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Abstract

A particular scheme for obtaining conformal algebra (and its Poincare subalge-
bra) using quadratic polynomials of some abstract Heisenberg algebra operators
κα and πα is demonstrated. Such a setup turns out to be suitable for many
purposes. In this paper the emphasis is put on the fact that in this approach
massless Klein-Gordon, massless Dirac and free-field Maxwell equations show
up as mathematical tautologies.

Key words: Poincare symmetry, conformal symmetry, free-field equations of motion

1. Introduction

Due to its enormous fundamental importance, Poincare symmetry and everything re-
lated to it draw continuous interest of physicists. In that sense the models where this
symmetry is treated or realized in some alternative way, or models where this symmetry
is a nontrivial subgroup of a larger symmetry, deserve in our opinion close attention.

In this paper we investigate a model where Poincare generators, as well as conformal
generators, are constructed as quadratic polynomials of some abstract operators satisfying
Heisenberg algebra. This concrete realization of Poincare algebra turns out to be inter-
esting from various aspects. First of all, it is potentially interesting as the Poincare and
conformal algebras here appear as a part of a larger symmetry, where a relatively simple
form of symmetry breaking is required to reduce this larger symmetry to the observable
symmetries [1].1 Even if we ignore the existence of this larger symmetry, expressing of
Poincare generators as quadratic functions of Heisenberg operators in this particular way
allows a simplified treatment of some physical concepts. Such is the concept of electro-
magnetic duality symmetry that we analyzed in this context in [1]. In this approach, the
generator of duality symmetry appears on the same footage with the rest of the Poincare
generators, and it also turns out to generate chiral symmetry as well. It is also a cu-
riosity of this approach that the whole conformal algebra is realized in a Hilbert space

1It can be argued that this larger algebra is, in some sense, simpler than the Poincare and conformal
algebras, since its structural constants are derivable from Heisenberg algebra relations. Thus, this possi-
bility might be attractive for those unsatisfied with discrepancy of alleged deepest fundamentality and still
a significant complexity of the Poincare algebra.
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of first quantization, and also in such a way which naturally allows states of half-integer
angular momentum. Additionally, a slight modification of this model which is appropriate
for describing multi-particle states offers a different insight into connection of spin and
statistics.2 Finally, an interesting feature of this approach is the fact that free equations
of motion show up here as unavoidable mathematical tautologies, rather than as addi-
tional dynamical constraints put on the kinematic basis of a theory (which is otherwise
common). It is this last property of the model that we wish to concentrate on in this
paper.

The paper is organized as follows: in section 2 we construct conformal algebra in four
dimensions C(1, 3) in terms of the Heisenberg algebra operators. In section 3 we point
out mathematical identities of which some will be later shown to turn into equations of
motion. In section 4 we construct single particle Hilbert space and derive free equations of
motion. A brief comparison with Lagrangian prescription for obtaining the same equations
of motion is also made. Finally, section 5 summarizes the results.

Throughout the text, Latin indices i, j, k, . . . will take values 1, 2 and 3, Greek indices
from the beginning of alphabet α,β, . . . will take values from 1 to 4 and will in general
denote Dirac-like spinor indices, while Greek indices from the middle of alphabet μ, ν, . . .
will take values from 0 to 3, denoting Lorentz four-vector indices.

2. Constructing Poincare algebra from Heisenberg operators

Let operators κα and πα satisfy Heisenberg algebra in four dimensions
3:

[κα,πβ] = iδ
α
β , [κα,κβ] = [πα,πβ] = 0. (1)

There are three types of quadratic combinations of these operators: quadratic in κα,
quadratic in πα and mixed. Hermitian operators of each of these kinds can be written in
matrix notation, respectively as:

g(A)κκ ≡ Aαβκ
ακβ, g(A)ππ ≡ Aαβπαπβ,

g(A)πκ ≡ Aα
β

1

2
{πα,κβ}, (2)

where A is an arbitrary four-by-four real matrix.4 However, due to commutativity of
the operators κα among themselves, and πα among themselves, matrices appearing in
definitions g(A)κκ and g(A)ππ are implied to be symmetric.

Such quadratic operators form an algebra with commutation relations easily derived
from the Heisenberg algebra relations:

[g(A)πκ,g(B)πκ] = i([gA,B])πκ, [g(A)πκ,g(B)ππ] = i( gAB +BAT )ππ,

[g(A)πκ,g(B)κκ] = −i([ gATB +BA])κκ, [g(A)ππ,g(B)κκ] = −4i(gAB)πκ,
[g(A)κκ,g(B)κκ] = 0, [g(A)ππ,g(B)ππ] = 0,

(3)

To reveal the Poincare subalgebra in this structure, first we choose a set of six real
matrices σi and τi, i, i = 1, 2, 3 (four-dimensional analogues of Pauli matrices) satisfying

[σi,σj ] = 2εijkσk, [τi, τj ] = 2εijkτk, [σi, τj ] = 0, (4)

2This we hope to elaborate on some later occasion.
3In spite of this, we stress that these operators do not represent coordinates and momenta. Furthermore,

they will turn out to transform like Dirac spinors.
4A hat sign over a matrix will be used to emphasize the difference between the operator obtained from

a matrix in the sense of definition (2) and the matrix itself.
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as a basis of antisymmetric four-by-four real matrices5 (we distinct tau indices from sigma
indices by underlining the former). However, unlike Pauli matrices, these matrices are
anti-hermitian, satisfying σ2i = τ2i = −1. As a basis for symmetric matrices we choose
nine matrices αij ≡ τiσj and a unit matrix denoted as α0. In order to establish, later on,
connection with standard notation, we state one corresponding representation of Dirac
gamma matrices:

γ0 = iτ2, γi = γ0α3i = iτ1σi, γ5 = −iγ0γ1γ2γ3 = iτ3. (5)

Now, the set of 36 operatorsqg(τi)πκ, g(σj)πκ, g(α0)πκ, g(αij)πκ, g(α0)ππ, g(αij)ππ, g(α0)κκ, g(αij)κκr (6)

can be chosen as the basis of algebra of quadratic operators.
Among the operators from this set, let us discard all those with underlined index having

values 1 and 2. This resembles an idea of introducing a ”preferred tau direction” (here,
for concreteness, this ”direction” was taken to be along the third ”axis”) and dropping
out each entity which has tau indices but is not along this preferred direction. What we
are left with is a subalgebra isomorphic with conformal algebra C(1,3) plus one additional
generator that commutes with the rest of the subalgebra. Now we introduce new notation
for the remaining generators:

Mij = εijkJk ≡ εijk
g�σk
2

�
πκ
, Mi0 = −M0i = Ni ≡

g�α3i
2

�
πκ
, D ≡

g�α0
2

�
πκ
,

Pi ≡
g�α3i
2

�
ππ
, P0 ≡

g�α0
2

�
ππ
, Ki ≡

g�α3i
2

�
κκ
, K0 ≡ −

g�α0
2

�
κκ

(7)

The additional remaining operator is

Y3 ≡
g�τ3
2

�
πκ
, (8)

which commutes with all of the conformal generators.
We note that the entire algebra of all quadratic operators (2) that embeds the conformal

algebra (7) is isomorphic with symplectic algebra in four dimensions. As most of the
attempts to embed Poincare group seek the larger symmetry in the form of GL(4, R)
group, diffeomorphism group, or Poincare group of higher dimension, this approach is a
novel one [2, 3].

3. Algebraic identities

Structural constants of conformal algebra in this approach are not simply ”put by
hand” like usually, but are instead contained in the combination of definitions (7) with
the Heisenberg algebra of operators κα and πα. However, commutation relations between
quadratic operators (and hence among conformal generators) are not the only consequence

5One possible realization of such matrices is, for example: σ1 = −iσy × σx, σ2 = −iI2 × σy, σ3 =
−iσy × σz, τ1 = iσx × σy, τ2 = −iσz × σy, τ3 = −iσy × I2, where σx, σy and σz are standard two-
dimensional Pauli matrices and I2 is a two-dimensional unit matrix.
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of the Heisenberg algebra of starting operators. By virtue of Heisenberg algebra (1)
quadratic operators when expressed using τ , σ and α matrices turn out to satisfy many
nontrivial mathematical identities. Of particular interest are identities:

εijkεlmn
g(αil)ππ g(αjm)

ππ
= g(α0)ππ g(αkn)ππ, (9)

g(αij)ππ g(σj)πκ = −g(α0)ππg(τi)πκ, g(αij)ππg(τi)πκ = −g(α0)ππ g(σj)πκ, (10)

and the following ”orthogonality” relations:

g(αij)ππ g(αik)ππ = δjk
g(α0)2ππ, g(αji)

ππ
g(αki)ππ = δjk

g(α0)2ππ. (11)

Summation over repeated indices is implied.

There is a way to prove these identities by establishing a formal parallel of the quan-
tities appearing in them with quantities appearing in the description of two different
Euclidean three-dimensional coordinate systems. In that picture the operators g(αij)ππ are
”proportional” to the transition coefficients �ei · �ej connecting two coordinate bases, while
the operators g(σi)πκ and g(τi)πκ correspond to angular momenta components in two refer-
ential systems, respectively. Then equations (11) correspond to orthogonality of rows and
columns of the transition matrix �ei · �ej ; identity (9) reflects the fact that vector product
of two coordinate unit vectors equals the third unit vector, while relations (10) match ex-
pressions for angular momenta along the axes of one system decomposed along the axes of
the other. We underline again that this correspondence is of purely formal mathematical
character. Anyhow, we shall not elaborate this in any more detail.

Of course, a less elegant way to verify these results is by a direct calculation by taking
some concrete choice of σ and τ matrices (in which case it suffices to choose some concrete
values of free indices while the rest of the results would directly follow from the reasons
of symmetry).

In the next section we will demonstrate that the massless free-field Klein-Gordon, Dirac
and Maxwell equations are hidden among these mathematical tautologies.

But before that, let us notice that by choosing i = 3 the first equation of (10) can be
rewritten as

�P · �J = P 0Y3. (12)

It reveals that the operator Y3 is in fact the helicity operator. (Note that �P · �J = −(P1J1+
P2J2 + P3J3).)

Also, the algebraic identity obtained from (11) by taking k = j = 3 and rewriting it as

ημνPμPν = (P0)
2 − (P1)2 − (P2)2 − (P3)2 = 0 (13)

implies that all states in this Hilbert space must be massless (not surprising due to the
existence of conformal symmetry), so the value of energy P0 is always simply the magnitude
of spatial momentum.

4. Equations of motion

Let us consider single particle Hilbert space, which is analogue of the Hilbert space of
non-relativistic quantum mechanics with operators of coordinates and momenta replaced
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by four pairs of (κα, πα) operators. In this space there exist basis vectors |p, θ,ϕ, y3l that
are eigenstates of both helicity operator Y3 and spatial momentum:

Y3|p, θ,ϕ, y3l = y3|p, θ,ϕ, y3l, P 1|p, θ,ϕ, y3l = p sin θ cosϕ |p, θ,ϕ, y3l,

P 2|p, θ,ϕ, y3l = p sin θ sinϕ |p, θ,ϕ, y3l, P 3|p, θ,ϕ, y3l = p cos θ |p, θ,ϕ, y3l,
(14)

where p ∈ [0,∞), θ ∈ [0,π],ϕ ∈ [0, 2π) and y3 = 0,±1
2 ,±1, . . . Spherical expressions

for momenta eigenvalues are more appropriate here, since detailed calculation reveals
that components of wave functions that have half-odd integer values of helicity must be
2π antiperiodic in angle ϕ when expressed in this basis. Normalization of the states is
chosen to provide that under Lorentz transformations they transform as: Λ|�p, y3 = 0l =t
p 0

p0 | �Λp, y3 = 0l.
Next, we define scalar field vectors, namely Hilbert space vectors that correspond to

states of a single scalar particle created at a given point x:

|φ(x)l ≡
]
^3

d3p

(2π)3/2
1s
2p0

eipμx
μ |�p, y3 = 0l. (15)

Such vectors have simple Lorentz transformation properties: Λ|φ(x)l = |φ(Λx)l.6
For an arbitrary Hilbert state |fl we define its scalar field representation as φf (x) ≡

kφ(x)|fl. Direct calculation shows that the action of conformal generators in this repre-
sentation (defined for arbitrary generator G as Gφf (x) ≡ kφ(x)|G|fl) reduces to standard
formulas for classical fields, so in particular it holds

Pμφf (x) ≡ kφ(x)|Pμ|fl = i∂μφf (x). (16)

By using identity (13) it is now easy to show that the scalar field representation function
of an arbitrary state satisfies the massless Klain-Gordon equation:

0 = kφ(x)|(−PμPμ)|fl = ∂μ∂μφf (x). (17)

The helicity ±1
2 states are obtained by applying the πα operators to the scalar states.

As these operators transform under the spinor representation of Lorentz group (as can be
verified by calculating the commutator [Mμν ,πα]), the states

|ψα(x)l ≡
√
2πα|φ(x)l (18)

transform like spinors. More precisely, the function

ψfα(x) ≡ kψα(x)|fl, (19)

that we are going to call spinor field representation of a state |fl, transforms as a classical
spinor field, under both Lorentz and conformal group. In particular, we find:

Pμψfα(x) = i∂μψfα(x) and Mμνψfα(x) = i
�
(xμ∂ν − xν∂μ)δβα + (σμν)βα

�
ψfβ(x) (20)

6Uniqueness of these vectors can be better understood if the vector |φ(0)� is expressed in the basis
|π1,π2,π3,π4� of the operator πα eigenstates, where its wave function is simply a constant (|φ(0)� ∼U
d4π|π1,π2,π3,π4�). Action of any κα operator on such state vanishes, so it is obviously invariant under

the action of any operator of the form Aα
βπακ

β , including Lorentz generators.
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where, as usually, σμν ≡ 1
4 [γμ, γν ]. For the action of the Y3 operator in the spinor field

representation we find:

Y3ψfα(x) ≡ kψα(x)|Y3|fl = i(τ3
2
)βα ψfβ(x) =

1

2
(γ5)

β
α ψfβ(x). (21)

Just as in the scalar field case, it is easily shown that the massless Klein-Gordon
equation is satisfied. Now we shall demonstrate that the function ψfα(x) for an arbitrary
state |fl satisfies also the Dirac equation. Using results (20) and (21) mathematical
identity (12) directly leads to the massless Dirac equation for spinor field functions:

0 = kψα(x)|P0Y3 +
[
i

PiJi|fl

=

⎛⎝ i
2
(γ5)

β
α ∂0 +

[
ijk

i∂i εijk

�
ixj∂k δ

β
α +

i

2
(σjk)

β
α

�⎞⎠ψfβ(x)

=

#
i

2
(γ5)

β
α ∂0 −

[
i

i

2
(γ5γ0γi)

β
α ∂i

$
ψfβ(x). (22)

Suppressing the spinorial indices and multiplying by 2γ0γ5 from the left, we obtain the
massless Dirac equation in its standard form:

iγμ∂μψf (x) = 0. (23)

Just as we applied πα operators once to scalar field vectors in order to obtain the
basis for helicity ±1

2 states, we can apply these operators twice, i.e. παπβ|φ(x)l, to obtain
the basis for field representation of helicity ±1 states. However, four out of ten possible
quadratic combinations of παπβ will not change helicity — these are the ones corresponding
to momenta (since momenta commute with Y3). Using the six remaining combinations we
define E and B vectors:

|Ei(x)l ≡ g(α1i)ππ|φ(x)l, |Bi(x)l ≡ −g(α2i)ππ|φ(x)l. (24)

Here, the linear combination |Ei(x)l ∓ i|Bi(x)l has the helicity value ±1.
Corresponding E and B field representation functions:

Efi(x) ≡ kEi(x)|fl, Bfi(x) ≡ kBi(x)|fl, (25)

have the same Lorentz transformation properties as electric and magnetic field, respectively.7

To derive one pair of free field Maxwell equations we can use identities (9) and directly
obtain:

(�∇× �Ef (x))i = kφ(x)| 1
2i
εijk

g(α3j)ππ g(α1k)ππ|fl = kφ(x)| 12i g(α0)ππ g(α2i)ππ|fl = −∂0Bfi(x),
(�∇× �Bf (x))i = −kφ(x)| 1

2i
εijk

g(α3j)ππ g(α2k)ππ|fl = kφ(x)| 12i g(α0)ππ g(α1i)ππ|fl = ∂0Efi(x).

(26)

7It is true that so defined Efi and Bfi functions can take complex values, which is not a property of
standard electric and magnetic fields. However, this is hardly avoidable in one first quantization approach
like this, where E and B functions are understood to play role of a photon wave function (the idea that
physical E and B fields instead of potential Aμ should be related to photon wave function is usually
attributed to Majorana [4].
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We note that this pair of Maxwell equations can be also obtained starting from the
helicity identity (12), the same one from which we derived the Dirac equation. To this
end we must first find representation of the Y3 operator:

Y3Efi(x) ≡ kEi(x)|Y3|fl = iBfi(x), Y3Bfi(x) ≡ kBi(x)|Y3|fl = −iEfi(x). (27)

Now, in a similar manner as we derived Dirac equation, we find:

kEi(x)|PjJj |fl = −kEi(x)|P0Y3|fl ⇒ (sj)ik∂jEfk = −∂0Bfi ⇒ εijk∂jEfk = −∂0Bfi,

kBi(x)|PjJj |fl = −kBi(x)|P0Y3|fl ⇒ (sj)ik∂jBfk = ∂0Efi ⇒ εijk∂jBfk = ∂0Efi. (28)

Summation over repeated indices is implied and the matrices sj are matrices generating
rotations in three-dimensional vector representation of rotation group. Matrix notation
of intermediate result in (28) is the essence of what is sometimes called fermion-like for-
mulation for electromagnetic field [4]. (One can draw closer parallels to Majorana’s orig-
inal fermion-like formulation by expressing these results in terms of linear combinations
Efi(x)± iBfi(x) of definite helicity.)

Finally, the two remaining Maxwell equations can be derived from mathematical iden-
tity (11) by taking consecutively j = 3, k = 1 and j = 3, k = 2:

�∇ �Ef (x) = kφ(x)| 1
2i

� g(α31)ππ g(α11)ππ + g(α32)ππ g(α12)ππ + g(α33)ππ g(α13)ππ� |fl = 0,
�∇ �Bf (x) = kφ(x)| i

2

� g(α31)ππ g(α21)ππ + g(α32)ππ g(α22)ππ + g(α33)ππ g(α23)ππ� |fl = 0. (29)

Following the same idea to raise helicity by the action of πα operators, we define a
field vector of helicity h that has spin projection on the third axis equal to s as:

|Fh,s(x)l = (u 1
2
)h+s(u− 1

2
)h−s|φ(x)l, (30)

for h ≥ 0 and
|Fh,s(x)l = (v 1

2
)|h|+s(v− 1

2
)|h|−s|φ(x)l, (31)

for h < 0, where u± 1
2
and v± 1

2
are such linear combinations of πα operators that respec-

tively raise and lower the Y3 eigenvalue for
1
2 while changing the J3 value for the amount

given in the index. Additionally, it must be satisfied −|h| ≤ s ≤ |h| and h and s being
both integers or both half-odd integers.

The field representation of helicity h of a state |fl is then a set of functions:8

F
(h)
fs (x) = kFh,s(x)|fl, s = −|h|,−|h|+ 1, . . . , |h|. (32)

By the same reasoning as in the scalar case we can verify that for any given helicity
the corresponding field representation function satisfies Klein-Gordon equation of motion.
Besides, starting from the helicity equation (12) we can derive generalization of the Dirac
massless equation: �

ihδss ∂0 + i(Σ
(h)
i )ss ∂i

�
F
(h)
fs (x) = 0 (33)

8These generic definitions differ from definitions we already have for the helicity ± 1
2 and helicity ±1

fields (18, 19, 24, 25), but it is just a matter of choice of the basis.
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Here Σ
(h)
i denotes (2h+1)-dimensional representation matrix of spin around the ith axis.9

However, the Klein-Gordon and the generic equation (33) do not exhaust all the possi-
ble motion equations satisfied by these fields (for example, the first two Maxwell equations
(29) are not of this type).

Where do equations (17, 23, 29, 26, 33) actually come from? They are obviously
already contained in the form of algebra (3, 7) and then, depending on the type of ”field
representation”, a concrete form of equation appears. In other words, equations of motion
are here completely determined by the symmetry of the model (there are even no free
parameters such as mass in the case of pure Poincare symmetry). Of course, it is not
a novelty to derive free equations of motion directly from the symmetry requirements,
although such derivations are not as straightforward as these delivered here. Derivations
of equations (17, 23, 29, 26) based on symmetry arguments can be found, for example, in
[5].

Nevertheless, it is much more common to derive dynamics of a theory starting from
a Lagrangian, using the least action principle. Standard Lagrangian density that would
produce equations (17, 23, 29, 26) would be:

L = 1

2
∂μφ ∂μφ+ ψ iγμ∂μψ +

1

4
FμνF

μν . (34)

So, it counts three nontrivial terms and this number would grow to infinity if all equations
from the class (33) are included. Though all of the terms in this lagrangian are to a
large extent determined by symmetry requirements, the deeper symmetry that allowed us
to automatically obtain equations of motion is hidden in (34). Therefore, examples like
this are good to remind us that the Lagrangian formalism is not the only way to obtain
dynamics and that it does not have to be always the most appropriate one.

5. Conclusion

The conformal generators were expressed in this paper as quadratic functions of op-
erators satisfying Heisenberg algebra. As a consequence of this, free equations of motion
followed from a number of mathematical identities that connect operators of the quadratic
algebra (2). In such a model where the dynamics is already contained in algebra, we
pointed out that Lagrangian formalism appears as a comparably very complex way to
derive equations of motion. Existence of such a model casts a doubt on whether the La-
grangian method is really always the appropriate one.
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Abstract

The results of Stark parameters measurements for low-intensity Xe II spectral
lines are presented. All Stark parameters were measured in a pulsed arc plasma.
Most of the presented results are quite new in the literature and they can
increase the present database of measured Stark parameters. Some of presented
data are compared with available theoretical and experimental results. The
spectroscopic measurements of noble gases are always of a great interest.

Key words: Plasma, spectral line, Stark broadening

1. Introduction

Stark broadening of Xe II spectral lines has been the subject of many experimental
([1-3] and references therein) and theoretical [4, 5] studies. Investigation of ionized xenon
spectra is always of interest for many areas, such as laser physics, fusion diagnostics,
collision physics, astrophysics, etc.

The aim of this work was to measure the Stark parameters of low-intensity Xe II lines.
Here, the results of 25 Stark width and 5 shift measurements for Xe II spectral lines are
reported. Results for 19 widths and 4 shifts are for the first time presented in this paper.
Seven of these lines belong to 5d− 4f , six to 5d− 6p, four to 6s− 6p, five to 6p− 6d, and
three to 6p− 7s transitions.

In this experiment, pulsed arc plasma, mixture of 95 % helium and 5 % xenon, was used.
Measured electron densities and temperatures were in the range of (0.2−1.8)·1023 m−3 and
18300− 25500 K respectively. These results are important for plasma diagnostic purposes
and for astrophysical applications.

In obtaining Stark widths, special attention was paid to the experimental and data
treatment procedures. Other broadening mechanisms have also been taken into account.
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2. Experimental details

Experimental apparatus and diagnostic methods are described elsewhere [6-8]. Here
we give only a short description.

Excitation unit contained a capacitor bank of 20 μF, charged up to 9.2 kV approxi-
mately. The mixture of helium (95 %) and xenon (5 %) at a pressure of 3 kPa continuously
flowed through the discharge lamp. Under these conditions plasma emission lasted for
about 200 μs.

Figure 1. Results of electron density mea-
surements by interferometry and Stark shift and
width of the He I 388.86 nm line.

Figure 2. Temporal evolution of the electron
temperature.

The lamp was a cylindrical tube
of Pyrex glass, 175 mm in length and
19 mm in internal diameter. Used per-
centage of xenon (5 %) in the mixture
was low enough to obtain minimal self-
absorption, but still high enough to get
maximal spectral line intensity.

Electron density was in the range
(0.2−1.8) ·1023 m−3. Two different tech-
niques were used to obtain electron den-
sity: the spectroscopic method, using He
I 388.86 nm line, and the interferometric
method. Stark width and shift parame-
ters of He I 388.86 nm line were mea-
sured, and Griems theoretical model [9]
was used to obtain the electron densities.
Two-wavelength interferometric method
was also used for electron density deter-
mination. This is the way to avoid other
particles influence on the change of re-
fractivity index and electron density de-
termination [10, 11]. These two meth-
ods were used only for comparison. The
differences between spectroscopic and in-
terferometric measurements were lower
than 15 %. Electron density data ob-
tained by the interferometric method,
with an uncertainty of about 10 %, were
used in this work. Results of the two
measurements are shown in Fig. 1.

Electron temperature was deter-
mined by a Botzmann-plot of 24 Xe II
lines and it was in the range (18300 −
25500 K). Estimated errors are lower
than 15 %. Results of electron tempera-
ture measurements are shown in Fig. 2.
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3. Experimental data treatment

The experimental data treatment is explained in detail in our previous work [8]. Here,
only short description will be given.

Spectra were recorded using a spectrometer equipped with an optical multichannel
analyzer OMA detector with 512 channels. Exposure times were usually 5 μs. The spectral
measurements were taken in the first order of diffraction. The instrumental function
was estimated by introducing a laser beam (632.85 nm) into the entrance slit of the
spectrometer. Halfwidth of this line was approximately 3 channels (18 pm) and it has
been taken into account as instrumental broadening.

For each observed instant of plasma life, five spectra of the same region were recorded.
Another five spectra were recorded using a mirror, placed behind the plasma tube. Results
of both recordings were averaged. Comparison of these two averaged spectra was used for
self-absorption checking, which showed that there was no self-absorption at the observed
lines. Self-absorption effect was avoided thanks to the low percentage of xenon in the
plasma and low intensity of spectral lines.

An incandescent calibrated lamp and a deuterium lamp were used to obtain the spec-
trometer transmittance for the wavelength range 300−650 nm and for all OMA channels.
All spectra were divided by this transmittance curve, whose uncertainty was estimated to
be lower than 4 %.

The recorded spectra were fitted to sums of asymmetrical Lorentzian functions which
represent the spectral profiles and a linear function which represent the emission from
continuum [7]. An example of a part of Xe II spectrum and its fit is shown in Fig. 3.
Wavelengths were taken from reference [12].

Figure 3. Example of a part of Xe II experimental spectrum and its fit.

To obtain Stark halfwidth from experimental halfwidth, appropriate deconvolution
procedure was used, taking into account other broadening mechanisms. Doppler width
was small, lower than 7 pm, due to the great weight of the emitter atom. On the other
hand, van der Waals broadening was about 0.43 pm at T = 20000 K [13 Eq (4.113)]. Ionic
broadening was always lower than 1 pm [13 Eq (4.104)] and resonance broadening was
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about 0.2 pm [9 Eq (218b)]. It is obvious that van der Waals and resonance broadening
were negligibly small for plasma conditions in this experiment, and these mechanisms were
not considered in the final calculations. In the deconvolution procedure [14] total Gaussian
width component (Instrumental + Doppler) and Stark width component were taken into
account.

4. Results and discussion

Results of Stark width measurements are organized in two groups. In the first group
are results concerning the lines from visible region (410−650 nm). These results are given
in Table 1.

Table 1. Experimental Stark halfwidths of some Xe II lines; wm - this work (Te = 22000 K).
Calculated Stark halfwidths [16] are denoted with wcalc. Halfwidths from other authors, wmoa,
are given with their temperatures. All data are normalized to electron density of 1023 m−3.

Configuration Wavelength wm wcalc [16] wmoa [Ref] Te
(nm) (pm) (pm) (pm) (K)

5p4 (3P2) 5d [2]− 5p4 (3P2) 6p [1]◦ 467.456 43.29 C
5p4 (3P1) 5d [1]− 5p4 (3P1) 6p [2]◦ 651.283 98.41 A
5p4 (3P2) 5d [0]− 5p4 (3P1) 6p [1]◦ 536.807 57.21 B 47.85 [17] 14500

102.7 [7] 10000
5p4 (3P0) 5d [2]− 5p4 (1D2) 6p [3]◦ 453.249 37.27 C 55 [18] 11000
5p4 (3P0) 5d [2]− 5p4 (1D2) 6p [2]◦ 413.101 30.90 A
5p4 (1D2) 6s [2]− 5p4 (1D2) 6p [1]◦ 504.492 67.51 A 48.28 63.39 [17] 14500

64 [19] 20600
597.113 65.60 A 45.49

5p4 (3P2) 6p [1]
◦ − 5p4 (3P2) 6d [1] 437.378 193.93 A

5p4 (1D2) 5d [3]− 5p4 (3P2) 4f [4]◦ 477.319 121.81 C
5p4 (3P0) 6p [1]

◦ − 5p4 (3P1) 6d [2] 411.214 135.82 B
5p4 (3P1) 6p [0]

◦ − 5p4 (3P1) 7s [1] 471.518 185.31 B
5p4 (3P1) 6p [2]

◦ − 5p4 (3P1) 6d [3] 444.813 146.23 A 132 [18] 11000
5p4 (3P1) 6p [2]

◦ − 5p4 (3P1) 6d [2] 440.688 136.41 B 147.77 [20] 23000
5p4 (3P1) 6p [1]

◦ − 5p4 (3P1) 7s [1] 544.545 122.75 A
5p4 (1D2) 6p [1]

◦ − 5p4 (1D2) 7s [2] 499.117 214.13 B 256 [7] 10000

The line transitions are arranged in the same way as it was done in NIST atomic
spectra database [15]. In the first two columns, configurations and wavelengths of the
lines are given. Next two columns present measured Stark halfwidths, and comparison
with calculations based on modified semiclasical formula [16]. All measured data given in
Table 1 correspond to the temperature of 22000 K and are normalized to Ne = 10

23 m−3.
Estimated errors for width measurements are classified as A (25 %), B (< 40 %) and C
(> 40 %). The high percentage errors are the result of lines having low intensity and, in
some cases, even overlapping with more intensive neighbor lines.

Semiempirical calculations were performed for two lines from the multiplet (1D2) 6s [2]−
(1D2) 6p [1]

◦ because a complete set of perturbing levels exists only for these two lines.
For semiempirical calculations jK-coupling scheme was used. The ratio between measured
and calculated widths is wm/wcalc ≈ 1.4.

Stark width of Xe II 504.492 nm line as a function of electron density is plotted, as an
example, in Fig. 4. It is obvious that there is a clear linear trend.
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The results of other authors are given in the last column along with their correspond-
ing temperatures for electron density of Ne = 1023 m−3. An example of comparison of
experimental data, calculated data and the data of other authors is shown in Fig. 5.

Figure 4. Example of Xe II 504.492 nm line
halfwidth vs. electron density.

Figure 5. Stark halfwidth of Xe II 504.492 nm
line as a function of temperature.

Comparison of our experimental data with those of other authors show approximately
good agreement (see Table 1). However, small number of existing experimental data do
not allow us to make any general conclusion. The same situation is with the comparison
between theoretical and experimental data and the halfwidth temperature dependence.

Second group of the Xe II Stark width results for the lines from UV spectral region is
given in Table 2. The table is organized in the same way as Table 1. For these lines no
other experimental data are available in the literature.

Table 2. Experimental Stark halfwidths of some UV Xe II lines; wm - this work. Calculated
Stark halfwidths [16] are denoted with wcalc. Data are normalized to Ne = 10

23 cm−3 and
T = 22000 K.

Configuration Wavelength wm wcalc
(nm) (pm) (pm)

5p4 (3P2) 6s [2]− 5p4 (3P1) 6p [2]◦ 332.746 22.08 A 18.75
356.430 28.13 B 21.33

5p4 (3P2) 5d [0]− 5p4 (1D2) 6p [2]◦ 384.858 23.68 B
5p4 (3P0) 5d [2]− 5p4 (3P2) 4f [2]◦ 310.440 59.71 B

311.274 56.50 A
5p4 (3P1) 5d [2]− 5p4 (3P2) 4f [2]◦ 346.126 85.49 A
5p4 (3P2) 6p [1]

◦ − 5p4 (3P2) 6d [1] 384.987 164.69 A
5p4 (1D2) 5d [1]− 5p4 (1D2) 4f [2]◦ 310.151 67.84 B
5p4 (1D2) 5d [2]− 5p4 (3P1) 4f [4]◦ 400.235 168.13 C
5p4 (1D2) 5d [2]− 5p4 (3P1) 4f [3]◦ 393.892 150.75 A

Semiempirical calculations were performed for two lines from the multiplet (3P2) 6s [2]−
(3P1) 6p [2]

◦ because a complete set of perturbing levels exists only for these two lines.
For semiempirical calculations jK-coupling scheme was used as well as in previous case.
The ratio between measured and calculated widths is wm/wcalc ≈ 1.2 for 332.746 nm line
and 1.3 for 356.430 nm line.
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Stark width of Xe II 310.440 nm line as a function of electron density is plotted, as an
example, in Fig. 6. The linear trend is obtained again. An example of comparison of the
experimental and calculated data [16] for 332.746 nm line is shown in Fig. 7.

Figure 6. Example of Xe II 310.440 nm
halfwidth vs. electron density.

Figure 7. Stark halfwidth of Xe II 332.746 nm
line as a function of temperature.

The measured Stark shifts are shown in Table 3, which is organized in the same way
as Table 1. Estimated errors for shift measurements are about 16 %.

Table 3. Experimental Stark shifts of Xe II lines; dm - this work. Calculated Stark shifts [16]
are denoted with dcalc, and Stark shifts measured by other authors with dmoa. Data are

normalized to Ne = 10
23 cm−3 and T = 22000 K.

Configuration Wavelength dm dcalc dmoa
(nm) (pm) (pm) (pm)

5p4 (3P0) 6s [0]− 5p4 (3P1) 6p [1]◦ 426.984 -5.42 -8.54
5p4 (3P2) 6s [2]− 5p4 (3P1) 6p [2]◦ 332.746 -3.20 -5.18

356.430 -3.95 -6.95
5p4 (3P2) 6p [2]

◦ − 5p4 (3P2) 7s [2] 482.335 57.52 38.72
486.245 55.15 39.28 57 [7]

Figure 8. Example of Xe II 486.245 nm line
halfwidth vs. electron density and its linear
fit.

Semiempirical calculations were per-
formed using the jK-coupling scheme. The
ratio of the measured and calculated shift
values for 6s − 6p transitions is dm/dcalc ≈
0.6, while for 6p−7s transition is dm/dcalc ≈
1.4. Only one experimental result from
other authors [7] was found - for Xe II
486.245 nm line, and it is given in the last
column. The agreement of this and our ex-
perimental result is very good.

Stark shift of Xe II 486.245 nm line as
a function of electron density is plotted, as
example, in Fig. 8. Linear trend shows con-
sistency of the results and a good quality of
measurements.
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5. Conclusion

Radiation from a low-pressure pulsed arc plasma has been studied in order to determine
Stark parameters of some singly ionized xenon lines. In this work, only low intensity
lines were considered. Twenty five Xe II spectral lines were considered for Stark width
measurements and five for shift measurements in a wide spectral region (310− 650 nm).
The data for these lines are mostly missing in the literature.

These data can be used for diagnostic purposes, for demonstration of regularities and
similarities of the line widths inside of multiplets or transition arrays, for theory testing,
and they can also be of interest in astrophysics.
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Abstract

A number of different calibration sources were used to establish the efficiency
of three semiconductor gamma spectrometers employed to measure low-level
activity concentrations in voluminous environmental samples. The advantages
and drawbacks of these methods involving the calculation of effective solid angle
ratio are discussed. The obtained efficiency curves were verified on samples
distributed within the IAEA-CU-2006-03 World-wide open proficiency test on
the determination of gamma emitting radionuclides.

Key words: Gamma spectrometry, environmental samples, efficiency calibration, effective
solid angle.

1. Introduction

The main problem of gamma spectrometry applied in environmental radioactivity mon-
itoring is the necessity to measure the activity concentration using samples with large
mass/volume in order to obtain the satisfactory resulting precision, yet within reasonably
long measurement times. The variety of environmental samples size requires at least sev-
eral types of sample holders. This means that for every detector it is necessary to perform
the detection efficiency calibration for a number of different geometries. The situation
becomes even more complex because the detection efficiency for a given geometry also
depends on the sample properties, e. g. on its density and elemental composition.

The energy range of gamma- and X-rays emitted by natural and man-made radionu-
clides which are the object of analysis in environmental radioactivity monitoring usually
is taken to be from 30 keV to 3000 keV. Hence, the detection efficiency calibration for a
given sample type (of a given density and elemental composition) is actually the procedure
of establishing a continuous efficiency curve in the mentioned energy range. Here, under
the term ”efficiency”, the full energy peak efficiency is assumed. In special cases, when
the activity concentration of a single nuclide is being determined, the complete efficiency
curve is not required; instead the efficiency value at a single energy or at few energies
satisfies, but we will not discuss these cases here.
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There are a number of procedures for detection efficiency determination [3], which
usually must be combined. The purely experimental approach is, in principle, the most
reliable one; it is based on the measured spectrum of a calibration source emitting gamma
rays in the energy range of interest. The known activities A of the radionuclides in the
source enable the determination of detection efficiency ε at the energies present in their
spectra through the relation

ε =
R

A pγ
,

where R is the measured net count rate under the full energy peak, and pγ the relative
yield of gamma rays of the given energy. The measurement uncertainty of this data s(ε)
can be reduced to the combination of uncertainties s(A), which has the order of magnitude
of a few percents for quality sources commercially available, and s(pγ), which is almost
negligible for strong gamma lines, but also reaching a few percents for the weaker ones.
The energy range from 30 keV to 3000 keV must be, as evenly as possible, covered by
lines from the spectrum of such a source. On the other hand, it is desirable for the
radionuclides to emit monoenergetic gamma rays, otherwise quite commonly coincidence
summing occurs when gamma rays from cascade transitions leave simultaneously their
energy in the detector. There is not a plenty of radionuclides commercially available
with monoenergetic transitions and with long enough half-lives, hence, radionuclides with
several energies in their spectra are used quite commonly. However, then mathematical
corrections for coincidence summing are needed, which introduce an additional component
to the uncertainty of the efficiency curve [10].

Two types of calibration sources are in common use: sealed sources with fixed shape
and given activity, and standard radioactive materials with given specific activity. It
would be ideal for the experimental detection efficiency calibration to dispose of calibration
sources in shapes and with compositions corresponding to the sample sources the activities
of which will be determined from the efficiency curve. Although it is possible to make
calibration sources of various shapes from radioactive materials, it is practically impossible
to always satisfy the requirement of equal sample and calibration source density and
composition. Because of that, the purely experimental detection efficiency calibration
is usually not feasible for a wide class of variable sources - at least some mathematical
corrections have to be introduced.

A completely opposite approach to detection efficiency determination is the purely
computational one. The full energy peak efficiency depends on gamma ray energy and on
detector parameters in a complex manner, which cannot be described analytically. The
most prospective approach to calculate the detection efficiency is by the Monte Carlo
method based on simulation of the history of individual photons. Every photon is fol-
lowed on its path from the emission at a point of the source, through the source to the
detector, and within the detector. The photon interacts through photoelectric absorption,
Compton scattering, or pair production, and electrons, positrons, and secondary photons
are produced, which are also followed through the detector. To obtain the total result
of interactions, at each point the probability of every interaction type at every possible
scattering angle is used. If a particle leaves the detector, the tracking is stopped. The
input information needed for the Monte Carlo procedure is as follows:

• the dimensions of the source and the distance to the detector,
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• the dimensions of the detector end cap and of the sensitive and insensitive zones of
the detector,

• the elemental composition and the density of all materials which the photons are
passing through,

• the photon attenuation coefficients for all these materials,

and in more detail:

• the probabilities for all relevant photon interactions in the detector material as a
function of energy and scattering angle,

• the information on the transport of electrons and positrons through the detector
material.

The results of modern Monte Carlo computations give detection efficiencies with uncer-
tainties comparable to the ones from experimental calibrations subject to various required
mathematical corrections [4], [8]. The prerequisite for a successful Monte Carlo simulation
is the exact knowledge of the dimensions of the detector crystal, which are usually given
by the supplier, but also the exact knowledge of the parts around the crystal, as well as
the distribution of the sensitive and insensitive zones, which often remains uncertain to
the user. A detector with these parameters verified in detail can be ordered, but usually
it is then much more expensive.

While for the purely computational determination of the detection efficiency the com-
plex Monte Carlo method is unavoidable, there are simpler methods which allow the
conversion of the detection efficiency measured with a calibration source of a given geome-
try and composition to the detection efficiency of a different geometry and composition on
the given detector [9], [1]. These methods usually still require the first four of the above
quoted items, but the accuracy of the data is of less concern, because the errors resulting
from these relative recalculations are canceled to some extent. The most commonly used
of these methods are based on the calculation of effective solid angles for samples of various
geometry and composition. The first of these methods was developed by [7] for coaxial
detectors and cylindrical samples, and in [6] it was extended to cylindrical samples with di-
ameters larger than the detector crystal diameter. This method was experimentally tested
for point, disk, and cylindrical sources at different distances on a number of detectors and
an agreement of experimental and recalculated values within 3 % was obtained when the
detector parameters were well known. A user-oriented program for personal computers,
Angle, based on these methods, is presented in [5].

As one can see from this introduction, the laboratory practice of gamma spectrometry
applied to environmental samples basically prefers the experimental detection efficiency
calibration, but which must be subject to a number of computational corrections in order
to be used for samples of different geometry and composition. The direct experimental
calibration by itself, together with all consequential corrections, introduce a number of
uncertainties into the final result, hence the analysis of possible deviations is of crucial
importance for this branch of gamma spectrometry.

In this work, the results of efficiency calibration and the advantages and drawbacks of
the method are discussed in case of using the three spectrometers at the Laboratory of
Radioactivity and Dose Measurement at the Department of Physics, Faculty of Science,
Novi Sad. Sources of radioactive materials of known activity concentration, certified and
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laboratory made, as well as a number of certified sealed radioactive sources, were used
for basic experimental calibration. The above mentioned program Angle was used to
recalculate the detection efficiency for samples of other dimensions and composition. The
activity concentration of samples of soil, grass, and water, distributed within the IAEA-
CU-2006-03 World-wide open proficiency test on the determination of gamma emitting
radionuclides were measured on thus calibrated detectors. The Agency sends the actual
activity concentration values to the participant only upon the arrival of participant’s
laboratory results, which stimulates critical reassessments of calibration procedures and
spectra processing. Taking part in such tests and evaluation of the results is a mandatory
action in the permanent enhancement of the Laboratory Rules of Quality according to
JUS ISO IEC 17025:2001.

2. Experimental details

Detectors

The properties of the three detectors used in this evaluation are summarized in Table
1. Numbers designated with asterisks are only estimates, not given by the supplier.

Table 1. Properties of the detectors.

Code K L M
Product of Canberra EG&G ORTEC Canberra
Type Closed end coaxial, Closed end coaxial, Closed end coaxial,

p-type n-type GMX p-type
Model GC3518 GMX-20190 GC2520
Cryostat 7935SL-7 LLB-GMX-HJ 7600SL/S

Relative efficiency [%] 35.6 32.4 22.4
Bias voltage [kV] 4.5 - 2.5 4.0

FWHM [keV] @122 keV 0.813 0.882
FWHM [keV] @1332 keV 1.77 1.83 1.76

Peak/Compton 63.2 57 56.4
External contact layer 0.9 mm Ge(Li) 0.3 μm Ge(B) 0.6 mm Ge(Li)
Internal contact layer 0.3 μm Au 0.9 mm Ge(Li) 1 μm Au*
Crystal diameter [mm] 61 56 51
Crystal height [mm] 52 65.2 58.5
Core radius [mm] 4.5 4.6 4.6*
Core height [mm] 34 57.1 38*

Active crystal volume [cm3] 138.5 155 110*
Entrance window 1.5 mm Al 0.5 mm Be 0.5 mm Al

Distance from window [mm] 5 3.5 5
Detector end cap 1.5 mm Al 1.3 mm Al 1.5 mm Al

Shielding 12 cm Pb 12 cm Pb 25 cm Fe
Background (30− 3000 keV) [s−1] 3.11 0.98 1.40

Calibration sources

Sources used to calibrate the detection efficiency were of both commercial origin and
laboratory made. Properties of radioactive materials used to prepare cylindrical calibra-
tion sources are summarized in Table 2. Properties of sources of both kind used for the
detection efficiency calibration are summarized in Table 3. The mass attenuation coef-
ficients of SRM and F were measured in the narrow beam geometry with point sources
133Ba, 152Eu, and 241Am to cover the energy range of interest. The XCOM program [2]
was used to verify the assumed chemical composition of these materials; the mass atten-
uation coefficients were found to be compatible with the composition Si 35 %, O 50 %,
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Al 8 %, and Fe 7 % for SRM and with the formula Ca3(PO4)2 for F. The SRM and F
calibration sources were prepared and sealed a long time before measurement, this way
the Rn equilibrium of the natural radioactive series is reestablished.

Table 2. Radioactive materials used to prepare calibration sources.

Code SRM F KCl
Type Certified standard Radioactive material, Pro analysi

reference material activity concentration chemical substance
SRM 4350B measured in another

laboratory
Origin NBS, USA Vinca Institute, Serbia Merck, Germany
Matrix River sediment Phosphate ore KCl

Main radionuclides 40K, 60Co, 137Cs, 152Eu, 238U series 40K
241Am , 232Th series,

238U series
Approx. activity 4 - 560 1500 16.3 · 103

concentration [Bq/kg]
Reference date 1981.09.09. - -

Table 3. Calibration sources.

Code Origin Material, r × h [cm], Main Approx.
density V [cm3] radionuclides activity,
[g/cm3] ref. date

PA Amersham, - Point source kit 60Co, 133Ba, 137Cs, 400 kBq,
UK 241Am 1976.06.01.

PF Framatome, - Point source kit 22Na, 51Cr, 54Mn, 400 kBq,
France 57Co, 60Co, 85Sr, 2005.02.15.

88Y, 137Cs, 152Eu, 241Am
C7230SRM Lab made SRM, 0.950 3.48× 2.80, 40K, 60Co, 137Cs, 0.4..56 Bq,

106.4 152Eu, 241Am, 1981.09.09.
232Th series,
238U series

C7230×2SRM Lab made SRM, 0.947 3.48× 5.60, 40K, 60Co, 137Cs, 0.8..112 Bq,
212.8 152Eu, 241Am, 1981.09.09.

232Th series,
238U series

C7230F Lab made F, 1.527 3.48× 2.80, 238U series 250 Bq
106.4

C7230×2F Lab made F, 1.527 3.48× 5.60, 238U series 500 Bq
212.8

C7031KCl Lab made KCl, 0.923 3.26× 3.05, 40K 1.5 kBq
101.6

C7230×2KCl Lab made KCl, 0.882 3.48× 5.60, 40K 3.1 kBq
212.8

Bottle Framatome, Resin, 1.15 4.74× 7.06, 152Eu 33.8 kBq,
France 484 2005.01.26.

Marinelli Framatome, Resin, 1.15 5.56× 5.60, 152Eu 32.5 kBq,
France 450 2005.01.27.

Test samples
The efficiency calibration was checked with samples distributed within the IAEA-

CU-2006-03 World-wide open proficiency test on the determination of gamma emitting
radionuclides in June 2006. Every participant obtained 200 g of spiked soil, 100 g of grass
contaminated with 137Cs, and about 500 ml of spiked water. Cylindrical and Marinelli
shaped sources were prepared according to the IAEA instructions. Their properties are
presented in Table 4. For soil, the usual composition of O 47 %, Si 35 %, Al 8 %, Fe
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3.9 %, C 2.1 %, K 1.3 %, Na 0.6 %, Mg 0.6 %, and N 0.1 % was assumed, compatible
with attenuation coefficients of many previously used soil samples. For grass, the elemen-
tal formula C3H6O was assumed where needed for mass attenuation coefficient calculation.

Table 4. Sources prepared from IAEA test samples.

Code Material Geometry, r × h [cm], V [cm3] Density, radionuclides
[g/cm3]

CF0601 Soil Cylinder, 3.48× 2.80, 106.4 1.03 54Mn, 60Co, 65Zn, 109Cd,
134Cs, 137Cs, 210Pb, 241Am

CF0602 Grass Cylinder, 3.48× 5.60, 213 0.45 40K, 137Cs
CF0603 Water Cylinder, 3.22× 9.91, 299 1.00 54Mn, 60Co, 65Zn, 109Cd,

134Cs, 137Cs, 210Pb, 241Am
MF0603 Water Marinelli, 5.54× 8.98, 514 1.00 54Mn, 60Co, 65Zn, 109Cd,

134Cs, 137Cs, 210Pb, 241Am

Measurement procedure

The detector K was connected to the digital spectroscopy processing unit Canberra
1300 InSpector. The other two detectors were connected to conventional gamma spec-
trometer circuitry with HV units, amplifiers, and ADCs, while the signals were stored in
2 of the 4 inputs of a Canberra Multiport Multichannel Analyzer unit.

The point calibration sources were measured at 25 cm distance from detector entrance
windows. The measurement time ranged from 5 ks up to 130 ks in order to get small
statistical uncertainties even for gamma lines with smaller pγ . The highest dead time at
this distance was for the 152Eu source, 5 % for the detector K, 7 % for the detector L, and
3 % for the detector M.

The extended volume calibration sources were measured in contact geometry. The
measurement time ranged from 70 ks for Bottle and Marinelli, up to 320 ks for C7230SRM.
Beacause of a too high count rate and dead time, Bottle and Marinelli were not measured
on the L detector. The highest accepted dead time for the K detector was 11 %, produced
by the Marinelli calibration source.

The test sources were also measured in contact geometry. The MF0603 sample was
measured only on the detector K, while the others were measured on all three detectors.
Typical measurement times were about 75 ks. In all cases the dead time was less than
1 %. For all samples, the measurements were repeated at least 3 times, except for the
detector L, where only one measurement per sample was performed.

Processing of gamma spectra requires the background count rate to be subtracted from
the sample count rate. For all three detectors the background spectra were collected for
at least 150 ks up to 320 ks.

After data collection, the samples of soil and grass were dried at 105◦C for several
hours in order to establish the dry mass. The difference from the initial mass was about
2 % for soil, and about 8 % for grass.

Processing of gamma spectra

The gamma spectra were acquired and analyzed using the Canberra Genie 2000 soft-
ware. First, the necessary nuclide libraries were constructed using the Nuclide Library
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Editor, selecting only the relevant nuclides and transitions, and carefully avoiding pos-
sible annoying interferences from non-existent nuclides. This is mostly a trial and error
procedure.

The next step was to describe the activities of all the calibration sources, which was
quite straightforward using the Certificate File Editor.

The Geometry Composer software component was used to construct files which de-
scribe every source-detector combination used in this work. This is needed to derive the
peak-to-total efficiencies used for cascade coincidence correction for multiline nuclides. If
the detector is not certified by Canberra, as in our case, the software accepts a generic
detector only, chosen by the user as the closest to one from the predefined list of detectors,
based on the crystal diameter. This arbitrariness is later reflected as the uncertainty of
the coincidence corrected line intensities much larger than uncertainties introduced purely
by statistics and efficiency. The sources are characterized by their geometry (also relative
to the detector), as well as by their elemental composition.

The actual spectra analysis was performed making use of the Gamma Acquisition &
Analysis software component (GA&A). The peaks were located using the Unidentified 2nd
Difference method, and the peak area was established using the Nonlinear Fit method (Fit
singlets was enabled in the Sum / Nonlinear Fit step). Then the peak area was corrected
by standard background subtraction using previously processed background spectra.

The calculation of efficiency for calibration sources was performed using the previously
prepared certificate files. The Perform Cascade Correction option was enabled. Regret-
tably, in the present edition of the software the cascade correction is not supported for
multiline nuclides with complex decay schemes, like the ones from natural radioactive
series.

The obtained efficiency values were fitted by the software to the function designated
as ”Dual” which has the form

ln(ε) = a0 + a1 ln(Eγ) + a2 ln
2(Eγ) + a3 ln

3(Eγ) + a4 ln
4(Eγ) + a5 ln

5(Eγ). (1)

Detection efficiencies calculation
The detection efficiencies for the sources prepared from test samples were calculated

from the calibration source efficiencies (obtained in the previous step) using the method
of relative effective solid angles, mentioned in the Introduction. In principle, with this
method any unknown detection efficiency ε can be calculated from the known one ε0 by
the relation

ε = ε0
Ω

Ω0
, (2)

where Ω and Ω0 are the effective solid angles, first for the source-detector arrangement
with a known efficiency, and the second for the source-detector arrangement with unknown
efficiency.

The effective solid angles were calculated using the above software Angle [5]. As the
input, this program needs the characterization (dimensions, density, and elemental compo-
sition of all materials) of the detector, with all its surrounding absorbing layers, and of the
source, together with its container. The calculations were performed to the Gauss coeffi-
cient order 16 degree of precision on an energy grid ranging from 30 keV to 3000 keV with
35 values distributed to approximately evenly cover the logarithm of the energy range. The
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Figure 1. A typical pair of interpolated effec-
tive solid angle functions.

Figure 2. A typical ratio of effective solid
angles as a function of energy.

obtained point values were interpolated to smooth functions Ω(Eγ) and Ω0(Eγ), yielding
this way also their ratio as a function of Eγ . No uncertainty analysis was performed at this
step. A typical pair of solid angle functions is presented in Figure 1 and the corresponding
ratio function in Figure 2.

Efficiency values ε(Eγ) were calculated from (2) on the same energy grid on which
the ε0(Eγ) was given for the actual calibration source. After processing all calibration
sources, this procedure resulted in up to 200 ε(Eγ) points for a given detector-test-sample
arrangement, many of which were on the same or close energies. By taking the solid angle
conversion as uncertainty-free, the relative uncertainties of ε remained the same as those
of ε0. The efficiency calibration routine of the GA&A software accepts only up to 80
points by direct entry, so the number of them had to be reduced. This was done firstly
by dropping those with large uncertainties, which anyway would have very little influence
to the final fit function, and secondly, by deriving the weighted mean of the ε values at
the same or close energies. The remaining set of value pairs served as input to the GA&A
program, where it was fit to the Dual efficiency curve (1).

3. Results and discussion

Efficiency curves
Some of the efficiency curves obtained as described in the previous section, together

with the input point data, are shown in Figures 3 - 6. Large uncertainties of some data
points, especially at low energies, as well as larger deviations of some points with smaller
uncertainties, reflect the fact that this efficiency calibration method takes raw input data
from very different sources, with different nuclides, activities, geometries, compositions.
However, having in mind all the corrections made, and all the assumptions taken, the
resulting efficiency curve actually looks quite well. The error corridor of the curve is
rather narrow, due to the large number of data points, which diminishes the influence of
outlier points.
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Figure 3. Input data and the calculated ef-
ficiency curve for the soil sample on detector
K.

Figure 4. Input data and the calculated effi-
ciency curve for the grass sample on detector
L.

Figure 5. Input data and the calculated ef-
ficiency curve for the Marinelli water sample
on detector K.

Figure 6. Input data and the calculated ef-
ficiency curve for the soil sample on detector
M.

Measured activity concentrations and the comparison to IAEA values

The analysis of spectra acquired from test samples was performed in a manner similar
to the spectra analysis of calibration source spectra, except that the efficiency calibration
was taken as described in the previous section. The software could not automatically
manage the peak separation of the relatively weak 109Cd line at 88.0 keV from the complex
multiplet structure of the background around this energy, hence some interactive peak
fitting was needed. All the other line intensities and the nuclide identification and activity
data were accepted as results of automatic processing.

The activity concentration data from spectra measured repeatedly on the same detec-
tor gave results in most cases coinciding within 1σ limits, and all of them were within 2σ
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limits, with the exception of 109Cd, which varied more widely from spectrum to spectrum.
Weighted mean of the results for every detector, the laboratory weighted mean, and the
IAEA data are presented in Tables 5-7. The numbers in the parentheses represent the 1σ
of the last significant digit.

Table 5. Activity concentration of tested radionuclides in IAEA F0601 sample of soil.

Nuclide Activity concentration [Bq/kg]
K L M KLM IAEA

54Mn 50.1(9) 51.0(6) 40.7(8) 48(3) 48(1)
60Co 59.6(13) 59.8(5) 57.0(7) 58.9(9) 56.1(14)
65Zn 79.7(11) 80.7(11) 72.7(10) 77.3(26) 77.5(25)
109Cd 0.17(3)e+03 0.16(5)e+03 104(15) 120(20) 178(8)
134Cs 66.8(7) 67.4(5) 55.4(6) 64(4) 64.2(19)
137Cs 54.8(5) 55.1(6) 43.8(8) 53(3) 52.6(11)
210Pb 259(18) 274(23) 240(17) 255(11) 260(13)
241Am 111.7(23) 110.8(28) 77.0(19) 95(12) 96.6(28)

With the exception of 109Cd, data in Table 5 show a very good agreement between the
laboratory mean values and the IAEA data for the soil sample. Most of values coincide
within 1σ limits. However, if one looks at the single detector data, the detector M shows
the largest deviations from true values. Actually, the detector M causes the failure of the
109Cd result.

Table 6. Activity concentration of tested radionuclides in IAEA F0602 sample of grass.

Nuclide Activity concentration [Bq/kg]
K L M KLM IAEA

40K 1024(18) 1147(26) 1030(24) 1.05(4)e+03 1059(28)
137Cs 11.90(6)e+03 12.60(13)e+03 9.32(6)e+03 10.9(10)e+03 11.32(18)e+03

Table 7. Activity concentration of tested radionuclides in IAEA F0603 sample of water. On
detector K: KC - cylindrical source, KM - Marinelli source; detectors L and M - cylindrical source

only.

Nuclide Activity concentration [Bq/kg]
KC KM L M KLM IAEA

54Mn 4.45(24) 4.59(7) 4.81(22) 3.89(22) 4.55(11) 4.890(17)
60Co 5.42(11) 5.31(5) 5.68(19) 4.79(21) 5.33(9) 5.80(4)
65Zn 6.6(4) 6.65(19) 6.7(4) 5.4(6) 6.57(16) 7.27(8)
109Cd 18.2(22) 20.0(8) 6.4(3) 11.6(13) 8.9(29) 19.62(10)
134Cs 12.66(15) 12.19(9) 13.36(24) 10.02(14) 11.9(6) 13.03(10)
137Cs 16.29(21) 16.15(16) 17.5(4) 12.72(29) 15.8(8) 16.72(8)
210Pb 21(11) 6.9(24) 10.4(12) 15(4) 10.1(13) 9.55(15)
241Am 3.33(24) 3.35(12) 3.03(16) 2.62(25) 3.18(14) 3.660(23)

It is evident from Table 6 that there is a perfect match between the mean laboratory
values and the ones from IAEA for the grass sample. Still, there is room for improvement
for 137Cs on both the L and M detectors.
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As can be seen from Table 7, there is a fair agreement between the laboratory mean
values and the IAEA data for the water sample, again with the exception of 109Cd. The
largest deviations are again on the M detector. Large uncertainties for 210Pb on detectors
K and M show the big advantage of the GMX detector L in the low energy range (46.5 keV).

4. Conclusion

The results of the discussed comparative measurements of activity concentration in
the IAEA-CU-2006-03 World-wide open proficiency test samples of soil, grass, and water
show that there is a fair to excellent agreement between the laboratory and IAEA data
for all the radionuclides except for 109Cd. This single inconsistency is not due to an error
of efficiency calibration, but to strong interference of the relatively intensive background
on the detector M around 88 keV.

The results of individual detectors taken separately are slightly worse, with detector
M showing the largest deviations from ”true” data, in spite of the fact that all detectors
were calibrated in the same manner, with the same calibration sources, using very similar
efficiency calibration calculations, and the same spectra processing procedures. This dif-
ference may be ascribed to the incomplete knowledge of all the detector M parameters, as
was noted in its description.

Every of the used efficiency calibration methods have its advantages and drawbacks.
The calibration with point sources might look as the simplest. However, large distances
must be kept for multiline sources in order not to provoke too large coincidence corrections.
Also, the effective angle ratio for cylinder/point transformation is the largest, possibly
introducing higher uncertainties.

Cylindrical calibration sources were made in the same geometry as the measured sam-
ple, and SRM even has a matrix similar to the soil sample, but the activity of SRM is
impractically low. On the other hand, the phosphate ore F is more active, but it is not
officially asserted. With both of these materials the radioactive equilibrium of the natural
series is assumed, but this might deviate slightly. The coincidence correction might be
significant, but is very complicated and was not performed. However, the composite con-
tribution of the large number of gamma lines of natural series distributed along the whole
energy region of interest hopefully cancels some of these inconsistencies.

The used closed voluminous calibration sources have the disadvantage of high count
rate, giving rise to high dead time which might not be corrected precisely by the elec-
tronics. Also, the multiline 152Eu needs significant coincidence correction. The asserted
activity is expressed as for the water matrix (although it is resin) and the effective angle
transformation ratio for other geometries is large.

Different calibration sources after effective angle ratio corrections produced results for
a given detection efficiency which sometimes are not within statistical tolerance, in most
cases for reasons which are not easily, if at all, traceable. This is mostly expressed in the
low energy region. However, taken altogether, the large number of efficiency calibration
data obtained by different calibration methods produced efficiency curves which proved
to be correct.
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Abstract

Muons have a small cross-section for interactions and high energy, so they are
very penetrating and give the significant contribution to the gamma spectra of
Ge detectors, even in deep underground laboratories. One of the muon interac-
tion effects with material is X-ray production. Having in mind that gold is often
used as a detectors component, in this paper the production of X-rays in gold
sample is analyzed by using a coincidence system based on plastic scintillation
detector and Ge detector. The production rate of Kα rays per Au mass unit
from coincidence gamma spectrum is determined as R ≈ 7.1 · 10−4 g−1s−1.
Taking into account the measured muon flux of Φ = 54 s−1m−2, the muon
cross-section σKα ≈ 43 Barn, for Au Kα X-rays production is calculated. Also,
the cross-sections of X-ray production by cosmic muons in lead and tungsten
are measured. Unexpectedly, the results obtained did not reveal Z dependence
in the Z = 74− 82 region.

Key words: Cosmic muons, X-ray production, cross section

1. Introduction

Cosmic rays consist primarily of very high energy protons and alpha-particles origi-
nating from stellar processes. The top of Earth’s atmosphere is bombarded by a flux of
these charged particles. The primary cosmic rays collide with the nuclei of air molecules
and produce a secondary particle showers that include protons, neutrons, pions (charged
and neutral), kaons, photons, electrons and positrons. The secondary particles then un-
dergo electromagnetic and nuclear interactions to produce additional particles in a cascade
processes.

Some of the charged pions will interact via the strong force with air molecule nuclei, but
others will spontaneously decay via the weak force into muon and neutrino or antineutrino:

π+ → μ+ + νμ

π− → μ− + ν̄μ

Muons interact with matter only through the electromagnetic and weak forces, traveling
a relatively long distance while losing its kinetic energy, and finally decay into an electron
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and antineutrino. Also, after deceleration, negative muons can bind to the atomic nuclei
and then interact with protons before they spontaneously decay:

μ− + p→ n+ νμ.

Application of high-resolution gamma spectrometry to the problems with low event
rates has important role in nuclear and subnuclear physics and particle astrophysics [1].
The interaction of cosmic rays with various types of materials can be observed in case
that the detector construction and shielding materials are carefully selected to have high
radiopurity. Studies of cosmic ray interactions, especially of most penetrating muon com-
ponent, lead to improving of low background experiments.

There are four types of different spectral components of Ge detectors [2] caused by
muons:
1. characteristic X-rays of materials close to the Ge crystal
2. bremsstrahlung continuum from muon generated electron showers
3. annihilation peak produced in shower pair production [3] and
4. activation of materials by muons.

The exploration of the characteristic X-rays induced by cosmic muons in various ma-
terials (gold, lead, tungsten) is presented in this paper. Some of non-accelerator low
background particle physics experiments based on using Ge detectors include materials
mentioned above. Those materials are potential sources of muon-induced X-rays and lead
to increasing of low energy part of the gamma spectrum. In the present work we measured
the cross-sections for X-ray production by cosmic muons.

2. Experimental results and discussion

Measurements of cross-sections for X-rays production by cosmic muon flux is based on
coincidence electronic circuit of high purity extended range Ge detector and scintillation
plastic detector. Our experiment was designed to measure the production of fluorescence
characteristic X-rays of materials in the vicinity of a Ge detector by secondary particles
that emerge from interactions of CR muons with heavy lead shields of low-background Ge
detectors. It was designed to be insensitive to the X-rays directly produced by CR muons
in the target material, since these production rates are easily evaluated by contemporary
simulation codes, GEANT4 for instance, and there is little interest to determine this yield
experimentally. Production by the secondaries, however, is a complex process involving
many different low-energy cascades, and is much more difficult to evaluate. Figure 1
illustrates the geometry of the experiment and explains why the direct production of
X-rays by muons does not contribute to the X-ray lines.

The schematic view of the coincidence system is shown in Fig. 2. The GMX type
”ORTEC” HPGe spectrometer with nominal efficiency of 32 % is placed inside the lead
shield of cylindrical shape with the outer diameter of Φ = 410 mm, and wall thickness of
120 mm. The inner absorption layer consists of 3.5 mm thin and 0.5 mm made of copper.
The plastic detector with dimensions of 0.5 m× 0.5 m× 0.05 m was positioned above the
lead shield, and samples were placed at the distance of 7.5 mm from the Ge detector end
cap. The SCA window (∆t) of TAC/SCA module was 270 ns and the gating of Ge detector
energy signals was done by signals of 110 μs width from the DELAY/GATE generator,
fed by SCA output of TAC/SCA. The threshold on CFD of plastic detector corresponded
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Figure 1. Arrangement of detectors and materials in the experiment. CR muon passes through
the plastic scintillation detector and triggers the HPGe detector. The muon marked ”1” then
produces a secondary (dotted line) in the heavy lead shield which is in turn stopped in the target
where it induces the emission of the X-ray, which is registered by the HPGe detector in the X-ray
peak. If the muon (marked ”2”) hits the target and produces the X-ray which is detected by the
Ge detector, it also passes through the Ge detector and its energy loss is summed with the X-ray,
which is then registered ouitside the X-ray peak.

Figure 2. The schematic view of the coincidence circuit.
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to an energy of about 6 MeV (beginning of muon deposited energy peak in 5 cm thick
plastic detector) and the threshold on CFD of Ge detector was about 35 keV.

The characteristics of disk-shaped samples are presented in Table 1.

Table 1. The characteristics of samples.

No. Substance Mass [g] Radius [cm] Thickness [cm]

1 Au 40.6 3.34 0.06
2 Pb 53.2 3.69 0.11
3 WO3 20.2 3.35 0.25

The coincidence Ge spectra of Au, Pb and WO3 are shown in Fig. 3. Using the
equation

σ =
R

NΦ
the cross-sections σ for muon producing of Kα X-rays were calculated, where:

Figure 3. The coincidence spectra of the HPGe detector. When gold, lead and tungsten targets
are positioned in front of the detector. Only Kα and Kβ lines of the corresponding element are
seen in the spectra.
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R - number of produced X Kα-quanta in the sample per unit of time :

R =
n

εt

(n - number of events in X Kα-photo peak of the coincidence spectrum, ε - efficiency of
detection, t - live time of measurements)
N - number of atoms (Au, Pb, W) in the sample
Φ - measured muon flux: 54 s−1m2 (for cosmic muons with mean energy of about 2 GeV)

The results of calculations are presented in Table 2, and in Fig. 4.

Table 2. Values of the effective cross sections.

No. Element Atomic number Cross-section [Barn]

1 Au 79 43± 3
2 Pb 82 46± 4
3 W 74 49± 7.5

Figure 4. Z dependence of the cross section values.

3. Conclusion

The cross-sections for producing of X-rays by cosmic muons have relatively high values
for the analyzed materials with high atomic number (W, Au, Pb) - about 45 Barn. The
Z dependence of cross-sections in this narrow Z region (74− 82) is not noticeable, having
in mind almost constant measured values of cross-sections. That is qualitatively different
from the probability of muon capture in target nuclei, although it has strong Z dependence:
σcap. ∼ Z4 [4], or production of positron annihilation radiation by cosmic rays muons:
σann ∼ Z2 [3].

Further explorations on this field will be continued.
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Abstract

Some theoretical aspects of the mechanism and kinetics of low-temperature
silicon nitride thermal annealing were considered. We have introduced a for-
mula for silicon nitride - HxSirNzHy, in view of the fact that the hydrogen Hx
bonded to Si and hydrogen Hy bonded to N have different influences on the
values of bulk or surface charge and mechanical stress. The influence of rapid
thermal annealing on the concentrations of (Si—H) and (N—H) bonds (C(Si—H)
and C(N—H)) in ECR-plasma silicon nitride HxSirNzHy films was studied.
Four series of rapid thermal annealing experiments lasting t = 15, 30, 60, 180 s
were carried out at six temperatures T = 450, 600, 700, 800, 1000, 1200◦C for
each series. Both C(Si—H) and C(N—H) start to decrease at the temperature
T = 700◦C, but then C(Si—H) shows a paradoxically sharp increase beginning
from T = 1000◦C. We assume that this effect is determined by kinetics of dif-
fusion controlled reactions in solid phase and that there is a large difference of
oscillator strengths constant between (Si—H) and (H—Si—H) stretching modes
in the infrared spectra. For calculation of C(Si—H) and C(N—H) integrated
processing of Fourier transform infrared spectra (FTIRS) was used.

Key words: Silicon nitride, rapid thermal annealing, ECR-plasma, Fourier transform in-
frared spectra

1. Introduction

There is a great interest in amorphous silicon nitrides HxSirNzHy since they are widely
used as encapsulation, passivation, dielectric and barrier layers. Amorphous silicon nitride
thin films are used in different fields because of their advantageous electrical and/or optical
properties. These films are especially suitable for the silicon surface electronic passivation
in high efficiency Si solar cell technology, as antireflection coatings (according to well-
known ratio of the refractive indexes: [n(HxSirNzHy)]

2 ≈ n(Si) ) [1]. Besides, to get a
low interface state density, the field-effect passivation [2] plays an important role for the
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low recombination rates at the (HxSirNzHy)/Si interface: in the Si-rich HxSirNzHy a large
number of fixed charges are created near the interface to the Si. These charges induce band
bending under the Si-surface, which leads to the inversion of holes at a p-Si surface. The
inversion of holes leads to a low recombination rate, since these holes are excluded from
the processes of hole-electron recombination [3]. A characteristic property of amorphous
silicon nitride is the presence of the electronic states located in the forbidden energy band.
The effect of localization of electrons and holes, injected into amorphous silicon nitride,
is the basis of memory elements. In a MNOS-memory element the positive or negative
charge is stored in deep traps of silicon nitride near the interface with SiO2 and rewriting
is performed by applying the pulses with an amplitude > 106 V/cm.

Low-temperature silicon nitride thin films are suitable for gate and interlayer dielectrics
for thin film transistors (TFT) on low-temperature glass and plastic substrates, for barrier
layers in gate stack high-k dielectric structures, for passivation and encapsulation layers
in III/V microelectronics applications, and for encapsulation layer on non-conventional
substrates (i.e. plastic or metal foil) [4]. The mechanical, chemical and optical properties
of silicon nitride allow the fabrication of membranes in surface micromachining technology
and microinterferometers in optoelectronic technology. In recent years, low-temperature
silicon nitride has been used in microbridge structure technology for manufacturing un-
cooled microbolometers (”0.2 μm thick bridge of silicon nitride suspended about 2 μm
above the underlying silicon substrate”) [5].

Plasma-enhanced chemical vapor deposition (PECVD) is the most popular procedure
for low-temperature silicon nitride deposition. However, high-energy ion emission from
volume of RF-discharger on microstructure surface gives rise to well-known defectiveness
problem in microelectronics applications. The combination of remote plasma enhanced
chemical vapor deposition (RPECVD) with the subsequent rapid thermal annealing in
an inert ambient may be suitable for ultra-thin silicon nitrides gate dielectrics [6]. The
electron cyclotron resonance (ECR) plasma method shares the advantages of the remote
plasma system in view of low ion energy (∼ 30 eV). Moreover, high plasma density
(∼ 1012) provides sufficient flows of the active species (i.e., :N., :N.+, :SiH2, :SiH+2 , :Si.H,
:Si.H+, :Si:, :SiP:+) for deposition of high quality low- or room-temperature silicon nitrides
without performing a post-deposition processing step.

Low-temperature silicon nitride HxSirNzHy contains a large amount of hydrogen atoms
(up to 38 %) chemically bonded to Si and N. The presence of hydrogen atoms in silicon
nitride structure leads to the passivation of structural defects (i.e. dangling ≡Si· and =N·
bonds) in the bulk of the film and at the insulator-semiconductor interface, and reduces the
density of electrically active defects (i.e. ≡Si—Ši—Si≡). It is probable that the deep traps
and emission centers in the silicon nitride are silicon clusters, i.e. ≡Si—Ši—Si≡ with the
average size of ∼ 10 Ao , simulating both the donors and acceptors centers. It is necessary to
note, that the clusters model of traps explains full compensation of donors and acceptors
and simultaneous existence of deep traps for electrons and holes. The electrical quality of
HxSirNzHy depends on the relative concentrations of ≡Si—, =N— and H— atoms, and the
way these atoms are integrated into the network structure, especially the distribution of
H— bonded in (Si—H) and (N—H).

For example, silicon nitride high-temperature annealing, during which concentrations
of (Si—H) and (N—H) bonds vary [7], has an essential influence on the period of charge
storage in a MNOS-memory element. Variation of the hydrogen concentration in passiva-
tion silicon nitride films allows one to control the main parameters of the AlxGayN/GaN
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- HEMT transistors.

The silicon nitride films, obtained at the excess of NH3 or N2 in the reactor valve,
contain the hydrogen mainly connected with nitrogen. It is known, that the presence of
=NH and —NH2 groups decreases the mechanical stress in films [8]. The silicon nitride
films, obtained at the excess of SiH4 in the reactor valve, contain the hydrogen mainly
connected with silicon. It is considered that the presence of ≡SiH and =SiH2 groups in
the clusters (i.e. ≡Si—Ši—Si≡) is responsible for the ability to store charge in the bulk of
the film and accounts for the influence on the number of fixed charges near the HxSirNzHy
interface [8].

We have introduced a formula for silicon nitride as HxSirNzHy, where the hydrogen Hx
connected to Si and hydrogen Hy connected to N exert different influences on the values
of bulk or surface charge and mechanical stress.

The presence of hydrogen and superfluous silicon in the silicon nitride films essentially
expands their functionalities and in this sense has a positive value. However, the —H
bonded in the HxSirNzHy network shows poor thermal stability and may lead to degra-
dation of the favorable electronic and structural properties of the films [9]. For example,
a well known degradation phenomenon is observed in MNOS devices. Therefore, the pre-
diction of the silicon nitride properties under temperature or high electric field stresses is
very important for microelectronic devices in view of the reliability and improvement of
parameter reproducibility.

The thermal annealing of low-temperature silicon nitride in vacuum or in an inert gas
atmosphere results in a decrease of hydrogen bonds concentration with the formation of
long-living radicals ≡Si and =N· (dangling bonds), that is, it is possible to treat it as
the conductivity centers concentration increase. Also, new (Si—Si) and (Si—N) bonds are
formed, the gases H2, N2, NH3 are in parallel observed and the increase of films conduc-
tivity can be observed as well. The thermal annealing of low-temperature silicon nitride
at temperatures higher than 1200 K results in crystallization of layers and approaching of
their structure to Si3N4.

2. Theoretical part

Chemical composition (x, r, z, y) and the resulting density ρ, depending on the condi-
tions and the way of HxSirNzHy films deposition, can vary over a wide range. It is very
convenient to normalize the sum (x+ r+ z+ y) to 100 units, then (x+ r+ z+ y) = 100 %
and x = C(Si—H), r = C(Si), z = C(N), y = C(N—H) and for total hydrogen contents
h = (x+ y). For the known samples of high-temperature deposition (temperatures higher
than 1200 K) silicon nitride films have hmin ≈ 7 % and ρmax ≈ 3.1 g/cm3. In the samples
of low-temperature deposition (temperatures lower than 600 K) silicon nitride films are
characterized with hmin ≈ 14 % and hmax ≈ 38 %. It is obvious that ρ decreases with
increase in h, as well as with increase in C(Si—Si) (since ρ(Si) ≈ 2.42 g/cm3). Assuming
ρ = 2.9 g/cm3, for the composition H8Si36N48H8 with h = 16 % an average distance
s ≈ 3.9 A

o

between the centers of hydrogen neighbor atoms is obtained. Thereby, the
existence of mechanisms of hydrogen atoms displacement on (s − 2RH)/2 ≈ 1.5 A

o

can
open a way to possibility of bimolecular reactions in low-temperature silicon nitride.

The mechanism and kinetics of thermal annealing depend not only on the concentra-
tions of (Si—H) and (N—H) bonds, but also on distribution of H— bonds in the HxSirNzHy
network between ≡SiH, =SiH2, =NH, —NH2 groups and, apparently, on the thickness of
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the film in case of rapid annealing. It is necessary to have in mind the exponential tem-
perature dependence of the ·H, H2, :N., :NH, ·NH2, NH3 diffusion coefficients in the solid
phase: Di = D0i × exp(−Ai/RT ), where Ai - activation energy for diffusion processes.
According to [10]
→ Do(·H) = 8 · 10−4 cm2/s, A(·H) = 4.30 · 104 J/mol,
→ Do(H2) = 5 · 10−4 cm2/s, A(H2) = 4.30 · 104 J/mol,
→ Do(:N.) = 4 · 10−4 cm2/s, A(:N.) = 2.34 · 105 J/mol.
And, according to well known estimation formula τ(x) = kx2l/2D, we can estimate the
times of diffusion output of H2 and :N. from the silicon nitride film of the thickness
d = 1000 A

o

(kx2l = d2/3)
→ τ(H2, 800 K, 1000 A

o

) = 2.1 · 10−5 s,
→ τ(: N., 800 K, 1000 A

o

) = 7.9 · 107 s = 2.5 years.
But, for the time diffusion output :N. from a cell with a radius kcl = 2 Ao , in view of the
Gauss distribution, (2kc2l = πkcl2) and τ(c) = kc2l/6D is obtained
→ τ(:N., 800 K, 2 A

o

) = 500 s.
It is also necessary to have in mind the dependence of the ·H, H2, :N., :NH, ·NH2,

NH3 diffusion coefficients in the film on its chemical composition. We assume that the
low-temperature silicon nitride contains a large amount (more than 20 %) of hydrogen
in the ≡SiH, =SiH2, =NH, —NH2 groups, like a three-dimensional polymer (the polymer
constructed from linear macromolecules, connected among themselves by cross-linking
bonds, so that a spatial grid is formed).

It is obvious that with an increase of hydrogen contents the structure of silicon nitride
will approach the structure of a standard polymeric film. At the hydrogen contents h =
60 %, a silicon nitride would become similar to linear polymer → —[H2Si1N1H1]—
At the hydrogen contents h = 63 % it will be a liquid → H6Si3N4H6
At the hydrogen contents h = 67 % it will be a gas → H2Si1N2H4

By modeling diffusion controlled chemical processes accompanied by silicon nitride
annealing, we obtained diffusion activation energy dependence on the hydrogen contents
→ ai(h) = Ai × [1 − (h/H)2]1/2, where Ai - activation energy for the non-hydrogen film
and H = const = 63 %. Therefore, it is necessary to bear in mind that a relatively small
increase of diffusion activation energy ai(h) in the annealing process (when h decreases)
can result in a very large reduction of diffusion coefficients. For example, when Do =
4 ·10−4 cm2/s, A = 2.34 ·105 J/mol at h = 0.36 it is obtained→ a(0.36) = 1.92 ·105 J/mol,
which results in a change of the output time diffusion from τ(0.36) = 1 s → to τ(0.00) =
500 s in case of the cell kcl = 2 Ao .

It is well known that polymer-like films contain various low-molecular fragments C→
(Fig. 1: 1-7) and trailer groups —C→ (Fig. 1: 8-10).

It is necessary to take into account that nano cracks containing nano voids W with
bonded —H, as well as nano voids V without bonded —H, in the structure of polymer-like
silicon nitride increase diffusion mobility of ·H, H2, :N., :NH, ·NH2 and low-molecular
fragments C.

In Table 1 the cycle of HxSirNzHy thermal annealing solid-phase process is presented.
We assume that turning diffusion of C and, maybe, jumping diffusion of C between nano
voids, according to the equations (1-3) are the basic mechanisms of bonded —H displace-
ment at a distance of ∼ 1 Ao . We cannot exclude the presence of linear macromolecular
fragments shifting diffusion inside nano voids and nano cracks at a distance of ∼ 1 Ao . The
equations (1-4) represent the mechanisms of bimolecular reactions limited by the jumping
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Figure 1. Low-molecular fragments C→ (1-7) and trailer groups —C→ (8-10).

diffusion between nano voids and by the turning diffusion of low-molecular fragments C
containing bonded —H. Equation (5) represents the mechanism of the bimolecular reac-
tion limited by the shifting diffusion inside nano voids and nano cracks of linear macro-
molecule fragments containing bonded —H. We assume that (1-5) mechanisms describe
a low-temperature (T < 1000 K) and an initial stage of the HxSirNzHy annealing with
high (more than 20 %) content of hydrogen. According to experimental data [9], at a
long annealing time (more than 1 hour), allocation of H2 is already appreciable at 700 K.
With the time of annealing process an attenuation of this mechanism occurs because of
the formation of new ≡Si—Si≡ and ≡Si—N= bonds, and, as a consequence, increases the
activation energies of the diffusion processes. For the renewal of this mechanism it is
necessary to increase annealing temperature again and again.

Finally, at T ∼ 1100 K, the mechanism presented by equations (6-15) is operative.
Obviously, the limiting stage of this mechanism is the extraction of the ·H from the ≡ Si—H
or =N—H according to equation (6), and of the NH2 from the ≡Si—NH2 according to
equation (9).

It is obvious that the feature of rapid thermal annealing at T > 1100 K is a cross-
section of the mechanisms (1-5) and (6-16), and the diffusion controlled processes (1-5)
are quickly ”sewn up” by the process (15). As we can see, the process of a rapid thermal
annealing has a very complex mechanism, hence, it is necessary to demand high quality
experimental data and, obviously, the calibration of experimental techniques. In our work,
some features were found in the application of integrated Fourier transform infrared spec-
tra processing for calculation of C(Si—H) and C(N—H).
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Table 1. Solid-phase in HxSirNzHy thermal annealing processes.

No. equation

(1) VC + V ( k1 →← k1 ) V + VC
(2) VC + W ( +k2 →←− k2 ) V + WC
(3) WC + W ( k3 →← k3 ) W + WC
(4) WC ( +k4 →←− k4 ) ∗WC ( k4 → ) W0 + H2
(5) W ( +k5 →←− k5 ) ∗W ( k5 → ) W0 + H2
(6) QH ( +k6 →←− k6 ) Q· + ·H
(7) QH + ·H ( k7 → ) Q· + H2
(8) H· + ·H ( k8 → ) H2
(9) QNH2 ( +k9 →←− k9 ) Q· + ·NH2
(10) QH + ·NH2 ( +k10 →←− k10 ) Q· + NH3
(11) QH + ·NH2 ( k11 → ) QHN· + H2
(12) H2N· + ·NH2 ( k12 → ) N2 + 2H2
(13) H· + ·NH2 ( +k13 →←− k13 ) NH3
(14) QSiH + NH3 ( k14 → ) QSiNH2 + H2
(15) Q· + ·Q ( k15 → ) Q-Q
(16) Diffusion ·H, H2, N2, ·NH2, NH3

Where
C - concentration of low-molecular fragments containing hydrogen atoms,
V - concentration of inactive (without —H) nano voids,
W - concentration of active (with —H) nano voids,
VC - concentration of C in inactive nano voids,
WC - concentration of C in active nano voids,
∗WC - transition state (—H–H—),
∗W - transition state (—H–H—),
VC + WC total concentration of C,
W0 - ”sewed” nano voids ( ≡Si—Si≡, ≡Si—N= ).
and
k1,

+k2,
−k2, k3 - jumping diffusion rate constants,

+k4,
−k4 - turning diffusion rate constants,

+k5,
−k5 - shifting diffusion rate constants.

and
Q·, ·Q - either ≡Si· or ·N=

3. Experimental details

Silicon nitride HxSirNzHy films d = (100 ÷ 3000 A
o

) were deposited from monosilane
SiH4 diluted in argon (1/3) and nitrogen using an ECR plasma reactor. Silicon nitride
films were deposited by varying substrate temperature T = (20 ÷ 300◦C), SiH4/N2 flow
ratio R = (0.75÷1.25), pressure p = (1÷6 mTorr), microwave power E = (200÷500 W).
Initial (Si—H) and (N—H) bonds concentrations (x and y) in low-temperature silicon nitride
can vary over a wide range, from xmin ≈ 2 % and ymin ≈ 2 % to xmax ≈ 36 % and
ymax ≈ 36 %, depending on the ECR-plasma conditions. But, at a given temperature,
only at a certain combination of ECR-plasma parameters (R, p,E) the minimum hmin
of hydrogen bonds total concentration h = (x + y) can be achieved. For example, at
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T = 200◦C it was obtained hmin ≈ 16 %. It is interesting to note that x ≈ y in the case
of total concentration (x+ y) minimum. In the case when x = xmin then y = ymax, and
in case when x = xmax then y = ymin.

In this publication we have discussed the influence of rapid thermal annealing on the
parameters of one of our sample with silicon nitride film deposited on silicon substrate at
T = 100◦C (initial x = C(Si—H) ≈ 5.0 %, y = C(N—H) ≈ 26.4 % and film thickness d =
1400 A

o

). Four series of rapid thermal annealing experiments lasting t = 15, 30, 60, 180 s
were carried out at six temperatures T = 450, 600, 700, 800, 1000, 1200◦C for each series.

FTIR-spectrometer PERKIN-ELMER 1720X was used for scanning of silicon nitride
spectra. FTIRS were recorded at a resolution of 4 cm−1, with 36-times accumulation of
scans, and with a signal/noise ratio = 3000 for one scan.

4. Experimental results

Experimental results are shown in Figs. 2-7. Fig. 2 shows the basic bands of IR-
vibrations in FTIRS of HxSirNzHy film deposited under ECR-plasma conditions and sub-
strate temperature T = 100◦C.

Figure 2. FTIRS of HxSirNzHy film deposited under ECR-plasma conditions and substrate
temperature T = 100◦C.

In Fig. 3, variations of the (Si—H) and (N—H) stretching vibrations during 60 s of
annealing are presented. The C(Si—H) decreases with increase in temperature from T =
100◦C to T = 1000◦C and then increases from T = 1000◦C to T = 1200◦C. FWHM (peak
width on half of its amplitude) consistently decreases from 158 cm−1 to 107 cm−1.

The center of (Si—H) band is consistently displaced from 2220 cm−1 to 2170 cm−1.
The C(N—H) decreases with increase in temperature from T = 100◦C to T = 1000◦C, and
to T = 1200◦C. The FWHM consistently decreases from 166 cm−1 to 143 cm−1. The
maximum of the (N—H) band remains unchanged, close to 3330 cm−1.

In Fig. 4, variations of the (Si—H) and (N—H) stretching bands during 180 s annealing
are presented. The C(Si—H) decreases with increase of temperature from T = 100◦C to
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Figure 3. FTIRS of HxSirNzHy film deposited
under ECR-plasma conditions at substrate tem-
perature T = 100◦C after 60 s of rapid anneal-
ing.

Figure 4. FTIRS of HxSirNzHy film deposited
under ECR-plasma conditions at substrate tem-
perature T = 100◦C after 180 s of rapid anneal-
ing .

T = 1000◦C and then increases from T = 1000◦C to T = 1200◦C. FWHM decreases from
158 cm−1 at initial T = 100◦C to 103 cm−1 at T = 1000◦C and T = 1200◦C.

The center of the (Si—H) band is displaced from 2220 cm−1 at initial T = 100◦C to
2170 cm−1 at T = 1000◦C and T = 1200◦C. The C(N—H) decreases with increase of
temperature from T = 100◦C to T = 1000◦C and then to T = 1200◦C, and FWHM
consistently decreases from 166 cm−1 to 130 cm−1. The center of the (N—H) band remains
at the same position, close to 3330 cm−1.

In Fig. 5 is presented atomic concentration of the hydrogen connected to nitrogen
(=NH and —NH2 groups) in dependence on the temperature of rapid annealing. Inte-
grated processing of FTIRS was used for calculation of C(N—H). The C(N—H) consistently
decreased with increase in the annealing temperature.

Figure 5. Atomic concentration of the hydro-
gen bonded to nitrogen as a function of tem-
perature of rapid annealing of HxSirNzHy film
(deposited in ECR-plasma, T = 100◦C).

Figure 6. Atomic concentration of the hydro-
gen bonded to silicon as a function of tempera-
ture of rapid annealing of HxSirNzHy film (de-
posited in ECR-plasma, T = 100◦C) .
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In Fig. 6 is presented atomic concentration of the hydrogen connected to silicon (≡SiH
and =SiH2 groups) as a function of temperature of rapid annealing. Integrated processing
of FTIRS was used to calculate C(Si—H). The C(Si—H) decreases from T = 700◦C, and
then shows paradoxically abrupt increase beginning from T = 1000◦C.

We assume that this effect is determined by the complex kinetics of diffusion-controlled
reactions in the solid phase. We also assume the existence of a large difference of the
oscillator strengths constant between (Si—H) and (H—Si—H) stretching modes in the infrared
spectra.

In Fig. 7 is presented FTIRS-area under the (Si—N—Si) + (N—Si—N) stretching bands
(region from 700 cm−1 to 1100 cm−1). Up to 1000◦C, a weak increase from 31 units to
31.5 units is observed and then FTIRS-area decreases to 24.4 units at T = 1200◦C in
case of t = 180 s. We assume that after 1000◦C under rapid thermal annealing of our
low-temperature silicon nitrides destruction takes place according to equations (9) and
(10).

Figure 7. The area under the region from 700 cm−1 up to 1100 cm−1.

5. Conclusion

Some theoretical aspects of the mechanism and kinetics of low-temperature silicon
nitride thermal annealing were considered.

Four series of rapid thermal annealing experiments lasting t = 15, 30, 60, 180 s were
carried out at six temperatures T = 450, 600, 700, 800, 1000, 1200◦C for each series.

The observed reduction of the (Si—H) and (N—H) bonds under rapid annealing begins
from the temperature T = 700◦C, but then C(Si—H) shows a paradoxically sharp increase,
beginning from T = 1000◦C.

The results have shown good stability of (Si—N) bonds in HxSirNzHy film deposited
under ECR-plasma conditions and substrate temperature T = 100◦C. The observed
reduction of the (Si—N) bonds under rapid annealing begins from the temperature T =
1000◦C and then falls to 21 % at T = 1200◦C and t = 180 s.

The electron cyclotron resonance (ECR) plasma method shares the advantages of the
remote plasma system in view of low ion energy (∼ 30 eV). Moreover, high plasma density
(∼ 1012 cm−3) provides sufficient flows of the active species (i.e. :N., :N.+, :SiH2, :SiH+2 ,
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:Si.H, :Si.H+, :Si:, :SiP:+) for deposition of high quality silicon nitrides at low or room
temperatures, without performing a post-deposition processing.

More detailed calibration (with peak decomposition) of FTIRS integrated processing
is necessary for calculation of C(Si—H) and C(N—H).
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Abstract

A microscopic theory of resonant states for the Zn-doped CuO2 plane in su-
perconducting phase, formulated within the effective t-J model, was further
applied to obtain local density of states (or differential conductance, measured
by scanning tunneling microscopy) at the impurity site.

Key words: High temperature superconductivity, t−J model, Zn-doped cuprates, scanning
tunneling microscope

1. Introduction

There are a lot of experimental pieces of evidence indicating the increase of the lo-
cal density of states (LDOS) near the Fermi level in Zn-doped cuprate superconductor,
as Bi2Sr2CaCu2O8+δ (Bi-2212) compound [1, 2]. Using scanning tunneling microscopy
(STM) in experimental research enabled the determination of local charge distribution
on the atomic scale around the impurity site and study of the influence of impurities on
superconducting state of cuprates.

In the [1] the authors studied the influence of Zn impurity on superconductivity in
Bi-2212 crystal. Some very important conclusions can be made from their results. The
samples used were Bi-2212 single crystals with 0.6 % partial substitution of Cu-atom
with Zn-atom. They were characterized to have Tc = 84 K. In order to search for quasi-
particle states, they measured differential conductance dI/dV for an area of approximately
50 nm × 50 nm at zero sample bias (i.e. near the Fermi level). Those measuraments
showed that there was large area of dark background, corresponding to low density of
states (DOS) near the Fermi level, which was in accordance with the superconducting
state. However, there were also observed some bright spots corresponding to high DOS.
There exists a large discrepancy between STM spectra taken at those bright spots and at
the superconducting area of the sample. There is a strong intra-gap peak near the Fermi
level, whose magnitude can be up to six times greater than the normal-state conductance.
The peak occurs not exactly at the Fermi energy, but at the energy of −1, 5 ± 0, 5 meV.
One of the main results was also that the first neighbours have no LDOS associated with
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them, while the second - and third - nearest neighbours coincide with LDOS maxima. It
is also very important to notice the results concerning the spatial dependence of LDOS
from the impurity site. LDOS does not decay monotonically, but rather decays with a
distance r from the scattering centre.

In a search for the reason of the sharp resonance inside the superconducting gap, a lot
of theoretical work has been done to find some model to explain how impurity affects the
superconducting state [3-7].

In the recent papers [5, 6], an effective one-band t-J model in terms of the Hubbard
operators for the CuO2 plane with Zn impurities has been derived. That Hamiltonian was
further used to study s-, p- and d-wave contributions to the density of state (DOS) in the
normal phase for the CuO2 plane with Zn impurities [6]. Generalizing the calculations for a
superconducting phase of the proposed model, recently the s-, p- and d-wave contributions
to the on-site LDOS D(ω, r) were calculated [7].

In this paper we present an analytical calculation of LDOS at the impurity (or vacancy,
i = 0) site, which is proportional to the differential conductance measured in the STM
experiments [1, 2].

The paper is organized as follows. In the Section 2 we introduce the model Hamiltonian
and give the analytical solution for the contribution to the LDOS on Zn-atom. In Section
3 we present the results and propose three different paths for the numerical solution.
Conclusions are given in Section 4.

2. Model and local density of states

In [7] an expression was derived for the additional contribution to the local density
of states due to the presence of Zn-impurity. The influence of Zn-impurity on the super-
conducting state was investigated in the framework of the t-J model for CuO2 plane with
vacant Cu-site [5, 6], i.e. H = H0 + V , where

H0 = Ht−J = �
iσ

Xσσ
i + t

i�=j,σ
Xσ0
i X

0σ
j +

1

4
J
i�=j,σ

(Xσσ̄
i X

σ̄σ
j −Xσσ

i X
σ̄σ̄
j ), (1)

with the vacancy contribution Vvac given by

Vvac = −�
σ

Xσσ
0 − t

aσ

(Xσ0
0 X

0σ
a +H.c.)− 1

4
J
aσ

(Xσσ̄
0 X

σ̄σ
a −Xσσ

0 X
σ̄σ̄
a +H.c.). (2)

Here � = �d − μ is the energy of the hole, tij = t is the hopping parameter for the
nearest neighbours (n.n.) sites i, j in a square lattice and μ is the chemical potential. The
summations in Eq. (2) are performed over the Cu-sites of the host square lattice, where
the Zn-impurity is at the i = 0 site and a = 1(ax), 2(ay), 3(−ax), 4(−ay) are the n.n. sites.

Using the equation of motion method for Green’s function (GF), one can calculate
the DOS and LDOS [7]. As a consequence of the impurity scattering there appears the
following additional contribution to the on-site local density of state (LDOS), which can
be also separated in s-, p- and d-wave parts

δD(k)(ω, i) = − 1
π
Im{δG(k)ii (ω + iε)}, (3)

where δG is the additional GF contributions, i.e.

Gij = G
0
ij +

k=s,p,d

δG
(k)
ij , (4)
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explicit form is given in [7]. Here and in the sequel, the ω argument of GF will be omitted
for shorteness.

3. Results and discussion

In the present paper we have focused on only one experimental result, i.e. the appear-
ance of the differential conductance (dI/dV ) sharp maximum for the energy (determined
by bias voltage) near the Fermi level inside the superconducting gap [1] on the Zn-atom
(or i = 0 lattice site). The differential conductance is proportional to the LDOS [3, 4], i.e.

dI

dV
∝ δD(d)(ω, i = 0) = − 1

π
Im δG

(d)
00 (ω + iε) (5)

According to the symmetry analysis method of the irreducible representation (IR) group
theory, it was obtained [7] that there is only d-wave nonzero contribution to the LDOS at
the impurity site (denoted as i = 0) given as

δG
(d)
00 =

1

Dd
{M̃11

d (G
0
00)

2 + 2(M̃12
d + M̃21

d )G
0
00G

0
01 +

9

2
M̃22
d (G

0
01)

2}, (6)

where the zero order superconducting phase GF’s, G0ab, are given in Appendix, and where
the d-wave determinant Dd is given by

Dd = 1−V �00G000−V �11
a

G0a1−4V �01G001−4V �10G001+[V00V11−(2V �01)2][d00d11−(d01)2] (7)

with the matrix elements of the square block diagonal zero order GF in the superconducting
phase given as

d00 = G
0
00, d01 = 2G

0
01, d10 = 2G

0
01, d11 =

a

G0a1. (8)

In the normal phase [6], the local static perturbation induced by vacancy, after applying
T-matrix method, get the form of the square perturbation matrix, whose elements are not
ω-independent denoted by Vab, where (a, b) = (0, 1). In the superconducting phase, as
derived in [7], the perturbation matrix is denoted by V �, which in addition to the static
perturbation V , contains also dynamical ω-dependent parts Φ(ω), i.e.

V �00 = V00 +Φ
11
d (ω), 2V �01 = 2V01 +Φ

12
d (ω),

2V �10 = 2V01 +Φ
21
d (ω), V �11 = V11 +Φ

22
d (ω), (9)

with the explicit form given in Ref. [7]. Expanded form od Dd is given in Appendix.

The elements of the partial d-wave scattering matrix are

M̃11
d = V �00 − d00V �200 − 2d01V �10V �00 + 2d01V �01V �00 + 4d11V �01V �10,

M̃12
d = 2V �00d00V

�2
01 + d01V

�
11V

�
00 + 2V

�
01 − (2V �01)2d10 − 2d11V �01V �11,

M̃21
d = 2V �10 − 2d00V �210V �00 − (2V �10)2d01 + d10V �11V �00 + 2d11V �11V �10,

M̃22
d = 2V �00d10V

�2
10 + V

�
11 − 2d10V �01V �11 − d11(V �11)2. (10)

The expanded form of matrix elements M̃11
d , M̃

12
d , M̃

21
d and M̃22

d is given in Appendix.
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Since we only need to show the existence of a peak inside the energy gap, we do not
need to calculate numerically the complete expression. As can be seen from Eqs. (5) and
(6), we must find the imaginary part of the complex number quotient, i.e.

Im
M

Dd
=
(ImM)(ReDd)− (ReM)(ImDd)

(ImDd)2 + (ReDd)2
(11)

and according to (6) we have M = {M̃11
d (G

0
00)

2 + 2(M̃12
d + M̃21

d )G
0
00G

0
01 +

9
2M̃

22
d (G

0
01)

2}.
In order to show that Im (M/Dd) goes to infinity, it is enough to show when ω → V

that ImM → ∞, and ImDd are not singular or, as another way, that ImDd = 0 and
ImM 9= 0. The latter option seems more simple for numerical calculation.

4. Conclusion

In this paper we considered the microscopic model for the Zn-doped CuO2 plane,
derived in the papers [5-7], in order to obtain local density of states. It is proportional to
the differential conductivity dI/dV , measured by the scanning tunneling microscopy [1,
2]. We expressed the local density of states at the impurity (or vacancy) site, using the
GF in normal and superconducting state. There appears also the renormalized hopping
parameter and on-site energy which can be used as fitting parameters. Theory of impurity
effect derived in [5-7] has advantage in comparison with recent semiphenomenological
theories (as, for example [3, 4]). In the latter ones there was not included the fact that any
disturbance of the strong electron correlation host lattice induces frequency (ω) dependent
scattering potential contribution. We expect that it should be important to understand
reason for such detrimental impurity influence to superconductivity. Numerical calculation
should be performed in further work, and will be published elsewhere.

The experiments [1, 2] gave no LDOS contribution to the first neighbours (n.n.) to the
Zn site. Using the results from [7], we can obtain the corresponding expanded form for
LDOS on the first and second neighbours to impurity (or vacancy) site. It would be an
interesting task to make a comparison with the experimental results.

5. Appendix

In this section we give some useful equations and expanded form of the expressions for
the quantities needed for the numerical calculations.

5.1 Green’s functions for the ideal lattice

Fourier transformation (F.T.) of the real space GF can be written in the following form

Gij(ω) =
1

N q

G(q,ω) cos[q(i− j)]. (12)

For the normal phase ideal-lattice F.T. of the GF is

G 0,n(q,ω) =
1

ω − �(q)
, (13)

where the quasi-particle spectrum in the normal phase is given by �(q) = (1/2)(cos qx +
cos qy), and the energy is measured in the units of half bandwith.
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The corresponding ideal-lattice F.T. of the GF in the superconducting phase can be
written as:

G0(q,ω) =
ω + �(q)

ω2 −E2σ(q)
= u2q

1

ω −Eσ(q)
+ v2q

1

ω +Eσ(q)
(14)

where we introduce quasi-particle energy Eσ(q) = �(q)2 +∆σ(q)2 and the Bogolubov’s
particle-hole parameters:

u2q =
1

2
{1 + �(q)

Eσ(q)
}, v2q =

1

2
{1− �(q)

Eσ(q)
}.

5.2 Expanded form of the d-wave determinant Dd

Using Eqs. (7) and (9) and the corresponding Eqs. from Ref. [6, 7], one obtains the
following expanded form of Dd :

Dd = 1− 1
4
(G011 +G

0
21 +G

0
31 +G

0
41){3δ�+ [−32t̃+ 8ωδ�]G0,n00 (−ω) + 4[�̃+

ω(−8t̃+ ωδ�)][G0,n00 (−ω)]2}− {−�̃+ 4[�̃+ ω(−8t̃+ ωδ�)]{1 + ωG0,n00 (−ω)}2}G000
−8G001{3t̃− ωδ�− [�̃+ 2ω(−6t̃+ ωδ�)] · [G0,n00 (−ω)]− ω(�̃+ ω(−8t̃+ ωδ�)

[G0,n00 (−ω)]2}−
1

4
{144t̃2 + δ�(−9�̃+ 4ω2δ�) + 8ω[16t̃2 + δ�(−2�̃+ ω2δ�)]G0,n00 (−ω)

+4(�̃− ω2δ�)2[G0,n00 (−ω)]2}{G011G000 +G021G000 +G031G000 +G041G000 − 4(G001)2}(15)
where the argument for each of the normal phase GF is (−ω) is explicitly written, i.e.
G0,nij (−ω) and the argument for each of the superconducting phase GF is ω, and is omitted
because of shorteness. As was derived in Ref. [6], normal phase ideal lattice GF can be
expessed in the form of the complete elliptic integrals of the first and second kind. Namely,
for the ω > 1 in the units of the half bandwidth, one has

G0,n00 (−ω) = J00(−ω) =
1

−ω K̃(
1

−ω ) = K̃(−ω) + iK̃( 1− ω2), (16)

where the complete elliptic integral of the first kind is

K̃(k) ≡ F (π/2, k) =
1

0

dω

(1− x2)(1− k2x2) .

As a consequence of the strong electron correlation, i.e. the kinematic and exchange
interactions, the hopping energy t̃ and the on-site energy �̃ = � + δ� are renormalized in
the generalized mean field approximation. The explicit form of t̃ and δ� is given in Ref.
[6] and here will be used as the fitting parameters.

5.3 Expanded form of the V � matrix elements

Using (9) and the corresponding Eqs. from Ref. [6, 7], one obtains the following
expanded form of the V � matrix elements

V �00 = −�̃− (32t̃ω − 4�̃− 4δ�ω2)((ωG0,n00 (−ω) + 1)2)
V �01 = (−t̃− ωδ�+ 4t̃)− (−12ωt̃+ 2δ�ω2 + �̃)G0,n00 (−ω)− (�ω − 8t̃ω2 + δ�ω3)G0,n00 (−ω)2
V �10 = (−t̃− ωδ�+ 4t̃)− (−12ωt̃+ 2δ�ω2 + �̃)G0,n00 (−ω)− (�ω − 8t̃ω2 + δ�ω3)G0,n00 (−ω)2

V �11 =
3δ�

4
− (8t̃− 2ωδ�)G0,n00 (−ω)− (8ωt̃− �̃− ω2δ�)G0,n00 (−ω)2 (17)
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5.4 Expanded form of matrix elements M̃ab
d

Using (10) and the corresponding Eqs. from Ref. [6, 7], one obtains the following
expanded form of the matrix elements M̃ab

d , M̃
12
d , M̃

21
d and M̃22

d as follows

M̃11
d = −�̃+ 4[�̃+ ω(−8t̃+ ωδ�)](1 + ωG0,n00 (−ω))2 + 4[G011 +G021 +G031 +G041][−3t̃
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4
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0
21 +G

0
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0
41][3δ�+ (−32t̃+ 8ωδ�)G0,n00 (−ω) + 4(�̃+ ω(ωδ�− 8t̃))

G0,n00 (−ω)2][−3t̃+ ωδ�+ [�̃+ 2ω(ωδ�− 6t̃)]G0,n00 (−ω) + ω[�̃+ ω(ωδ�− 8t̃)]G0,n00
(−ω)2] + [−3t̃+ ωδ�+ [�̃+ 2ω(ωδ�− 6t̃)]G0,n00 (−ω) + ω[�̃+ ω(ωδ�− 8t̃)]G0,n00
(−ω)2]2[−�̃+ 4(�̃+ ω(ωδ�− 8t̃))(1 + ωG000(−ω))2]G000 − 4[−3t̃+ ωδ�+ [�̃+

2ω(ωδ�− 6t̃)]G0,n00 (−ω) + ω[�̃+ ω(ωδ�− 8t̃)]G0,n00 (−ω)2]2G001 + [
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+ (−8t̃

+2ωδ�)G0,n00 (−ω) + (�̃+ ω(ωδ�− 8t̃))G0,n00 (−ω)2][−�̃+ 4(�̃+ ω(ωδ�− 8t̃))(1
+ωG0,n00 (−ω))2]G001}
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(−ω)2]− [−3t̃+ ωδ�+ [�̃+ 2ω(ωδ�− 6t̃)]G0,n00 (−ω) + ω[�̃+ ω(ωδ�− 8t̃)]G0,n00
(−ω)2]2[−�̃+ 4(�̃+ ω(ωδ�− 8t̃))(1 + ωG000(−ω))2]G0,n00 − 4[−3t̃+ ωδ�+ [�̃+
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0
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0
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+G041]{3δ�+ [−32t̃+ 8ωδ�]G0,n00 (−ω) + 4[�̃+ ω(ωδ�− 8t̃)]G0,n00 (−ω)2}2 + 4{
3δ�

4
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(ωδ�− 6t̃)]G0,n00 (−ω) + ω[�̃+ ω(ωδ�− 8t̃)]G0,n00 (−ω)2}2{−�̃+ 4[�̃+ ω(ωδ�− 8t̃)]
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(18)
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3. J. M. Tang and M. E. Flatté, Phys. Rev. B 70, 140510(R) (2004).

4. S. Haas and K. Maki, Phys. Rev. Lett. 85, 2172 (2000).
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Abstract

The paper describes the analysis of the composition homogeneity and thickness
uniformity of samples of thin amorphous chalcogenide films from the system
Cux[As2(S0.5Se0.5)3]x for x = 0 at% and 0.5 at% using scanning electron mi-
croscopy method. Besides, a quantitative analysis was carried out of the ob-
tained spectrum, that is the calculation of mass and atomic fractions of the
identified components in the spectrum of the investigated system thin film plus
glass substrate. It was found that the investigated samples are of homogeneous
composition, uniform thickness and devoid of surface irregularaties.

Key words: Thin films, chalcogenides, SEM

1. Introduction

Thin amorphous chalcogenide films represent a type of materials that have attracted
great attention of researchers in the recent decades, primarily because of their various ap-
plications related to optical memory, sensors, optical communication systems, and the like
[1]. A main shortcoming of these systems is the difficulty of ensuring the reproducibility
of their properties. Namely, the critical issues are the preparation of thin films of the same
composition as the starting bulk glass, the inhomogeneity of the films, the nonuniformity
of their thickness, and the presence of surface irregularaties. In order to overcome these
shortcomings, intensive studies have been made with the aim of finding new and better
film preparation techniques [2]. Still, for any practical application, it is necessary to check
out the composition, homogeneity and uniformity of each particular sample.

2. Methodology

Thin amorphous chalcogenide films of the type Cux[As2(S0.5Se0.5)3]100−x were prepared
by thermal evaporation in vacuum of the previously synthesized bulk samples. Films were
deposited on the glass substrates, standard microscopic glass slides, 0.14 mm thick.
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The synthesis of the glasses from this series was carried out by employing the regime
of cascade heating of high-purity (99.998 %) elementary components and cooling in the
air. Detailed time-temperature diagrams have been presented in previous article [3]. The
bulk samples were powdered and thermal evaporation under a pressure of 10−5 Torr was
employed to prepare the samples in the form of thin films. During the evaporation, the
glass substrate was cooled with liquid nitrogen, to prevent formation of crystalline centers
in the film [4]. The substrate temperature was controlled with the aid of a calibrated
PT100 sensor.

The analysis of sample homogeneity and quantitative analysis of the samples (for x = 0
at% and 0.5 at% Cu) was performed by scanning electron microscopy (SEM) method
on a Quanta 200 instrument of FEI Company, which works on the principles of EDAX
technique.

Figure 1. Quanta 200 SEM.

The Quanta 200 is a scanning
electron microscope which works un-
der high-vacuum conditions. It enables
scanning of the sample and obtain-
ing data without any previous prepa-
ration, while diminishing no the reso-
lution (Figure 1). The controlled con-
ditions provided by the Quanta 200 in-
strument include variations of pressure
and temperature of taking recordings.
For controlling the working conditions
and automatic treatment of signals
from Quanta 200 use was made of the
software ”Genesis Spectrum”, which
enabled the adjustment of the work-
ing voltage, identification of peaks, se-
lection of peak positions that will be
marked in advance for an easier identi-

fication of the expected elements, noise elimination, etc. This software also enabled a
quantitative analysis of the obtained spectrum, that is the calculation of the mass and
atomic fractions of the particular components in the spectrum of the investigated sample.

In Figure 2 is presented a typical screen display obtained in the quantitative analysis
using the ”Genesis Spectrum” software for treatment of data from the scanning electron
microscope.

The same software served to perform a qualitative analysis of the composition of the
investigated system film + substrate, as well as its quantitative evaluation (Figure 3).

3. Results and discussion

In Figure 4 are shown results of the SEM recording for the chalcogenide thin film
without copper, prepared on a thin glass substrate (standard microscopic glass slides). The
selected samples were prepared this way in order to minimize the effect of the substrate
on the obtained results. Namely, the lower limit of detection of the system is 1 at% in the
overall investigated system thin film + substrate, so that for those elements whose content
in the film composition is low, the possibility of detection/determination is determined by



Study of the Composition Homogeneity of Amorphous Thin Films... 57

Figure 2. Tipical screen display obtained
in the qualitative analysis using the ”Gene-
sis Spectrum” software for treatment of data
from the SEM instrument.

Figure 3. Software screen presenting quan-
tification of the results of SEM analysis.

the thickness of the substrate.
As can be seen, the SEM analysis confirmed the presence of arsenic, sulfur an sele-

nium in the investigated samples. Apart from these elements it was also possible to detect
silicium, oxygen, sodium, potassium and titanium, which are common components of the
standard microscopic slides, so that the identification of these elements is related to the
substrate material.

Figure 4. Results of SEM measurements for the sample with 0 at% Cu.

In Table 1 are presented results of the quantiative SEM analysis of the sample with 0
at% Cu. The results are expressed as weight percentages (wt%) and atomic percentages
(at%). The fractions are given with respect to the composition of the overall system sam-
ple + glass.
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Table 1. Results of the quantitative SEM analysis of the sample with 0 at% Cu.

As2(S0.5Se0.5)3
Chemical element [line] wt (%) at (%)

O [K] 2.41 7.32
Na [K] 1.91 4.03
Se [L] 38.12 23.42
Si [K] 13.30 22.97
S [K] 12.98 19.63
K [K] 2.73 3.38
Ti [K] 1.34 1.36
Zn [K] 3.01 2.23
As [K] 24.18 15.65

total 100.00 100.00

As can be seen from the tables, the calculation of the ratios of a particular component
was based on the K and L lines in the spectrum, that is the lines that could be discerned
for the given element. However, it should be pointed out that the technique itself and the
appearance of the obtained spectra were limiting factors that partly hindered taking into
account all the lines from the spectrum in the calculation of atomic fractions. Namely, it
was possible that in some cases there occurred overlapping of the lines that belonged to
the different elements. The deviations from the expected atomic fractions may be in fact
a consequence of these overlappings.

Results of the SEM analysis for the sample with 0.5 at% Cu are shown in Figure 5.
As with the previous sample, it was possible to confirm the presence of As, S and Se, as
well as of the elements from the substrate.

Figure 5. Results of SEM measurements for the sample with 0.5 at% Cu.

Results of the quantitative SEM measurements for the sample with 0.5 at% Cu are
presented in Table 2.
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Table 2. Results of the quantitative SEM analysis of the sample with 0.5 at% Cu.

Cu0.5[As2(S0.5Se0.5)3]99.5
Chemical element [line] wt (%) at (%)

O [K] 2.78 8.50
Na [K] 1.58 3.35
Se [L] 36.21 22.39
Si [K] 13.23 23.00
S [K] 12.03 18.32
K [K] 2.46 3.07
Ti [K] 1.25 1.27
Zn [K] 2.69 2.01
As [K] 27.77 18.10

total 100.00 100.00

Atomic fractions of As, S an Se in the samples with 0 at% Cu and 0.5 at% Cu are
approximately close to the atomic fractions in the starting bulk samples from which the
films were prepared. As can be seen from Table 3, for both investigated samples, the
expected ratios of the components in the thin film are approximately:

(at% (As)) : (at% (S)) : (at% (Se)) = 2 : 1.5 : 1.5.

Evidently, the mass fractions, based on the determined atomic ratios and relative
atomic masses of the elements, follow the expected ratios.

It can also be seen from Table 3 that the atomic fraction of copper in the thin film,
and especially its relative ratio in the system film + substrate, is below the detection limit
of the system, so that the copper presence could not be detected.

Table 3. Atomic fractions of the components in the bulk samples.

Sample at% at% at% at%
(As) (S) (Se) (Cu)

As2(S0.5Se0.5)3 40 30 30 0
Cu0.5[As2(S0.5Se0.5)3]99.5 39.96 29.97 29.97 0.10

4. Conclusion

The method of scanning electron microscopy was used to test the composition ho-
mogeneity and thickness uniformity of thin-film samples of chalcogenide glasses from the
system Cux[As2(S0.5Se0.5)3]x for x = 0 at% and 0.5 at%. Scanning of the surfaces of inves-
tigated samples showed no presence of inhomogeneity or thickness variation. The analysis
of sample composition at different points on the surface gave the same results. Thus, it
was established that the samples were of homogeneous composition and uniform thickness,
with no surface irregularities. Quantitative analysis of the obtained spectra, that is the
calculation of mass and atomic fractions of the identified components in the spectrum of
the investigated system film + glass substrate, was also carried out. It appeared that
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the ratios of the components in a thin-film sample deviated slightly from the ratios of
components in the bulk sample from which the film was prepared. The method allowed
the determination in relation to the overall composition of the system sample + substrate
and hence it cannot be used for the evaluation of absolute fractions in the film itself, but
can only be useful in the sense of confirming the presence of expected elements in the
thin-film composition. SEM showed that the investigated films were of good quality from
the aspect of their practical application, as they are uniformly thick, homogeneous, and
devoid of surface irregularaties. The deviations from the expected film composition with
respect to the composition of the starting bulk samples from which films were prepared
can be ascribed to the shortcomings of the technique of vacuum thermal evaporation.
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Miloš P. Slankamenac1, Svetlana R. Lukić2, Fedor Skuban2,
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Abstract

The DC electrical conductivity of Cu-As-Se-I amorphous semiconductor glasses
have been measured in the temperature range 300 − 410 K. The paper de-
scribes results of the study of the influence of copper content and electrical
contacts on measurement of electrical conductivity of glasses from the system
Cux(AsSe1.4I0.2)100−x.

Key words: Chalcogenide glasses, electrical conductivity, conduction activation energy

1. Introduction

In the group of non-crystalline semiconducting materials a special place is occupied
by chalcogenide amorphous semiconductors, i.e. the materials that contain one or more
chalcogen elements: sulphur, selenium and tellurium [1].

They can be obtained in the form of glasses either as bulk amorphous samples, or
in the form of thin films. The possibility of obtaining a large number of amorphous
semiconductors of different composition, including also non-stoichiometric compounds and
mixtures, have opened wide perspectives for the application of these materials.

Scientists have discovered a lot of new chalcogenide materials, phenomena and appli-
cations. Following the development of the glassy chalcogenide field, new optoelectronic
materials based on halides have been discovered. Complex oxide and non-oxide glasses
have been prepared and investigated in the last several decades, thus widening the groups
of materials used in various optical, electronic and optoelectronic semiconductor glasses.
The great advantages of the disordered materials are: simple preparation procedures, low
sensitivity to impurities, high stability to the action of ionizing radiation, chemical stabil-
ity towards the majority of aggressive chemical substances, low cost, and, the possibility
to produce large area films of various thickness in classical systems for deposition: sys-
tems for evaporation in vacuum, magnetron systems, flash, spin-coating systems, sol-gel
systems, etc [2].
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Chalcogenide glassy semiconductors have a number of properties important for device
application. They show continuous change of physical properties with change in chemical
composition. A lot of work has been done on the impurity effect on conductivity and
optical properties.

Electrical conductivity of semiconductor chalcogenide glasses is of a dominant elec-
tron nature and depends on the composition. It varies in a huge interval from 10−3 to
10−17 Ω−1cm−1 in normal conditions. Glasses have electrical conductivity some orders of
magnitude less than these crystal analogues. Optical energy gap has values in the interval
from 0.8 to 3 eV and refractive index 1.8 − 3.5 (for λ = 1.06 μm) [3]. A very important
feature of semiconductor chalcogenide glasses is the specific influence of dopants on values
and a type of electrical conductivity.

In view of the fact that the electrical conductivity of amorphous materials can be
affected by the presence of defects in the structural network of semiconductor chalcogenide
glasses and inserted transition metals, it is very interesting to investigate chalcogenide
glassy semiconductors with Cu and Fe. It has been shown that obtaining of homogenous
glassy semiconductors with transition metals is limited to relatively low density of metals
[1]. Increasing the density of metals, thermal and mechanical properties do not change
significantly, whereas electrical conductivity evinces high transition from semiconducting
to metal type.

Based on numerous analysis and experimental data, it is concluded that chalcogenide
glasses have intrinsic electrical conductivity and Fermi level is located near the middle of
the energy gap [3].

Electrical conductivity of amorphous semiconductors depends on the synthesis, melt
cooling rate, purity of the starting components, thermal treatment, and other factors [4].
With the chalcogenide amorphous semiconductors, the energy of chemical bonds between
glass component atoms is relatively small (1.5−2.0 eV) [5], implying electron-hole character
of conductivity.

Copper belongs to a small group of metals (Tl, K, Cu, Ag) [5, 6] which can enter the
chalcogenide amorphous semiconductors to a significant ratio (20− 30 at.%). It is known
[5, 7, 8] that copper chalcogenide glasses possess dominant hole conductivity; although, in
some copper-rich glass compositions, ionic conductivity was also detected [9].

In order to investigate the effect of copper content and electrical contacts on DC elec-
trical conductivity of AsSeyIz glasses, measurements were made on Cux(AsSe1.4I0.2)100−x,
for two different electrical contacts (silver and graphite).

2. Experimental details

Samples used for electrical conductivity measurements were prepared in a sandwich
structure of electrodes. Polished plate samples with thickness of 2.01−3.84 mm and areas
of 12− 47 mm2 (Table 1) have electrical contacts made of silver and graphite (Fig. 1).

A sophisticated temperature-controlled system (BECKMAN temperature controller
model CTC 250 with an electric heater in isolated chamber and high resistance meter
HP 4329A, Hewlett-Packard Japan, Ltd.) was used for the measurements (Fig. 2). The
temperature was regulated by copper-constantan thermocouple with accuracy of ±0.5 K.
All measurements of electrical resistance of the samples were made at twelve different
temperatures in the range of 300− 410 K.
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Table 1. Dimensions of samples.

Sample Dimensions
a · b · l (mm)

AsSe1.4I0.2 4.15 · 3.68 · 2.02
Cu1(AsSe1.4I0.2)99 4.48 · 4.39 · 3.00

silver Cu5(AsSe1.4I0.2)95 4.52 · 4.77 · 2.77
contacts Cu15(AsSe1.4I0.2)85 6.11 · 5.55 · 3.20

Cu25(AsSe1.4I0.2)75 3.50 · 3.50 · 3.36
Cu1(AsSe1.4I0.2)99 2.32 · 2.25 · 2.54
Cu5(AsSe1.4I0.2)95 6.20 · 3.72 · 2.65

graphite Cu10(AsSe1.4I0.2)90 7.99 · 5.87 · 3.16
contacts Cu20(AsSe1.4I0.2)80 6.61 · 4.77 · 3.84

Cu25(AsSe1.4I0.2)75 5.44 · 3.72 · 3.69

Figure 1. Samples with elec-
trical contacts made of silver
(a) and graphite (b).

Figure 2. A sophisticated temperature-controlled system.

3. Results and discussion

Figs. 3 and 4 refer to the samples with graphite and silver electrical contacts, giving
the dependence of the logarithms of the specific electric conductivities on the reciprocal
temperature values from 300 to 410 K. It is evident from the figures that the conductivity
varies according to the well-known relation

σ = σ0 exp
−∆Eσ

kT
(1)

where σ0 is the constant of the specific conductivity, characteristic for the given material
and ∆Eσ is the unique activation energy (width of the energy gap) [3]. It is also possible
to determine the ∆Eσ and σ0 from these measurements. ∆Eσ is determined from the
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Figure 3. The measured temperature dependence of specific electrical conductivity for
Cux(AsSe1.4I0.2)100−x glasses, x = 1, 5, 10, 20 and 25 with graphite electrical contacts.

Figure 4. The measured temperature dependence of specific electrical conductivity for
Cux(AsSe1.4I0.2)100−x glasses, x = 0, 1, 5, 15 and 25 with silver electrical contacts.

slopes of the curves, whereas σ0 is determined by extrapolation of the linear portion of
the curves to 1/T → 0. The values given in Tables 2 and 3 are obtained in this way. The
values of specific electrical conductivity of investigated samples at room temperature are
also given.

Table 2. Electrical properties of the samples with graphite electrical contacts.

x [at.%] Eσ [eV] σ0 [Ω
−1cm−1] σ300K [Ω−1cm−1]

1 0.62± 0.02 1.0 3.6 · 10−11
5 0.62± 0.01 9.7 3.5 · 10−10
10 0.54± 0.02 6.6 4.8 · 10−9
20 0.13± 0.02 7.6 · 10−3 4.7 · 10−5
25 0.13± 0.01 1.9 · 10−2 1.4 · 10−4
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Table 3. Electrical properties of the samples with silver electrical contacts.

x [at.%] Eσ [eV] σ0 [Ω
−1cm−1] σ300K [Ω−1cm−1]

0 0.72± 0.01 24.6 1.9 · 10−11
1 0.67± 0.01 7.1 4.1 · 10−11
5 0.62± 0.01 15.5 6.0 · 10−10
15 0.41± 0.04 20.2 3.1 · 10−6
25 0.30± 0.03 26.9 2.6 · 10−4

It can be seen from Figures 3 and 4 that the specific electrical conductivity increases
with rise of temperature and copper content in AsSe1.4I0.2. The curve slopes for the
samples with lower percent of Cu in the glass composition are larger than the samples with
a higher percent of Cu. According to the fact that the activation energy is proportional
to the value of curve slope of specific electrical conductivity, this important parameter
for semiconductor characterization shows the same dependence on copper content. The
specific electrical conductivity has very low dependence on temperature for samples with
high percent of Cu. There is a high probability for transition from semiconducting to
metal character of electrical conductivity when samples have copper content more than
15 %.

On the other hand, it is shown that there is a significant impact of the experimen-
tal configuration on the achieved results. It is known that amorphous semiconductors
are characterized by an electrical conductivity which depends on composition of start-
ing components, condition of synthesis, melt cooling rate, purity of the starting compo-
nents, thermal treatment, and other factors. The impact of electrical contacts can be
very important for high resistance materials, and it was one of the main reasons for doing
measurements presented in this paper. The results obtained for the samples with silver
contacts show some higher specific electrical conductivity at room temperature than sam-
ples with graphite electrical contacts. It could be the effect of better overlaying of the
samples surface with silver paste than graphite, and even a small diffusion of silver into
the samples.

It can be also noticed that there are different impacts of the electrical contacts in
dependence of measuring temperature and copper content in the samples. The impact of
the electrical contacts on measurement of electrical conductivity for the samples with low
copper content (up to 5 %) is negligible in the whole temperature range. The samples
with high copper content (above 10 %) with silver contacts show respectable growth of
electrical conductivity with rising temperature, in contrast to the samples with graphite
contacts. For example, the sample with 25 % of copper with the silver electrical contacts
at 410 K has an order of magnitude higher conductivity than the same sample with the
graphite electrical contacts. This result could be the outcome of the interaction of silver
and copper at higher temperatures.

It should be emphasized that the process of electrical transport in noncrystalline ma-
terials is considered in the light of three mechanisms: transport of charge carriers between
delocalized states in the conduction (E > EC) and valence band (E < EV ); removal of
charge carriers in tail states; hopping of carriers between localized states which are close
to the Fermi level (EF ). Since electrical conductivity of chalcogenide glasses is intrisic and
conditioned by stimulation of electrons from the states near the peak of valence band in
the localized states near the Fermi level or from the states near the Fermi level to con-
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duction band, complicated structural form of glasses with enhanced content of particular
elements in the composition might cause significant difference in localized states near EF ,
and activation by some other transport mechanisms. These facts point to the necessity
of very careful selection of an experimental configuration and sensitivity of measurement
instruments to get correct results which represent the investigated material and not the
measurement technique employed.

4. Conclusions

In this paper, electrical conductivity of Cu-As-Se-I amorphous semiconductor glasses
has been investigated in the temperature range 300−410 K. The samples with low percent
of copper (x = 0, 1 and 5) have high resistance and expected small specific electrical con-
ductivity (10−11−10−9) Ω−1cm−1. The logarithm values of specific electrical conductivity
increase almost linearly with increasing copper content in the AsSe1.4I0.2 composition. The
samples with higher percent of copper (x = 15, 20 and 25) have relatively low resistance
and electrical conductivity in an interval of (10−5 − 10−3) Ω−1cm−1. Logarithm values
of specific electrical conductivity have very slow progress for samples with high percent
of Cu. The samples with this amount of copper in the AsSe1.4I0.2 composition manifest
transition from semiconducting to metal character of electric conductivity. The impact of
the type of electrodes is only important for the samples with high percent of Cu and it
is manifested as an increase of conductivity for silver electrodes. These results point to
the necessity of very careful selection of an experimental configuration and sensitivity of
measurement instruments to get correct results which represent the investigated material
and not the measurement technique employed.
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Abstract

The evaluation of the particle collision frequency in an amorphous medium at
equilibrium is the subject of the present paper. The frequency of collisions
was determined by the calculation of the collision probability of two arbitrary
particles during their free path. This allows the evaluation of the number
of particle collisions in a unit volume of the medium per unit time, which
characterizes exactly the interaction intensity between the particles.
The possibility of growth or dissociation of a two-atomic particle with time was
evaluated.

Key words: Nanoparticle, probability for collision, collision frequency

1. Introduction

Both, the physical and chemical processes are concerned with the frequency of particle
collisions. It determines the rate of chemical interaction and the rate of nanoparticle
nucleation, now very intensively investigated [8-11]. During the phase transition process
it influences directly the heterogeneous nucleation of the new phase. The main requirement
for the occurrence of all of these processes is for the particles to come into contact with each
other during their collision. The rate of these processes increases with increasing collision
frequency. As a rule, each of the processes occurs in an amorphous medium, and this is
preciseley the case considered here. The present paper is a more detailed continuation of
the previous paper [7].

2. Theory

2.1. Assumptions

The kinetics of the processes occurring in an amorphous medium have been for a long
time the subject of many investigations [1-6]. In the present paper we will adhere to
the already established view of these processes. The amorphous medium considered here
consists of particles with different sizes - from single atoms to multiatomic particles. The
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medium is at equilibrium. There are no concentration gradient and/or temperature gra-
dient - any oriented mass transport and/or heat transport are not present in the medium.
There are no phase boundaries, and all processes occur in the medium volume. Only the
processes of particle nucleation, their growth or dissociation take place in the medium.

A chemical interaction in the medium is possible only under equilibrium conditions. In
this case, as a result of the collisions between the particles, there will arise the molecules
that are being a product of the chemical interaction.

The particles of the medium do not interact with each other and, therefore, their
collisions are fully probable. The movement of the particles in the medium is chaotic and
there are no preferable directions of movement, which fully corresponds to the isotropic
properties of the amorphous medium.

The particle, consisting of i atoms, will be denoted by ai and the set of all particles,
having the same size i, will be denoted by [ai] (the index i shows the number of the atoms
in the particle and it corresponds directly to their radius ri). The collision process will be
considered within the limits of the time interval τi - the free path time. During the free
path, the movement of the particle is straight and with a constant velocity vi. We assume
that during the free path the particles, having the same size, have equal velocity vi and
the same free path Li. This assumption allows to simplify the calculations and generalize
the results.

Two particles A and B are taken into consideration: A ∈ [ai] and B ∈ [aj ]. The
particle A with a radius ri is assumed to be immobile. The particle B with the radius rj
is mobile, with a migration velocity vj and a free path Lj . The free path Lj is the longest
way covered by the particle B between two consecutive collisions - at the end of this
distance the particle undergoes scattering and changes the direction of its movement. The
distance Lj is covered by the particle within the limits of the time interval τj : τj = Lj/vj .

As a consequence of the collision both particles may unite into a larger particle, as well
as they may scatter, changing their directions. The problem concerning the consequences
of the collisions is not discussed in the present paper.

At the initial moment, the particle B just undergoes scattering with an arbitrary
particle of the medium. This scattering occurs at a distance r from the particle A and all
directions of movement after the scattering are equally probable. This allows one to solve
the problem: how great is the probability of collision between two particles with the radii
ri and rj at a distance r?

2.2. Probability of collision

The medium is isotropic, and all directions of movement are equally probable. For the
collision of the two particles it is necessary that the trajectory of the mobile particle B
falls into the limits of the cone of ”observation” (generally speaking) of particle A, viewed
from the position of particle B (Figs. 1 and 2). This cone is defined solely by the distance
r and by the particle sizes ri and rj . The radius ri of the particle A is enlarged by the
radius rj of the particle B - for the collision of both particles it is necessary the particle
B to hit the sphere with radius (ri+ rj), situated in the position of particle A. The space
angle α on the top of the cone is, in fact, the space angle of ”observation” (generally
speaking) of the sphere with the radius (ri + rj), viewed from the position of particle B
(Figs. 1 and 2). The ratio of the space angle α to the space angle of the whole sphere,
which is 4π and which consists of all possible directions of movement of the particle B,
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Figure 1. The initial position of the particles
A and B and the space angle α.

gives the probability of collision ω of the
two particles:

ω =
α

4π
(1)

In order to collide within the limits
of the time interval τj , it is necessary the
distance r between the particles not to be
longer than Lj - after passing this distance
the particle B undergoes scattering and
within the time interval τj will not collide
with particle A.

The greater the distance r the smaller
is the probability of the collision of the
two particles, because the space angle
α decreases with increasing the distance.
When the value of the distance r becomes
greater than r∗ = (L2j + r2ij)1/2 − rij , then
the space angle α decreases sharper be-
cause not only the distance r but also the

free path Lj will restrict the process of particle scattering: (rij = ri + rj).
Within the limits of the above assumptions and using the definition of the space angle

[12] the following expressions for the probability of collision of the particles A and B are
obtained:

ω1(r) =
(r + rij)− [r2 + 2rrij ]1/2

2(r + rij)
for 0 ≤ r ≤ r∗ (2)

ω2(r) =
r2ij − [r + rij − Lj ]2

4Lj(r + rij)
for r∗ ≤ r ≤ Lj (3)

The point r = r∗ is common for both equations, and it is not difficult to prove that
at this point the following equalities are fulfilled: ω1(r

∗) = ω2(r
∗) and dω1

dr |r∗ = dω2
dr |r∗ .

This means that the probability ω is a smooth and continuous function of the distance r
between the particles over the whole interval of definition (0, Lj). The second derivatives

of ω1 and ω2 at the point r
∗ are not equal: d2ω1

dr2 |r∗ 9= d2ω2
dr2 |r∗ . For the values of r equal

to or greater than Lj the probability of collision becomes zero and this may be seen from
equation (3): for r = Lj the probability is equal to zero and for r > Lj it is negative,
which is devoid of sense.

2.3. Frequency of collision

Two spheres around the particle A with the radii (r+rij) and (r+rij+dr) respectively
are taken into consideration (Fig. 2). The volume of the space enclosed between these
spheres is dV = 4π(r + rij)

2dr. The density of the particles aj in the medium is nj and
the number of these particles in the volume dV is:

dnj = njdV = 4πnj(r + rij)
2dr (4)

where dr is a very small quantity and all particles aj from equation (4) will have the same
space angle α (equation (1)) and the same probability ω for the collision with the particle
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Figure 2. Determination of the frequency of collisions.

A. dNj is the number of the particles aj enclosed between the surfaces of the two spheres,
which will collide with particle A within the time interval τj :

dNj = ωdnj = 4πωnj(r + rij)
2dr (5)

The probability ω is respectively ω1 or ω2, depending on the value of r. Integrating
equation (5) over all values of r ∈ (0, Lj) one obtains the number of the particles aj that
will collide with particle A within the limits of the following time interval τj :

Nj = 4πnj
Lj
0 ω(r + rij)

2dr =

= 4πnj
r∗
0 ω1(r + rij)

2dr +
Lj
r∗ ω2(r + rij)

2dr = πnjLjr
2
ij (6)

The particles Nj , situated very close to the particle A, will collide with it in a very
short time interval - almost immediately. Other particles, situated far away from particle
A, close to the periphery of the sphere with radius Lj , will collide after the time τj :
τj = Lj/vj . Hence, during the time interval τj the particle A will have Nj collisions
with the particles aj , which allows the determination of the collision frequency νAj of the
particle A with the set of the particles [aj ]:

νAj =
Nj
τj
= πnjvjr

2
ij (7)

Equation (7) divided by the surface area of the particle A gives the number of the
collisions per unit area of this particle per unit time. This may be important in the case
of particles with large dimensions:

ν∗Aj =
nj
4
vj(
rij
ri
)2 (8)

The particle A is an arbitrary particle from the medium and each particle ai (A ∈ [ai])
will experience the same number of collisions with the particles aj per unit time. The
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density of the particles ai in the medium is ni. Then the number of collisions of the
particles ai with the particles aj in a unit volume per unit time, following equation (7),
will be:

νij = πninjvjr
2
ij (9)

In an amorphous medium, as a result of the permanent collisions between the particles,
there are particles of different sizes. We assume that the different kinds of collisions do not
influence each other. In other words, the accomplishment of the given type of collisions
occurs independently and does not influence the accomplishment of the other ones. Then
the equation (6) may be written for all values of j = (1, n∗), where n∗ is the maximum
size of the particles in the medium under the given conditions. Each of these equations
will be written with the quantities vj , τj , nj , Lj , which characterize the corresponding set
of particles [aj ], j ∈ (1, n∗). Each of these expressions will give the number of collisions
that the particle A will experience with the corresponding set of particles during the time
τj , j ∈ (1, n∗). All these expressions allow the determination of the total frequency of
collisions of particle A with all possible particles of the medium. The sum of all these
frequencies gives the total number of the collisions of particle A with all other particles of
the medium per unit time.

νAj = π
n∗

j=1

njvjr
2
ij (10)

The particle A is an arbitrary particle of the medium. In its surroundings there will
be ni particles in the unit volume of the medium. In other words, each ai particle of the
medium (there are ni of them in the unit volume) will experience the same number of
collisions per unit time. In this way one obtains the total number of collisions in the unit
volume per unit time between the set of the particles [ai], consisting of i atoms and all
other particles of the medium.

ν∗i = π
n∗

j=1

ninjvjr
2
ij (11)

The total number of all possible collisions in the unit volume of the medium per unit
time will be:

ν∗ = π
n∗

i=1

ni

n∗

j=i

njvjr
2
ij (12)

The aim of the present paper is the determination of the collision frequency of the
particles in an amorphous medium at equilibrium. As already has been mentioned, the
problem concerning the consequences of these collisions will not be discussed here. In
other words, we do not consider the case when the particles bind in a larger particle as a
consequence of the collision or when they only scatter.

3. Discussion

In the present paper, for an amorphous medium at equilibrium, by means of the prob-
ability of collision ω (equations (2) and (3)), within the frame of the made assumptions,
the collision frequency of the particles was determined. The type of dependence ω(r)
(equations (2) and (3)) is shown in Fig. 3. If the initial distance between the two particles
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Figure 3. The probability of the particles collision.

is very small and tends to zero (r → 0) then the probability of collision is 0.5 and it is
so because the particles do not interact with each other. For very small initial distances
the different directions of movement remain equally probable, therefore the space angle α
never becomes greater than 2π and the probability of collision never becomes greater than
0.5 (equation (1)).

With increasing distance between the particles, the probability of collision decreases
sharply and for the distances close to the value of the free path length (r = Lj) it becomes
zero.

The probability of collision is, in fact, the probability for the trajectory of the mobile
particle B to fall within the limits of the space angle α. We have assumed here that the
collision of the two particles will take place exactly at the moment when this requirement
is fulfilled. However, in practice, there are situations in which the fulfillment of this
requirement will not lead inevitably to a collision between the particles - the trajectory of
the mobile particle B may fall within the space angle α and nevertheless the collision with
the immobile particle A may not take place. Besides this, in other situations, in which the
trajectory does not fall into the space angle α and it is quite possible for both particles
to collide. These situations are shown in Fig. 4. The trajectory I shows the situation
in which particle B moves within the limits of the space angle α and, as a consequence
of the collision with another particle C1, it leaves this trajectory and does not collide
with particle A (position B�). Such situations are quite possible. They will reduce the
actual number of the particles which will collide with particle A - as a consequence of such
situations the actual number will be smaller than the number Nj , determined by equation
(6).

The trajectory II shows the case when particle B does not fall within the frame of
the space angle α and, following the assumed model, it will not collide with particle A -
it will not be among the particles Nj from equation (6) which will collide with particle
A. However, it is possible, as a consequence of the collision with another particle C2, for
particle B to be deflected and to collide with particle A (position B��). This may occur
under the following requirement - the scattering with particle C2 must occur very close to
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Figure 4. Situations I and II.

the space limited by the space angle α. Only then the particle B will collide with particle A
within the limits of the following time interval τj - this requirement restricts considerably
the number of these situations. The situations like II will lead to an increase of the actual
number of collisions which particle A experiences for a time τj with particles aj - the
actual number will be greater than the number Nj calculated by equation (6), where these
situations are not taken into account.

For taking into account these processes there are some difficulties concerning the final
result of the collision of particle B with particle C1 or C2. Discussing these situations we
have always assumed that the final result of the above collision is the scattering of both
participating particles (see Fig. 4). However, it is quite possible that, as a consequence of
the collision, the two particles unite in a larger particle - then the character of the process
changes significantly and the considerations made here are not valid.

If, however, as a consequence of the collision, scattering of the particles takes place,
then both considered processes have an opposite effect on the number of collisions per time
τj - the first process leads to a decrease of this number while the second one leads to its
increase. This circumstance allows the assumption that both processes will compensate
each other, so that the actual number of the collisions per time τj will be very close to the
value Nj , calculated by equation (6).

There are two possible ways of the behavior of a particle consisting of i atoms - either
the particle grows further, becoming larger by joining other atoms of the medium, or it
dissociates, becoming smaller and losing its atoms. The change of the number of the atoms
in an ai particle for a time ∆t will be denoted by ∆i. Then, the following expression is
valid:

∆i =
1

τ+i
− 1

τ−i
∆t (13)

We assume that the process of growth of the particles or of their dissociation occurs
only by joining or disjoining of single atoms. The τ+i is the time interval which shows how
often the surface of an ai particle will be attacked by single atoms of the medium - this is
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the mean time between two consecutive collisions of the ai particle with the single atoms
of the medium. This time gives the rate of the growth process of the ai particle by joining
a part of these atoms. The τ−i is the time interval which shows how often single atoms
from the surface of the ai particle abandon it - it is the mean time between two consecutive
abandoning of single atoms from the particle ai. This time gives the rate of dissociation of
this particle. It is obvious that in the case of negative values of ∆i the atoms abandoning
process occurs faster and the particle will dissociate and become smaller with time. On
the contrary, if ∆i is positive, then the particle will grow with time and become larger.

We will consider now a gas medium with equally large atoms of a radius 1 · 10−8 cm,
(i = j = 1, r1 = 1 A

o

, r11 = r1 + r1 = 2 A
o

). At room temperature, the migration velocity
of the atoms in the gas medium is typically v = 105 cm/s [3, 5] and for the collision
frequency of an atom with the other atoms one obtains:

ν ∼= 1.25 · 10−10n [s−1] (14)

The coefficient before n shows that the number of the collisions per unit time is very
strongly reduced with respect to the particle density. For a concentration of the particles of
about n = 1010 cm−3 (this is a very high vacuum about 10−15 bar) an atom of the medium
will get only one collision per second. Therefore, under these conditions a formation of
two-atomic particles in this medium will be very difficult - their concentration in the
medium will be very low taking into account the very short lifetime of these particles. At
higher pressures, in the range of p = (10−3 ÷ 10−6) bar, where the concentration of the
atoms is n ∼= (1019 ÷ 1022) cm−1, the collision frequency of an atom with the other atoms
of the medium increases to the values ν ∼= (109 ÷ 1012) s−1. It means that each ns (at
the pressure 10−6 bar) an arbitrary atom of the medium will have a collision with another
atom. For the pressure 10−3 bar the period of these collisions is approximately 1 ps. At
these pressure values, the free path length [3, 5] is in the range L = (10−2 ÷ 10) cm and
the free path time is respectively τ ∼= (10−7 ÷ 10−4) s.

In a sphere with radius L around an arbitrary atom of the medium the number of the
atoms is N0

j = 4/3πnL
3. For L = 10−2 cm (at a pressure of 10−3 bar and n ∼= 1022 cm−3)

this number is N0
j ≈ 1017. Following equation (6), only Nj from the N0

j atoms will collide
with the considered atom: Nj = πnLr2ij ≈ 3 · 105. The other atoms will not collide with
this atom, but this does not mean that they will not collide with another atom of the
medium.

We will consider now the behavior of a two-atomic particle following equation (13) -
for this case the equation may be rewritten as follows:

∆2 =
1

τ+2
+
1

τ−2
∆t (15)

During each collision, there is a possibility for the two atoms to unite and thus form
a new two-atomic particle. This particle may further grow with time and this possibility
is characterized by the time τ+2 = 1/β+ν2. The τ+2 is the time period in which two
consecutive collisions of the two-atomic particle with the atoms of the medium occur.
The ν2 is the frequency of collisions, given by equations (7), in which one must take
into account the collision frequency of a two-atomic particle with the single atoms of
the medium. Taking into account the volume of the two particles and the inter-atomic
distance between them and approximating the two-atomic particle by a sphere, we chose
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for its effective radius the value r2 = 2r1 ≈ 2 A
o

and consequently r21 = r1+ r2 ≈ 3 A
o

. At
a pressure of 10−3 bar for the frequency ν2 one obtains the value ν2 ≈ 3 ·1012 s−1 and at a
pressure of 10−6 bar the value is ν2 ≈ 3 · 109 s−1. The β+ is the probability of binding the
two-atomic particle with the single atom into a larger three-atomic particle as a result of
the collision. In other words, it gives that part of the total number of collisions which end
up by binding of the two-atomic particle with a single atom, forming thus a tree-atomic
particle.

Along with the growth process, occurring by joining of the single atoms of the medium
with the corresponding particle, simultaneously occurs the process of dissociation of the
same particle - in this process the particle loses its atoms and becomes smaller with time.
This process is characterized (in the case of a two-atomic particle) by the time τ−2 - after
passing of this time the particle dissociates producing two single atoms. This lifetime
depends on the binding energy of the two atoms in the particle. A similar problem
is solved in [6], where considering the crystal growth process from the vapor the mean
desorbtion time of an atom adsorbed onto the crystal surface was determined. This time
was determined by the relation: τ− = τ0 exp(ε/kT ), where ε is the binding energy of
that adatom to the crystal surface and τ0 ≈ 10−13 s [6]. A rough and very approximate
evaluation gives an average value of the energy ε = 0.12 eV. In that case the lifetime of
a two-atomic particle would be about 10 ps. This evaluation is very approximate and the
real value of the energy ε may be several times lower - therefore, the value of the lifetime
τ−2 might be one or two orders of magnitude lower as well. We have chosen the value
τ−2 = 10 ps, stipulating that the accepted value may be significantly exceeded.

We have assumed that the probability for binding of the particles as a result of the
collision is maximal in the case of a ”frontal” collision (generally speaking) - the arising
interaction during the collision between the particles in this case must be at a maximum.
We have assumed that a reasonable value for the coefficient β+ must be in the range of
0.1− 0.3, and we accepted the value β+ = 0.1.

As already calculated, at the pressure of 10−6 bar the two-atomic particle in unit
time will undergo ν2 collisions with the single atoms of the medium: ν2 ≈ 3 · 109 s−1.
This means that: τ+2 = 1/β+ν2 ≈ 3 ns, τ−2 ≈ 10 ps � τ+2 = 3 ns. The two-atomic
particle will dissociate because the rate of the process of the abandoning of atoms from
the particle exceeds significantly the rate of the process of particle growth. At a pressure
of 10−3 bar, and under the same conditions one obtains: τ+2 = 1/0.1 · 3 · 1012 = 3 ps
(ν2 ≈ 3 · 1012 s−1). The both times τ−2 and τ+2 are very close in magnitude - which
means that the minimum deviation from this ”fragile” equilibrium may be very crucial for
the ”future” of this particle. One may conclude that around this pressure value (within
the frame of the approximations and assumptions made here) in the medium will arise
conditions for the particle growth and formation of multi-atomic particles. At a lower
pressure the particle dissociation process occurs faster than its growth. The appearance
of multi-atomic particles in the medium under these conditions will be a process with a
very low probability.

4. Conclusions

The paper defines the probability of collisions (ω) for an isotropic medium under equi-
librium conditions. In the case of equally probable directions of movement the probability
of collision is equal to the probability of the trajectory of the mobile particle to fall within



78 Nikolay Peev

the limits of the cone of ”observation” (generally speaking) of the immobile particle, viewed
from the position of the mobile one. This probability depends on the distance between
the particles (r) , on their sizes (rij) and on the free path length (L).

With the aid of the probability of collisions (ω) the number of collisions (νij) between
the particles [ai] and [aj ] in the unit volume of the medium per unit time was determined.
Precisely, this quantity characterizes the interaction process between these kinds of parti-
cles. The intensity of this interaction depends on the temperature of the medium (T, v),
on the densities of the particles (ni, nj), on their free path length (L) and on the size of
the particles (rij).

By a rough approximation, the collision process of the particles in a gas medium at
low pressures was evaluated. This evaluation shows that at the pressure values above
10−3 bar the conditions will arise for both the particle growth and formation of multi-
atomic particles. At lower pressures the dissociation process of the particles occurs faster
than their growth, and the formed particle dissociates to single atoms before having enough
time to grow.
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Abstract

Quasi two-dimensional antiferromagnet is studied within the framework of the
Heisenberg model, using Green’s function method and Callen’s expression for
magnetization. Explicit expressions for the energy of the system and for the
specific heat below critical temperature are derived. Finally, all results were
applied to the special case of Mn(HCOO)2·(ND2)2CO (MF2U) and compared
with the experimental measurements.

Key words: Heisenberg antiferromagnet, sublattice magnetization, specific heat

1. Introduction

As noticed by many authors [1-3], in the last several decades there has been an increas-
ing interest in quasi two-dimensional Heisenberg antiferromagnetics (Q2DHAFM), from
both theoretical and experimental point of view. From a theoretical point of view, it is
important to notice that a rather simple model yields an agreement with experiments.

For a wide class of compounds (K2MnF4, Rb2MnF4,...) the interactions between the
ions that lie within a single plane of a crystal lattice are the dominant ones. Interactions
between the ions from the neighboring and further planes are at least several orders of
magnitude weaker [4] and play a secondary role. Because of that, these compounds are
usually being referred to as quasi two-dimensional.

Mn(HCOO)2·(ND2)2CO is an example of a Q2D antiferromagnetic material. In this
system, Mn2+ ions, which are responsible for antiferromagnetism, are distributed within
the layers (i.e. the planes of a 3D crystal lattice), and form simple quadratic lattice
[3]. Layers are separated from each other by intervening urea molecules. This kind of
system can be described by the standard Heisenberg Hamiltonian. However, according
to Mermin-Wagner theorem [5], no long-range order (LRO) is possible in the isotropic
Heisenberg model for a 2D case. For an LRO to exist, some form of anisotropy must be
present in the system. Relying on previous works [1, 6-9], we use here the XXZ type of
anisotropy, for a Heisenberg model with a spin S = 5/2.
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Our analysis will be focused on the temperature dependence of magnetic specific heat
for Q2DHAFM below the critical temperature. Since spontaneous sublattice magnetiza-
tion enters our final expression for internal energy, the determination of this quantity is of
primary interest. For that purpose we will employ Green’s function (GF) method, widely
used in theory of magnetism. The main problem with GF approach is the decoupling
procedure for higher order GF’s that enter equations for the initial ones. Tyablikov’s de-
coupling procedure [10] has been used with great deal of success in theory of QHAFM’s
[1, 8], and it will the basis of calculations performed here. Due to the structure of the
Hamiltonian and used GFs, in the process of determing internal energy of the system we
are facing another difficulty: 3-operator correlation functions must be eliminated in favor
of 2-operator correlation functions (see equations (9)-(12) below). In spite of the fact
that two consecutive approximations are performed (one for GF’s, and another one for
correlation functions), we were able to produce result in agreement with experiment.

2. Internal energy of the system

The model used here for theoretical analysis is the Heisenberg model of a Q2DAFM
with XXZ type of anisotropy and NN approximation. In the absence of external magnetic
field, the Hamiltonian of such a system is (see Ref. [1])

Ĥ =
J

2

[
On,Oλ

q
Ŝ+On (a)Ŝ

+

On+Oλ
(b) + Ŝ−On (a)Ŝ

−
On+Oλ

(b)
r
− Jη

[
On,Oλ

ŜzOn(a)Ŝ
z
On+Oλ

(b) (1)

Here, J is NN exchange integral, η is anisotropy and vector �n is a two-dimensional vector
of square lattice. Index (a) refers to the first sublattice (spin ”up”) and index (b) to the
second one (spin ”down”). Also, quantization axis in b sublattice was rotated by 180◦.
We see from (1) that the internal energy of this antiferromagnet can be written as

kĤl = J

2

[
On,Oλ

q
kŜ+On (a)Ŝ+On+Oλ(b)l+ kŜ

−
On (a)Ŝ

−
On+Oλ

(b)l
r
− Jη

[
On,Oλ

kŜzOn(a)ŜzOn+Oλ(b)l (2)

where k...l denotes an average over the canonical ensemble. Our first task will be to
eliminate correlation function kŜzOn(a)ŜzOn+Oλ(b)l. This can be done with use of equations of
motion for Ŝ+On (a) and Ŝ

−
On (a):

i
d

dt
Ŝ+On (a) = J

[
Oλ

ŜzOn(a)Ŝ
−
On+Oλ

(b) + Jη
[
Oλ

Ŝ+On (a)Ŝ
z
On+Oλ

(b) (3)

i
d

dt
Ŝ−On (a) = J

[
Oλ

ŜzOn(a)Ŝ
+

On+Oλ
(b)− Jη

[
Oλ

Ŝ−On (a)Ŝ
z
On+Oλ

(b). (4)

By multiplying equation (3) with Ŝ−Oρ (a) from the left, equation (4) with Ŝ+Oρ (a) from the
right, averaging both sides of the corresponding equations and subtracting them, one finds

−Jη
[
Oλ

kŜzOn(a)ŜzOn+Oλ(b)l =
1

4

+-
Ŝ−On (a)i

dŜ+On (a)

dt

.
−
-
i
dŜ−On (a)
dt

Ŝ+On (a)

.,
−

−J
[
Oλ

kŜzOn(a)Ŝ+On (a)Ŝ+On+Oλ(b)l − J
[
Oλ

kŜzOn(a)Ŝ−On (a)Ŝ−On+Oλ(b)l −
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−Jη
2

[
Oλ

kŜ+On (a)Ŝ−On (a)ŜzOn+Oλ(b)l. (5)

Now we can write down the energy per lattice site

kĤl ≡ E = kĤ2l+ 1
4

+-
Ŝ−On (a)i

dŜ+On (a)

dt

.
−
-
i
dŜ−On (a)
dt

Ŝ+On (a)

.,
−

−J
[
Oλ

kŜzOn(a)Ŝ+On (a)Ŝ+On+Oλ(b)l − J
[
Oλ

kŜzOn(a)Ŝ−On (a)Ŝ−On+Oλ(b)l −

−Jη
2

[
Oλ

kŜ+On (a)Ŝ−On (a)ŜzOn+Oλ(b)l, (6)

kĤ2l = J

2

[
Oλ

q
kŜ+On (a)Ŝ+On+Oλ(b)l+ kŜ

−
On (a)Ŝ

−
On+Oλ

(b)l
r

(7)

Correlation functions which consist of 2-operator product (for instance kÂB̂l) can be
calculated with use of two-time temperature Green function of the form kkÂ|B̂ll and
spectral theorem. This procedure leaves 3-operator correlation functions undetermined.
One way to resolve this situation is to put simply

kŜzOn(a)Ŝ+On+Oλ(b)Ŝ
+
On (a)l * kSz(a)lkŜ+On+Oλ(b)Ŝ

+
On (a)l. (8)

The above identity is based on Tyablikov’s decoupling scheme for Green’s functions

kkŜzOnŜ±Om|B̂ll → kSzlkkŜ±Om|Bll, (9)

which is appropriate for higher temperatures. On the other hand, for low temperatures,
we should expect better results with

kŜzOn(a)Ŝ+Om(b)Ŝ+On (a)l * kSz(a)lkŜ+Om(b)Ŝ+On (a)l − αkŜ+On (a)Ŝ+Om(b)lkŜ−On (a)Ŝ+On (a)l. (10)

The last relation is a modification of Callen’s decoupling [11] of Green’s functions in the
case of an antiferromagnet:

kkŜzg Ŝ±f |B̂ll → kSzlkkŜ±f |B̂ll − αkŜ±g Ŝ±f lkkŜ∓g |B̂ll, (11)

and α = kSzl/2S2 is the decoupling parameter introduced by Callen. As temperature
approaches its critical value, α tends to zero, and Callen’s decoupling reduces to the
one of Tyablikov. Nevertheless, the contribution of Callen’s corrections to Tyablikov’s
decoupling is significant for a specific heat close to TN , since dα/dT is a very steep function
in this region. Having all this in mind, we adopt a Callen-like procedure for higher order
correlation functions, and equation (6) reduces to

E = kĤ2l(1− kS
zl
2
) +

1
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−
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+
On (a)l. (12)
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Here � = JkSzlηz and z is the number of in-plane nearest neighbors. We have also taken
into account the fact that in the absence of external field both sublattice magnetizations
are equal, i.e. kSz(a)l = kSz(b)l ≡ kSzl. Green’s function method within the Tyablikov
decoupling scheme, together with equation (12) and Callen’s approximation for sublattice
magnetization, is sufficient for determining magnetic specific heat.

3. Green’s function method

Let us define

G1(�n, �m) = kkŜ+On (a)|Ŝ−Om(a)ll, Γ1(�n, �m) = kkŜ−On (b)|Ŝ−Om(a)ll (13)

G2(�n, �m) = kkŜ+On (a)|Ŝ+Om(b)ll, Γ2(�n, �m) = kkŜ−On (b)|Ŝ+Om(b)ll. (14)

Equations of motion for the corresponding Green’s functions (in energy representation)
are

ωkkŜ+On (a)|Ŝ−Om(a)llω =
i

2π
kSzl+ J

[
Oλ

kkŜzOn(a)Ŝ−Om+Oλ(b)|Ŝ
−
Om(a)llω +

+Jη
[
Oλ
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−
Om(a)llω, (15)

ωkkŜ−On (b)|Ŝ−Om(a)llω = −J
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kkŜzOn(b)Ŝ+Om+Oλ(a)|Ŝ
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−Jη
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and

ωkkŜ+On (a)|Ŝ+Om(b)llω = +J
[
Oλ
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+
Om(b)llω +

+Jη
[
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+
Om(b)llω, (17)

ωkkŜ−On (b)|Ŝ+Om(b)llω =
i

2π
kSzl − J

[
Oλ

kkŜzOn(b)Ŝ+Om+Oλ(a)|Ŝ
+
Om(b)llω −

−Jη
[
Oλ
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+
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After applying Tyablikov’s approximation (equation(9)), and going over to momentum
space via

Ŝ−On =
1√
N2

[
Ok

Ŝ−Ok e
iOk On , (19)

we obtain the following systems for GF’s

[ω − �]kkŜ+(a)|Ŝ−(a)ll
ω,Ok
− J(�k8)kSzlkkŜ−(b)|Ŝ−(a)llω,Ok =

i

2π
2kSzl

J(�k8)kkŜ+(a)|Ŝ−(a)llω,Ok − [ω + �]kkŜ−(b)|Ŝ−(a)ll
ω,Ok

= 0 (20)
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and

[ω − �]kkŜ+(a)|Ŝ+(b)ll
ω,Ok
− J(�k8)kSzlkkŜ−(b)|Ŝ+(b)llω,Ok = 0

J(�k8)kSzlkkŜ+(a)|Ŝ+(b)llω,Ok + [ω + �]kSzlkkŜ−(b)|Ŝ+(b)ll
ω,Ok

= − i

2π
2kSzl, (21)

whereN2 is the number of unit cells within the layer, J(�k8) = Jzγ(�k8), and the geometrical
factor is given by

γ(�k8) =
1

z

[
Oλ

ei
Ok Oλ = cos

akx
2
cos

aky
2
. (22)

Complete analysis of antiferromagnet described by Hamiltonian (1) needs to include GF’s
for adjoint operators. It is shown in [1] that it leads to the following expression for the
energies of elementary excitations

ωOk =
t
�2 − (kSzlJ(�k8))2. (23)

Solutions of systems (20) and (21), together with (23) are
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Although needed for closing the system of equations with G2, the function Γ2 is of no
interest for us. The corresponding correlation functions are determined by the spectral
theorem

kŜ+On (a)Ŝ−On (a)l = kSzl+ 1

N2

[
Ok

kSzl�
ωOk

coth
ωOk

2kBT
, (26)

kŜ−On (a)Ŝ+On (a)l = −kSzl+ 1

N2

[
Ok

kSzl�
ωOk

coth
ωOk

2kBT
, (27)

-
Ŝ−On (a)i

dŜ+On (a)

dt

.
= −

-
i
dŜ−On (a)
dt

Ŝ+On (a)

.
=

= −kSzl�+ 1

N2

[
Ok

kSzlωOk coth
ωOk

2kBT
, (28)

kŜ±On (a)Ŝ±On+Oλ(b)l = kŜ±
On+Oλ

(b)Ŝ±On (a)l =

= − 1

N2

[
Ok

kSzl2J(�k8)
ωOk

coth
ωOk

2kBT
. (29)

Finally, substituting these correlation functions in equation (12), we have

E =
1

N2

[
Ok

ωOk
2 − �2

ωOk
coth

ωOk

2kBT
− kSzl�− kS

zl2�
4S2

{F1(T )F2(T )− F3(T )} , (30)
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where

F1(T ) =
1

N2

[
Ok

�/η

ωOk
coth

ωOk

2kBT
,

F2(T ) =
1

N2

[
Ok

�2 − ω2Ok

�ωOk
η coth

ωOk

2kBT
, (31)

F3(T ) =
1

N2
2

[
Ok

[
Oq

γ(�k8 + �q8)
kSzl2J(�k8)J(�q8)

ωOk ωOq
coth

ωOk

2kBT
coth

ωOq

2kBT
.

Sublattice magnetization, kSzl may be obtained as follows. We rewrite equation (26) as
kŜ+On (a)Ŝ−On (a)l = 2kSzlPS(T ) (32)

and use Callen’s method for magnetization [11]. The result is a self-consistent equation for
kSzl (It is shown in [1] that this result is in agreement with the Mermin-Wagner theorem):

kSzl = (S − PS(T ))(1 + PS(T ))2S+1 + (1 + S + PS(T ))(PS(T ))2S+1
(1 + PS(T ))2S+1 − (PS(T ))2S+1 , (33)

which, together with (30), determine the energy of the system as a function of temperature.
This allows us to introduce the specific heat

CV =
dE

dT
. (34)

Expression (33) covers a temperature interval from T = 0 K to the Neel temperature.
This means that the definition of specific heat (34), together with (30), (31) and (33),
forms the equation for CV below the critical temperature.

4. Numerical analysis

In the previous section, we have derived a self-consistent equation for magnetization
and an equation for specific heat of quasi two-dimensional Heisenberg antiferromagnet with
an arbitrary spin S. At this point we focus on a particular case of Mn(HCOO)2·(ND2)2CO.
This compound, an excellent example of Heisenberg antiferromagnet with a spin S = 5/2,
has been well studied experimentally [3]. Experimental value for the exchange integral [3] is
J/kB = 0.68 K. As far as η is concerned, in principle, it would be possible to determine this
quantity from experimental data on magnon dispersion. Unfortunately, no such data are
available right now. On the other hand, detailed description of sublattice magnetization
dependence on temperature is given in [1]. Within the same XXZ anisotropy model, the
critical temperature is found to be

TN =
JS(S + 1)

3

⎡⎢⎣ 1
N2

[
Ok

η

η2 − γ(�k8)2

⎤⎥⎦
−1

. (35)

Since the experimental value for low magnetic ordering temperature is TN = 3.77 K, it
follows from (35) that η = 1.0104. This result is in agreement with the estimation given
in [6].
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With these values for S, η and J/kB, the solution of equation (33) for kSzl is presented
in Fig. 1, along with the function dkSzl/dT .

Figure 1. (a) Magnetization kSzl as a function of temperature. (b) Derivate of the magnetization,
dkSzl/dT , as a function of temperature.

Finally, specific heat, as function of temperature is presented in Fig. 2 (for comparison,
on the same graph is plotted the specific heat calculated with simplified Tyablikov-like
approximation for the correlation functions Eq. (8)), together with experimental results
taken from [3].

Figure 2. Temperature dependence of the specific heat calculated with Callen-like (solid line)
and with Tyablikov-like (dashed line) approximation for the correlation functions. Dots represent
experimental results (see Ref. [3]).

5. Results and discusion

Let us summarize the main results obtained here. The Hamiltonian (1) was used
as a starting point in determing the internal energy of the system. We applied the GF
method and random phase decoupling scheme to calculate relevant correlation functions.
Numerical analysis (see Fig. 2) shows that a Callen-like procedure for correlation func-
tions (equation(11)) produces divergent specific heat at TN and simplified Tyablikov-like
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(equation(8)) procedure does not, since in Tyablikov’s approximation one assumes that
the correlations between Ŝ± on one lattice site and Ŝz on another lattice site may be
neglected. Disregarding these correlations in the definition of internal energy, we end up
with just molecular field approximation. The Callen-like procedure preserves some of the
correlations and numerical values for specific heat near TN are closer to the experimental
ones.
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