. All calculations were performed with the set of parameters
which can be found in the relevant literature. The results are summarized in a concise
Conclusion.

2. The system Hamiltonian

2.1. The ideal polymer chain

Our starting point is the standard Davydov‘s Hamiltonian for the ideal linear polymer
chain

ĤD = Ĥex + Ĥph + Ĥint . (1)

The term Ĥex, represents the monomer amide-I quantum excitations. It will be con-
sidered, in accordance with Davydov’s approach, as the Frenkel’s exciton [3,4,16] in the
so-called two level approximation, i.e. only the ground and the first excited levels are
taken into account. The higher excited levels are supposed to be sufficiently far away from
the first excited level [3].

The term Ĥph describes the vibration of the monomer units while the term Ĥint de-
scribes the exciton-phonon interaction.

The Hamiltonian Ĥex, involving the nearest neighbors approximation, has the following
form:

Ĥex =
X
n

h
E0B̂

+
n B̂n − J

³
B̂+n B̂n+1 + B̂+n+1B̂n

´i
. (2)

In equation (2) B̂+n and B̂n are the Bose operators that create and annihilate the excitation
on the n-th chain site. J represents resonance energy of dipole-dipole interactions between
neighboring peptide groups. E0 represents the excitation energy of each monomer unit
renormalized due to the resonant interaction between the neighboring monomer units.

The phonon Hamiltonian Ĥph corresponding to the displacement of monomer units
from their equilibrium position has the following form:

Ĥph =
1

2

X
n

∙
1

m
p̂2n + k (ûn − ûn−1)

2
¸
, (3)

where m is the mass of the displaced monomer unit; p̂n is the momentum operator canoni-
cally conjugated to the displacement operator ûn of the n-th monomer unit, k is the lattice
elasticity coefficient.

Hamiltonian Ĥint of the exciton-lattice interaction is of the form

Ĥint = χ
X
n

B̂+n B̂n (ûn+1 − ûn−1) . (4)

where χ is the exciton-phonon coupling parameter.
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2.1.1 Dynamic equations of the solitary waves in the ideal linear polymer
chain

As is known from the theory of Davydov’s model, in the case of strong exciton-lattice
coupling and small longitudinal elasticity coefficient (“soft” polymer chain), the solitonic
excitations could arise in the system. The calculation procedure given here is the derivation
of basic dynamical equations of the theory of Davydov’s model [17-20], and therefore they
will be given only briefly.

The first step is to write down the averaged equation of motion of the lattice and the
time-dependent Schrödinger equation of the whole system, using the system Hamiltonian
ĤD and the following single-quasi-particle wave function

|Ψ(t)i =
X
n

h
An(t) e

− i
h̄
Ŝ(t) B+n |0i

i
, Ŝ(t) =

X
n

[αn(t)p̂n − πn(t)ûn] , (5)

where |0i is the vacuum state function, i.e. |0i = |0iex⊗|0iph. Unitary operator exp
h
− i

h̄ Ŝ(t)
i

is usually used in the theory of the lattice vibrations in the presence of the external forces;
αn(t) and πn(t) are the coherent state representations of ûn and p̂n, while An(t) determines
the probability of creating the exciton on the lattice site n, which means thatX

n

|An(t)|2 = 1 . (6)

The complex function An(t) and the real functions αn(t) and πn(t) are found by the
variation method from the condition for the minimum of the functional

Φ ({An, αn, πn}) ≡ hΨ(t)|ĤD|Ψ(t)i . (7)

The coherent state representation of the operators ûn and p̂n is given by

αn(t) = hΨ(t)|ûn|Ψ(t)i; πn(t) = hΨ(t)|p̂n|Ψ(t)i . (8)

The condition for the minimum of the functional (7) results in the system of coupled
equations

ih̄
∂An

∂t
= [Λ+ χ(αn+1 − αn−1)]An − J(An+1 +An−1 − 2An) , (9)

m
d2αn
dt2

= k [αn+1 + αn−1 − 2αn] + χ
h
|An+1|2 − |An−1|2

i
, (10)

where Λ = E0 +Eph and Eph represents lattice phonon energy, i.e.

Eph =
1

2

X
n

∙
1

m
π2n + k(αn − αn−1)

2
¸
.

Since our main aim is to perform the numerical analysis of the last two equations, we
shall only quote for the sake of comparison, the equations in the continuum approximation
[2] Ã

∂2

∂t2
− v20

∂2

∂x2

!
ρ(x, t) +

2aχ

m

∂2

∂x2
|A(x, t)|2 = 0 , (11)
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"
ih̄

∂

∂t
− Λ+ Ja2

∂2

∂x2
+ 2aχρ(x, t)

#
A(x, t) = 0, ρ(x, t) = −∂α(x, t)

∂x
. (12)

It is possible to find the particular, bell-shaped solution of Eqs. (11−12) (Davydov soliton)
propagating along the chain with velocity v0, only if we assume stationary solutions of the
form

ρ(x, t) = ρ(
x

a
− v0

a
t); A(x, t) = Φ(

x

a
− v0

a
t)eiγ(x,t) . (13)

It is clear that due to this choice the problem of initial conditions is not a relevant one in
the continuum version of Davydov’s model.

2.2. Nonideal polymer chain

Davydov’s model treat the α-helix protein, made of identical monomer units, which
is not true in reality. Real α-helix protein is composed of the different monomer units.
Namely, the proteins are the macromolecules composed of 20 different amino acids.

We take into account the above complexity of the protein structure and consider a
relatively simple model of nonideal linear polymer chain, that is, an ideal polymer chain
with the one implanted different monomer unit, which is treated as “impurity”. Placing
impurity in the ideal linear polymer chain disturbs the translational invariance. The dis-
turbance of the structure caused by the impurity, is considered as a particular perturbation
of the Hamiltonian of the ideal chain. This approach, which is also numerically verified,
allows adapting the theoretical method used for analysis of the ideal chain and applying
it easily to a nonideal chain with impurity [21].

The particular manner in which we include the perturbation caused by the impurity,
affects some of the previously considered Hamiltonian terms. Namely, although the chain
has the impurity, the Hamiltonian ĤD (which is in fact the Hamiltonian of the ideal Davy-
dov’s model) describes an ideal polymer chain with no impurities. As we have the chain
with impurity at some place in the chain, this means that some nonexisting terms have
been added to ĤD and therefore these terms must be extracted and the terms correspond-
ing to the impurities included too. In order to solve this problem, we follow the usual
theory of a single impurity in the crystal lattice, where it is taken that the presence of
impurity on some lattice site is equivalent to the presence of a local potential on that site.
In other words, this means that impurity affects the coupling constant and the other rele-
vant parameters mainly near the impurity position. Consequently Ĥres could be extracted
from the Hamiltonian ĤD in which the constants E0, J, k, χ have been renormalized
in an appropriate manner. However, the corrections of all of these constants need not be
considered because some of them are physically negligible. We explicitly take into account
the constant E0 and the constant of the resonance energy dipole-dipole interaction J ,
due to their expected dominance in the soliton propagation. These quantities should be
substituted by the new ones E0 + ∆̃Y (na), and J + J̃Y (na), where Y (na) ≡ Yn is the
function of the lattice position “vector” na which has the following form

Yn = e
−βa(n−n0)2 , (14)

that has its maximum at n0, the lattice site where the impurity is placed. As can be seen,
Yn is chosen to be sufficiently fast decreasing (exponentially). Constant β depends on
the potential induced by the impurity effects and it will be obtained from the physical
condition that the impurity affects only several nearest neighbors.
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Taking into account the previous facts, which indicate that only the exciton parameters
are corrected, it is easy to show that the exciton Hamiltonian of the nonideal chain can
be expressed as a sum of the aforementioned exciton Hamiltonian of the ideal chain Ĥex

and Hamiltonian of the residue Ĥres, which is of the form

Ĥres =
X
n

∆̃YnB̂
+
n B̂n −

X
n

J̃Yn
³
B̂+n B̂n+1 + B̂+n+1B̂n

´
. (15)

The nonzero terms in the above sums are only due to the monomer units in which the
impurities are present.

Finally, the Hamiltonian of the nonideal polymer chain is of the form

ĤNI = ĤD + Ĥres .

3. Dynamic equations of the solitary waves in the nonideal linear polymer
chain

The calculation procedure given here is the derivation of basic dynamical equations of
the theory of Davydov’s model. The only difference in this case, which does not change
the calculation procedure, is the presence of Ĥres in the system Hamiltonian.

Instead of equation (9) and (10) we obtain

d2αn
dt2

= k [αn+1 + αn−1 − 2αn] + χ1
h
|An+1|2 − |An−1|2

i
+χ2

£
A∗n(An+1 −An−1) + (A

∗
n+1 −A∗n−1)An

¤
.

(16)

On the other hand, by substituting |Ψ(t)i (Eq. 5) into the time-dependent Schrödinger
equation, where the total system Hamiltonian ĤNI has been used, we have derived that:

ih̄
∂An

∂t
= [Λ+ εYn + χ(αn+1 − αn−1)]An

−(J + J̃Yn)(An+1 +An−1 − 2An) ,

(17)

where ε = ∆̃− 2J̃ .
When ∆̃ = 0 and J̃ = 0 equations (16) and (17) describe the dynamics of the ideal

linear polymer chain.

4. Procedure and results of the numerical analysis

Equations (9) and (10), i.e. (16) and (17), which determine the dynamics of the
considered linear polymer chain (ideal and nonideal), has been analyzed numerically in
[21].

4.1. Procedure

Method Runge-Kutta 4-th order is used for numerical solving of equations (9) and
(10), i.e. (16) and (17). Programming is realized in Fortran f90 in double precision.
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a) Step Runge-Kutta method used in this numerical analysis is chosen to be h = 5.·10−5.

b) Values of the constants used in equations (9) and (10), i.e. (16) and (17) are

10 N = 201 — number of monomer units in the linear polymer chain (with and
without impurity).

20 In the unideal linear polymer chain, impurity is placed at the 160-th site.

30 m = 1.9 · 10−25 kg — monomer unit mass (the mass interval α-amino acids is
(1.17− 1.91) · 10−25 kg).

40 k = 19.Nm — elasticity coefficient [22,23].

50 J = 1.55 · 10−22J — the resonance energy of the dipole-dipole interactions
between neighboring monomer units. [24-26].

60 χ = 6.2 · 10−11N = const exciton-phonon interaction [27,28].

c) Initial conditions

10 In the case when exciton is created at the beginning of the linear polymer
chain, at t = 0 we put A1(0) = (1, 0) and Ai(0) = (0, 0) (i = 2 . . . N), i.e. the
first monomer unit was excited, while the rest of the monomer units were in
the ground state. N denotes the number of monomer units in the considered
linear polymer chain.

20 In the case when exciton is created at the bulk of the linear polymer chain, at
t = 0 we put AN0(0) = (1, 0) and Ai(0) = (0, 0) (i = 1 . . .N, i 6= N0), i.e. the
monomer unit placed at N0 was excited, while the rest of the monomer units
were in the ground state.

30 αi(0) = 0 and πi(0) = 0 (i = 1, . . . , N), i.e. all monomer units of the linear
polymer chain are in the equilibrium position.

A simple unitary transformation ot the amplitude An(t) eliminates the constant term
in equations (9) and (19).

5. Results of the numerical analysis

5.1. The ideal linear polymer chain

Fig. 1 shows the soliton propagation. Exciton is created at the beginning of the linear
polymer chain, i.e. at the first monomer unit.

Fig. 2 shows the case when exciton is created in the middle of the linear polymer chain
at N0 = 101-th monomer unit. As we can see from the numerical analysis of equations
(9) and (10) (different pictures), of the soliton propagation in the ideal linear polymer
chain, is obtained depending on where the exciton is created: a) at the origin of the linear
polymer chain (Figure 1) or b) in the bulk of the linear polymer chain (Figure 2)
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Figure 1. Propagation of the soliton in the ideal linear polymer chain. Exciton is created at the
origin of the chain.

Figure 2. Propagation of the soliton in the ideal linear polymer chain. Exciton is created in the
middle of the chain.

In the continual approximation of Davydov‘s model, the soliton has fixed shape and
velocity and soliton is always created. If exciton is created in the bulk of the linear polymer
chain particular solution of the equations (14) and (15) has two particular solutions, one of
the type ρ(xa −

v0
a t) and the other one ρ(

x
a +

v0
a t). This is difficult to identify analytically

with the present initial conditions, while in our numerical analysis of the equations (9)
and (10) this result is obtained (Figure 2).
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Figure 3 displays comparative soliton shapes at t = 50ps. Soliton1 is the shape of the

Figure 3. Comparative soliton shapes at t = 50ps in
the ideal linear polymer chain. Soliton1
shape of the soliton created at the origin of
the chain; Soliton2 shape of the soliton cre-
ated in the middle of the chain.

soliton wave in the ideal lin-
ear polymer chain where exci-
ton is created at the origin of
thechain. Soliton2 is the shape
of the soliton wave in the ideal
linear polymer chain where ex-
citon is created in the middle of
the chain. Rough estimate, as
we seen from Figure 3 is that
the soliton started from middle
of the chain is about 1.6 times
faster than the soliton started
from the origin of the ideal lin-
ear polymer chain.
The above result was a sig-
nal to investigate this behavior
more thoroughly. We decided
to test the relation between
the amplitude and the soli-
ton velocity. Using the chain
of 100 monomer units and

Runge-Kutta method step h = 1 · 10−4 with all other data as described in Section 4, we
obtained the following plot:

Figure 4. Amplitude square in the linear chain for t = 35ps.

This is even better illustrated by Table 1, which lists the amplitude, amplitude square
and the lattice site (Nmax) where the wave has the maximum for t = 35ps.
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Table 1.

A A2 Nmax

(0.5,0.0) 0.25 86

(0.6,0.0) 0.36 79
(0.7,0.0) 0.49 70
(0.8,0.0) 0.64 61
(0.9,0.0) 0.81 51
(1.0,0.0) 1.0 38

This allowed us to plot the absolute value of the amplitude |A| and soliton velocity for
t = 35ps.

Figure 5. The relation between absolute value of the amplitude and soliton velocity for t = 35ps.

Dashed curve obviously corresponds to the linear fit, and this is essentially a completely
new result since till now this was just a conjecture for Davydov’s solitons, i.e. the soliton
velocity decreasing with amplitude.

5.2. The nonideal linear polymer chain

Special behavior of the soliton propagation, in the linear polymer chain with impu-
rity, is investigated applying numerical analysis. The impurity, placed at the 160-th site³
∆̃ = 0.3 · 10−22J

´
in the linear polymer chain, acts as the energy barrier to the soliton

propagation (Figure 4). If the soliton is created at the origin, it is completely reflected by
the barrier.

Soliton propagation in the linear chain with impurity is investigated applying numerical
analysis. The impurity placed at the 160-th site acts as an energy barrier (∆̃ = 0.3·10−22J)
for the soliton propagating. If the soliton is created at the beginning of the chain, it is
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completely reflected by the barrier (Figure 6).

Figure 6. Soliton propagation in the linear polymer chain with the impurity placed at the 160-th

site. Impurity acts on the soliton as the energy barrier
³
∆̃ = 0.3 · 10−22J

´
. Exciton is

created at the origin of the chain.

If the soliton is created in the “bulk” under the same conditions, however, two soliton
waves appear in the linear polymer chain, propagating in the opposite directions (Figure 7).

Figure 7. Soliton propagation in the linear polymer chain with the impurity placed at the 160-th

site. Energy barrier has the value
³
∆̃ = 0.3 · 10−22J

´
.

As shown previously, since total energy splits between two solitons, the amplitude of
each branch is lower, so its velocity increases and enhances its delocalization (with the
shape profile broadening). This allows the soliton to pass the barrier more easily (quasi-
classical analogue of tunneling). However, this passage has the consequence of diminishing
the amplitude behind the barrier.
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6. Conclusion

Numerical results just presented indicate that the shape and velocity of the soliton
wave formed in the chain with impurity, substantially depend on the position where the
soliton is created. If the soliton in the numerical simulation is “created” at the beginning
of the chain, a single soliton wave is formed propagating in a single direction along the
chain. However, if the soliton is formed within the “bulk” of the chain, two waves are
formed, propagating in both directions. It is interesting that the square of the amplitude
(sum of the areas below the bell shaped curves) is equal to the area of the single soliton
formed at the origin. This is a consequence of the normalizing condition for the wave
function. As for the influence of the impurity to the soliton propagation, the magnitude of
the barrier can be chosen in such a manner that the soliton “smoothly” passes the barrier.
It was demonstrated that the soliton velocity is inversly proportional to the absolute value
of the soliton amplitude. This is an important result since similar conclusion can not be
drawn from the continuum theory. This result implies that the velocity increase causes
the decrease of effective soliton mass, i.e. soliton becomes more delocalized (the shape
profile broadens) and more easily tunnels through the impurity energy barrier. This is
compatible with the fact that we are dealing with a conservative system.
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Abstract

Bulk and surface magnetic excitations of ferromagnetic semiconductor (FMS’s)
superlattices are analyzed using transfer matrix method, developed in our pre-
vious paper. Results are discussed in the narrow-band limit. The spin-wave
frequencies for a semi-infinite narrow-band semiconductor are analyzed in the
low-frequency, as well as in the high-frequency region. Energies of both bulk
and localized excitations are compared with the results of Green functions for-
malism. Numerical results are discussed and illustrated.

Key words: ferromagnetic semiconductors, magnetic superlattice, surface magnetic exci-
tations, transfer matrix method

1. Introduction

Ferromagnetic semiconductors (FMS’s), have been the subject of intense study promp-
ted by their fundamental scientific interest and the promise that their compatibility with
semiconductor technology may lead to novel spintronic applications [1,2]. However, our
understanding of the fundamental magnetic excitations in these materials is still far from
being complete.

The problem of calculating magnetic excitations in FMS’s is intimately related to
the exchange interaction between the localized and itinerant spins [1],[3]-[5]. Theoretical
calculations of magnetic excitations in infinitely extended FMS’s were obtained already
applying the s-d (or s-f) model [6]-[8]. It has been shown that besides usual “acoustic” spin-
wave branches, there are higher frequency (or “optical”) branches. Different techniques are
used to calculate bulk and surface magnetic spectra for semi-infinite FMS’s [9]-[11]. Some
magnetic properties of thin films containing itinerant electrons interacting with localized
spins are considered as well [12].

In this paper we propose a transfer matrix method, developed in our previous pa-
per [13], which introduces large simplifications in the analysis of elementary excitations
of FMS’s superlattices. All the calculations are done in the narrow band limit, with
W << DS where W is the conduction bandwith, D is the contact interaction energy, and
S is the spin of the localized electrons.

The structure of the paper is as follows: in Sec. 2 we formulate the model and
demonstrate the transfer matrix procedure through a simple model for an infinite, i.e.



14 M. Pavkov-Hrvojević, M. Pantić, S. Radošević, M. Rutonjski and D. Kapor

ideal, superlattice. A general solution of the problem is rather difficult analytically, so we
demonstrate a special case of narrow-band semiconductors (such as the chromium spinels).
Further on, we study semi-infinite superlattice. Some numerical results of the surface and
bulk spin-wave spectrum of superlattice the with motive which consists of one plane are
presented and compared with the results of Gopalan and Cottam [9]. We study more
complicated superlattices, as well as film made of superlattice. Results are analyzed nu-
merically in dependence of the parameters of the system, they are summarized in Sec. 3.

2. Model and transfer-matrix formalism

We will consider infinite FMS’s superlattice described by the s-d (or s-f ) interaction
model. The superlattice is built of the y − z planes which are ferromagnetically ordered
and the exchange between the spins within the plane will be denoted by I > 0 with an
additional subscript.

The motive, or unit cell, i.e. the magnetic structure that repeats itself along x direction,
consists of N planes which also interact ferromagnetically. The interaction between the
spins belonging to neighboring planes will be denoted by J > 0, with the corresponding
subscript. The position of an ion is given by �n = �ρ + [mL + (n − 1)a]�ex. Here �ρ is a
two-dimensional vector describing the position within the plane; a is the lattice constant;
L = Na is the cell dimension along the x−axis, while m enumerates the cells.

The Hamiltonian of the system is expressed as the sum of three terms:

H = HM +HE +HME . (1)

HM is the Heisenberg Hamiltonian for the localized spins (of d or f type) :

HM = −1
2

X
m

NX
n=1

In
X
�ρ

X
�δ ||

½
1

2

∙
Ŝ+m�ρ(n)Ŝ

−
m�ρ+�δ ||

(n) +H.c.

¸
+ Ŝz

m�ρ(n)Ŝ
z
m�ρ+�δ ||

(n)

¾
−

−
X
m

⎧⎨⎩
N−1X
n=1

Jn,n+1
X
�ρ

∙
1

2

³
Ŝ+m�ρ(n)Ŝ

−
m�ρ(n+ 1) + Ŝ−m�ρ(n)Ŝ

+
m�ρ(n+ 1)

´
+

+ Ŝz
m�ρ(n)Ŝ

z
m�ρ(n+ 1)

¸
+
1

2
JN1

∙
1

2

³
Ŝ+m�ρ(N)Ŝ

−
m+1�ρ(1) + Ŝ+m−1�ρ(N)Ŝ

−
m�ρ(1)

´
+

+H.c.+ Ŝz
m�ρ(N)Ŝ

z
m+1�ρ(1) + Ŝz

m−1�ρ(N)Ŝ
z
m�ρ(1)

¸)
− gµBH0

X
m,�ρ

NX
n=1

Ŝz
m�ρ(n) (2)

here Sm�ρ(n) denotes the spin of the ion in the nth plane within the mth cell, and the
position within the plane is specified by �ρ. The first term describing the intra-plane
interaction also includes the summation over nearest neighbors within the plane whose
positions are designated by �δk .The second term of HM describes inter-plane interaction,
where the interactions within the given cell are separated from the ones between the cells.
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The last term represents Zeeman energy of localized spins, where H0 is a static magnetic
field applied in the z−direction and g is the Lande factor of the localized electrons. HE

represents the kinetic and Zeeman energy of the conduction (s) electrons:

HE =
X
m,n

X
�ρ,�δk ,σ

tknâ
+
m�ρσ(n)â

+

m�ρ+�δk σ
(n) +

X
m,n

X
�ρ,σ

t⊥n,n+1â
+
m�ρσ(n)â

+
m�ρσ(n+ 1)−

−geµBH0

X
m,n

X
�ρ

σzm�ρ(n) .
(3)

Here t
k
nand t⊥n,n+1 stand for hopping terms in the plane and between the plane, respectively

and ge is the Lande factor of conduction electrons. The most important term in eq. (1) is
s-d (or s-f) interaction Hamiltonian HME, which couples two subsystems (2) and (3) by
an intra-atomic exchange interaction Dn:

HME = −
X
m,n

X
�ρ

Dn
�̂S
+

m�ρ(n) · �̂σ
+

m�ρ(n) =

= −
X
m,n

X
�ρ

Dn

½
1

2

³
Ŝ+m�ρ(n)σ̂

−
m�ρ(n) + Ŝ−m�ρ(n)σ̂

+
m�ρ(n)

´
+ Ŝz

m�ρ(n)σ̂
z
m�ρ(n)

¾
.

(4)

The spin operator �σi of the conduction electrons at the site i can be expressed as σ̂
+
i =

â+i↑âi↓, σ̂
−
i = â+i↓âi↑ and σ̂zi =

1
2

³
â+i↑âi↑ − â+i↓âi↓

´
, where â+iσ and âiσ are creation and

destruction operators at the site i, respectively and σ =↑or ↓ corresponds to the spin-up
and spin-down states.

The general procedure we shall apply is explained in detail in [14], so we shall not
repeat all the steps. If the hopping term t is small enough (compared to D), the main
effect of the conduction electrons is through the interaction term HME of eq. (4). In this
case, t = 0 and it is straightforward to construct the equations of motion for the spin
operators Ŝ+m�ρ(n) and σ̂+m�ρ(n). Further on, we perform two-dimensional in-plane Fourier-
transform and linearize the equations using random-phase approximation at T << TC , in
order to obtain the system for spin-wave amplitudes um(n,�kk ), where �kk = (ky, kz) is the
two-dimensional wave-vector which will be omitted further on. This system has the form:

(E − εn)um(n) + SnJn,n+1um(n+ 1) + SnJn,n−1um(n− 1) = 0; n = 1, 2, ...., N . (5)

where Sn is the magnitude of the localized spin in the nth plane, JN,N=1 ≡ JN,1,
SN=1 ≡ S1,

εn = gµBH0 +Dnsn +
D2
nSnsn

E − geµBH0 −DnSn
+ 4InSn(1− γ(�kk )) +

+Sn+1Jn,n+1 + Sn−1Jn,n−1 .

(6)

sn is the magnitude of electron’s spin in nth plane and γ(�kk ) =
1
2 (cos kya+ cos kza).

The above equation can be written asÃ
um(n+ 1)
um(n)

!
= M̂n

Ã
um(n)
um(n− 1)

!
. (7)
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where the transfer matrix M̂n is given by:

M̂n =

Ã
εn−E

SnJn,n+1
− Jn,n−1

Jn,n+1

1 0

!
. (8)

Further procedure one can find in our paper [13], so we will just give the equation
which determines the bulk energies of the system:

2 cos kxa = M̂n
11 + M̂n

22 = Tr
n
M̂n(E)

o
, (9)

where M̂n = M̂nM̂n−1 · · · M̂1M̂NM̂N−1 · · · M̂n+1, N + 1 ≡ 1. We will present the main
results for the case of semi-infinite FMS’s superlattice.

2.1. Elementary Excitations in the Semi-Infinite FMS’s Superlattice

We will asume here that the semi-infinite superlattice possesses a boundary surface,
while it extends infinitely in the opposite direction, occupying the half-space x ≥ 0. Fol-
lowing our previous paper [13], where we introduced the generalized Ansatz um(n) =
u(n)λm−1, we can use the following expression for the determination of the surface modes:

M21
0 (λ −M22)−M21M

11
0 = 0 , (10)

which, when combined with the equation

λ +
1

λ
=M11 +M22 , (11)

allows the determination of the energies of elementary excitations in the system. (M)ij
are the matrix elements of the matrix M̂ =

Q1
n=N M̂n, where N denotes the number of

the bulk planes, while (M0)
ij are the matrix elements of the matrix M̂0 given by:

M̂0 =

Ã
1 0

∆ε1
S1JN1

JN01
JN1

!
M̂S , ∆ε1 = ε1 − εt1. (12)

where N0 denotes the number of the planes in the surface cell (N0 is not necessarily equal
to N) and M̂S =

Q1
n=N0 M̂

S
n , where

M̂S
n =

⎛⎝ εSn−E
SnJSn,n+1

− JSn,n−1
JSn,n+1

1 0

⎞⎠ , n = 2, 3, ...N0. (13)

while for n = 1 we have:

M̂S
1 =

⎛⎝ εS1−E
S1JS1,2

− 1
1 0

⎞⎠ . (14)

We get ε1 and ε
t
1 from eq. (6) for n = 1, taking into account that n−1 ≡ N and n−1 ≡ N0,

respectively and εS1 = gµBH0 +DS
1 s

S
1 +

(DS
1 )

2
SS1 s

S
1

E−geµBH0−DS
1 S

S
1
+ 4IS1 S1(1− γ(�kk )) + S2J

S
12.
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To compare with the work [9], we have studied the simplest case first, when the motive
consists of one plane (N = 1). Combining eq. (6) and (9), we get the equation for the
bulk excitations:

E − gµBH0 − 2SI
³
3− 2γ(�kk )− cos kxa

´
−Ds− D2Ss

E − geµBH0 −DS
= 0 . (15)

The determination of surface modes is possible using the equation:

E−gµBH0−2SJ−4SJ
³
1− γ(�kk )

´
−SJ

µ
λ+

1

λ

¶
−Ds− D2Ss

E − geµBH0 −DS
= 0 , (16)

which results from the combination of equations (9), (10) and (11). Numerical examples
for spin waves are shown in Figures 1(a) and 1(b) for the low-frequency and high-frequency
excitations, respectively.

Figure 1a Figure 1b

Figure 1. Spectrum of spin-wave modes (in units SJ/h̄) versus kya for a semi-infinite narrow-
band semiconductor (with t = 0) in the low frequency region (a) and high-frequency region (b).
The parameter values are D

J = 200, S =
3
2 , s =

1
2 ,

gµBH0

SJ = 0.3, and ge = g. The bulk spin-wave
region is shaded, and the labelling of the surface spin-wave branches corresponds to:

Fig 1a W IS
I = 0.5,

DS

D = 1; X IS
I = 0.5,

DS

D = 0.2; Y IS
I = 2,

DS

D = 1; Z IS
I = 2,

DS

D = 0.2;

Fig 1b B IS
I = 0.5, DS

D = 1; A IS
I = 2, DS

D = 1; C IS
I = 0.5, DS

D = 0.98; D IS
I = 2, DS

D = 0.98;

E IS
I = 0.5,

DS

D = 1.02; F IS
I = 2,

DS

D = 1.02.

The choice of parameters is the same as in the work [9], taken as approximate values
appropriate to the S = 3

2 ferromagnet CdCr2Se4, which is usually considered to be a
narrow-band material. Qualitatively, our results are the same as of Goplan and Cottam,
meaning that surface spin waves appear as “acoustic” and “optical”, depending on the
ratios IS

I and
DS
D . We confirm the result of [9] that in the case of low-frequency excitations,

the surface spin-wave frequencies depend strongly on IS
I , but only weakly on

DS
D . In the
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case of high-frequency excitations the reverse applies (Fig. 1b), although there are some
quantitative differences compared to [9].

More complicated case of the superlattice, where the motive consists of two planes at
the surface and in the bulk (N0 = N = 2) is also analyzed numerically. Results are shown
in Figure 2 for a different set of parameters for low-frequency region. As expected, we have
two bulk regions and we examened only the influence of the ratio IS

I . We can conclude
that surface spin waves appear as “acoustic” and “optical”, and they strongly depend on
this ratio. We did not show results for high-frequency region, since in that case, for the
superlattice where the motive consists of two planes at the surface and in the bulk, bulk
regions degenerate into single lines.

Figure 2. Dispersion curves of the spin-wave modes localized at the surface for N0 = N = 2 in

the low frequency region. The parameter values are D1

J =
DS
1

J = 200, D2

J =
DS
2

J = 100,

S1 = SS1 =
3
2 , S2 = SS2 =

5
2 , s =

1
2 ,

gµBH0

SJ = 0.3, and ge = g. The bulk spin-wave regi-

-on is shaded, and the labelling of the surface spin-wave branches corresponds to W

and X,
IS1
I = 0.5,

IS2
I = 0.3; Y and Z

IS1
I = 2,

IS2
I = 1.

3. Conclusion

The aim of this study was to analyze, theoreticaly, bulk and surface magnetic exci-
tations of FMS’s superlattice using transfer matrix formalism, developed by Barnas [14]
and generalized further by our team [13]. We considered the narrow-band limit, where
the hopping exchange interaction of conduction electrons can be omitted. To our knowl-
edge, there is no investigation on magnetic excitations of thin FMS’s films in the current
literature. It would be of significant importance to expand our investigation onto these
systems, which are the most interesting from the experimental point of view.
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Abstract

The influence of the neighbour hydrogen lines Hα and Hγ on the Hβ spectral
line profile has been studied in the electron density range of (2− 7 ) · 1023m−3.
Except for the well defined line maxima and continuum level, this influence
also can be important for the procedure of the electron density determination
by using halfwidth of the Hβ profile. It is especially important for the elec-
tron densities above 6 · 1023m−3. For the analysis of the mentioned influence,
theoretical profiles were used and the results were applied for the correction of
experimental Hβ profiles. The analysis showed that the intensity of the blue
Hβ wing can be higher by up to 35%, which leads to an error of 7% in the
electron density determination for the highest electron density considered.

Key words: Plasma, Stark broadening, Hβ spectral line

1. Introduction

The knowledge of theoretical and experimental profiles of hydrogen Balmer Hβ line is

very important for plasma diagnostics purposes. The method for the determination of elec-

tron density using the Stark broadened profiles of Balmer beta line is a standard technique

in plasma spectroscopy. However, it should be noted that the accuracy of the density diag-

nostics from the measurement of the line halfwidth is in fact limited by the existence of the

characteristic peaks of Hβ profile and due to the continuum level determination problem.

This is the reason why other methods for density determination have been proposed [1-4].

These methods are based, for example, on fitting exclusively the experimental line wings

[1,2] or areas under maxima [2,5] to VCS profiles [6]. It was shown in [34] that methods

using the whole experimental profiles for the χ2-minimization fitting provide density values

that are by about 10% lower than those determined from the halfwidth. Contrary, fitting

only the parts of experimental profiles could lead to higher electron densities [3,4] than

the real ones. The inconsistency of the fitting output might be a result of insufficiently

refined theoretical models [6,7] and profiles that lack to reproduce the real interrelations of

various physical effects. For example, in the case of VCS profiles, which in the range of low

density exhibit three times larger dip than in the experiment, this leads to the fitting out-

put of lower electron densities [3]. Here we should point out that the fitting program [1]
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shows 2 − 3 times lower electron densities than the ones obtained from Hβ halfwidths,

which was not observed by the comparison of the whole profiles by any other author [3].

Comments of this and other fitting methods [1,2,8-10] are given in [11]. Furthermore,

theoretical Hβ profiles [6,7] are symmetrical while experimental ones show both peak and

body asymmetry. This is the reason why the fitting procedures used in the past often

avoided the central region of the line [3,4]. Even if there exist the differences between

theoretical and experimental profiles [6,7], for the electron densities above 1022m−3 the
line halfwidth is highly sensitive to the Stark broadening. Hence, the halfwidth method is

rather reliable for the determination of electron density with a relative error of only about

6% [12]. This is true only if experimental profiles are well defined. Very often it is not the

case, and the problem with peak intensity and continuum level determination arise. This

could be minimized by using appropriate theoretical profiles.

New theoretical models based on the effects of microfield nonuniformity and electron

impact shifts [13] and the standard theory and computer simulations with separately

included quadrupolar and quadratic Stark effects [14], finally made it possible fitting

of the whole asymmetric experimental Hβ profile. This is especially important for the

electron densities higher than 1023m−3. Possibilities of fitting the whole Hβ profile, for

electron densities lower than 1023m−3 using symmetrical theoretical profiles [6,7,15,16]
are described in [17]. Even with this, one more problem still exists. The problem is the

influence of the neighbour hydrogen lines, especially of the Hγ on the Hβ spectral line

profile. In both techniques, using halfwidth measurements and fitting of the whole profile,

especially for higher electron densities where hydrogen lines are very broad, this effect can

increase the error of the electron density determination.

The aim of this work is to analyze the influence of the overlapping of the neighbour

hydrogen lines on the Hβ spectral line. Experimental profiles are obtained from T-tube

plasma, with electron densities in the range of (2−7 ) ·1023m−3 and electron temperatures
between 19 and 34 kK.

2. Experimental Setup and Plasma Diagnostics

The plasma was produced from an electromagnetically driven T-tube, having a di-

ameter of 27mm and being supplied with a reflector. The T-tube was energized using a

4μF capacitor bank, charged up to 20 kV. The filling gas was hydrogen at a pressure of

300Pa. Spectroscopic observations of plasma were performed using a 1 m monochromator

and a photomultiplier. The observation point was fixed at 4mm in front of the reflector.

Photomultiplier signals were recorded on an oscilloscope. The Hβ profiles were scanned at

close intervals using successive discharges over the wavelength range of ± 30 nm from the

line centre. More details on this experiment can be found in Refs. 13 and 14.

Electron densities of the T-tube plasma, ranging from 2.28 ·1023m−3 to 7.30 ·1023m−3,
were determined from Stark widths of the Hβ line profiles. These measurements were
performed in conjuction with theoretical calculations by Griem [7]. The estimated un-
certainties of the electron densities did not exceed ±9%. Electron temperatures, ranging
from 19400K to 34000K, were determined from the line-to-line continuum ratios for the
Hβ line [18]. The uncertainties of electron temperature measurements were between ±8%
and ±15%, for the lower and higher values respectively.
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3. Analysis of the Influence of the Neighbour Hydrogen Lines on the Hβ

Profile

In this analysis, three first lines, viz., Hα, Hβ and Hγ , in the hydrogen Balmer series
are considered. The illustration of the positions of these lines on the wavelength scale is
shown in Figure 1.

Figure 1. Illustration of the Hα, Hβ and Hγ positions.

For this illustration, the theo-
retical profiles [7] of the lines
are used. The Hα line is far
from the Hβ line profile, and
in most cases the influence of
Hα can be negligible, while Hγ

is relatively close, and its influ-
ence should be considered.
Theoretical H profiles [7]

were generated for our ex-
perimental conditions, electron
densities (2.28, 2.73, 3.30, 4.09,
5.69 and 7.30) ·1023m−3 and
electron temperatures (19400,
20200, 21200, 24200, 28000 and
34000)K. The Hβ profiles [7],
which correspond to lower and
higher experimental electron

densities, are shown in Figures 2 and 3. The same figures also show the Hα and Hγ

intensities in the Hβ profile region.

Figure 2. Theoretical Hβ line profile [7] with
corresponding Hα and Hγ theoret-
ical intensities for electron density
of 2.28 · 1023m−3.

Figure 3. Theoretical Hβ line profile [7] with
corresponding Hα and Hγ theoret-
ical intensities for electron density
of 7.30 · 1023m−3.

These influences are calculated for the different positions along the Hβ profile, namely,
in the centre of the line λ0, at the line maxima ∆λmax , at the distance ∆λ1/2/2 and ∆λ1/2
from the line centre in both directions (left and right from the line centre). The ∆λ1/2
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denotes the halfwidth of the Hβ line profile. The positions for calculations of the influence
are shown in Figure 4. The I(Hβ) intensities at the different positions along the Hβ profile
are shown in Table 1, together with the I(Hα), and I(Hγ) intensities [7] for comparison.

Figure 4. Illustration of the positions along the Hβ profile at which calculations of the Hα and
Hγ influences were performed.

Table 1. The I(Hβ) intensities at the different positions along the Hβ profile and I(Hα),
and I(Hγ) intensities [7] at the same positions.

Intensities (a. u.)

Ne Te line −∆λ 1
2

−
∆λ 1

2
2 −∆λmaxB λ0 ∆λmaxR

∆λ 1
2

2 ∆λ 1
2

(1023m−3) (K)

Hγ 0.0200 0.0161 0.0138 0.0129 0.0121 0.0107 0.0089
2.28 19400 Hβ 0.6200 2.0600 4.2400 2.8200 4.2400 2.0600 0.6200

Hα 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Hγ 0.0288 0.0225 0.0190 0.0177 0.0163 0.0142 0.0116
2.73 20200 Hβ 0.5800 2.0868 4.2073 2.8449 4.2073 2.0868 0.5800

Hα 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

Hγ 0.0420 0.0318 0.0264 0.0242 0.0227 0.0190 0.0150
3.30 21200 Hβ 0.6000 2.0804 4.1858 2.8761 4.1580 2.0804 0.6000

Hα 0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

Hγ 0.0690 0.0480 0.0385 0.0349 0.0318 0.0260 0.0203
4.09 24200 Hβ 0.6100 2.0731 4.1622 2.9109 4.1622 2.0731 0.6100

Hα 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005

Hγ 0.1600 0.0960 0.0746 0.0643 0.0557 0.0443 0.0320
5.69 28000 Hβ 0.5900 2.1140 3.9753 2.7746 3.9753 2.1140 0.5900

Hα 0.0005 0.0006 0.0007 0.0007 0.0007 0.0008 0.0009

Hγ 0.3100 0.1800 0.1146 0.0987 0.0856 0.0647 0.0450
7.30 34000 Hβ 0.6000 2.0000 3.9286 2.8099 3.9286 2.0000 0.6000

Hα 0.0009 0.0009 0.0010 0.0011 0.0011 0.0012 0.0014
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It is obvious that the Hα intensities are very small in comparison with both the I(Hβ)
and I(Hγ) intensities and the influence of Hα on the Hβ profile can be neglected in all
considered cases. However, the influence of the Hγ on the Hβ profile must be taken into
account.

To investigate the influence of the neighbour lines on the Hβ profile, total intensities
I(Hγ)+ I(Hβ) + I(Hα), even if I(Hα) was negligible, were calculated at each of the above
mentioned positions, and then the percentage intensities for which Hβ line profile was
raised were also calculated. The calculated corrections for different electron densities are
given in Table 2.

Table 2. Percentages of the necessary correction of the Hβ profile intensity at
different positions.

Corrections (%)

Ne Te −∆λ 1
2

−
∆λ 1

2
2 −∆λmaxB λ0 ∆λmaxR

∆λ 1
2

2 ∆λ 1
2

(1023m−3) (K)

2.28 19400 3.140 0.780 0.327 0.459 0.287 0.522 1.431
2.73 20200 4.746 1.076 0.454 0.625 0.391 0.685 1.994
3.30 21200 6.571 1.520 0.634 0.845 0.550 0.919 2.487
4.09 24200 10.202 2.281 0.926 1.198 0.768 1.257 3.297
5.69 28000 21.386 4.370 1.859 2.289 1.399 2.089 5.282
7.30 34000 34.131 8.295 2.858 3.430 2.159 3.190 7.178

The same results are graphically shown in Figure 5. The presented results show for which
percentages the Hβ line intensities should be reduced because of the influences of the Hα

and Hγ .

Figure 5. The calculated corrections of the Hβ profile intensity at different positions.
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4. Correction of the experimental profiles

Before the comparison of the pure experimental and corrected experimental profiles,
the continuum was eliminated. For this purpose, the linear dependence of the continuum
of the wavelength was assumed. The experimental Hβ line profile correction is illustrated
in Figure 6 for an electron density of 3.30 · 1023m−3 and in Figure 7 for electron density
of 7.30 · 1023m−3.

Figure 6. The Hβ profile correction
(Ne = 3.30 · 1023m−3).

Figure 7. The Hβ profile correction
(Ne = 7.30 · 1023m−3).

Here, it should be pointed out that every experimental point in Figures 6 and 7 rep-
resent an average value of 6 independent measurements. It is obvious that experimental
profiles are asymmetrical. The asymmetry of the whole profile is elaborated in Ref. [13]
and asymmetry of the line maxima in Ref. [14]. Even though the experimental profiles
are to a certain degree asymmetrical, for the analysis of the Hα, and Hγ influences, sym-
metrical theoretical profiles [7], (available at this moment) were used. In the region of the
maxima of the experimental Hβ profiles, only corrected points are presented because of
overlapping of many points in a small area.

Table 3. Percentage of halfwidth and electron
density correction after the Hβ profile
correction.

Ne Corrections (%)

(1023m−3) ∆(∆λ 1
2
) ∆(Ne)

2.28 1.9 3.0
2.73 2.2 3.4
3.30 2.5 4.0
4.09 3.0 4.7
5.69 4.0 6.1
7.30 5.0 7.5

The values of electron densi-
ties given in the figures and ta-
bles of Paragraph 3 were ob-
tained before the Hβ profiles
corrections. The Hβ profile
correction influences, of course,
the halfwidth profile determi-
nation, and thus, the electron
density determination. The
percentage of the halfwidths
and electron density reductions
are given in Table 3. It is ob-
vious that for electron densities
above 6·1023m−3 the error cau-

sed by the influence of theneighbour lines on the Hβ profile is the same as the error



Correction of the Hβ Spectral Line Profile for the Influence of the Neighbour Hydrogen Lines 27

of the electron density determination, which was estimated to be 6% [12]. Of course,
it is assumed that the experimental profile is well defined, without large spread of the
experimental points.

6. Conclusion

In this paper we analyzed the influence of the neighbour hydrogen lines overlapping
on the Hβ spectral line. The analysis was performed for the electron densities between
2.28 · 1023m−3 and 7.30 · 1023m−3, for which experimental work was performed. Based on
the analysis, corrections were made of line intensities, halfwidths, and finally, of electron
densities. The conclusion is that this type of correction must be performed for the electron
densities above 6 · 1023m−3.

This type of the Hβ profile correction is one of the three critical elements for the
determination of electron density if halfwidth of the Hβ line is used. Other two elements
are the determinations of maxima and continuum level. These two levels determine the
level at which halfwidth of the line is to be measured. All three types of the experimental
Hβ line profile correction allow us to fit theoretical profiles to the whole experimental
profile and use it for the electron density determination instead of the measurement of the
halfwidth only.

In this work we used symmetrical theoretical Hβ profiles [7] which are quite good
for this type of analysis. For the fitting of the whole profile one should use asymmetrical
theoretical profiles [13,14], which can better describe the shape of the experimental profile.
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Abstract

We have investigated the influence of three chiral nonmesogenic estradiol deriv-
atives on the physical characteristics of the binary mixture of cholesteric liquid
crystals cholesteryl myristate and cholesteryl enantate. We observed that the
addition of the chiral additives induces a shift of the phase transition tem-
peratures. The characterization of the mesophases has been made by X-ray
diffraction. These data enabled the determination of some structural parame-
ters of the mixtures: the thickness of smectic layers and the average distance
between the long axes of neighbouring molecules.

Key words: X-ray diffraction, estradiol derivatives, cholesteric liquid crystals

1. Introduction

This work represents the continuation of our studies on binary and multicomponent
mixtures of cholesteric liquid crystals, undertaken with the aim to obtain systems with
stable mesophases and transition temperatures close to room temperature [1,2]. Estradiol
derivatives have a steroidal configuration similar to that of the cholesteryl backbone, which
makes them suitable as chiral additives in cholesteric mixtures even though they do not
have mesophases. In natural biological systems, estradiol and estradiol derivatives play a
significant physiological role [3].

In the present paper we investigate the influence of some estradiol derivatives on the
mesophase behaviour of a binary mixture of cholesteryl laurate and cholesteryl enantate.
Measurements have been carried out to identify the types and textures of mesophases and
determine the phase transition temperatures by optical microscopy. X-ray measurements
have also been performed to confirm the structure of mesophases and determine structural
parameters.
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2. Experimental

2.1. Methods and equipments

The optical studies were performed using a polarizing microscope (Carl Zeiss, Jena)
in transparent light using crossed polarizers. A hot stage allowed controlled heating and
cooling of the sample. Homeotropical alignment of the liquid crystal was obtained by
evaporation of gold onto the glass plate using the vacuum evaporator JEOL JEE-4B.

Unoriented samples were investigated by X-ray diffraction in the transmission geometry
on a conventional powder diffractometer (Seifert V-14) equipped with an automatic high
temperature kit Paar HTK-10, using CuKα radiation at 0.154 nm. The X-ray diffraction
data allowed the determination of structural parameters characteristic for the molecules
and the mesophase they form [4]. Namely, the layer spacing (d) in the smectic A∗ (SmA∗)
phase and the average intermolecular distance (D) (i.e. the mean distance between the
long axes of the neighbouring parallel molecules) could be obtained using Braggs law:
λ = 2x sin θ. Here, the distances x = (d and D) were calculated from the positions of
the small angle and the large angle diffraction peaks, respectively.

2.2. The chiral additives

The investigated chiral additives, 17β-estradiol 3-benzylether 17-acetate (1), 17β-
estradiol diacetate (2) and 17β-estradiol dipropionate (3), are well known compounds
[5]. We synthesized them, however, by modified methods. Compound 1 was synthesized
by benzylation of estradiol in dry mixture of methanol and acetone in the presence of
potassium carbonate, followed by acetylation of the resulting benzyl ether of estradiol by
acetic anhydride in dry pyridine. Compounds 2 and 3 were synthesized from estradiol,
by the reactions of esterification with acetic anhydride and propionic anhydride in dry
pyridine, respectively. The chemical formulae of the prepared chiral additives are given in
Figure 1. Compounds 1 to 3 are non-mesogenic, their melting points are listed in Table 1.

Figure 1. Chemical structures of the chiral additives 1, 2 and 3
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Table 1. The phase sequences and phase transition temperatures of the pure
compounds.

Compound Phases and transition temperatures (◦C)
Cholesteryl myristate I 84.6 Ch 79.1 SmA∗ 71 Cr
Cholesteryl enantate I 114 Ch 99.5 Sm A∗ 92.5 Cr
1 Cr 101-107 I
2 Cr 121-124 I
3 Cr 101-104.5 I

2.3. The mixtures

In order to investigate the influence of the synthesized chiral additives on the mesophase
behaviour we had to prepare first a binary mixture,Mixbin, which contained cholesteryl
myristate and cholesteryl enantate in the 1 : 1 ratio by weight. Mixbin served as a
reference mixture for our studies. Before preparing the reference mixture, its components
have been checked by polarizing microscopy. The obtained phase sequences and phase
transition temperatures are also listed in Table 1, and thy show a good agreement with
the existing literature data [6].

The chiral additives were tested in threecomponent mixtures (Mix1,Mix2 andMix3),
composed of Mixbin (90% by weight) and one of the chiral derivatives (10% by weight
of 1, 2 and 3, respectively).

3. Results and discussion

Optical microscopic studies have been carried out on the reference mixture Mixbin,
as well as on the three-component mixtures Mix1 to Mix3. Observation of the textures
allowed to determine the phase sequences and the phase transition temperatures. Results
of the observations are summarized in Table 2. The layer structure in the SmC phase of
compound II is characterized by one reflection at a small angle 2θ = 3.1 ◦. In mixtures
Mix1 andMix2, similarly, one reflection peak could be found at small angles at the same
position as for the rod-like molecule, indicating the presence of the SmC phase.

In all investigated mixtures, focal conic polygonal textures were observed. This texture
is characteristic to such cholesteric liquid crystals where the cholesteric quasi-layers have
an oblique orientation with respect to the substrates, i.e., the helical axis is strongly
tilted. Such an orientation occurs if the surface area is occupied by the polygonal base
of a focal conic domain. However, formation of such a domain, although it reduces the
surface energy, is also accompanied by an increase of the “bulk” energy due to the director
distortions. The energy balance dictates that the focal conic domains has to be larger than
some critical size in order to become stable [7-10].

Figure 2a presents an example for this texture of the cholesteric (Ch) phase observed
in a homeotropic cell. The observed colour is due to the selective reflection originating
from a helical structure of the short pitch.

The focal conic texture of the SmA∗ phase in a homeotropic cell are shown in Figure
2b. The apparent optic axis is parallel to the layer normal direction in the SmA∗ phase.
In many SmA∗ materials, the layer normal direction points to the centre of the focal conic,
i.e. the layers orient tangentially in a circular focal conic domain.
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Table 2.Phase transition temperatures, width of the phase temperature ranges and the
shift of the phase transition temperatures in the investigated mixtures. All tem-
peratures are given in ◦C.

Mixture

Mixbin Mix1 Mix2 Mix3

Transition
temperature

I→ Ch 67.6 65.6 54.1 62.4

Transition
temperature

Ch → SmA∗ 65.0 57.0 44.1 57.0

Transition
temperature

SmA∗ → Cr 55.0 43.7 38.0 41.0

Phase tempera-
ture range

Ch 2.6 8.6 10.0 5.4

Phase tempera-
ture range

SmA∗ 10.0 9.3 6.1 16.0

Temperature
shift

I→ Ch 2.0 13.5 5.2

Temperature
shift

Ch→ SmA∗ 8.0 20.9 8.0

Temperature
shift

SmA∗ → Cr 7.3 17.0 14.0

Figure 2a Figure 2b

Figure 2. Textures of Mixbin: a) Focal conic polygonal texture observed in the Ch phase.

b) Texture with circular focal conic domains in the SmA∗ phase.

The optical observations have shown that the phase sequence of the mixtures (Table 2)
is not affected by the chiral additives: in all mixtures a sequence of isotropic (I) - cholesteric
(Ch) - smectic A∗ (SmA∗) - crystal (Cr) was found. The phase transition temperatures are,
however, shifted toward lower values in the three-component mixturesMix1 toMix3 com-
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pared to the binary mixture Mixbin. The largest temperature shifts have been recorded
after the addition of the chiral non-mesogenic additive 2. The phase transition tempera-
tures did not shift uniformly, hence the width of the temperature range of the mesophases
is also affected by the additives. Interestingly, all three additives induced a broadening of
the Ch phase range, compound 2 being the most effective (Mix2 exhibited a 10 ◦C wide
cholesteric phase. The widest SmA∗ phase (∼ 16 ◦C) was registered in the case of Mix3
(Table 2).

Having determined the phase sequences by microscopy we also performed X-ray dif-
fraction studies on unoriented samples of the binary (Mixbin), as well as of the three-
component (Mix1 to Mix3) mixtures, in all phases they exhibited. The relevant struc-
tural parameters obtained from the X-ray diffraction data are listed in Table 3. As ex-
amples, diffraction profiles of unoriented samples of Mixbin and of one ternary mixture
(Mix3) are depicted in Figure 3 for different temperatures.

Figure 3a Figure 3b

Figure 3. X-ray diffraction profiles for: a) Mixbin and b) Mix3

The analysis of X-ray diffraction profile of the SmA∗ phase showed the presence of a
strong reflection at small angles, indicating the presence of a layer structure with layer
spacing d; the diffuse broad peak appearing in the 2θ range of 10− 25 ◦, with a maximum
at 16.5 ◦ corresponding to the average intermolecular distance (D).

One can notice in Table 3 that the chiral additive 3 induces an increase in the smectic
layers thickness in the SmA∗ phase compared to that ofMixbin. It is probably due to the
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steric influence of bulky substituents at positions 3 and 17 of the backbone of the chiral
additive 3, which in the ternary mixtureMix3 alters the packing of the host molecules of
Mixbin.

Table 3. Structural parameters of investigated mixtures for all observed phases at
temperature T [◦C]: angles corresponding to the reflection peaks 2θ [◦],
smectic layer thickness d [Å] (error of measurements δd was about ±0.1 Å),
average intermolecular distance D [Å] (error of measurements δd was about
±0.03Å).

Mixture T [◦C] 2θ [◦] d [Å] D [Å]

96 (I) 16.0 5.53
Mixbin

66 (Ch) 16.4 5.4
2.9 30.4

60 (SmA∗)
16.5 5.37

111 (I) 16.0 5.53
Mix1

63.5 (Ch) 16.4 5.4
3.5 25.2

51 (SmA∗)
16.6 5.33

93 (I) 16.2 5.46
Mix2

50 (Ch) 16.8 5.27
3.5 25.2

42 (SmA∗)
17.0 5.21

111 (I) 16.0 5.53
Mix3

60.4 (Ch) 16.9 5.24
2.7 32.7

50 (SmA∗)
17.1 5.18

On the other hand, the d values forMix1 andMix2 are by almost 15% smaller than
inMixbin (Table 3). It could be because the substituents in the positions 3 and 17 of the
backbone of the estradiol derivatives 1 and 2 are less bulky, so they allow better packing
of the host molecules in the ternary mixtures.

In the cholesteric and isotropic phases no small angle reflections are detectable, in-
dicating the lack of positional order; only the broad peaks at larger angles are present
(Figure 3) corresponding to the average intermolecular distance D. As can be seen from
Table 3, the additives have practically no influence on D in the isotropic phase. However,
some reduction of D can be seen in the Ch phase of the ternary mixtures, which becomes
more pronounced in the SmA∗ mesophase. This indicates that a higher packing density
of the molecules is favoured in the presence of the additives, than in the pure cholesteric
binary mixture.

4. Conclusion

The results of the studies of the ternary mixtures of cholesteric liquid crystals with
non-mesogenic chiral estradiol derivatives 1 - 3 have shown a significant shift of the meso-
morphic phase transitions toward lower temperatures, compared to those of the reference
mixture. From the X-ray diffraction data of unoriented samples we have determined the
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average intermolecular distance, D, and the smectic layer spacing, d. It was shown that
the smectic layer spacing in the SmA∗ phase ofMix3 is bigger, while inMix1 andMix2
it is smaller than in the reference mixture. The reduction of the average intermolecular
distances indicates a higher packing density of the molecules in the ternary mixtures than
in the reference one.

Acknowledgments

This work was supported by research Grant No. 141020 and No. 142052B from the Min-
istry of Science and Technological Development of the Republic of Serbia, the Hungarian
National Science Funds OTKA K61075, the ESF-COST D35 WG-13/05, and the SASA-
HAS bilateral exchange project.

References
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Abstract

Dielectric properties of β-cyclodextrin and Fe(II)-fumarate were studied in the
form of inclusion complex (BCDFe) and basic compounds of β-cyclodextrin
(BCD) as “host” molecule and Fe(II)-fumarate as a small molecule included as
the “guest” into the molecule of β-cyclodextrin. Measurements were performed
at several frequencies of 10, 102, 103, 104 and 105Hz at the temperatures
starting from room temperature 25 ◦C up to the sample melting point, which
is 220 ◦C for the complex BCDFe and BCD and 160 ◦C for Fe(II)-fumarate.
Dielectric properties of these substances were studied with the objective to
explain the processes occurring within the complex during the complexing and
the changes in the complex itself.

Key words: β-cyclodextrin complex, Fe(II)-fumarate, dielectric properties, conductivity,
comparative study

1. Introduction

Cyclodextrins are natural compounds with high possibilities of application in the phar-
maceutical industry. They are macrocyclic oligosacharides. The α-, β- and γ-cyclodextrins,
consisting of 6, 7, and 8 glucopiranous units (Fig. 1.) are used most. They are caracterized
by the ring structure with cavities. When the number of glucopiranous units increases, so
increases the ring diameter and the cavities within it [1].

The shape of cyclodextrin molecules reminds to flattened cone. They possess hydroxyl
groups OH-2, OH-3 and OH-6. Secondary hydroxyl groups (OH-2 and OH-3) are on the
broader, while the primary ones (OH-6) are on narrower side of the cylindrical molecule.
There exists a strong hydrogen bond between the OH-2 and OH-3 groups, with the OH-3
group acting as proton donor. The ratio of the strengths of hydrogen bonds in cyclodex-
trins is the following: α-CD < β-CD < γ-CD. The OH-6 groups can also be bonded by
hydrogen bonds on the lower side of the molecule, but these bonds are destabilized by
dipolar effects, decay easily in water, and usually do not appear in cyclodextrin crystals.

Cyclodextrin molecules bind hydroxyl groups at the outer sides of the cavities and
inside the molecule they bind hydrogen atoms. In water solutions, these hydrophobic
cavities contain 3 (α-CD), 7 (β-CD) or 9 (γ-CD) weakly bound water molecules. Their
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density inside the cavities is small, and they are large enough to accept more molecules.
This means that cyclodextrins can bind nonpolar aliphatic and aromatic molecules of the
corresponding dimensions. They are bonded in the ratio 1 :1, 2 :1 and 1:2, depending on
the nature of the guest molecule [2,3].

Figure 1. Structure of α−, β− and γ−cyclodextrin.

The study of crystalline β-cyclodextrin indicated that there are three modes of packing
the molecules (Fig. 2.). Most important characteristics of the β-cyclodextrin are given in
the Table 1.

Figure 2. Possible ways of packing of β−cyclodextrin.
a) brick wall; b) herring bone; c) channel structure.

Table 1. Some characteristics of β-cyclodextrin.

Molecular formula C42H70O35
Relative molecular mass 1135
Diameter of internal cavity (Å) 7
Solubility in water (g/100mc; 25 ◦C) 1.85
Melting point (◦C) 255-265
Number of water molecules in the cavity 7

Fe(II)-fumarate (ferrous fumarate or iron(II)-fumarate) is the compound of fumaric
acid and divalent iron representing fine red-brown powder, sparingly soluble in water
(solubility 0.14 g/100 cm3, 25 ◦C) and alcohol. It is hard to melt, and stays stable even
above 200 ◦C.
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Fumaric acid is trans-1,2-ethilendicarboxil acid, rational formula C4H4O4. There is
a generally accepted formula in the literature presenting Fe(II)-fumarate in the manner
shown at Fig. 3.

Fe(II)-fumarate is well known pharmacological agent. Its medical application is based

Figure 3. General formula of Fe(II)-fumarate.

on the following facts. It is assumed that
about 20− 30% of the world population
suffers from hyposideremy (lack of iron
and sideremypenic anemia), so that the
prevention and therapy of such condi-
tions are permanently existing problems
in human medicine. In order to overcome
this problem, a great number of pharma-
ceuticals based on ferrous or ferric iron
are used. Oral therapy is based on medi-

caments containing salts of divalent iron such as ferrosulphate, ferrofumarate, ferroglu-
conate etc. with Fe(II)-fumarate most broadly used. This fact is due to its good prop-
erties such as good absorption in the organism and low toxicity. Good absorption in the
organism originates from fumaric acid, which is an intermediate in the cycle of tricarbonic
acids and as such is abundant in living organisms (Crebbs cycle or lemon acid cycle) [4,5].
By complexing the Fe(II)-fumarate with β-cyclodextrin, the complex becomes soluble in
water, making it superior to those of the non-complexed active materials (Fe(II)-fumarate)
[6].

2. Experiment

Measurement of electric properties of samples of inclusion complex, Fe(II)-fumarate
and β-cyclodextrin in the frequency range 100Hz-10MHz, was performed on a Dielectric
Analyzer 2970 (DEA 2970) instrument (DuPont, USA). The equipment was run by the
computer, and for all necessary operations commanding programs were developed working
under the operative system TA. Samples were prepared in the form of tablets of 0.7mm
width and radius of 10mm [7].

Figure 4. Electrodes of the dielectric analyzer.

Measurement was based on the
method of parallel plates, used most in
the measurements of the dielectric prop-
erties. Two golden electrodes are used,
the lower and upper one (Fig. 4.). Elec-
tric field was generated by the lower
electrode, lying on the heater surface,
and which polarized the sample. Plat-
inum temperature detector surrounding
the electrode, measured sample temper-

ature and controlled the heater temperature. The upper electrode, fixed to the equipment
frame, measured the generated current, which was then converted into the output voltage
and amplified. Protective ring about the circle of the upper electrode corrected the dis-
persion of the electric field and the capacity at the plate edges. Sample widths recorded
at the begining of measurement were used during the experiment to evaluate ε, and ε,,.

The DEA measures the electric properties of the material as a function of time, tem-
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perature and frequency. Measurement is based on two fundamental electric characteristics
of the material: capacity and conductivity.

In the dielectric analysis, the sample is placed between two golden electrods and the
the sinusoidal voltage alternating electric field is applied. This produces the polarization
of the sample, which oscillates with the same frequency as the electric filed, but the phase
angle is displaced (Fig. 5.). This displacement is measured by comparing the applied
voltage and recorded current.

Figure 5. Time dependence of voltage and current between the upper and lower electrode.

Using the measured capacity and conductivity, one can derive the values of :

a) permitivity (ε,) - proportional to the capacity measuring the ordering of dipoles;

b) loss factor (ε,,) proportional to the conductivity measuring the energy needed for
dipole ordering.

3. Results and discussion

3.1. Frequency dependence of the measured quantities

3.1.1. Frequency dependence of the relative dielectric constant of the
BCDFe complex

Results presented in Fig. 6. show that at low frequencies the value of dielectric constant
falls abruptly, and then decreases slower. One can also notice that the value of dielectric
constant decreases with temperature. This happens because of the fact that at very high
frequencies the mechanical system can not follow the fast changes of the electric field,
meaning that all types of polarization mechanisms vanish. The “response” of the material
to extremely high frequencies of the external field is missing. When the field frequency
increases towards infinity, the value of relative dielectric constant equals approximately to
unity. One can notice at the plot that the value of ε, tends towards unity.

The increase in the value of relative dielectric constant with temperature can be as-
cribed to the fact that the orientational polarization is related to the thermal motion of
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the molecules. At low temperatures, the dipoles can not be oriented. When the temper-
ature increases, dipole orientation is enhanced. This increases the value of orientational
polarization, causing an increase in the relative dielectric constant.

Figure 6. Permittivity dependence on frequency at different temperatures for the complex BCDFe.

3.1.2. Frequency dependence of dielectric losses, ε,, = f(ν)

One can notice from Fig. 7. that the value of ε,, is constant at low frequencies, while
it rises abruptly at high frequencies.

Figure 7. Frequency dependence of dielectric losses at different temperatures for the complex

BCDFe.

3.1.3. Frequency dependence of specific conductivity, σ = f(ν)

As can be seen from Fig. 8., the increase in frequency yields also the increase in the
specific conductivity. One should expect the conductivity increase with rising temperature,
and it actually happens, since at higher temperatures molecules are more mobile.
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Figure 8. Frequency dependence of specific conductivity at different temperatures for the

complex BCDFe.

3.2. Temperature dependence of dielectric properties of the BCDFe com-
plex

3.2.1. Conductivity

The study plot of the dependence of conductivity on temperature, for various fre-
quencies, shows that the conductivity increases with increasing temperature, as expected.
For various values of the frequency, which are kept constant for a fixed time period, this
rise of conductivity also varies. Generalizing, we can state that this is an approximate
exponential dependence.

Figure 9. Temperature dependence of conductivity for the complex BCDFe.



Dielectric Properties of Molecular Inclusion Complex of β-cyclodextrin and iron fumarate 43

However, for the given distribution (Fig. 9.) this does not equally holds for all the values
of frequency.

Most pronounced changes occur for the frequency of 100 kHz. Namely, in the temper-
ature range from 20 ◦C to 70 ◦C, the conductivity decreases first, and only then increases
without any unexpected deviations, indicating that at the given frequency the tempera-
ture rise to 70 ◦C leads to a decrease of conductivity following one mechanism, and above
that temperature there occurs conductivity increase, by another mechanism. This might
be explained by the nature of the complex. Conductivity values range from 10−7Ω−1m−1

to 10−11Ω−1m−1.

3.2.2. Loss factor

The loss factor rises almost exponentially at lower frequencies (Fig. 10.). Substantial
change of loss factor (between 0 and 13 units) for the frequency of 10Hz points to the
dipole character of the material studied and large energy spent for the orientation of these
dipoles, increasing with increase in temperature. With increasing frequency, the dipoles
can not follow the rate of changes, so that they react to such fields more weakly. It is
observed that losses are smaller at higher frequencies. Namely, they decrease with rising
frequency and at the given, high frequencies, their variation can be neglected.

Figure 10. Temperature dependence of loss factor for the complex BCDFe.

3.2.3. Permittivity

As for the permittivity (Fig. 11.), it is not simple to conclude and explain the differ-
ences in the behavior at various frequencies. At high frequencies (10 kHz and 100 kHz)
the permittivity decreases, while at the lower ones (from 10Hz to 1 kHz) it increases. The
permittivity has values from 2 to 9 (units). The larger value of permittivity at lower
frequencies (10Hz) indicates the existence of dipoles, while the rise with temperatures
follows the structural changes indicating aggregation, i.e. a decrease in the number of
dipoles above the temperature of 140 ◦C.
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Figure 11. Temperature dependence of permittivity for the complex BCDFe.

3.3. Comparison of dielectric properties between the complex and Fe(II)-
fumarate and β-cyclodextrin

The results for the complex were compared with those for pure Fe(II)-fumarate and
pure β-cyclodextrin. It is assumed that on the basis of the interpretation of the difference in
the same dielectric property one can conclude more about the structure of the molecule, i.e.
confirm the inclusion of a certain guest molecule into the host crystal structure (guest/host
components) [8].

The dependence of the relative dielectric constant, dielectric losses and conductivity
on frequency and temperature for Fe(II)-fumarate is given in Figs. 12., 13. and 14. [9,10].

Figure 12. Dependence of dielectric constant on temperature and frequency for Fe(II)-fumarate.
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Figure 13. Dependence of dielectric losses on temperature and frequency for Fe(II)-fumarate.

Figure 14. Dependence of specific conductivity on temperature and frequency for Fe(II)-fumarate.

3.3.1. Conductivity

The conductivity of Fe(II)-fumarate increases with frequency. The conductivity of the

complex reaches 3 · 10−7Ω−1m−1, while the conductivity of Fe(II)-fumarate ranges up to
10−5Ω−1m−1. This is due to the presence of the iron. Also, the values of conductivity
at high frequencies for Fe(II)-fumarate seem to converge to a single value at different
temperatures. For the complex it seems that there exist rather large differences in the

values of conductivity at high frequencies.

In the case of Fe(II)-fumarate, conductivity rises with rising temperature (as well as
frequency), approximately according to an exponential law. This was expected, especially

in the range of lower frequencies. The mobility of molecules increases with rising temper-
ature, and so does the conductivity, following an exponential law. The iron, as a typical

metal, has a dominant influence on the conductivity of Fe(II)-fumarate.

Such clear case is not found in the complex BCDFe, since the conductivity is influenced

only by the iron from Fe(II)-fumarate. Hence, we can notice that the conductivity of the
complex is lower by almost two orders of magnitude.
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The temperature dependence of conductivity of pure β-cyclodextrin (Fig. 15.), for

various frequencies has a very similar trend as in the case of the complex. The conductivity
at lower frequencies has a weak exponential rise, while at the frequency of 100 kHz, only

from the temperature of about 70 ◦C (the same as for the complex) the conductivity shows
a sudden exponential rise. Conductivity values are of the same order of magnitude as for

the complex.

Figure 15. Temperature dependence of conductivity of pure β-cyclodextrin.

3.3.2. Permittivity

Just as for the BCDFe complex, the dielectric constant for Fe(II)-fumarate decreases

with increasing frequency, but not so suddenly. The values of ε, range from 1− 11 (units)
for the complex, while for ferrofumarate the range is 0− 300 (units).

Figure 16. Temperature dependence of permittivity of pure β-cyclodextrin.

The permittivity of pure Fe(II)-fumarate is larger than that for the complex. Besides,

we can not observe any decrease with rising temperature at high frequencies, as in the

case of complex.
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The permittivity of pure β-cyclodextrin (Fig. 16.) at low frequencies rises abruptly

with increase in temperature, while at high frequencies it is almost constant or slowly

rising. Values of the permittivity range somewhere between the values for the complex

and values for pure ferrofumarate, i.e. from 5 to 30, although they are closer to the value

for the complex.

3.3.3. Loss factor

Dielectric losses for Fe(II)-fumarate decrease with increase in frequency, while for the

in complex they decrease at 210 ◦C, and at lower temperatures they are constant.
The loss factor for pure Fe(II)-fumarate is much higher, and constantly increases with

increasing temperature. The tendency of an exponential growth of the loss factor is asim-

ilar for the complexes and pure Fe(II)-fumarate. The loss factor (Fig. 17.) of pure

β-cyclodextrin has a similar tendency as for the complex (i.e. increases with increasing

temperature, much faster at lower frequencies), but its values are substantially lower,

being only 0.15 (unit).

Figure 17. Temperature dependence of loss factor of pure β-cyclodextrin.

4. Conclusion

The dielectric constant, as well as the loss factor for all samples decreases with fre-

quency. The basic trend of these quantities with increase in temperature is a mild rise of

the value, which in the vicinity of the melting point begins to rise abruptly. The conduc-

tivity of the complex of 10−7Ω−1m−1 corresponds approximately to the results for BCD,
while for the Fe(II)-fumarate it is by two orders of magnitude higher. At the frequency of

10Hz, the permitivity for the complex and BCD shows a similar behaviour with respect

to temperature increase, with an inflection point observed in the temperature range of

80 ◦C−90 ◦C for BCD, while for the complex it appears in the range of 110 ◦C−120 ◦C.
The same variation in the same temperature range is also noticed for the loss factor, in-

dicating that the increase of the value of the energy spent for the dipole orientation is in

the complex activated at higher temperature and has somewhat higher value (2.0 unit )
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than for BCD (0.15 unit), while the loss factor for pure Fe(II)-fumarate (20− 30 unit) is
substantially higher.

The obtained results indicate similar dielectric behavior of the complexes and BCD,

as it could be expected in the case of formation of host-guest inclusion complex. Small

differences can be ascribed to higher inertness of the molecules of the complex with the

frequency of applied field, taking into account the realized inclusion.

Such study of powder materials makes it possible to confirm the complexation, since

the studied complex loses the expressed conductivity properties of Fe(II)-fumarate and

behaves dielectrically as the host compound, i.e. BCD.
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[9] S. J. Skuban, T. Džomić and A. Kapor, International Journal of Modern Physics B,

(accepted on May 21, 2008.).
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Abstract

If bulk sample measured in some low background gamma spectroscopy system
contains hydrogen, neutrons produced by cosmic muons in the shield and other
surrounding materials can be captured. High energy photon (2223 keV) is
emitted in the process of deuterium production. Intensity of the 2223 keV
line in measured gamma spectra was used to estimate thermal neutron flux in
detector vicinity. The obtained results are compared with values of thermal
neutron flux obtained using the gamma lines emitted after the neutron capture
in Ge.

Key words: gamma spectroscopy, deuterium production, neutron captures, thermal neu-
tron flux

1. Introduction

Nuclear and particle physics, astrophysics, geophysics, life and environmental sciences,
and some other areas use low-level, high resolution Ge-spectroscopy. A most important
requirement of the very sensitive equipment and sophisticated data acquisition systems is
to be capable to discriminate desired events from all kinds of background. Background
reduction is sometimes the only possible way to improve sensitivity of the experiment [1-7].

At the sea level, natural radioactivity is most important source of background in Ge
gamma spectroscopy. The dominant component of background is gamma radiation emitted
by natural radionuclides. It can be reduced by passive shield. Thickness of 15 cm of radio-
impurities free lead can reduce natural radioisotope background by about four orders
of magnitude. Another significant source of background are neutrons. There are two
sources of neutrons associated with local natural radioactivity: neutrons produced via
(α,n) reactions and spontaneous fission of U and Th [8]. Both groups of neutrons have
low energy in MeV energy region [10].

After elimination of gaseous Rn and daughter nuclei and reduction of external nat-
ural radiation by the massive shield, the most significant source of background is cosmic
radiation [11]. It can be roughly divided to two most important components: muons iden-
tified by high energy deposition in detector crystal and neutrons produced by cosmic-ray
muons. Cosmic neutrons can be created through several processes: muon capture, usually
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at the sea level or in shallow depths, muon-induced spallation reactions, hadron nuclear
reactions and photonuclear reactions [12,13]. The energy of these neutrons can be even in
GeV energy region. It is shown [14,15] that neutron production rate by the cosmic muons
increases with the atomic weight of material. This means that common passive lead shield
turns into source of neutrons.

Activity induced by neutron capture in shielding and all other surrounding materials,
as well as in the detector itself, is another important source of background. Character-
istic gamma lines following thermal capture and inelastic scattering in Ge nuclides can
identify neutrons, both terrestrial and those produced by cosmic radiation. Estimation of
neutron flux in gamma spectroscopy systems can be done by interaction of neutrons with
germanium itself. Gamma lines at the energies of 139.9 keV and 198.4 keV appear in the
spectra as a result of thermal neutron capture by 74Ge and 70Ge, respectively [7]. Two
broad and asymmetric peaks in the spectra at 596 keV and 691.3 keV result from inelastic
neutron scattering ((n,n,) reaction) on 74Ge and 72Ge, respectively, and can be used for
estimation of fast neutron flux [16].

The common case (in environmental sciences especially) is that bulk samples in Marinelli
geometry are used to improve detection efficiency. If measured sample contains hydrogen,
creation of deuterium through the 1H(n, γ)2H nuclear reaction can occur. Emission of the
2223 keV photon follows capture of thermal neutron on hydrogen nuclei. This means that
the presence of thermal neutrons can be recognized by analyzing the 2223 keV peak in
the spectra. In order to explore the potential use of the 1H(n, γ)2H nuclear reaction and
2223 keV gamma line in possible estimation of neutron flux in detector vicinity, several
different materials containing hydrogen were packed in Marinelli geometry and long spec-
tra (order of magnitude 1000 ks) were recorded. Flux of thermal neutrons is estimated by
the use of gamma radiation emitted after neutron capture in 74Ge and 70Ge, as well as
after capture in 1H.

2. Experimental setup

Low background HPGe detection systems were used for measuring the activity in-
duced by the interaction of neutrons with different materials which surround the detectors.
Large-volume germanium spectrometer, made by Canberra, is located on the basement
of the Department of Physics in Novi Sad. It has 100% relative efficiency, which corre-
sponds to about 380 cm3 of detector active volume. The detector shield is constructed
with layered bulk lead. The total mass of the lead shield is 1633 kg. The lining materials
are low-background tin thickness of 1mm, and high purity copper thickness of 1.5mm.
The shield is equipped with a gas port for the introduction of nitrogen from the Dewar
vessel to flush the shield interior in order to reduce the background from radon and radon
descendants.

Two different materials were packed in a PVC Marinelli container: CuSO4 · 5H2O and
paraffin. Both materials are non-expensive and accessibly in amounts to fill the large
Marineelli container. The measurement time when CuSO4 ·5H2O was around the detector
was 3434419 s. Total mass of CuSO4 · 5H2O powder was 5.847 kg. It can be expected
that CuSO4 with 5 molecules of water should be efficient in slowing-down neutrons. In
second measurement, the Marinelli container was filled by melted paraffin, very reach in
hydrogen, acting as a very strong moderator around the HPGe detector. Total mass of
paraffin was 2.210 kg and the time of measurement was 3941023 s.
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3. Results

3.1. Neutron capture in hydrogen

In both spectra, measured with CuSO4 ·5H2O and paraffin around the detector, promi-
nent 2223 keV gamma line appeared. Figure 1 shows high energy part of the spectrum
measured with paraffin where 2223 keV gamma line can be seen. In the background spec-
trum taken without surrounding materials the mentioned line was never observed. The
absence if 2223 keV gamma line in the spectra measured with materials having no hydrogen
(as NaCl for example) in the Marinelli container was observed.

Figure 1. High-energy part of the spectrum recorded with paraffin around the detector.

Characteristic count rate of 2223 keV photons was 2.86 (8) counts/ks for CuSO4 ·5H2O
and 5.3 (1) counts/ks for paraffin. The flux of thermal neutrons can be estimated using the
intensity of the 2223 keV gamma line. The flux was calculated by the following expression:

Φ =
I

σ · ε ·NH

. (1)

where I is the intensity of the observed gamma line; σ is the cross-section for neutron
capture; ε is the total efficiency for detection of 2223 keV photons, and NH is the number
of hydrogen atoms in the detector surrounding. The detection efficiency for the gamma
photons was estimated by a Geant4 [17] simulation. In the simulation, the 2223 keV gamma
photons were randomly created in the volume of Marinelli container. It was obtained that
total detection efficiency for CuSO4 · 5H2O was 8.2 (2) · 10−3. Penetration abilities of
the 2223 keV photons through paraffin are slightly higher, so that the total efficiency was
12.2 (2) · 10−3. Total number of hydrogen atoms in CuSO4 · 5H2O was 1.41 · 1026, while
in paraffin it was 1.96 · 1026. The cross-section for thermal neutron capture on 1H was
0.332 barn. Calculated values of thermal neutron flux are presented in Table 1.
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Table 1. Flux of thermal neutrons measured by capture in hydrogen and Ge.

Material surrounding the detector ΦT [s
−1m−2] H Φ [s−1m−2] Ge

CuSO4 · 5H2O 75.3 (27) 45 (7)

Paraffin 69.4 (18) 58 (9)

3.2. Neutron capture in Ge

The number of gamma lines following de-excitation of Ge nuclei after neutron capture
appeared in the spectrum recorded using the detector shielded with lead. The low-energy
part of spectrum obtained with CuSO4 · 5H2O around the detector, presented in Figure
2, shows several well known gamma lines including the most intensive ones 139.5 keV
(74Ge(n, γ)75mGe) and 198.3 keV (70Ge(n, γ)71mGe). Count rates of the 139.5 keV pho-
tons emitted after neutron capture was 4.61 (7) counts/ks with CuSO4 · 5H2O around the
detector and 5.85 (6) counts/ks with paraffin-surrounded detector.

Figure 2. Part of the spectrum collected by the Ge detector. The detector was surrounded by
CuSO4 · 5H2O in a Marinelli container.

It is possible to estimate the value of thermal neutron flux at the site of the detector
using intensity of the 139.9 keV gamma line produced in the interaction of neutrons with
Ge. The thermal neutron flux was estimated by the expression [16]:

ΦT =
980 I139.9

( εγ139.9 + 1.6 )V
, (2)

εγ139.9 ≈ 1−
1− eV

−1/3

V 1/3
, (3)



Deuterium Production as a Possible Tool for Estimation of the Thermal Neutron Fluence... 53

where I139.9 is the count rate in s
−1 of the 139.9 keV line, and V is the volume of detector

in cm3. Volume of the HPGe detector used in experiment was V = 380 cm3.
The flux of thermal neutrons in the detector was calculated when CuSO4 · 5H2O and

paraffin are present in the surroundings of the detector. The obtained results are presented
in Table 1.

4. Conclusion

In the measurement geometries where the bulk sources containing hydrogen are located
in a gamma spectroscopy system, the 2223 keV line following creation of deuterium can
be used to estimate the thermal neutron flux at the detector place. This method has
some advantages over standard neutron detection using 75mGe gamma line of 139.9 keV.
The 75mGe method is based on Equation (2 ), containing an empirical term ranging from
300 to 1000. The neutron flux determined using the 2223 keV gamma line, does not
employ empirical factors. Possible source of systematic uncertainty can be the efficiency
of the detection system. The multiplicative parameter in the numerator in Equation (2 )
is usually determined with higher uncertainty than the statistical error of the 2223 keV
gamma line. This means that the overall uncertainty of the result obtained using the
hydrogen capture is lower than that of the result obtained by activation of Ge.

Comparison of the values obtained by two different methods shows some differences.
It can be seen that the values of thermal neutron flux obtained by the use of deuterium
creation are higher than the values obtained by neutron capture in 74Ge nucleus. Besides,
the use of the 2223 keV line gives that the thermal neutron flux in CuSO4 · 5H2O is higher
than the neutron flux in paraffin. Neutron flux estimated using activation of 74Ge nuclei
shows an opposite trend: there are more neutrons when paraffin is wrapped around the
detector. Possible reasons for the observed difference between two methods should be
analyzed. It should be checked if the distribution of thermal neutrons is uniform over the
area of detector and sample packed in the Marinelli container. It can be possible that the
hydrogen atoms in the container and in Ge crystal are not exposed to an identical number
of neutrons.
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Abstract

The paper describes a study of the frequency dependence of some dielectric
parameters in the frequency range from 1 kHz to 1 MHz for the Bi6(As2S3)94
glass at different temperatures. The results obtained are interpreted in terms
of the Debye theory of molecular dipoles, and they indicate the existence of dif-
ferent types of dipoles that determine the mechanism of dielectric behavior of
the investigated glass. By analyzing Cole-Cole diagrams, several dispersion pa-
rameters were determined that describe the occurrence of dielectric relaxation
in the low- and high-temperature range. Using the Eyring theory of chemi-
cal reaction rate, the enthalpy ∆H and activation energy ∆F of the dipole
relaxation were determined.

Key words: polarisation, chalcogenides, defect states, relaxation time, Cole-Cole diagrams

1. Introduction

Modifications of the already well-known chalcogenide glasses, like the As-S system, by
doping with metal atoms, have been a subject of intensive research in the last decades be-
cause of the possibility of preparing materials with specific optical, electrical and physico-
chemical properties [1-4]. The Bi-As-S system is interesting not only because of the pos-
sibility of changing the type of conductivity at a certain concentration of Bi atoms in the
amorphous matrix, but also because of the significant effect on the values of particular
physical parameters, already at low concentrations of the dopant metal atoms [5]. Previ-
ous studies [6,7] have shown that in the system Bix(As2S3)100−x (x < 10) the glass with
x = 6 at.%Bi represents a limiting composition since higher Bi concentrations result in a
discontinuous behavior of the values of physical parameters (conductivity, transparency,
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structural orderliness, etc.). Study of the dielectric properties of this glass provides infor-
mation about its structure, which is indispensable for the understanding of the conduction
mechanism.

The dominant type of polarization established by introducing the glass in a DC or AC
electric field depends on the type of structural units and character of the chemical bonds
between them, as well on the frequency. For the chalcogenide glasses with the prevailing
covalent bonds the main polarization mechanisms are dipole and electronic polarizations.
The dielectric behavior of these glasses can be considered in the light of the Debye theory
of molecular dipoles [8], which deals with the responses of polar molecules in an AC field.
The greatest advantage of this theory is that it enables the determination of molecular
polarizability as a characteristic of a particular molecule on the basis of its dielectric
constant as the property of the material as a whole.

2. Experimental

The determination of the parameters that describe dielectric behavior of the investi-
gated glass Bi6(As2S3)94 was carried out on the basis of the results of measurement on
a HP 4194A Impedance/Phase Gain Analyzer instrument. To that end, the thermogenic
resistance and capacitivity were measured for the sample-holder system at selected tem-
peratures in the range from room temperature to a value close to the phase transition
temperature, in the frequency range from 1kHz to 1MHz.

To calculate the components of dielectric permitivity ε, and ε,, of the investigated
glass use was made of the scheme of parallel connection of a capacitor and a thermogenic
resistor, which, in accordance with the semiconducting character of chalcogenide glasses,
is most often used for modeling and describing dielectric properties.

In view of the fact that the system sample-holder is equivalent to a system of two
parallelly connected capacitors, a correction of the results was made to eliminate the
effect of the air capacitor. The real and imaginary parts of the dielectric permitivity were
calculated from the following relations:

ε, =
Csample

C0
, (1)

ε,, =
1

RωC0
, (2)

where C
sample

and C0 are the respective capacitors of the sample and holder, ω is the field
frequency, and R is the thermogenic resistance.

3. Results and Discussion

The frequency-temperature dependence of the dielectric constant for the Bi6(As2S3)94
glass (Figure 1) is in concordance with the Debye theory of molecular dipoles, and hence
this theory can be used for the interpretation of the experimental results. The origin
of molecular dipoles in glasses involving Bi is associated with charged defect states [9],
structural micro-inhomogenity, high polarizability of Bi atoms [10], and formation of mi-
croclusters [11].
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The temperature behavior of the dielectric constant is explained by the fact that the
orientational polarization is a function of thermal rate of molecules, i.e. by the limited
ability of the orientation of dipoles at low temperatures due to the occurrence of rotational
degrees of freedom [12,13].

Figure 1. Dispersion of the dielectric constant for the Bi6(As2S3)94 glass at different T .

The dispersion of the dielectric constant in the measured frequency interval (Figure 1)
is a consequence of hindered orientation of dipoles in the direction of the field with respect
to the other possible directions because of the more frequent changes of the direction of the
field at higher frequencies. This effect is also manifested as an increase in the imaginary
component of the dielectric permitivity for the first three temperatures (Figure 2).

Figure 2. Dispersion of the loss factor for the Bi6(As2S3)94 glass at different T

The higher value of the loss factor can be also interpreted by the increase of conductivity
of the lagging and absorbed currents. However, for the remaining three temperatures
from the selected T interval this parameter changes its slope and exhibits a maximum at
high frequencies, which indicates that the other types of molecular dipoles are dominantly
responsible for the dielectric behavior of the investigated material in the high-temperature
range. This conclusion also suggests the observation that the values of the dielectric
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constant are significantly higher at these temperatures compared to the low-temperature
values (Figure 1).

In view of their amorphous character, chalcogenide glasses possess charged defect states
[14], so that at lower temperatures dominate the dipoles of the so-called valence alternating
pairs, formed by the electron transfer from one chalcogenide atom to another [11]. Also,
it is known that Bi enters the amorphous matrix as a charged impurity [15,16,17], a
consequence of this being not only the increase in the number of alternating pairs but
also of the change of their equilibrium in the sense of conversion of the particular D+ to
D− states. At high temperatures, the excitation of these centers and formation of neutral
defect centers take place, which can be considered responsible for the dielectric properties
of the Bi6(As2S3)94 glass in the high-temperature range.

The dielectric losses in the glass exposed to thermal treatment originate from three
contributions: thermally activated relaxation of freely rotating dipoles of Debye type,
electric conductivity due to electron-phonon interactions, and vibrational losses [18].

The proportion of the losses due to the Joule effect was estimated from the relation
[19-21]:

ε,,
DC
=

σDC
ωε0

, (3)

and presented in Figure 3 for 1 kHz, since heat losses are significant only at low frequencies.
Although they increase with increase in temperature, their numerical values compared to
the overall losses for the Bi6(As2S3)94 glass (Figure 2) are negligibly small, so that it can
be concluded that dielectric losses are primarily originated from the dipole mechanism.

Figure 3. Temperature dependence of the DC factor of losses for the Bi6(As2S3)94 glass
at 1 kHz.

In accordance with the Debye theory, a characteristic of dipole losses is that they
exhibit a maximum at a certain temperture. Namely, the effects of the increase in temper-
ature and decrease in viscosity, each in its turn, influence the amount of losses, so that the
degree of dipole orientation increases simultaneously with decrease in the energy needed
for overcoming the resistance of the viscous medium, and, while the former effect increases
the slope of the losses, the latter has an opposite effect.

The frequency ω, that corresponds to the maximum of losses at the given temperature
(Figure 4) represents the resonance frequency at which the period of the external electric
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field coincides with the dipole relaxation time needed to overcome the resistance of the
viscous medium.

From the approximate condition:

ω,τ = 1 , (4)

which holds for polar dielectrics it is easy to calculate the numerical values for dipole
relaxation times at the given temperature (Table 1). The obtained values are characteristic
for amorphous chalcogenides [22-24].

Figure 4. Dependence of the factor of losses on the frequency logarithm for the Bi6(As2S3)94
glass.

The different positions of the maxima in Figure 4 indicate not only the existence of
two dipole types in different temperature intervals but also the distribution of relaxation
times.

By analyzing the Debye theory, Cole and Cole [25] found that the values of real and
imaginary parts of the dielectric permitivity for different frequencies in the dispersion area
lie on a semi-circle, i.e. the relation between these two parameters can be expressed as:µ

ε, − ε,0 + ε,∞
2

¶2
+ (ε,,)2 =

µ
ε,0 − ε,∞
2

¶2
, (5)

where ε,0 and ε,∞ are the static and optical dielectric constants, respectively.

The advantage of such presentation of results is the possibility of determining a number
of dielectric parameters on the basis of the values that can be read from the Cole-Cole
diagram.

Figure 5 shows the Cole-Cole diagrams for Bi6(As2S3)94 obtained for particular tem-
peratures. The experimental data deviate to some extent from the Debye theory in the
sense that the points lie somewhat below the abscisa and not on it itself, which is charac-
terized by the parameter α, and corresponds to the distribution of dipole relaxation times.
This phenomenon is ascribed to the structural complexity of the amorphous material in
the sense of the existence of different types of structural units [26, 27].

The macroscopic relaxation time can be determined from the relation:
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u · ν = (ωτ0)1−α , (6)

where u and ν are the distances from an arbitrarily chosen experimental point on the
semi-circle and the static/optical dielectric constant. The calculated values are given in
Table 1.

Figure 5. Cole-Cole diagrams for the Bi6(As2S3)94 glass at different
temperatures.

In that case, the macroscopic dipole relaxation time is determined by the relation:

τ = τ0

µ
2ε,0 + ε∞
3ε,∞

¶
(7)

The decrease in relaxation times with temperature in both temperature regions is
in concordance with the concept of dipolar relaxation and corresponds to the decrease in
intermolecular interactions with increase in thermal energy. The difference of the obtained
values by three orders of magnitude in the two regions confirms the previous conclusion
about the different nature of the dipoles responsible for the dielectric behavior of the
treated sample. Also, it should be noted that there is a good agreement between the
values of relaxation times determined from the Cole-Cole diagrams and those determined
from the relation (4).

According to the Eyring theory of chemical reaction rate [28], the free activation en-
ergy ∆F and enthalpy ∆H of dipole relaxation can be calculated from the temperature
dependence of the logarithm of the relaxation time expressed as:

τ =

µ
h

kT

¶
exp

µ
∆F

RT

¶
(8)

where h, k and R are the Planck, Boltzmann and gas constants, respectively, and
∆F = ∆H − T∆S (S represents the entropy of the system). The calculated values
are presented in Table 1.
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The higher values of activation energy of dipole relaxation compared to the activation
energy of DC conductivity [6] indicate the domination of the relaxation mechanism of
dipole type.

Table 1. Dispersion parameters: α - deviation parameter, τ and τ0 - macroscopic and
microscopic relaxation times, ∆H - enthalpy, ∆F - activation energy .

∆H ∆F τ = (ωM)
−1

T (K) α τ0 (10
−4 s) τ (10−4 s)

(kcal/mol) (kcal/mol) (10−4 s)

298 0.17 1.11 1.93 12.4 2.30
313 0.18 0.80 1.66 1.67 12.9 2.10
353 0.19 0.51 1.33 14.5 1.88

393 0.19 0.0039 0.0086 12.3 0.0056
413 0.14 0.0040 0.0072 6.25 12.8 0.0034
433 0.125 0.0023 0.0041 13.0 0.0021

4. Conclusion

Dispersion of the real and imaginary parts of the dielectric permittivity of the inves-
tigated glass Bi6(As2S3)94 is in concordance with the predictions of the Debye theory of
molecular dipoles. The results also indicate the existence of the distribution of dipole
relaxation times, as well as the different origins of dipoles in the low- and high-frequency
regimes. It was found that the polaron mechanism is responsible for the significant in-
crease in the dielectric constant at higher temperatures. The change in the mechanism
influences the position of the maximum of the losses in the frequency range, but not on
its absolute value. The analysis of the Cole-Cole diagrams yielded the distribution para-
meters that reflect more closely the dipolar type of relaxation that is responsible for the
dielectric behavior of the Bi6(As2S3)94 glass.
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Abstract

This paper presents the results obtained by using Cheremukhins model to cal-
culate the refractive index and its dispersion for single-layer As2S3 and Se60Te40
thin-film and multilayer As2S3/Se60Te40 film. Thin films were deposited under
vacuum on glass substrates by thermal evaporation technique, from previously
synthesized bulk samples.
It was found that the refractive index shows normal dispersion behavior, with
high values in the vicinity of the absorption edge. Refractive index values for
single-layer films As2S3 and Se60Te40, are higher than 2 for the whole spectral
range, while the values for multilayer film As2S3/Se60Te40 are slightly lower.

Key words: chalcogenides, refractive index, thin films, Cheremukhins model

1. Introduction

Multicomponent chalcogenide glasses are widely used in the field of semiconducting
techniques. The application areas of these glasses are: energy management, thermography,
temperature monitoring, electronic circuit detection, laser technique and IR-spectroscopy,
as well as high-resolution optics in night image technique. Most chalcogenide glasses
are opaque in the visible region, with the exception of some sulfide glasses, which are
dark red. They transmit from approximately 1μm to infrared wavelengths longer than
those of oxide or fluoride glasses. In the infrared region, transparency is restricted by the
vibrations of molecules, atoms and ions in the glass network. The long-wavelength limit is
therefore often referred to as the vibrational or multiphonon edge. The absorption results
from the interaction of the incident radiation with the vibrational modes of the glass
structure, which can cause changes of the dipole moment. Glasses containing heavier ions
transmit longer wavelengths. Sulfide glasses are transparent up to 12μm, selenide glasses
up to 15μm, and telluride glasses transmit up to 20μm. Thin films deposited from the
chalcogenide glasses are applicable in opto- and micro-electronics for different purposes -
electrical switches, data recording, protective, passivity and optical coatings [1,2]. The use

∗Corresponding author: svetlana@df.uns.ac.rs
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of the chalcogenides as protective layers of some elements in the optoelectronics, as well
as an active component in the preparation of electronic elements requires the knowledge
of the magnitude of refractive index in the spectral range where these materials exhibit
normal dispersion (i.e. lowering of the refractive index values at higher wavelengths).

The aim of this work was to determine the refractive index as an important physical
parameter of chalcogenides for their applications. Because of large values of the refractive
index of chalcogenide glasses, the determination of this physical parameter and its spectral
dependence requires, as a rule, non-standard methods [3]. This paper presents the analysis
of characteristics of three thin chalcogenide films. Two of them, As2S3 and Se60Te40, are
single-layer films, and As2S3/Se60Te40 is a multilayer film.

2. Description of the Experiment

Thin films were deposited under vacuum on glass substrates by thermal evaporation
technique (Fig. 1), from the previously synthesized bulk samples. Bulk glasses were synt-

Figure 1. Scheme for thermal evapo-
ration technique.

hesized in cascade regime from high purity ele-
mental components (99.998%) and air quenched
according to the empirically defined cascade
regimes. The amorphous character of the ob-
tained samples was confirmed by the methods of
X-ray diffraction and polarization microscopy.

Condensation was carried out on the trans-
parent substrates with the known index of re-
fraction (glass K-8, np = 1.516), kept at room
temperature. Film thickness during deposition
was controlled by optical method on the basis
of the interference of reflected laser beam.

Transmission spectra of obtained samples
and substrates were recorded on a double-beam

UV/VIS/NIR Perkin-Elmer spectrofotometer, model Lambda-950. The spectrophotome-
ter was set with slit width of 1 nm. All optical measurements were performed at room
temperature.

3. Results and Discussion

The refractive index values were determined by interference maxima appearing in the
optical transparency spectra of obtained film samples. Calculation and discussion of this
physical parameter were performed using Cheremukhins model [4]. Tranmission of each
film is defined by the relative method, with a glass as a reference sample. Figures 2 and
3 shows representative transmission spectra of single-layer and multilayer films.

On the basis of the recorded spectra, a very high transparency can be established for
the As2S3 and Se60Te40 films and quite low transparency of the As2S3/Se60Te40 film, as
well as the shift of the absorption edge to higher wavelenghts in case of the multilayer film
As2S3/Se60Te40 compared to the single-layer films As2S3 and Se60Te40.

Cheremukhin’s method allows the determination of refractive index from the coordi-
nates of peak’s minima (Tmin) and maxima (Tmax) in the transmission spectra of investi-
gated films.
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n =
1

2

(
(ns + 1)

"√
C −

s
C − 4ns

(ns + 1)2

#)
, (1)

where C =

s
Tmax
Tmin

, n - refractive index of thin film, ns - refractive index of the substrate

on which the film is deposited by thermal treatment.

Figure 2. Transmission spectra of film As2S3. Figure 3. Transmission spectra of film
As2S3/Se60Te40, insert part
refers to magnified spectral
range in which transmission
maxima occurs.

The results obtained are presented in Fig. 4-6.

Figure 4. Refractive index dispersion of
As2S3 film.

Figure 5. Refractive index dispersion of
Se60Te40 film.

Studies of the refractive index behavior of these chalcogenide films at room temperature
in the wavelength range from the absorption edge to 1000 nm showed that these amorphous
samples are characterized by normal dispersion.
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Figure 6. Refractive index dispersion of
As2S3/Se60Te40 film.

These films, and especially the single-
layer As2S3 and Se60Te40 thin films, exhib-
ited very high values of the refractive index
in the vicinity of the absorption edge.

Also, the transparency spectra allowed
the determination of the corresponding ab-
sorption coefficients using the folowing re-
lation:

α =
1

d
ln
(1−R1)(1−R2)(1−R3)

TS
, (2)

where Ts =
q
TmaxTmin , R1-refractive in-

dex at the air-film interface, R2-refractive
index at the film-substrate interface, R3-
refractive index at the substrate-air inter-
face.

Dispersion of this parameter for three
films of different composition is graphically presented in Figs. 7-9.

Figure 7. Absorption coefficient dispersion of
As2S3 film.

Figure 8. Absorption coefficient dispersion of
Se60Te40 film.

The extrapolation of the linear parts of the curves showing the dependence α = α(λ)
allowed the determination of the absorption edge and optical bandgap.

Optical bandgap can be defined in two ways. The first applies Stuke’s method [5],
which consists of readouting the energy value from the graph α = f(hν) for the absorbtion
coefficient value α = 104 cm−1. The other method is the extrapolation of the linear part of
the curve α = f(hν). Eg defined this way is by 0.1−0.2 eV lower than the value calculated
by Stuke’s method [6]. In our case, both methods are used for the first two films.

It has to be noted that when using Stuke’s method we chose the value of 103 cm−1 for
absorption coefficient, which is correct in the case of strong absorption. Stuke’s method
was not applied on multilayer film since it was not possible to read the coresponding energy
value from the curve. The results are presented in Table 1.
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Figure 9. Absorption coefficient dispersion of As2S3/Se60Te40 film.

Table 1. Values of optical bandgap for investigated samples.

Optical bandgap Eg [eV]
samples

Stuke’s method Extrapolation method

As2S3 2.053(25) 2.172(25)

Se60Te40 1.852(25) 1.895(25)

As2S3/Se60Te40 - 1.397(5)

4. Conclusion

To sum up, the determined transparency of As2S3 and Se60Te40 films was very high,
while the transparency of As2S3/Se60Te40 film was quite low, and the absorption edge was
shifted to higher wavelenghts in the case of the multilayer film As2S3/Se60Te40 compared
to the single-layer films As2S3 and Se60Te40.

We found that the refractive index shows normal dispersion behavior and high values
in the vicinity of the absorption edge. Refractive index values for single-layer films As2S3
and Se60Te40 are higher than 2 for the whole spectral range, while the values for multilayer
film As2S3/Se60Te40 are slightly lower. Therefore, we might conclude that this film can
not be treated as a simple summation of single layers [7,8] and that the experimental
curves should be analyzed on the basis of other theory models, and not by Cheremuhin’s
method.

It is shown that the values of optical bandgap depend on the determination method
used. The values derived for the optical bandgap from 1.40 eV−2.17 eV for these films are
typicall for semiconductor materials.
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