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Abstract

The subject of the paper is an addition to the theory of liquid phase epitaxial
growth. The established theory up till now has treated only the behavior of the
components with a positive concentration gradient during liquid phase growth.
In the paper it is shown that a part of the components are distributed in the
liquid phase with a negative concentration gradient. For these components the
liquid phase is always superheated. Despite this, these components participate
in the growth process. A possible mechanism for explanation of the partici-
pation of these components in the growth process is given. The behavior of
the components during growth is discussed. Special attention has been paid to
processes carried out within the phase boundary region. The balance equation
concerning the sum of the relative changes during growth of the masses and of
the concentrations of the components in the liquid phase is derived.

Key words: Liquid phase epitaxial growth, distribution of components in the liquid phase,
behavior during growth, phase boundary region, balance equation

1. Introduction

Despite the significant achievements of gas phase epitaxy methods (MBE, MOCVD,
ALE and so on) in the growth of multilayer structures with nanoscale thickness of layers
[1-25, 72], the liquid phase epitaxy (LPE) retains its significance for the production of dif-
ferent kinds of devices. During the last few years a considerable progress of LPE methods
[59-65, 68-71, 79, 82, 84, 89] has been observed. By Low Temperature LPE (LTLPE) it is
now quite possible to grow, with sufficient reproducibility, epilayers with nanoscale thick-
ness (of about 100 A

o

or less). Taking into account the good electrophysical properties of
the LPE layers and the cheapness of the technological equipment, one may conclude that
the significance of liquid phase epitaxy in the future for the production of optoelectronics
and UHF devices will increase.

The main difference between the various LPE methods is the way supersaturation
above the crystallization boundary is created. In the zone melting version, for example,
supersaturation arises due to the temperature gradient between the seed crystal and the
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substrate. In the epitaxy method used for the growth of A3B5 and A2B6 semiconductors,
the supersaturation above the crystallization boundary is created through the cooling of
the whole system with a constant cooling rate νT = dT/dt. In this work the latter version
of the LPE will be closely considered, but the conclusions made are valid, with some
corrections, for the former as well.

The main aim of the present work is to give a possible explanation of some theoretical
problems concerning the LPE method and to present some new correlations of the LPE
process, thus opening new possibilities for its improvement.

2. Grounds and aims of investigation

The theory and practice of the LPE process was established at the end of the 60s and
at the begining of the 70s [26-59]. Up until now the theoretical concepts for the LPE
growth established in this period have undergone very small development [66, 67, 72-76,
80-91] and in general are as follows:

• the crystallization growth rate is limited by the diffusion process in the liquid phase
volume of the dilute components - the concentration of these components increases
always with increasing distance from the phase boundary (dCLi /dx > 0)

• the case of one dimensional diffusion is considered
• the mass transfer toward the crystal surface (Fig. 1) creates supersaturation with
respect to these components and causes their participation in the growth process.

The solution of the diffusion equation at given boundary conditions (depending on
the LPE technique used) gives as a result an expression for the crystal growth rate often
confirmed by experiments.

A more detailed investigation of the processes occuring in the liquid phase shows that
by this theoretical model a full, thorough and exhaustive explanation of liquid phase epi-
taxial growth can not be given. Moreover, the crystallization mechanisms (the normal
mechanism of growth, the growth by screw dislocations, the growth by two dimensional
nucleus) are not discussed in this model and their determination seems to be quite im-
possible (the crystallization mechanisms of growth and the different techniques of liquid
phase epitaxial growth will be considered in a future work).

The molar concentration of an arbitrary i - component in the liquid phase is given by
the well known expression:

CLi =
mL
i /Mi

n
j=1m

L
j /Mj

;
n

j=1

CLj = 1 (1)

where mLi is the mass of this component, Mi is its molar weight and n is the number of
the components. This expression is valid: 1) at any moment (t) of the growth process; 2)
for an arbitrary value of the co-ordinate (x); 3) for the actual values of the concentrations
of the components as well as for their equilibrium values.

Hence, it follows that:

1) For two adjacent points (x) and (x + dx) from the volume of the liquid phase and
for an arbitrary moment (t) equation (1) leads inevitably to the conclusion that the



Addition to the Theory of Liquid Phase Epitaxial Growth 87

sum over all components of the concentration gradients is always zero:

n

j=1

dCLj
dx

= 0 (2)

2) For an arbitrary point of the volume of the liquid phase (x) and for two consecutive
moments (t) and (t+ dt) equation (1) gives that the sum over all components of the
rates of change with time of the concentrations in the liquid phase is also always
zero:

n

j=1

dCLj
dt

= 0 (3)

3) Equation (1) can be written for an arbitrary moment (t) and for an arbitrary point
from the volume of the liquid phase (x). It can be written once for the equilibrium
values of the concentrations of the components (CLi.eq) and then for their actual

concentrations (CLi ). The difference between these expressions gives a sum over
all components of the system - its terms are the deviation of the system from the
equilibrium state with respect to all components (∆CLi = CLi − CLi.eq, i ∈ (1, n)).
This sum must also always be equal to zero:

n

j=1

(CLj − CLj.eq) =
n

j=1

(∆CLj ) = 0 (4)

In the case of only negative terms or in the case of only positive terms a
sum can not be equal to zero.

Figure 1. The case of the components distrib-
ution with a positive concentration gradient.

Figure 2. The case of the components distrib-
ution with a negative concentration gradient.

Equations (2, 3, 4) lead inevitably to the conclusions:

• evaluating equation (2), one may conclude that in the liquid phase the distribution of
part of the components is positive (dCLi /dx > 0, Fig.1), while all other components
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are negative (dCLi /dx < 0, Fig.2).
The established theory [28, 34-38, 52, 53, 56, 72, 74] of liquid phase epitaxy treats
only the components with a positive concentration gradient. This theory can not
explain the participation in the growth process of components with the negative
concentration gradient - the mass transfer of these components occurs not to the
phase boundary region but in the opposite direction - deep into the volume of the
liquid phase. Such mass transfer does not lead to the creation of a supersaturation
with respect to these components above the crystallization boundary.
The latter components are for example Ga in the LPE process of GaAs
and AlxGa1−xAs, In in the InP LPE process and so on.

• evaluating equation (3), one may conclude that during growth for some components
the concentration increases with time (dCLi /dt > 0) and for the rest of them the
concentration decreases with time (dCLi /dt < 0)

• evaluating equation (4), one may conclude that part of the components participates
in the growth process having positive deviation values from the equilibrium (∆CLi >
0) - with respect to these components the liquid phase is supersaturated. This is the
classical case discussed in many works. All other components participating in the
growth process are with negative values of deviation from equilibrium (∆CLi < 0) -
with respect to them the liquid phase is not supersaturated, it is rather superheated.
The last conclusion contradicts the basics of crystal growth theory.

Upon considering a multicomponent system, the following problems arise:

1) Which components during growth are distributed in the liquid phase with positive
concentration gradients and which components are distributed with negative ones ?

2) For which components does the concentration in the liquid phase during growth
increase with time and for which components does it decrease ?

3) Which components participate in the growth process with positive values of the
deviation from equilibrium and which components participate in the growth with
negative values ?

4) In which way do the components with a superheated liquid phase participate in the
growth process ?

3. Assumptions

The case of the two phase system is considered: the n - component solid phase is in
contact with the n - component liquid phase from which the layer grows. The following
requirements are valid for this system:

- the crystallization process is carried out only on the substrate - in the volume of the
liquid phase no nucleation takes place;

- the system is isothermal - no temperature gradients are available;

- no chemical reactions between the components are observed in the liquid phase;
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- no evaporation of the liquid phase takes place.

These are well known assuptions used in many investigations [28, 34-38, 52, 53, 56,
72].

The system defined in this way is practically an isolated system - the mass of the
components is constant: mi = m

L
i +m

S
i = const., dm

S
i = −dmL

i = |dmL
i | where mL

i and
mS
i are the masses of i - component in the liquid and in the solid phase respectively and

dmL
i and dm

S
i are their changes within the time interval dt caused by growth. During

crystallization, the massmS
i always increases with time and the massm

L
i always decreases.

The crystallization process is considered in a coordinate system with an Ox axis normal
to the crystal surface and the coordinates origin (pointO) lies always on the crystal surface.
The growth process performed on an oriented substrate is always one-dimensional - along
the axes Oy and Oz no concentration gradients are observed and, obviously, no mass
transfer is possible.

4. Distribution of the components during growth

The well known diffusion equation is considered:

Di
d2CLi
dx2

=
dCLi
dt

(5)

For a given concentration CLi (x, t) and by double differentiation with respect to (x),
it simply follows that (Fig. 1 and Fig. 2) [75, 77] :

- if the concentration of a given component increases with time (dCLi /dt > 0), it
decreases with the coordinate (dCLi /dx < 0)

- if the concentration decreases with time (dCLi /dt < 0), it increases with the coordi-
nate (dCLi /dx > 0).

The crystal growth process will now be closely considered. The grown n - component
solid phase will be grown from an n - component liquid phase. In the classical case of liquid
phase epitaxy, the system is cooled with a constant cooling rate of (νT ) - as a consequence
it creates supersaturation for a part of the components and crystallization takes place. For
the time (dt) the masses of the (i) - component in the solid phase and in the liquid phase
change by the values of dmLi and dm

S
i respectively, i.e. dm

S
i = −dmLi . During growth the

following relations are valid [75-78]:

CSi =
dmL

i /Mi
n
j=1 dm

L
j /Mj

=
ṁL
i /Mi

n
j=1 ṁ

L
j /Mj

(6)

ĊLi
CLi

=
CLi
CSi
− 1 ṁL

i

mL
i

(7)

where ĊLi = dC
L
i /dt, and ṁ

L
i = dm

L
i /dt.

(Deducing equation (7) it was taken into account that during growth the mass of the
components in the liquid phase mLi always decreases with time: ṁ

L
i = dm

l
i/dt < 0. The

system will be considered at two consecutive moments of time - the ”initial”-moment
(t) and the ”end”-moment (t + dt). At the initial moment, the system is characterized
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by the masses mLk (t), k ∈ (1, n) and by the temperature T (t) and at the end moment
these quantities have the values mL

k (t + dt) = mLk (t) − dmL
k and T (t + dt) = T (t) −

dT = T (t)− νTdt, respectively. In these expressions the minus sign (-) already takes into
account that the masses in the liquid phase and the temperature always decrease with
time during growth and, hence, in all further considerations the quantities dmL

k , dT and
ṁL
k = dmL

k /dt, νT = dT/dt are taken positive, i.e. they participate with their absolute
values.)

From equation (7) it follows:

A) components for which CSi > C
L
i are characterized by a positive concentration gra-

dient (dCLi /dx > 0) and during growth their concentration will decrease with time
(dCLi /dt < 0) - these components are further denoted by the index ”i” and, for
simplicity, they will be called ”i-components”.

B) components for which CSi < C
L
i are characterized by a negative concentration gra-

dient (dCLi /dx < 0) and during growth their concentration increases with time
(dCLi /dt > 0) - these components will be further denoted by the index ”j” and, for
simplicity, they will be called ”j-components”.

C) if CSi = C
L
i the concentration does not change with time during growth (dC

L
i /dt = 0)

- this is the case when the growth is performed at the melting point of the compound
from the stoichiometric composition of the melt.

Figure 3. The dependence ĊLr (C
L
r ) in accordance

with equation (7).

In Figure 3 the dependence
ĊLk (C

L
k ), k ∈ (1, n) from equation

(7) is shown. It is obvious that
ĊLk → 0, when CLk → CSk and
when CLk → 0. Within the inter-
val CLk ∈ (0, CSk ), the quantity ĊLk
is always negative (ĊLk < 0) and
there is a minimum of ĊLk - this is
the region of the ”i”-components. If
the changes of the ratio (ṁLk /m

L
k )

are small (ṁLk /m
L
k
∼= const.), then

the minimum will be at the value
CLk = CSk /2. Significant change of
the ratio ṁL

k /m
L
k will lead to dis-

placement of the minimum along the
Ox-axis. In the region CLk > C

S
k , the

quantity ĊLk is always positive and this is the region of the ”j”-components.
During growth, the concentration of the i-components (CSi < CLi ) will continuously

decrease (ĊLi < 0) moving away from the point CSi = C
L
i . This means that an arbitrary

i-component will never be a j-component. The same is valid also for the j-components
(CSj < C

L
j ) - during growth their concentrations continuously increase (Ċ

L
j > 0) moving

away from the value CSj = C
L
j - therefore a j-component will also never be an i-component.

One may conclude that:

- a component initially (at the beginning of growth) being an i-component remains
an i-component during the whole growth process and
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- a component being initially a j-component remains a j-component.

Hence, the growth process does not change the character of the components.

5. Behavior of the components during growth

Let for time (dt), due to temperature decrease by dT (dT = νTdt), the masses dm
L
k and

dmL
r of two arbitrary k- and r-components, respectively, be deposited on the substrate

building up the epitaxial layer. The molar portions of these components in the grown
epilayer will be (dmL

k /Mk) and (dm
L
r /Mr), respectively. Then the following relation is

obvious:
(dmLk /Mk)

(dmL
r /Mr)

=
gk
gr

(8)

where gk and gr are the indices of the k and r components, respectively, in the stoi-
chiometrical formula of the grown compound - gk and gr are assumed to be constants
(gr = const., r ∈ (1, n)).

Because k and r are arbitrary components, the masses of all other components could be
expressed by the mass of one of them using equation (8). For example, expressed through
the mass of k-component (the basic component), the masses of all other components
incorporated into the epilayer are:

dmLr =
grMr

gkMk
dmL

k ; r ∈ (1, n) (8a)

and therefore by summation over all masses dmL
r , r ∈ (1, n), one obtains the mass of the

grown epitaxial layer dmo and the growth rate νo of the compound:

dmo =
n

r=1

dmL
r =

dmLk
Mkgk

n

r=1

Mrgr =
Mo

Mkgk
dmL

k ;

νo =
1

soγSo

dmLo
dt

=
1

soγSo

n

r=1

dmLr
dt

=
Mo

soγSoMkgk

dmLk
dt

=
1

soγSk

dmL
k

dt
= νk (9)

γSo is the density of the grown compound, so is the area of the grown layer, Mo =
n
r=1 grMr is the molar weight of the grown compound. γ

S
k = (Mkgk/Mo)γ

S
o is the density

of the k-component in the solid phase - hence, γSo is an additive quantity: γ
S
o =

n
k=1 γ

S
k .

Quantity νk could be considered as the growth rate of the k-component - this is the
rate of the deposition of k-particles onto the substrate and of its insertion into the grown
epitaxial layer. In this sense equation (9) postulates that the different components always
have the same growth rate, equal to the growth rate of the compound itself.

As mentioned above, the components with a positive concentration gradient (dCLi /dx >
0) (the i-component) are always deposited from a supersaturated liquid phase (∆CLi > 0)
due to the mass transport toward the phase boundary.

With respect to the components with a negative concentration gradient (dCLj /dx < 0)

(the j-component), the liquid phase is always superheated (∆CLj < 0). This is in good
agreement with the fact that their diffusion mass transport is directed deep into the volume
of the liquid phase and, in any case, no supersaturation for these components is possible
above the phase boundary.
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The same conclusion could be made considering the supercooling (∆T = Teq − T > 0)
and from the deviation of the concentration from its equilibrium value (∆CLr = C

L
r −CLr.eq),

i.e. ∆CLr = ∆T/Sr ( Sr = dT/dC
L
r.eq is the slope of the liquid surface with respect to the

r-component, r ∈ (1, n) ). Taking into consideration that during growth the supercooling
(∆T ) is always positive, one may conclude that the quantities (∆CLr ) and (Sr) must have
the same sign. From the liquidus surface it follows that:

• for the j-components (CLj > CSj , dC
L
j /dt > 0, dCLj /dx < 0), the slope of the

liquidus surface is always negative Sj = dT/dC
L
j.eq < 0 and, therefore, the deviation

of their concentrations from the equilibrium value is also always negative ∆CLj < 0,
i.e. during growth the liquid phase is always superheated with respect to these
components,

• for the i-components (CLi < CSi , dC
L
i /dt < 0, dCLi /dx > 0), the slope of the

liquidus surface is always positive Si = dT/dC
L
i.eq > 0 and, therefore, the deviation

of their concentrations from the equilibrium value is always positive too ∆CLi > 0,
i.e. during growth, the liquid phase is always supercooled with respect to these
components.

An additional confirmation of the last conclusions is given in the discussion of equation
(31).

5.1. Non diffusive mass transport of j - components toward the phase boundary

In the case of equilibrium cooling technique close to the phase boundary, the deviation
from equilibrium of the liquid phase is very small and, therefore, the actual concentration of
the components in the liquid phase could be assumed to be equal to the equilibrium one.

Figure 4. The real situation in the liquid phase in the
case of equilibrium cooling technique for i- and for j-
components.

In the phase boundary re-
gion, the i-components will
have the minimum value of
their concentration in the liq-
uid phase (Figure 4, see [77])
- beginning from the phase
boundary, their concentration
always increases deep into the
liquid phase volume.

In the same region the
j - components concentration
value will be the maximum one
- beginning from this point,
their concentration decreases
into the liquid phase volume.
Due to the flux JLi , a su-

persaturation with respect to
the i-components arises in the
phase boundary region - as a
consequence, the adsorption of
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the consequence, the adsorption of the i-particles onto the crystal surface occurs more
intensively. Consequently, their concentration decreases in the δ-region (the region situated
in the liquid phase volume close to the crystal surface - the interface region). The decrease
of the concentration CLiI (the value of the concentratrion within the interface region close
to the phase boundary [77]) leads inevitably to the increase of the concentration of the
j-components CLjI . The latter concentration becomes greater than its equilibrium value.
Hence, in the δ-region supersaturation with respect to the j-components also arises - the
remaining volume of the liquid phase remains superheated [77].

The flux JLjI (the value of the flux within the interface region) of the j-particles toward
the phase boundary (in the physical meaning of the word ”flux” as a ”directed movement
of particles”) exists only as a consequence of the supersaturation in the δ-region. This is
not a diffusion flux because it is not caused by the concentration gradient. It is caused
by the created supersaturation and leads to the restoration of the equilibrium state in the
phase boundary region.

5.2. Epitaxial growth rate

In equation (9) we have concluded that the rate of the insertion of an arbitrary k-
component into the epitaxial layer is equal to the growth rate of the compound itself. We
will now consider the distribution during growth of an arbitrary i-component in the liquid
phase in two consecutive moments (t) and (t + dt) (Fig. 5). At the initial moment the
number of the i-particles in the liquid phase in a column above a unit area of the phase
boundary will be:

NL
i (t) =

Z0

0
nLi (x, t) dx (10)

where nLi (x, t) is the distribution of the i-component given in [at/cm
3], Z0 is the thickness

of the liquid phase above the substrate. As a consequence of cooling (with a rate of νT )
within the time interval ∆t, an epitaxial layer with thickness of ∆H is deposited onto
the substrate. The i-particles are distributed there, with a concentration of nSi = const.
(dnSi /dx = 0).

The i-particles of quantity NL
i (t) (according to equation (10)) will be distributed at

the moment (t+dt) between the grown epitaxial layer (their number there will be nSi ∆H)
and the liquid phase.They will have a distribution in the liquid phase given by the function
nLi (x, t+∆t). Consequently, the following expressions are valid:

NL
i (t) =

Z0

0
nLi (x, t) dx = n

S
i ∆H +

Z0

∆H
nLi (x, t+∆t) dx

nSi ∆H =
∆H

0
nLi (x, t) dx+

Z0

∆H
[nLi (x, t)− nLi (x, t+∆t)] dx (11)

The following relations are taken into account:

nLi (x, t+∆t) = n
L
i (x, t) +

dnLi
dt
∆t = nLi (x, t) + ṅ

L
i (x, t)∆t

ṅLi (x, t) =
dnLi
dt

= Di
d2nLi
dx2

= −dJ
L
i

dx
(12)
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nLi (x, t) = n
L
i.eqo + n

�L
i (x, t) x = n

L
i.eqo +

∆nLi1
∆H

x

where n�Li (x, t) = dnLi /dx, ∆nLi1 = nLi (∆H, t)−nLi.eqo, nLi.eqo is the equilibrium value of the
concentration of the i-component at the phase boundary (for x = 0).

Let us now consider the case of equilibrium liquid phase epitaxy - the concentration
at the phase boundary is always equal to the equilibrium one. We have assumed the
thickness ∆H of the epitaxial layer to be very small and, therefore, the interval of the
first integral (0,∆H) is very small too - within a very small interval the integral function
could be approximated by a linear one.

nSi ∆H = nLi.eqo +
∆nLi1
2

∆H −
Z0

∆H

dnLi
dt
dx∆t =

= nSi ∆H = nLi.eqo +
∆nLi1
2

∆H + JLi (Z0, t)− JLi (∆H, t) ∆t (13)

Taking into account that the vector of the growth velocity ν0 = ∆H/∆t is directed in
the opposite direction to the vector of the diffusion flux JLi = −Di dnLi /dx, one obtains
the following relation for the epitaxial growth rate within the interval (t, t+∆t):

ν0 =
∆H

∆t
=
JLi (∆H, t)− JLi (Z0, t)
nSi − nLi.eqo − ∆nLi1

2

(14)

Relation (14) could be simplified, taking into account that the change of the concen-
tration ∆nLi1 is usually negligible with respect to the quantities n

S
i and n

L
i.eqo:

ν0 =
∆H

∆t
=
JLi (∆H, t)− JLi (Z0, t)

nSi − nLi.eqo
(15)

Using the same considerations, one may obtain for an arbitrary j-component (Fig. 6):

ν0 =
∆H

∆t
= −J

L
j (∆H, t)− JLj (Z0, t)

nSj − nLj.eqo
=
JLj (∆H, t)− JLj (Z0, t)

nLj.eqo − nSj
(15a)

Figure 5. Behavior of i-components during
growth.

Figure 6. Behavior of j-components during
growth.

It is obvious that the epitaxial growth rate depends in a simple way on the parameters
of an arbitrary component. Using the distribution of some component in the liquid phase,
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one may determine each quantity of the last equations and, hence, the epitaxial growth
rate.

6. Balance equation

Equation (7) shows the significant role of the ratio of the concentration of an arbitrary
component in the liquid phase (CLk ) to its concentration in the solid phase (C

S
k ) for the

behavior of the component during growth. Using equations (1) and (6), this ratio leads to
the expression [78]:

CLk
CSk

ṁLk
mLk

=

·
(16)

where
·
= n

k=1
ṁL
k

Mk
and = n

k=1
mL
k

Mk
. Substituting equation (9) in equation (16)

one obtains:

CLk
CSk

γSk
mLk

=

·

ν0S0
⇒ CLk gkMk

CSkm
L
k

=
M0

·

ν0S0γS0
≡ f0 (17)

The ratio on the right side denoted by f0 is always the same for all components of the
liquid phase, i.e. Mk and the ratio gk/C

S
k =

n
r=1 gr (taking into account the equality

CSk = gk/
n
r=1 gr) are constants.

This circumstance means that if at the moment (t) the value of the left side is f0, then
at the moment (t + dt) its value will be f0 + df0 = f0(t + dt), determined by the change
of the quantities CLk and m

L
k . During growth, the mass of the components m

L
k decreases

always but their concentrations could decrease (for the i-components) or increase (for the
j-components). Therefore, the following equalities are valid:

f0(t) =
CLk (t)gkMk

CSkm
L
k (t)

;

f0(t+ dt) = f0(t) + df0 =
CLk (t)± dCLk
mL
k (t)− dmLk

gkMk

CSk
(18)

As a rule the following inequalities are fulfilled: dCLk � CLk and dm
L
k � mLk which

allows us to use the approximate formula: 1
1±α ∼= 1 ∓ α (valid for very small values of

α� 1).

6.1. Case of positive concentration gradient (i - components)

dCLi
dx

> 0,
dCLi
dt

< 0

The quantity dCLi from equation (18) in this case is always negative and in a simple
way one may obtain the relation:

df0
f0
=
dmLi
mL
i

− dC
L
i

CLi
; ϕ0(t) =

1

f0

df0
dt
=
ṁLi
mLi
− Ċ

L
i

CLi
(19)
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6.2. Case of negative concentration gradient (j - components)

dCLj
dx

< 0,
dCLj
dt

> 0

In this case the quantity CLj from equation (18) has a positive sign and the correspond-
ing relation is:

df0
f0
=
dmLj
mL
j

+
dCLj
CLj

; ϕ0(t) =
1

f0

df0
dt
=
ṁLj
mLj

+
ĊLj
CLj

(20)

By function pk(C
L
k − CSk ) defined in the following way:

pk = +1 , CLk > C
S
k

pk = 0 , CLk = C
S
k (21)

pk = −1 , CLk < C
S
k

both equations (19) and (20) could be united.

df0
f0
=
dmLk
mL
k

+ pk
dCLk
CLk

; ϕ0(t) =
1

f0

df0
dt
=
ṁLk
mLk

+ pk
ĊLk
CLk

(22)

The relative changes during growth of the mass and of the concentration in the liquid
phase for an arbitrary component must be balanced in such a way so that at any moment
their sum (in correspondence with equation (22)) is the same for all components. Precisely
in this sense, the equation (22) is a balance equation and function ϕ0 is a characteristic
function of the growth process. Its values depend directly or indirectly on the mass
of the given component in the liquid phase, on its concentration, on the crystallization
mechanisms and so on. Hence, by the values of this function the growth process could be
characterized fully enough.

For the growth process, function ϕ0 is always positive (equation (20)). From equation
(19), it follows that the relative change of the mass of the i-components is significant
because it compensates the increase of function ϕ0 as well as the relative change of the
concentration (dCLi /C

L
i ).

For the case of liquid phase epitaxy of GaAs, the Ga-component is a j-component and
the As-component is an i-one. From equations (19) and (20) it follows:

ϕ0 =
ṁLAs
mLAs

− Ċ
L
As

CLAs
=
ṁL
Ga

mL
Ga

+
ĊLGa
CLGa

(23)

Most significant are the changes of the mass of the i-components during growth - the
relative change of the mass of As is equal to the sum of three terms: (ṁL

Ga/m
L
Ga), (Ċ

L
Ga/C

L
Ga),

(ĊLAs/C
L
As).

7. Processes in the phase boundary region

The phase boundary region (the ”δ” - region) not only separates both solid and liq-
uid phases but during growth it is exactly that region where the formation of the grown
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epitaxial layer is carried out. During crystallization all processes needed for the full adap-
tation of the liquid phase to the substrate (with respect to the crystal structure and to
the composition) are accomplished in this region.

By the influence of the potential field of the crystal substrate the liquid phase region
(close to the crystal surface) is ordered to a great degree. Deep into the volume of the
liquid phase (far away from the crystal surface) the structure of the matter is typically
amorphous. Anisotropy, short range order and so on are observed. Within the limits of the
phase boundary region (the ”δ” - region), there are indications of anisotropic properties
and of a long range order of the matter - these are the significant characteristics of a
crystal structure. This allows us to speak about similarity to the crystal structure of the
phase boundary region repeating sufficiently well the structure of the substrate itself.

Hence, with respect to the structure both solid and liquid phases are in the process of
approaching each other within the limits of the phase boundary region.

With respect to the composition, however, the difference between both phases in-

creases continuously toward the crystal surface (see the differences CSi − CLi (x = 0) ,
CLj (x = 0)− CSj in Fig. 4) - at the phase boundary, the liquid phase is enriched sig-

nificantly with respect to the j-components and is strongly depleted with respect to the
i-components. In this way the diffusing toward the crystal surface i-particles get into the
liquid phase regions which are more enriched with j-particles.

Figure 7. Proportionality between the diffusion flux
dCLi /dx and the deficit [n

S
i − nLi (x)] for the case of

i-components.

Therefore, within the δ - region
there is a significant excess of j-
particles corresponding to the dif-

ference nLj (x)− nSj and, simul-

taneously, there is a significant
deficit of i-particles correspond-

ing to the difference nSi − nLi (x)
(Figures 7 and 8). The i-particles
corresponding to the flux JLi =
DLi dn

L
i /dx are incoming continu-

ously into the interface region by
diffusion mass transport and si-
multaneously j-particles are leav-
ing this region also by diffusion
mass transport corresponding to
the flux JLj = D

L
j dn

L
j /dx.

In order to grow a perfect epitaxial layer (without second phase inclusions and with
an exact stoichiometry corresponding to the substrate one), a balance is required to exist
between:

- the incoming into the δ - region by diffusion i-particles (JLi ) and the free positions for

these particles available there (given by the concentration difference nSi − nLi (x) )

on one side and

- the j-particles leaving by diffusion (JLj ) the δ - region and their excess amount there

(given by the concentration difference nLj (x)− nSj ) on the other side.
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Figure 8. Proportionality between the diffusion flux
dCLj /dx and the excess [n

L
j (x) − nSj ] for the case of j-

components.

In Figure 7 the shaded region
illustrates the amount of missing
i-particles in the interface region

nSi − nLi (x) . In order to form

an epitaxial layer with the amount
of i-components coinciding with
that in the substrate the missing
amount must be ”delivered” into
the interface region by diffusion
mass transport.
The shaded region in Figure

8 illustrates the excess amount of
j-particles in the interface region

nLj (x)− nSj . For the same rea-
son, this amount must be ”re-
moved” from the interface region
also by diffusion mass transport.

Hence, a balance is required between the diffusion fluxes of the i- and j-particles
DLi dn

L
i /dx and D

L
j dn

L
j /dx, on one side, and their corresponding concentration differences

nSi − nLi (x) and nLj (x)− nSj , on the other side. One may postulate:

DLi
dnLi
dx

= Ki n
S
i − nLi (x) ; −DLj

dnLj
dx

= Kj n
L
j (x)− nSj (24)

where Ki and Kj are coefficients.
The solutions of equations (24) must fulfil the above mentioned requirements: for the

i-components the concentration gradient must always be positive dnLi /dx > 0 and for the
j-components it must always be negative dnLj /dx < 0. The following expressions satisfy
these requirements:

nLi (x) = n
S
i −A0i exp −

Ki
Di
x ; nLj (x) = n

S
j +A0j exp −

Kj
Dj
x (25)

These equations are valid within the interface region (for the values of x ∈ [0, δ] ).
For the case of an equilibrium liquid phase epitaxy when the actual concentration at the
phase boundary (x = 0) is always equal to the equilibrium one, i.e nLi (x = 0) = n

L
i.eq and

nLj (x = 0) = n
L
j.eq, one obtains the following values for the coefficients A0i and A0j :

A0i = n
S
i − nLi.eq(T ) ; A0j = n

L
j.eq(T )− nSj (26)

The maintenance of the balance between the i- and j- diffusion fluxes, on one side, and
the corresponding concentration differences, on the other side, is necessary for growing
a perfect epitaxial layer repeating the crystal structure of the substrate as well as its
composition. The violation of this balance may lead to significant deviations from the
stoichiometric composition of the grown layer as well as to the formation of second phase
inclusions.

Hence, for the growth of a perfect epitaxial layer without any deviations from the
stoichiometry and without any second phase inclusions, it is necessary to provide such
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growth conditions so that the incoming by diffusion into the interface region i-particles
push out completely the excess j-particles. However, this is a process depending on many
factors and, consequently, it could be easily disturbed and hindered.

Now the question arises how deep is the volume of the liquid phase where the processes
described above are carried out - in other words the question arises about the dimensions
(the depth) of the δ - region.

The epitaxial growth is, in fact, an interaction process between two phases - it con-
sists of a separation of a given amount of the liquid phase which builds up the epitaxial
layer onto the substrate. The mass separation is inevitably accompanied with an energy
exchange corresponding to the activation energy of the phase transition.

In reality, the direct interaction between both phases takes place only within the limits
of the interface region. The other volume of the liquid phase (situated far away from the
phase boundary) interacts with the substrate indirectly by diffusion and, consequently,
with some delay. This delay depends on the distance to the phase boundary and on the
velocity of the diffusion mass transport.

The crystal growth process is carried out chain-like. The decrease of the temperature
of the system causes a reaction of the deposition of the epitaxial layer onto the substrate.
The portions of the ambient are deposited directly from the phase boundary region with
depth δ. As mentioned above, the liquid phase far away from the crystal surface responds
to the given influence with some delay caused by the diffusion.

Using this, one can determine approximately the depth δ of the interface region. Con-
sidering the epitaxial growth process within a very small time interval (∆t → 0), the
deposited epitaxial layer of thickness ∆H will be formed from a very thin liquid phase
region close to the substrate surface. The thickness of this region tends to the thickness
of the interface region δ for very small values of ∆t and ∆H : ∆t→ 0, ∆H → 0.

In the rest of the liquid phase volume (for x ≥ δ), the distribution of the components
remains the same. During the considered time interval ∆t, due to the chain-like character
of the crystal growth process, the deep regions of the liquid phase, far away from the crystal
surface, have no time to follow the deposition of the last portion of epitaxial material.

Figure 9. The situation at the begining of liquid
phase epitaxial growth in the case of i-component.

Without sufficient accuracy, the
problem could be solved for an ar-
bitrary moment of time. However,
for the initial moment of growth t ∈
(0,∆t), the accuracy of the solu-
tion could be significantly better -
such consideration will give the ini-
tial value of depth δ0. The approach
applied above for determination of
the growth rate (equations (14) and
(15)) will be used.
Fig. 9 shows the situation at the

initial moment - the solid and liq-
uid phases are in equilibrium (equi-
librium growth supposed). Following
the same procedure, one can write
the following equation analogous to
equation (11):
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NL
i (t = 0) =

Z0

0
nLi (x, t = 0)dx = n

S
i ∆H +

Z0

∆H
nLi (x, t = ∆t)dx (27)

nSi ∆H =
δ0

0
nLi (x, t = 0)dx−

δ0

∆H
nLi (x, t = ∆t)dx

For x ≥ δ0 both integral functions coincide: n
L
i (x, t = 0) ≡ nLi (x, t = ∆t) and it is

quite sufficient to integrate within the limits x ∈ (∆H, δ0). The very small time (∆t→ 0)
means that both intervals x ∈ (0, δ0) and x ∈ (∆H, δ0) are also very small. Hence, the
function nLi (x, t = ∆t) within these intervals may be approximated by a linear one.

nLi (x, t = 0) = n
L
i.eqo ;

nLi (x, t = ∆t) = n
L
i (x = ∆H, t = ∆t) +

∂nLi
∂x

x = nLi.eq +
∆nLi (x,∆t)

δ0 −∆H x =

= nLi.eq +
nLi (x = δ0,∆t)− nLi (x = ∆H,∆t)

δ0 −∆H x = nLi.eq +
nLi.eqo − nLi.eq
δ0 −∆H x (28)

Substituting into equation (27), by some transformations, one obtains:

nSi ∆H = nLi.eqoδ0 − nLi.eq(δ0 −∆H)−
nLi.eqo − nLi.eq
δ0 −∆H

x2

2

δ0

∆H

=

= nLi.eqoδ0 − nLi.eq(δ0 −∆H)−
nLi.eqo − nLi.eq

2
(δ0 +∆H) ; (29)

δ0 =
2nSi − 3nLi.eq + nLi.eqo

nLi.eqo − nLi.eq
∆H

The very small time interval (∆t → 0) means that nLi.eq → nLi.eqo and n
L
i.eqo − nLi.eq =

νT
Si
∆t. The last expressions simplify substantially (taking into account ∆H/∆t = νgr )

equation (29).

Figure 10. The situation at the begining of liquid
phase epitaxial growth in the case of j-component.

δ0 = 2Si
nSi − nLi.eqo

νT
νgr (30)

The same expression could be
reached for a j-component (Fig. 10).

δ0 = 2Sj
nSj − nLj.eqo

νT
νgr (30a)

In fact, the calculated quantity δ0
gives the depth of the liquid phase,
from which the volume of the epi-
taxial layer is built up. However,
for very small times (∆t → 0), this
depth coincides with the thickness of
the interface region.
The equations (29), (30) and (30a)

give an additional correlation for the
determination of the interface region



Addition to the Theory of Liquid Phase Epitaxial Growth 101

depth δ0. The direct use of these equations gives only the ratio δ0/∆H. For the case
of liquid phase epitaxial growth of GaAs and for the growth temperature of 1273 K, an
approximate calculation gives this ratio as about 1600, for the growth temperature of
1173 K it is about 3500, for 1073 K - 8000 and for 973 K - 21000. This is not enough for
the determination of δ0 - an additional correlation is needed.

8. Discussion

All these considerations allow us to make some general conclusions.

The crystal growth is a strongly correlated process governed by the structure of the
substrate and by its composition.

The whole practice has proved that independent of the liquid phase composition (cor-
responding to the liquidus surface), the interface region passes through the components
in proportions preliminarily determined by the stoichiometry of the grown compound.
During deposition of GaAs at different temperatures (in the range 600 - 1000◦C), the
composition of the grown solid phase is always constant (50 mol % Ga and 50 mol % As).
Despite this the liquid phase composition (close to the liquidus line) undergoes significant
changes.

One may conclude that the interface region is like a filter passing through the compo-
nents of the system in proportions preliminarily given by the solid phase stoichiometry.
A possible explanation could be the interface potential field caused by the substrate crys-
tal. Probably, by the potential wells, this field transmits information not only about the
structure of the substrate but also about its composition.

The ability of the interface region to be a filter passing through in strict proportions
the components during growth, is represented by equations (7), (8), (8a), (9), (17 - 22).
Exactly this circumstance unites all these equations.

Equations (30) and (30a) allow us to make conclusions about the depth of the interface

region δ0. The difference nSi − nLi.eqo is a temperature depending quantity - it increases

with decrease of the growth temperature. At growth temperatures near the melting point
of the compound, it goes to zero. The low growth temperature leads to the low value
of the growth velocity. At the same time, the slope of the liquid surface Si increases
significantly. One can not make only one conclusion with respect to the growth of all
possible compounds, but there are grounds to assume that at low growth temperatures
the depth of the interface region δ0 will increase.

There is reason to assume that the thickness of the interface region δ0 is different
for different components. This difference could be caused by the different values of their
concentrations in the liquid phase and by their different diffusion coefficients. In this case
in equations (27 - 30) and (30a) the designation δ0i must be used in order to indicate that
for the different components, the thickness of the interface is different. Such an assumption,
however, will significantly complicate the physics of the crystal growth process.

We have assumed the depth of the interface region δ0 to be the same for all components.

It has already been shown [75, 76] that for the process of particle migration on the
crystal surface, the different components of the liquid phase must have the same coefficient
μ0. This allows us to make the conclusion that the behavior of the components within
the interface region is fully different from their behavior in the volume of the liquid phase.
The components behavior in the interface region is probably unified despite the different
values of their diffusion coefficients and of their concentrations in the liquid phase volume.
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The latter allows us to assume that the depth of the interface region is the same for all
components. Then from equations (30) and (30a) it leads inevitably that the product

Sk(n
S
k − nLk.eqo) = q0 > 0 (31)

is also the same for all components: k ∈ (1, n). Here one must point out that q0 depends
not on the growth process conditions but on the parameters of the liquidus and solidus
surfaces.

q0 is always a positive quantity (q0 > 0). For the i-components, where nSi − nLi.eqo >

0, it follows that it is identical to Si > 0. For j-components nSj − nLj.eqo < 0 and one

obtains Sj < 0. This confirms the conclusions made above that the i-components are
deposited always from a supercooled liquid phase and the j-components are deposited
always from a superheated liquid phase.

9. Conclusion

In the present work the liquid phase multicomponent compound growth is considered.
It is shown that part of the components participate in the growth process and are deposited
onto the substrate from a supercooled liquid phase. For the rest of the components, the
liquid phase is superheated. Despite this, they also participate in the growth process. A
possible mechanism is presented explaining the possibility of the components, with respect
to which the liquid phase is superheated, also to take part in the growth process.

The behavior of a given component during growth depends on the ratio between its
liquid phase concentration and its solid phase one. Through this ratio a characteristic
function can be defined depending exactly on the growth conditions. The value of this
function during growth, at given temperature, is determined by the sum of the relative
changes of the mass and of the concentration in the liquid phase of an arbitrary component.

During crystallization all components are deposited onto the substrate, building up the
epitaxial layer in strict correlated proportions. These proprotions do not depend either
on the growth temperature or on the liquid phase concentrations of the components. In
this way, for the characterization of the growth process, it is quite sufficient to study the
behavior of only one component - the basic component. The arbitrary component of the
system may be the basic component.

Considering the growth process within a very small time interval, one could determine
the depth of that region situated close to the phase boundary, where both phases interact
directly by heat and mass exchange. The obtained result allows us to make the conclusion
that at high temperature the depth of the interface region must be smaller and this could
have substantial importance for the quality of the grown material.
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Abstract

In earlier studies the mesophase sequences and ferroelectrics characterizations
of the H and HO series of lactic acid derivatives were carried out. The chiral
centres were connected either by ether or ester groups to the core. The ester
linkage of latic acid preferred the formation of the tilted phase since the ethereal
connection rather hindered it. These studies were extended to the compounds,
which belong to H, HO, M, MO, DM, DMO series.
In this presentation the effect both of lateral methyl substituent and the elon-
gation of the terminal chiral chain by some additional chiral centres will be
discussed.

Key words: Ferroelectric liquid crystals, phase sequences, transition temperatures, spon-
taneous polarization

1. Introduction

Since the first high speed electrooptic device based on ferroelectric liquid crystals (FLC)
was discovered [1], a great interest has been directed to a search of new FLC substances
which would satisfy application demands. High spontaneous polarization (Ps) together
with low viscosity are important properties which can ensure the high switching speed.
We have synthesized new FLC materials (H n/m, M n/m, DM n/m) with high value of
Ps [2, 3]. Chiral groups used in our study were derived from commercially supplied (S)-(-
)-ethyllactate which enables a synthesis of a great number of chiral groups differing in the
length of the carbon chain (H n/**, HO n/** [4], M n/**, MO n/**, DMO n/**, DMO
n/***).
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Figure 1. General structural scheme of investigated compounds.

Table 1. List of new ferroelectrics materials.

Series R R1 R2 R3 X Y Table
H n/m n-alkyl H H n-alkyl OOC O 2
H n/** n-alkyl H H S-(2)-Me-Bu* OOC O 2
M n/m n-alkyl CH3 H n-alkyl OOC O 3
M n/** n-alkyl CH3 H S-(2)-Me-Bu* OOC O 3
MO n/m n-alkyl CH3O H n-alkyl OOC O 4
MO n/** n-alkyl CH3O H S-(2)-Me-Bu* OOC O 4
DM n/m n-alkyl CH3 CH3 n-alkyl OOC O Fig.2.a-d
BM 5

HO n/m n-alkyl H H n-alkyl O COO 6
HO n/** n-alkyl H H S-(2)-Me-Bu* O COO 6
DMO n/m n-alkyl CH3 CH3 n-alkyl O COO 7
DMO n/** n-alkyl CH3 CH3 S-(2)-Me-Bu* O COO 7

2. Experimental

The sequences of phases and the phase transition temperatures were determined from
texture observations by an Amplival Pol-U polarizing microscope equipped with a Boetius
hot-stage.

Differential Scanning Calorimetry (DSC) measurements were carried out by a Perkin
Elmer DSC7 equipment. The spontaneous polarization (Ps) values were determined from
the P(E) hysteresis loop detected during ferroelectric switching in an a.c. electric field at
a frequency of 60 Hz.

3. Results

Phase sequences and transition temperatures of the H n/m and H n/** series are shown
in Table 2. All substances exhibit a wide temperature range of SmC* phase characterised
by high Ps values. Nearly all substances (except six from the H n/m series) exhibit a
phase transition from the SmC* to a low temperature smectic phase, which is denoted by
SmN. SmN is an orthogonal phase, dechiralization lines disappear at the phase transition;
electrooptic switching is not observable.

The phase sequences of the methyl substituted homologous series (M n/m and M n/**)
on cooling are summarized in Table 3. The melting temperatures (m.p.), enthalpies, and
the Ps values are given too. As shown in Table 2. and Table 3., all phase transition
temperatures for the M n/m and M n/** are significantly lower compared to the H n/m
and H n/** series. This effect is well known and can be explained in terms of the steric
influence of the methyl group on molecular packing.
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Table 2. Phase sequences, transition temperatures (◦C) and spontaneous polarization
Ps (nC/cm

2) at the temperature 5◦C below the transition to the SmC* phase for the
homologous series H n/m, H n/**.

Comp. SmC* SmA* N* BP Iso Ps
H 6/5 Cr 40 • 127 - • 150 - • 64
H 6/7 Cr 37 • 124 - • 143 - • 57
H 6/8 Cr 40 • 122 - • 138 • 139 • 62
H 6/9 Cr 32 • 120 • 126 • 134 • 135 • 57
H 6/10 Cr 40 • 119 • 128 • 132 • 133 • 45
H 6/12 Cr 70 • 119 • 129 • 131 • 133 • 43
H 8/** SmN 64 • 122 - • 153 - • 59
H 8/4 SmN 70 • 138 - • 163 - • 62
H 8/5 Cr 72 • 134 - • 145 - • 91
H 8/7 Cr 63 • 132 - • 140 - • 82
H 8/8 SmN 61 • 128 - • 134 - • 60
H 9/8 SmN 57 • 129 - • 130 • 133 • 95
H 9/9 SmN 67 • 127 - • 130 • 131 • 88
H 10/** SmN 72 • 126 - • 132 • 134 • 77
H 10/5 SmN 75 • 135 - • 139 - • 86
H 10/7 SmN 69 • 130 - • 139 - • 67
H 10/8 SmN 71 • 133 - - - • 66
H 10/10 SmN 68 • 128 - - - • 61
H 10/12 SmN 75 • 132 - - - • 50
H 12/** SmN 82 • 142 - • 157 - • 32
H 12/4 SmN 79 • 142 - • 143 - • 55
H 12/5 SmN 69 • 136 - - - • 59
H 12/7 SmN 81 • 144 - • 149 - • 43
H 12/8 SmN 77 • 136 - - - • 59
H 12/10 SmN 64 • 127 - - - • 63

Table 3. Phase sequences, transition temperatures (◦C) and spontaneous polarization
Ps (nC/cm

2) at a temperature 5◦C below the transition to the SmC* phase for the
homologous series M n/m, M n/**.

Comp. m.p. Cr SmC* N* BP Iso Ps
M 6/9 63 [28.5] • 6 • 77 [2.4] • 105 [0.7] - • 120
M 8/** 46 [15.4] • 10 • 80 [3.5] • 87 • 94 [0.8] • 192
M 8/5 50 [8.3] • 10 [25.8] • 89 [3.1] • - 104 [1.0] • 121
M 8/6 65 [23.0] • 25 • 80 [3.2] • - 107 [1.0] • 180
M 8/10 76 [55.0] • 34 [36.5] • • 76 [3.6] - •
M 10/** 57 [37.4] • -10 • 82 [3.2] 89 • 94 [1.0] • 153
M 10/10 75 [38.3] • 25 [35.0] • 89 [4.3] • 90 • 91 [1.1] • 83
M 12/6 44 [21.9] • 25 [32.4] • 91 [4.1] • - 96 [1.1] • 81
M 12/10 50 [29.5] • 24 [46.1] • - - 87 [6.1] • 74

When we compare the properties of the M n/m compounds and their MO n/m ana-
logues, a significant difference can be observed: the SmC* - Cr phase transitions of the M
n/m series are lowered substantially and the transitions to the isotropic state are shifted
to slightly higher temperatures (Table 3. and Table 4.). The narrow blue phase (BP),
which appears for the M n/m series is not observable for the MO n/m series.
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A comparison of the Ps values for MO n/m and H n/m (Table 4. and Table 2.) shows
that the methoxy group does not influence the Ps value.

Table 4. Phase sequences, transition temperatures (◦C) and spontaneous polarization
Ps (nC/cm

2) at the temperature 5◦C below the transition to the SmC* phase for the
homologous series MO n/m, MO n/**.

Comp. SmC* SmA N* BP Iso Ps
MO 8/5 Cr 54 • 69 • 79 • 80 - • 66
MO 8/7 Cr 37 • 82 - • 103 - • 50
MO 8/12 Cr 37 • 65 - • 85 - • 24
MO 10/** Cr 55 • 71 • 77 - • 66
MO 10/5 Cr 62 • 81 - - - • 57
MO 10/10 Cr 45 • 89 - - - • 57
MO 10/12 Cr 61 • 80 - - - • 35
MO 12/5 Cr 70 • 82 • 85 - - • 27
MO 12/7 Cr 52 • 86 - - - • 61
MO 12/8 Cr 66 • 80 • 85 • 87 - • 47
MO 12/10 Cr 49 • 85 - - • 76
MO 12/12 Cr 62 • 82 - - - • 66

The data of the DM n/m series [5], measured by DSC, were in good accordance with
that of the microscopic observations. The phase diagrams of four homologous series of
DM n/m can be seen in Fig.2a-d. Almost every member of the homologous series ex-
hibits monotropic BP, N*, SmC* mesophases, except DM 10/6, which has a very short
enantiotropic N* phase (Fig.2c).

Figure 2a-d. Phase diagrams of the homologous series a) DM 7/m, b) DM 8/m, c) DM 10/m,
d) DM 12/m .
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Binary mixtures of these compounds were prepared and investigated (Table 5). The
mixtures (BM1-BM6) were composed of members of the DM n/m series with chiral chains
differing from each other by four carbon atoms in length. These mixtures exhibit the
enantiotropic SmC* and N* phase. Presumably the intercalated tail-to-tail packing of the
molecules stabilizes the ferroelectric phase, making it enantiotropic.

Table 5. Phase sequences and transition temperatures (◦C) for the binary mixtures.

Mixtures Comp. Wt[%] m.p. Cr SmC* N* I
BM1 DM7/6 50 46.5 • (30) • 51 - •

DM7/10 50
BM2 DM10/8 60 45 • (38) • 48 • 53.5 •

DM10/12 40
BM3 DM10/8 46.7 45 • (37) • 49 • 53 •

DM10/12 53.3
BM4 DM12/8 44.1 50 • (37) • 54 • 55 •

DM12/12 45.9
BM5 DM12/8 43.2 52 • (40) • 54 - •

DM12/12 56.8
BM6 DM12/8 40 54 • (40) • 55 - •

DM12/12 60
BM7 DM10/8 33.3 78 • (55) • (72) - •

M8/10 66.7
BM8 DM8/10 50 57 • (40) • (55.5) • 59 •

M8/10 50
BM9 DM7/5 60 51 • (28) • (36) • 51 •

DM12/12 40
BM10 DM7/5 40 52 • (40) • (42) • 52 •

DM12/12 60
M8/10 100 76 • (34) • 76 - •

The phase sequences of two series of chiral liquid crystalline substances HO n/m,
having an function as connecting group, are shown in Table 6. All compounds exhibit BP,
N* and SmA* phases. The ferroelectric SmC* phase disappears.

Table 6. Phase sequences and transition temperatures (◦C) for the homologous series
HO n/m and HO n/**.

Comp. Cr SmB SmC* SmA* N* BP Iso
HO 8/6 • 32 • 43 - • 52 • 95 • 98 •
HO 8/** • 40 • 56 - • 66 • 82 • 85 •
HO 9/6 • 33 • 42 - • 53 • 87 • 91 •
HO 10/6 • 27 • 44 - • 64 • 92 • 95 •
HO 10/8 • 39 • 42 - • 55 • 84 • 87 •
HO 10/10 • 37 • 40 - • 61 • 77 • 83 •
HO 10/12 • 36 • 40 - • 59 • 77 • 83 •
HO 10/** • 41 • 53 • 58 • 65 • 84 • 87 •

Two new chiral homologous series of DMO n/m were synthesized (Fig. 3) and char-
acterised too.
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Figure 3. Synthesis of DMO n/m series.

These materials do not possess any liquid crystalline phase (Table 7). Having low
melting points, these new materials can be used as chiral additives to decrease the melting
points of multicomponent ferroelectric mixtures.

Table 7. Melting temperatures (◦C) for the homologous series DMO n/m, DMO 12/**
and DMO 12/***.

Comp. m.p. I
DMO 10/6 35-38 •
DMO 10/10 53-54.5 •
DMO 10/12 44.5-46.5 •
DMO 12/10 52-53 •
DMO 12/12 52-54 •
DMO 12/** 30-32 •
DMO 12/*** Liquid at -20
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4. Conclusion

In the non-substituted series (H n/m), where the chiral center is connected to the core
by an ester function, the mesophase formation is enhanced, the ferroelectric SmC* phase
has a wide temperature range. This fact is due to the conjugation between the aromatic
system and the carbonyl group of the chiral part, since the core of the molecule is enlarged
and the in-plane conformation is more favourable.

The methyl or methoxy substituent in position 3 of the phenyl ring (M n/m and MO
n/m series), decreases the transition temperatures in comparison to the non-substituted
derivatives (H n/m series).

The introduction of two methyl groups into 3,5-positions gives rise to a dramatic
change of mesogenic behaviour. The members of the DM n/m series show only monotropic
mesophases. The ether linkage of the chiral center hinders the formation of ferroelectric
properties (HO n/m), the rigid core of the molecule becomes shorter and it is enough to
destroy completely the liquid crystalline behaviour in DMO n/m series.

The introduction of the second chiral center enlarges the molecule, i.e. the elongation
of the chiral part, results in a higher value of Ps (M 10/** and MO 10/**).

These effects suggest that the most powerful compounds are the H n/m, M n/m and
MO n/m series which have a wide SmC* range and a high value of Ps.
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Abstract

A new method for calculating the energy straggling distribution of charged
particles after their passage through a thick target has been established. The
comparisons of calculated spectra with the experimental alpha-spectra in no-
ble gases show good agreement in the limits of accuracy of Bohr’s cross-section
formula. The possibility of using the Monte-Carlo simulation of charged par-
ticles passage through a medium in testing various cross-section formulae for
the projectile energy loss has been discussed.

Key words: Alpha-particles, energy loss, straggling

1. Introduction

Energy loss distributions after the passage of charged particles through a target have
an asymmetric shape, with a long tail toward higher energy losses. The asymmetry of
a peak is more expressed in thin targets than in thick ones. Many authors studied the
problems of straggling distributions. We shall mention only a few of them: Landau [1],
Vavilov [2], Shulek et al [3], Bichsel [4] and Sigmund and Winterbon [5] in thin targets, and
Tschalär [6] in thick targets. In our previous paper (Novković et al [7]) we derived a simple
analytical formula for a peak broadening in thick targets starting from Symon’s equations
[8]. The formula was verified on experimental alpha spectra in noble gases (Novković
et al [7]), and, also, in diatomic and polyatomic gases (Milošević et al [9]). Since only
peak widths were determined, alpha spectra were approximated with the Gaussian. More
accurate reproducing of energy straggling distributions requires calculations of more than
one parameter of the energy loss distribution functions. The aim of this paper is to
establish a method for accurate calculations of charged particle energy distributions.

2. Procedure for calculations of asymmetric distributions

In his known paper Tschalär [6] calculated the energy loss distribution functions of
charged particles, by solving Symon’s system of differential equations for central moments
[8], and applying Johnson’s functions [12] as density distribution functions. Symon’s
system for central moments of the energy straggling distributions reads

dσn
dx

=
∞[
l=0

(−1)l
l!

%
n[

m=1

#
n

m

$
dlkm
dT l

σn−m+l − nσn−1σld
lk1
dT l

&
, (1)
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where σ0 = 1, σ1 = 0, T is the mean energy of the straggling distributions, and

kn = N

∞]
0

dwτn, (2)

where N is the number of atoms per unit mass, and dw is the differential cross-section
for a particle energy loss of τ . The quantity k1 is equal to the stopping power. The most
frequently used cross-section is Bohr’s formula [10]

dw =
2πz21z2e

4

mv2
1

τ2
, (3)

where z1e and z2e are projectile and target charge, respectively, m is the electron mass
and v is the projectile velocity. Minimum and maximum energy transfer in a collision are

τmin = I2/εT , (4)

τmax = εT .

where ε is

ε = 4
m

M

�
1 +

m

M

�−2
≈ 4m

M
, (5)

andM is the projectile mass and I is the mean ionization potential of the stopping medium.
Using cross-section formula (3), the expressions for kn are obtained [6]

kn =
2Nπz21z2e

4

mv2
(εT )n−1

n− 1 , n = 2, 3, ... (6)

and

k1 =
2Nπz21z2e

4

mv2
ln

τmax
τmin

= S(T ), (7)

where S(T ) is the stopping power. Instead of the above simplified expression for k1,
empiric or semi-empiric formulae for stopping power can be used. Since

2Nπz21z2e
4

mv2
= S(T )/ ln(τmax/τmin) (8)

expression (6) is changed

kn =
S(T )

ln(τmax/τmin)

(εT )n−1

n− 1 , n = 2, 3, ... . (9)

The nth order central moment is not defined in the conventional manner but as [6]:

σn =

] ∞
0
f(T )(T̄ − T )ndT. (10)

Substituting a new variable ∆ = T0−T , where T0 is an emerging particle energy and ∆ a
particle energy loss, we obtain the conventional formula for the nth order central moment:

σn =

] ∞
0
f(∆)(∆− ∆)nd∆. (11)



Energy Loss Distributions in Thick Targets 117

For the fitting alpha peaks of alpha-spectrometers, Bortels and Colaers [11] successfully
applied the following formula

f(∆) =
A

t0
exp

#
w2

2t20
− ∆−∆p

t0

$ z]
−∞

1√
2π
exp

#
−y

2

2

$
dy, (12)
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. (13)

We also used this formula in our calculations since Bortels and Colaers had good results
applying it and since the central moment of the formula has closed forms (Appendix B).

In the above expression A, w, t0 and ∆p are parameters, ∆ is the charged particle
energy loss. The maximum of f(∆) is at the point ∆ = ∆p, therefore ∆p is the most
probable energy loss. Constant A is the constant of normalization:

∞]
0

f(∆)d∆ ∼=
∞]

−∞
f(∆)d∆ = A. (14)

In the above integral the lower limit can be extended from 0 to −∞ since left of the peak
curve f(∆) rapidly decreases to 0. For a normalized spectrum A = 1 (Appendix A).

Mean energy loss ∆, the second order and third order central moments are (see Ap-
pendix A and B)

∆ = ∆p + t0, (15)

μ2 =

+∞]
−∞

(∆− ∆)2f(∆)d∆ = t20 + w2, (16)

μ3 =

+∞]
−∞

(∆− ∆)3f(∆)d∆ = 2t30, (17)

If the real energy straggling distribution is completely described by function (12), then
central moments μn of f and central moments σn of real energy distributions would be
equal and all three parameters, ∆p, t0 and w could be calculated by expressions (14),
(15) and (16).The real energy straggling distributions are not completely determined by
functions (12). Therefore, more than three central moments of f(∆) have to be calculated
in order to obtain minimum deviation f(∆) from the real energy distribution of charged
particles. Parameters ∆p, w, and t0 should be determined so that μn minimum deviates
from σn. The expressions for ten central moments μn of f(∆) are given in Appendix B.
It is evident that the nth root of μn’s has the same order of magnitude, hence in order to
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optimize parameters ∆p, t0 and w, we introduce function R(t0, w),

R(t0, w) =
N[
n=2

⎡⎣1− �μn(t0, w)
σn

� 1
n

⎤⎦2 , (18)

where μn are expressions given in Appendix B, and σn are solutions of Symon’s system of
differential equations (1). Parameters t0 and w are best determined when R(t0, w) has a
minimum, i. e. when the following two equations are satisfied

∂R(t0, w)

∂t0
= 0 (19)

∂R(t0, w)

∂w
= 0.

The number of central moments, N , were varied from 6 to 10 and the obtained results
were very close. In (18) ratio (μn/σn)

1/n is of the same order of magnitude for different n,
so all central moments were taken into account in the course of calculation. Usually, instead

of expression (18), the ratio
NS
n=2

k
1−

�
μn(t0,w)

σn

�l2
is used. In this case larger moments have

a greater influence on the shape of the peak, since the ratio (μn/σn) increases with n.

3. Monte-Carlo simulation

Bohr’s total cross-section for interaction of a charged particle with a stopping medium
is obtained by integration (3) in the limits [τmin, τmax],

w =

τ max]
τ min

dw =
4πz21z2e

4

τmax

�
1

τmin
− 1

τmax

�
=

=
S(T )

N

1

ln(τmax/τmin)

�
1

τmin
− 1

τmax

�
, (20)

and the mean path length, λ0, is

λ0 = 1/(Nw) =
ln(τmax/τmin)

S(T )

I2

τmax − τmin
(21)

The distribution function of path lengths is

F (λ) = 1− e−λ/λ0 , (22)

where λ is a free path length between two successive collisions of a charged particle.
Applying the method of inversion function, a free path length between (i − 1)th and ith
collision is

λi = −λ0 ln(1− ri), (23)

where ri is a pseudo-random number in the range [0, 1). The energy loss distribution
density function is

dq

dτ
=
1

w

dw

dτ
=

1

1/τmin − 1/τmax
1

τ2
, (24)
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which, using the method of inversion function, gives an energy loss in ith collision, τi,

1

τi
=
1− ri
τmin

+
ri

τmax
. (25)

In the Monte-Carlo simulation of the charged particle passage through a target of thickness
d, energy loss is obtained by summing of τi until the particle exits the target, i. e.,

∆ =
[
i

τi (26)[
i

λi ≤ d.

This method is suitable only for thin targets, since λ0 is very small (the order of magnitude
of λ0 for alpha-particles in neon amounts to 10

−7 g/cm2).

4. Discussion and conclusion

The alpha-spectra of ThC+ThC� single-line (E = 8.7844 MeV) in noble gases have
been chosen for an experimental testing of the present method for the calculation of
energy straggling distributions. The experimental arrangement and a part of the exper-
imental results have been published earlier (Novković et al. [7]). The alpha straggling
spectra in the thin Ne target obtained by the Monte-Carlo simulation, Vavilov’s formula
[2], and by the present method of calculation are shown in Fig. 1. The curves, evaluated
by the Monte-Carlo simulation and Vavilov’s formula show excellent agreement, but the
spectrum, calculated by the present method, significantly deviates from them. In this case
the target is too thin for this method of calculation. The comparison of the experimental
spectra with the spectra calculated by the present method or obtained by the Monte-Carlo
simulation are given in Figs. 2, 3, 4, 5 and 6. The agreement of the experimental spectra

Figure 1. The comparison of the present
method of calculation of charged particles en-
ergy loss spectra in the thin neon targe with
Vavilov’s formula and the Monte-Carlo simula-
tion.

Figure 2. The comparison of the present
method of calculation of the energy straggling
spectrum in the thick helium target with the
experimental spectrum and Monte-Carlo simu-
lation.

with the calculated spectra are reasonably good except for the spectra in He (Fig. 2).
Namely, the Monte-Carlo simulation curve is twice narrower than the experimental curve.
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This deviation is probably due to the inaccuracy of Bohr’s cross-section formula. How-
ever, the present method also applied the same formula; hence, we conclude that it is
less sensitive to the cross-section energy loss formula than the Monte-Carlo simulation of
the passage of the charged particles. This feature of the Monte-Carlo simulation can be
used for testing various theoretical cross-section formulae for projectile-stopping medium
interaction. Several examples of the calculated spectra by the present method and the
experimental spectra after alpha particles passage through thick targets are given in Fig.
7.

Figure 3. The comparison of the present method
of calculation of the energy straggling spectrum
in the thick neon target with the experimental
spectrum and Monte-Carlo simulation.

Figure 4. The comparison of the present
method of calculation of the energy straggling
spectrum in the thick argon target with the
experimental spectrum and Monte-Carlo sim-
ulation.

Figure 5. The comparison of the present
method of calculation of the energy straggling
spectrum in the thick krypton target with the
experimental spectrum and Monte-Carlo sim-
ulation.

Figure 6. The comparison of the present
method of calculation of the energy straggling
spectrum in the thick xenon target with the ex-
perimental spectrum and Monte-Carlo simula-
tion.

All calculations, solving Symon’s system of differential equations with ten central mo-
ments (1) , finding roots of equations (21) , deducing the expressions for central moments,
μn, of function f(∆) using recurrence relation (B. 4), have been done by the Mathematica
3.0 program.
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Figure 7. The experimental and calculated alpha energy spectra in noble gases.

5. Appendix A: The mean energy loss
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6. Appendix B: The Recurrence formula

The central moment of order n of function f(∆) is defined by the expression
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Derivating the left and right side of the above expression in terms of w, we have
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If we introduce a new variable η = t0/w in the above equation, we have

μn+1 = nt0μn + nμn−1t20
�
1 +
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η2

�
+ ηt0

dμn
dη
, n = 2, 3, ... (B.4)

Since μ0 = 1 and μ1 = 0, the following expressions are deduced from recurrence formula
(B.4)

μ2/t
2
0 = 1 + 1/η2

μ3/t
3
0 = 2

μ4/t
2
0 = 9 + 6/η2 + 3/η4

μ5/t
5
0 = 44 + 20/η2 (B.5)

μ6/t
6
0 = 265 + 135/η2 + 45/η4 + 15/η6

μ7/t
7
0 = 1854 + 924/η2 + 210/η4

μ8/t
8
0 = 7(2119 + 1060/η2 + 270/η4 + 60/η6 + 15/η8)

μ9/t
9
0 = 8(16687 + 8343/η2 + 2079/η4 + 315/η6)

μ10/t
10
0 = 9(148329 + 74165/η2 + 18550/η4 + 3150/η6 + 525/η8 + 105/η10)
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Abstract

Depleted uranium (DU) is a radioactive and chemically toxic substance in which
the natural ratio of isotopes 235U and 238U is changed by technological pro-
cedure so as to decrease the quantity of 235U. The mountain Plačkovica near
Vranje and three other areas in southern Serbia (Vranje, Preševo and Bu-
janovac) are well known to have been contaminated by DU ammunition since
the end of NATO bombing in the summer of 1999. Much of that amount of DU
was converted at high temperature into an aerosol, that is, minute insoluble
particles of uranium oxide, UO2 or UO3, in a mist or fog [1,2]. The aerosol
resists gravity, and is able to travel tens of kilometers in air. Once on the
ground, it can be resuspended when the sand is disturbed by motion or wind.
Identification of contamination by DU would require specialized equipment for
detecting low- level concentrations of DU in soil. This is a complex problem be-
cause every soil already has a certain concentration of natural uranium [3]. The
research team of the Laboratory of Nuclear Physics at the Faculty of Science
possesses both the equipment and long-time experience in measuring low-level
concentration of gamma-ray emitting radionuclides in environmental samples.
It is shown here that the best analytical method and technique for DU as-
sessment is the determination of the ratio of 238U/226Ra activity because this
ratio is significantly altered in the case of samples contaminated by depleted
uranium. This is a complicated technique since it requires the detection of low-
energy (below 100 keV) gamma ray of 234Th, which is the direct short-lived
daughter of 238U. For that purpose we used the ORTEC ”GMX” spectrometer
which is placed within the low-level iron shield in the Laboratory of Nuclear
Physics at the Faculty of Science in Novi Sad. The main advantage of the
method is that there is no need for any chemical treatment of the samples.
From the measurements of numerous samples in our laboratory we have deter-
mined the detection limit of specific activity of depleted uranium in the soil by
this method to be about 10 Bq/kg.

Key words: Radioactivity, depleted uranium, low-level gamma-ray spectroscopy

1. Introduction

Uranium, U, is a radioactive element with the atomic number Z = 92. In natural
form, uranium is composed of three isotopes 238U, 235U and 234U (see Table 1). 238U is
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the parent of the radioactive decay series in which an equilibrium between the short-lived
234U (member of this chain) and long-lived 238U is established. Therefore, their decay rate
is identical and the number of daughter nuclei remains constant relative to the number of
parent nuclei.

Table 1. Isotopes in natural uranium.

Isotope Abundance [%] Decay Half-life
238U 99.2745± 0.0015 α (4.468± 0.005)× 109 y
235U 0.7200± 0.0012 α (7.037± 0.011)× 108 y
234U 0.005± 0.0005 α (2.454± 0.006)× 105 y

235U is the parent of a second radioactive series. This isotope is susceptible to fission
by thermal neutrons in the process of chain-reaction and is of paramount importance for
releasing nuclear power. Most technologies require higher 235U content than the natural
one. This kind of substance is called enriched uranium. It is used as a fuel in nuclear
reactors and in the production of nuclear weapons.

Depleted uranium is a secondary product of isotopic enrichment. It is composed of
isotopes 238U, 235U and 234U, but with the concentration of two lighter isotopes 3-4 times
lower than in natural uranium (235U ∼ 0.2 %). Specific activity of the depleted uranium
is about 60 % of that of natural uranium, mostly due to the lower 234U activity.

Uranium oxide and its aerosols are insoluble in water. Once breathed in, the very small
particles of uranium oxide, those that are 2.5 microns or less in diameter, may reside in
the lungs for years, slowly passing through the lung tissue into the blood. Uranium oxide
dust has a biological half-life in the lungs of about a year. Because of coughing and other
involuntary mechanisms by which the body keeps large particles out of the lungs, the
larger particles are excreted through the gastro-intestinal tract in feces [4]. The uranium
compounds, which enter the body either through the wall of the gastro-intestinal tract
or the lungs, can be broken down in the body fluids, and tetravalent uranium is likely
to oxidize to the hexavalent form, followed by the formation of uranyl ions. Uranium
generally forms complexes with citrate, bicarbonates or protein in plasma, and it can be
stored in bone, lymph, liver, kidney or other tissues. Eventually this uranium which is
taken internally is excreted through urine. The presence of depleted uranium in urine
seven or eight years after exposure is sufficient evidence to substantiate long term internal
contamination and tissue storage of this radioactive substance.

Uranium is both a chemical toxic and radioactive hazard. Soluble uranium is regu-
lated because of its chemical toxicity, measured by damage to the kidney and tubules.
Uranium is a heavy metal, known to cause uranium nephritis. Because of its slow absorp-
tion through the lungs and long retention in body tissues, its primary damage will be due
to its radiological damage to internal organs rather than chemical damage to the renal
system. Obviously, both types of damage occur simultaneously, therefore it is a matter of
judgment which severe damage, radiological or chemical, occurs at the lowest dose level.
However, with the lengthening of the time during which the contaminant resides in the
body and the low overall dose, the risk of cancer death becomes greater than the risk of
significant damage to the renal system.
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2. Gamma-ray spectrometry of uranium in soil

Since the activities of all nuclides are identical when the radioactive series is in equi-
librium, the concentration of the parent nuclide can be determined from any daughter
acvtivity. Interruption of equilibrium due to geo-chemical processes may occur by long-
lived members of series (230Th and 226Ra in the series of 238U, and 231Pa in the series of
235U).

Emanation of radon as a gas from samples may interrupt equilibrium by nuclides 222Rn
and 219Rn. Keeping the samples in hermetically closed vessels during the period of about
10 half- lives (for 226Ra approximately 40 days), this equilibrium may be again established
before the measurements are performed. Since the natural isotope ratio of uranium is a
constant, the gamma- rays of 235U may be used to measure the amount of 238U. However,
a small isotopic abundance of 235U results in low intensity of these lines, which also form
doublets with lines from another natural series.

There are some 50 gamma-rays of sufficient intensity emitted in the decay of the whole
238U series. Figure 1. shows the γ-ray spectrum of the soil from Kalna. However, only 2
percent of the emitted γ-rays originate from the decays which precede 226Ra, i.e., during
the equilibrium with 238U. Table 2. gives a short list of the most intensive γ-rays emitted
by the first 238U daughters the 234Th and 234Pa.

Table 2. The most intense γ-rays of first daughter nuclei of 238U. Eγ is the energy of the
transition and Iγ is a number of emitted γ-rays per disintegration (absolute intensity).

Nucleus Eγ [keV] Iγ [%]

63.3 3.8
234Th 92.3 2.7

92.8 2.7

76.6 0.4
234Pa 98.4 0.2

1001 0.9

As we see, the most intensive γ-rays in the spectrum of 234Th are of low energy and are
thus not convenient for analysis, considering the problem of efficiency and interference of
a great number of lines from other nuclides and characteristic X-rays of the elements from
detector surrounding. The line of 1001 keV of 234Pa is much more amenable to detection,
but is of low intensity.

The line of 186 keV is one of the most intense lines of the uranium decay chain.
Actually, it is a doublet consisting of two lines: 186.1 keV from the decay of 226Ra and
185.7 keV from the decay of 235U. In the case of equilibrium in the above-mentioned series,
these two components contribute equally to the intensity of this instrumentally inseparable
doublet. The fraction of the intensity of the 186 keV line originating from 235U, which
measures the contents of 235U, or actually 238U, can be obtained by measuring the activity
of 226Ra from post-radon analytical lines (in equilibrium).

The decays of post-radon members of the 238U series yield many strong γ transitions
susceptible to analytical purpose, for example intense lines of 214Bi: 609.3 keV, 1120.3 keV
and 1764.5 keV which do not interfere with lines of other natural series. When radon is in
equilibrium, the intensities of these lines give direct information about the concentration
of 226Ra.
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Figure 1. Gamma-ray spectrum of the soil from Kalna.

Considering these features of radioactive series and the peculiarities of the of gamma-
ray spectrometry technique, essential strategies for measuring the low concentrations of
natural uranium and their variations in environmental samples can be developed [5, 6].

First of all, the samples must be kept in hermetically closed vessels for at least 40 days
in order to reach the equilibrium due to radon emanation. The relative method is often
used for detecting small variations of uranium concentration in samples of similar char-
acteristics (for example, following the accumulation of uranium in soil due to application
of fertilizers). By this method, all the samples are measured under the same geometrical
conditions and only eventual variations in density of samples give rise to systematic error.

In general, there are three principal methods to estimate the activity of 238U from the
complete spectroscopy information realized under the conditions defined above:

1. Using all the analytical lines, by assumption of equilibrium in the whole series, yields
the statistically best-defined result. Degree of interruption of equilibrium within the
limits of measurement uncertainty can be expressed by the statistical treatment
of deviations of the activities from the mean value obtained from analytical lines
of various radionuclides. It is the only way to express the activity of the whole
238U series. However, the result of this procedure predominantly depends upon the
concentration of 226Ra in the sample, due to better statistically defined lines of post-
radon participants in the 238U chain.

2. Determination of the 238U concentration from the intensity of the 186 keV line.
Contribution of 226Ra to the intensity of this line may be precisely computed from
the concentration of 226Ra as determined from post-radon lines. Eventual variation
of radon concentration in the measuring chamber and the resulting wrong estimation
of the background as well as imperfect closing of the vessels can give rise to systematic
errors. Concentration of 235U may be calculated from the known concentration of
226Ra in the sample and the total intensity of 186 keV line, and the concentration of
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238U thenceforth, considering the constant isotopic abundance of 235U in natural
uranium.

3. Determination of the concentration of 238U from the low-energy lines of 234Th, which
is the first daughter of 238U. Therefore, this provides the most reliable result in spite
of the problem of measuring the intensities of low-energy lines. At the energies below
100 keV, the efficiency of detection rapidly decreases and, within lead shieldings, the
interference of lead X-rays with the 63.3 keV line is possible. Besides, for relative
measurements, different absorption of low energy gamma-rays in the samples of
different density could be the source of rather high systematic error (up to some
20 %). However, the computer program OMEGA successfully eliminates most of
this error by numerical correction.

According to the presented advantages and disadvantages of these available methods,
we can conclude that the combination of the second and the third method provides the
most reliable results, considering small variations of 238U concentrations in environmental
samples. Uncertainties in the concentration of 238U obtained by this method are estimated
to be of the order of 10 %.

3. Gamma-ray spectrometry of depleted uranium in soil

The fact that natural uranium is accompanied by its daughter elements, while depleted
uranium is separated from the products of its decay, helps distinguish the natural presence
of uranium in soil from additional contamination by DU.

When the activity of 238U surpasses its normal activity in the soil (10 Bq/kg 100 Bq/kg)
by a factor of ten or higher, gamma-ray spectrometry assessment of depleted uranium is
best performed by measuring the low-energy lines of 234Th, which are then sufficiently
intense. In that case most of the activity of 238U originates from depleted uranium and
the combined method is the most convenient.

The problem becomes more complicated when the activity of 238U from depleted ura-
nium and from natural uranium is comparable. The concentration of natural 238U must
be determined only from the activity of 226Ra assuming the radioactive equilibrium be-
tween these two isotopes. For the calculating procedure, the empirical factor 238U/226Ra,
which is 1.3± 0.3, must be used [7]. This factor is the mean value of the 238U/226Ra ratio
obtained from more than 100 measurements on soil samples from Vojvodina. Since the
isotopic abundance of 235U in depleted uranium is relatively small, determination is only
possible by using the post-radon lines, which involves keeping the samples in closed vessels
for about 40 days before measurements. The total amount of 238U must be determined
from low-energy lines of 234Th, including the above-mentioned problems.

Considering the increased efficiency at low-energies (below 100 keV) the GMX detectors
are the most suitable for this purpose.

Activity of 238U from depleted uranium may be obtained as a difference between the
activity of 238U and the activity of 226Ra.

4. Results and discussion

When the issue of DU emerged, the experimental advantages of the measuring equip-
ment (GMX type detector with enhanced efficiency below 100 keV, and iron low level
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shielding) were fully exploited.
Low-level high-resolution γ-ray spectroscopy is a very convenient technique for uranium

determination in environmental samples with 238U activity concentration above 1 Bq/kg.
When the issue of DU determination emerged, responding to strong public interest, a
method for DU determination was developed.

The radionuclide content of the samples was measured by means of a reversed electrode
GMX type HPGe spectrometer made by ORTEC. The nominal efficiency of the detector is
32 % and the resolution is 1.9 keV. This detector has a thin lead layer on the outer surface
and a beryllium entrance window, thus enabling the detection of γ-rays below 100 keV with
high efficiency. The detector was calibrated by means of reference radioactive materials
in cylindrical geometry. Matrix effects were taken into account by means of a computer
code [8]. The detector was operated inside a 25 cm thick iron shield made from pre II
World War cast iron [7]. As compared with lead shields, the iron shields have definite
advantages in the low energy region due to the absence of the lead X rays. The typical
time of measurement of the samples was 50 ks. The background, which contains the same
lines especially post radon lines, is not subtracted.

Characteristic cases of results are shown in Table 3.

Table 3. Activites of characteristic radionuclides in soil.

SAMPLE 238U [Bq/kg] 226Ra [Bq/kg] 238UD [Bq/kg]
40K [kBq/kg] 232Th [Bq/kg]

LVJ4 (5.0± 1.3) · 103 19.8± 2.1 (5.0± 1.3) · 103 0.53± 0.04 30± 3
LVJ3 115± 15 13.2± 2.3 98± 16 0.187± 0.022 13.5± 1.1
LVJ7 33± 8 22.4± 2.2 < 10 1..21± 0.07 45± 3

Specific activities of 238U as calculated from daughters 234Th and 234Pa are given in the
second column of Table 3., and the activities of 226Ra calculated from daughters beyond
radon: 214Pb, 214Bi and 210Pb are listed in the third column. Calculated values of the
activities which may be attributed to contamination by depleted uranium are given in the
fourth column. In the fifth and sixth column, the activity of 40K and of the 232Th series
are presented. Uncertainties of measurement are given on the 95 % confidence level.

The first sample LVJ4 has a very high activity of 238U which may all be attributed to
contamination by depleted uranium and the activity of naturally present uranium may be
neglected. The second sample has an activity of 238U which is significantly increased by
contamination by depleted uranium. The measurement uncertainty is very small relative
to the measurement uncertainty of 226Ra including the uncertainty of the empiric factor
of the equilibrium. The third sample is not contaminated and expressed measurement
uncertainty equals by order of magnitude the detection limit for 238U contamined by
depleted uranium, which is obtained by the above-mentioned method using the equipment
described.

5. Conclusions

Determination of the activity of depleted uranium in the soil is a complex task, except
in the case of very high specific activities. However, determination of medium and low
concentrations is needed for the tracing of the migration of radionuclides through the soil
and/or if it is necessary to study the effects of decontamination.
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Abstract

The intensity of the positron annihilation radiation emitted by a sample of
natural chromium trioxide, CrO3, containing 4.7 g of

50Cr, was measured for 30
days. The background was measured with the samples of iron, copper, and no
sample at all (air), during a similar measurement time. From the net intensity
of the 511 keV line in the HpGe coincidence spectrum, the partial half-life for
the positron - electron capture double beta decay of 50Cr, T1/2(β

+EC, 2ν +
0ν) = 1.3(12)×1018 y at 95 % CL, has been deduced. Due to the ground state
spin sequence 0+(50Cr) 6+(50V) 0+(50Ti), the 2ν mode is much less probable
than the 0ν mode with virtual neutrinos.

Key words: Double beta decay, gamma-spectroscopy

1. Introduction

Two recent claims, the announcement of the SNO collaboration claiming to have proved
neutrino oscillations and at the same time to have resolved the solar neutrino problem [1],
and the result of the Heidelberg-Moscow experiment claiming to have detected the double
beta decay of 76Ge [2], seem to have finally established the non-zero neutrino mass and
greatly stirred the neutrino physics community. Here we will present the results of our
measurements of the double beta decay of 50Cr which either suggests the non-zero result
at a confidence level of 95 % or establishes the lower limit for the half-life of this process,
one order of magnitude more restrictive than the existing one.

Chromium-50 is one of the four otherwise stable isotopes in the vicinity of the Z,N =
28 magic numbers which are by energy considerations allowed to decay by the simultaneous
beta decay of their two protons into the corresponding more stable second neighbor isobars.
The four decays in question are:

50
24Cr26 →50

22 Ti28 ,
54
26Fe28 →54

24 Cr30 ,
58
28Ni30 →58

26 Fe32 ,
64
30Zn34 →64

28 Ni36 (1)
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It is seen that the first and last of the cited decays complete the magic number 28 of either
neutrons or protons, while the second and the third destroy it. It can thus be expected
that due to the structure effects those which complete the magic number are enhanced as
compared to those which destroy it. Some evidence to support this point is given in [3].

Out of the four, Nickel-58 has been measured with good sensitivity by Vasilev et. al.
[4], while we have recently measured with high sensitivity, and a negative result, the decay
of Iron-54 [5], as well as the decay of Zinc-64 [6], this last one with a hint of a positive
result even at the 99.7 % CL. The decay of Chromium-50 has been measured by Norman
back in 1985 [7], [8], with the sensitivity lower than the other three decays and, minding
its possible enhancement similar to that in the case of Zinc-64, we set out to measure it
with a sensitivity comparable to that of the other decays.

2. Measurements and result

The decay scheme of 50Cr is presented in Fig.1. The low Q-value of the decay allows for
all types of electron capture - electron capture decays as well as for the electron - capture
- positron decays, while the positron - positron decay is forbidden. If the decay is to be
measured by positron annihilation radiation only, the partial probability for the positron
- electron capture decay will be deduced. It is perhaps also worth commenting that this is
probably the optimum range of atomic numbers for this type of decay for study - neither
too low, from the view of electron capture, nor too high, from the view of the positron
decay. The small phase-space factor for this particular decay may hopefully be at least
partially compensated for by some enhancement due to the above mentioned structure
effects.

Figure 1. The (0ν + 2ν) decay scheme of 50Cr.

Since the energy of the first excited state in the daughter nucleus is higher than the
Q-value the decay is possible only to its ground state, and since the spin of the inter-
mediate nucleus is very high (6+), and the real low-energy neutrinos can not carry high
angular momentum while the exchange of a high momentum virtual neutrino between
the closely spaced decaying protons is encouraged by the uncertainty principle, the de-
cay would practically be only neutrinoless. The measurement of the emission rate of the
positron annihilation radiation in this case thus determines the partial decay constant for
the positron - electron capture neutrinoless decay mode only.
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The measurement was performed by a technique similar to that used in the case of
64Zn. The 209 g CrO3 sample containing 4.7 g

50Cr is sandwiched between the (3 × 3)”
NaI(Tl) and 25 % HpGe detector, both placed coaxially in the hole of the (9×9)” NaI(Tl)
annular veto detector. The whole detector arrangement is situated on the ground level,
within a 1 m3 shielding chamber made out of the pre WWII iron, with 25 cm thick walls.
The use of iron as the background reducing passive shielding has for the present purpose
significant advantages over lead shielding. Firstly, the rate of positron production by
cosmic-rays at near sea-level is found to depend on the square of the atomic number of the
medium divided by its mass number [9], which here gives the advantage of 2.7 as compared
to lead. Secondly, as is nicely exemplified by the absence in our single HpGe background
spectrum of the neutron induced features which abound in lead shielded detectors [10], the
neutron production by cosmic-rays is at an undetectable level, couple orders of magnitude
below that within the lead shieldings.

The experimental setup is schematically presented in Fig.2. To minimize accidental
coincidences, the two detectors which sandwich the sample are connected in a fast-slow
coincidence circuit, while to reject the events generated by the environmental and cosmic
radiations, the annular guard detector operates in anticoincidence. The intensity of the
511 keV line in the coincidence-anticoincidence spectrum of the HpGe detector, as analyzed
by ADC1, thus measures the number of positrons generated and annihilated within the
sample while the contribution of the events generated by radiations coming from the
outside are minimized. The coincidence efficiency of the system, ε = Rc/A, where Rc is
the coincidence rate and A is the positron activity of the sample, is determined both by
the Monte Carlo simulation, which was also used to find the optimum sample thickness,
and by direct measurements with the 22Na calibrated source, and was found to amount
to 1.9 %.

Figure 2. The experimental setup for the 50Cr decay measurements.

The question of background is of course the most important one. It was determined in
three separate measurements: with no material at the sample position, and with samples
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of iron and copper (of a size equivalent to that of the chromium oxide sample). The
overall measurement time was 26 days. The important and rather unexpected result is
that no statistically significant difference between these measurements in the intensity of
the 511 keV peak has been found. Average background counting rate in the 511 keV line,
based on the sum spectrum of the three background measurements, at the 68 % CL is
97(7) cc/106s. We shall further address the problem of background when discussing our
final result.

In Fig.3 the count rates in the region of the 511 keV line for both the chromium sample
and the background are presented. Their difference is depicted in the lower part of the
figure, with the corresponding net count rate at the 68 % CL of 22(10) cc/106s in the
511 keV line, meaning that we have the non-zero result even at the 95 % CL. If we ascribe
this rate to the neutrinoless positron-electron capture decay of 50Cr we arrive at the partial
half-life for this process of T1/2(β

+EC, 0ν) = 1.3(6)× 1018 y at the 68 % CL.

Figure 3. The chromium and the sum back-
ground spectrum: solid-Cr, open-background
with their difference presented in the lower in-
set.

Figure 4. Same as Figure 3. but with the
chromium spectrum shifted one channel to the
left.

3. Discussion

The quoted result calls for a number of comments. Some of them deal with the quality
of the raw data as presented in Fig.3, while others deal with possible systematic errors
in the applied background determination procedure. Closer inspection of our Fig.3 raises
some doubts about the stability of the spectrum during the measurements, for the 511 keV
line in the chromium spectrum looks somewhat broader and/or shifted in respect of the
background line. Also their difference, though the statistics is poor, does not seem centered
around 511 keV. To check for the influence of possible spectrum instability on our result,
the same spectra are presented in Fig.4, this time with the chromium spectrum shifted
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one channel to the left, together with their difference at the bottom of the figure. The
net intensity in the 511 keV line is now 20(11) cc/106s, which seems to dismiss the doubts
raised above.

When the background determination is concerned, the objection that some other source
of positrons different than the double beta decay might exist in the chromium sample,
which does not exist in the three background cases, seems well justified. However, it is
certainly most reassuring in this respect that significant differences between the positron
annihilation rates in the three background measurements were not found. This suggests
that the majority of background positrons is created by the radiations arriving from the
outside which escape the vetoing procedure (mostly by the muons surviving the 5 μs
long anticoincidence gate), and that the greater production in the material samples is
within statistical errors compensated by the correspondingly greater self-absorption of the
annihilation radiation in the samples. The closeness of the atomic numbers of all the
samples raises hopes that the same will hold for the chromium sample as well and that
the excess is in this case indeed due to the double beta decay of Chromium-50.

One may also be quite confident that other conceivable positron sources do not exist
in measurable quantities in the chromium sample. As is well known, positron emitters
do not exist in natural radioactivities, except weakly in 40K, whose 1460 keV gamma-ray,
however, does not seem more intense than in the background spectra. The intensity of the
omnipresent highest energy 2614.6 keV gamma-ray, which is capable of pair production, is
also not found in excess over that in the background spectra. At the same time this means
that the troubling 510.8 keV gamma-ray from the same decay, which only weakly, if at all,
interfers with the 511 keV line in the coincidence spectra, does not contribute excessively
to the intensity of the 511 keV line. All the nuclear reactions possibly induced by the
low and high-energy environmental particles which may yield positron emitters are also
easily estimated to have negligible contributions. For instance, the most likely reaction to
produce positron emitters, the (n, 2n) reaction, is known to have cross sections at most in
the barn range for the isotopes we are dealing with [11]. Since, as already discussed, the
neutron fluxes are much lower in the iron environment than in the higher Z environments,
and neutron signatures are indeed not present in our background spectra, an upper limit
for the (n, 2n) reaction inducing neutron flux is at most, according to [10], of the order of
1 n/m2s. The rate of this reaction would thus be ≈ 10−28 s−1, what is at least two orders
of magnitude behind the decay rate which we observed.

Our experimental result obtained from positron annihilation is not sensitive to the
double decay mode (0ν or 2ν). However, the ground state spin sequence favors the 0ν
mode. Thus we can not exclude the contribution of the 0ν mode to the measured transition
probability.

Future measurements of this decay would have to pay more attention to further re-
duction of the annihilation radiation background, on top of pushing all the conventional
means to the limit, by additionally using the much longer anticoincidence gating times
from the guard detector.
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Abstract

The subject of the study are the elementary excitations in the rectangular quan-
tum wire with ”free” surfaces. We shall study a completely general quadratic
harmonic Hamiltonian where the quasiparticle kinematics (Fermi or Bose) is
irrelevant due to the use of the single-particle wave-function. We offer a ”non-
standard” approach to the solution of the eigenvalue problem within the frame-
work of the graph theory. The eigenvalue problem for the adjacancy matrix of
the rectangular lattice graph Pn+1 × Pm+1 was solved. The explicit formulas
for energy levels and the wave-functions of arbitrary elementary excitation are
obtained. Some specific analytical expressions are also presented. Quantum
wires are perspective candidates for the design of the next generation of in-
tegrated circuits, as soon as the nature of the influence of quantum effects is
sufficiently well understood.

Key words: Quantum wires, lattice graphs, single particle wave-function, eigenvalue prob-
lem.

1. Introduction

Low-dimensional systems or nanostructures have been the subjects of intensive inves-
tigations both from the experimental and theoretical point of view [1-5]. Such systems
include so-called two-dimensional systems, or thin films and superlattices, one-dimensional
systems, or quantum wires, and zero-dimensional systems, or quantum dots. Quantum
size effects in these structures lead to new material properties which promise smaller,
faster and lower-power-consuming devices [6].

In recent years quantum wires (QW) have been the subject of numerous theoretical
and experimental studies. In such structures the particles (charge carriers) are confined to
move along the length of the wire and the motion is quantised in the transverse directions.
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We propose here to formulate a completely general theory based on the quadratic har-
monic Hamiltonian as formulated in terms of Fermi or Bose operators describing arbitrary
elementary excitations (quasiparticles).

The model calculations of energy levels and wave-function in a QW have been per-
formed using the envelope function approximation or variational approach [7-13] etc. In
contrast to these semi-phenomenological approaches, where the wave-function has been
calculated in the continuum approximation, we use the microtheoretical approach and
techniques exploited in papers [14-17] dealing with thin films.

Another novelty is that in this communication we apply the graph theory to calculate
the energy levels and wave-functions in the case of rectangular QW with free surfaces. This
approach proves to be an elegant and simple method for microtheoretical calculations of
quantum wires and has not been, to our knowledge, applied to these problems, previously.

2. Hamiltonian of the model and lattice graphs

We consider the quantum wire, denoted byWNx,Ny,∞, which is ”cut-out” from a tetrag-
onal bulk structure with lattice constant cx, cy, cz. Figure 1 displays the geometry of the
quantum wire W2,2,∞.

x

y

z

cx

cy

Figure 1. Rectangular quantum wire W2,2,∞.

The general quadratic harmonic Hamiltonian for the quantum wires has the following
form [18]:

Ĥ =
[

nxnynznxnynz

Ônxnynz ;nxnynz (1)

where:

Ônxnynz ;nxnynz = Dnxnynz ;nxnynza
+
nxnynzanxnynz + Vnxnynz ;nxnynza

+
nxnynzanxnynz .

With regard to the definition of WNx,Ny,∞ we assume

0 ≤ nx ≤ Nx ; nx ∼ 1÷ 100
0 ≤ ny ≤ Ny ; ny ∼ 1÷ 100

−Nz
2
≤ nz ≤ Nz

2
; nz ∼ 108 .
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a+ and a are are either Fermi or Bose operators of creation and annihilation of the ar-
bitrary elementary excitations in the Wannier representation; D and V are the matrix
elements characterising the self-energy of elementary excitations and transfer from site
n ≡ (nx, ny, nz) to site n� ≡ (n�x, n�y, n�z), respectively. Clearly, these matrix elements de-
pend on the considered type of elementary excitations in QW. Here, we accept the nearest
neighbors’ approximation, so that the Hamiltonian (1) becomes:

Ĥ =
[

nxnynz

(Ônxnynz;nx+1nynz + Ônxnynz ;nx−1nynz + Ônxnynz ;nxny+1nz+

Ônxnynz ;nxny−1nz + Ônxnynz;nxnynz+1 + Ônxnynz ;nxnynz−1) . (2)

We shall investigate the system described by the Hamiltonian (2) by calculating the
single particle wave-function

|Ψl =
[

nxnynz

Anxnynza
+
nxnynz |0l ,

[
nxnynz

|Anxnynz |2 = 1. (3)

Unknown coefficients Anxnynz (amplitudes) are obtained by calculating Heisenberg’s equa-
tion of motion for the operator anxnynz

(Eanxnynz − [anxnynz , Ĥ])|Ψl = 0, E = h̄ω, (4)

assuming simple time-dependence anxnynz(t) = anxnynz(0)e
−iωt.

By substituting Eq. (3) into Eq. (4), we obtain the system of equations for deter-
mination of the coefficients Anxnynz . It is important to notice that for the single-particle
functions, the operator kinematics is not essential, so the system of equations for the co-
efficients is identical for both Fermi and Bose operators. Since there is a translational
symmetry breaking in the directions x and y, we perform the following substitution for
the coefficients Anxnynz in the system Eqs. (4):

Anxnynz = φnxnye
ikznzcz . (5)

The solution of the system is now obtained by solving the following eigenvalue problem:

CΦ = rΦ, (6)

where the unknown eigenvectorΦ is [φ00,φ01, ...,φmn]
T and the matrix C is the adjacancy

matrix of the rectangular lattice graph Pn+1×Pm+1, Figure 2. Thus, coefficients φnxny in
Eq. (5) are components of the eigenvector Φ (for corresponding eigenvalue r) in Eq. (6)
which satisfy Eqs. (5) and (3) i.e.:

[
nxny

φ2nxny =
1

N∗
, (N∗ = 2eNz

2
f+ 1 ∼ Nz) (7)

since
[

nxnynz

|Anxnynz |2 = N∗
[
nxny

φ2nxny = 1.
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(0, 0)

(0, 1)

(0, 2)

(0, n− 1)

(0, n)

(1, 0) (2, 0) (n− 1, 0) (n, 0)

Figure 2. The rectangular lattice graph Pn+1 × Pm+1.

We denote by Bn+1 the square matrix of order (n+ 1):

Bn+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
1 0 1 · · · 0 0
0 1 0 · · · 0 0

. . .

0 0 0 · · · 0 1
0 0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8)

which represents the adjacancy matrix of the path Pn+1 of length n shown in Figure 3.

0 1 2 n− 1 n

Figure 3. The path Pn+1 of lenght n.

The matrix C (of order (n+ 1)(m+ 1)) can be written as a square block matrix of order
(m+ 1) of the form

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

B I O · · · O O
I B I · · · O O
O I B · · · O O

. . .

O O O · · · B I
O O O · · · I B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

where B denotes the matrix Bn+1, I and O denote the unit matrix In+1 of order n + 1
and null matrix On+1 of order n+ 1, respectively.
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Eigenvalues r of the equation (6) are in the following way related to the energy levels
of the excitations in QW:

rV = E − 4D − 2V cos(czkz). (10)

Energy levels and wave-function of the QW will be calculated in the next section.

3. Energy levels and wave-functions

Note that the matrix C can be written as:

C = Bm+1 ⊗ In+1 + Im+1 ⊗Bn+1, (11)

where ⊗ denotes the Kronecker product of matrices [19], defined by:

Am1×m2 ⊗Bn1×n2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α11B α12B . . . α1m2B
α21B α22B . . . α2m2B
· · ·
· · ·
· · ·

αm11B αm12B . . . αm1m2B

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (12)

where αij (i = 1, . . . ,m1; j = 1, . . . ,m2) denote elements of the matrix Am1×m2 .

Let the matrix Bn+1 have eigenvalues λ
(n+1)
1 , . . . ,λ

(n+1)
n+1 with eigenvectors b

(n+1)
1 , . . . ,

b
(n+1)
n+1 , and let the matrix Bm+1 have eigenvalues λ

(m+1)
1 , . . . ,λ

(m+1)
m+1 with eigenvectors

b
(m+1)
1 , . . . , b

(m+1)
m+1 . Then b

(m+1)
i ⊗b(n+1)j (1 ≤ i ≤ m+1 , 1 ≤ j ≤ n+1) is an eigenvector

of C with eigenvalue λ
(m+1)
i + λ

(n+1)
j , since

(Bm+1 ⊗ In+1 + Im+1 ⊗Bn+1)(b(m+1)i + b
(n+1)
j ) =

= (Bm+1b
(m+1)
i ⊗ In+1b(n+1)j ) + (Im+1b

(m+1)
i ⊗Bn+1b(n+1)j ) =

= λ
(m+1)
i (b

(m+1)
i ⊗ b(n+1)j ) + λ

(n+1)
j (b

(m+1)
i ⊗ b(n+1)j ) = (λ

(m+1)
i + λ

(n+1)
j )(b

(m+1)
i ⊗ b(n+1)j ) .

It is not difficult to determine the eigenvalues and eigenvectors ofBn+1 (and simultaneously
of Bm+1 by replacing n with m). The eigenvalues of Bn+1 are [20]:

λ
(n+1)
j = 2cos(

πj

n+ 2
), (j = 1, . . . , n+ 1). (13)

The corresponding eigenvectors are:

b
(n+1)
j = [Cn(λ

(n+1)
j ), . . . , C2(λ

(n+1)
j ), C1(λ

(n+1)
j ), C0(λ

(n+1)
j )]T , (j = 1, . . . , n+ 1), (14)

where Ck(λ) denotes the k-th member of the sequence of Chebyshev polynomials of the
second type [21] defined in the following recursive manner:

C0(λ) = 1, C1(λ) = λ, Ck(λ) = λCk−1(λ)− Ck−2(λ) for k ≥ 2. (15)
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For |λ| < 2 they are:

Ck(λ) =
2−(k+1)√
λ2 − 4

��
λ+

s
λ2 − 4

�k+1 − �λ−sλ2 − 4
�k+1�

=
sin(k + 1)θ

sin θ
(16)

where λ = 2cos θ.

Substituting Eqs. (13) and (16) into Eq. (14) we obtain

b
(n+1)
j =

⎡⎣sin (n+1)jπn+2

sin jπ
n+2

,
sin njπ

n+2

sin jπ
n+2

, . . . ,
sin 2jπ

n+2

sin jπ
n+2

,
sin jπ

n+2

sin jπ
n+2

,

⎤⎦T . (17)

Taking into account the above mentioned, we obtain (n + 1)(m + 1) eigenvalues (not
necessarily different) (6) in the following form (m ≡ Nx, n ≡ Ny):

r = r(ij) = 2cos
πi

m+ 2
+ 2 cos

πj

n+ 2
; i = 1, . . . ,m+ 1; j = 1, . . . , n+ 1. (18)

Let us denote the coefficients of the vector Φ(ij), corresponding to r(ij), by φ
(ij)
st , s =

0, . . . ,m; t = 0, . . . , n i.e.:

Φ = Φ(ij) = [φ
(ij)
00 ,φ

(ij)
01 , . . . ,φ

(ij)
0n ,φ

(ij)
10 ,φ

(ij)
11 , . . . ,φ

(ij)
1n , . . . , φ

(ij)
m1 ,φ

(ij)
m2 , . . . ,φ

(ij)
mn ]

T . (19)

Since Φ(ij) = (b
(m+1)
i ⊗ b(n+1)j ) , then from Eq. (17) we obtain:

φ
(ij)
s,t =

1

sin iπ
m+2 · sin jπ

n+2

sin
(m− s+ 1)iπ

m+ 2
· sin (n− t+ 1)jπ

n+ 2
, (20)

for s = 0, . . . ,m and t = 0, . . . , n.

Note that if the greatest common divisor of n+2 and m+2 is greater than or equal to
3, then there exists more than one common eigenvalue of matrices Bm+1 and Bn+1. Then
the algebraic multiplicitie of some eigenvalues of the matrix C are greater than one. It
means that the dimension of the eigenspace (the set of all eigenvectors) corresponding to
an eigenvalue of C can be greater than one.

Thus the coefficients φnxny in Eq. (5) corresponding to an eigenvalue r
(ij) of C, are

the coefficients of the vectors from the intersection of the corresponding eigenspace and

the (n+ 1)(m+ 1)-dimensional sphere with the center in the origin and radius
1√
N∗
.

Finally we obtain the energy level of the system (for i and j fixed):

E = 4D + 2V (cos cxkx + cos cyky + cos czkz), (21)

where:

cxkx =
πi

m+ 2
, cyky =

jπ

n+ 2
, i = 1, . . . ,m+ 1, j = 1, . . . , n+ 1

are components of wave vectors along x and y directions in the QW.

For illustration we exhibit two examples for n = 1, m = 2 and n = 1, m = 1 (see
Figure 4).
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(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

a)

(0, 0) (1, 0)

(0, 1) (1, 1)

b)

Figure 4. The rectangular lattice graphs P2 × P3 and P2 × P2.

a) Example I.

In the first case, the matrix C (C = B3 ⊗ I2 + I3 ⊗B2) is the following block-matrix:

C =

⎡⎢⎣ B2 I2 O2
I2 B2 I2
O2 I2 B2

⎤⎥⎦
where matricesB2, I2 andO2 are the following matrices:

%
0 1
1 0

&
,

%
1 0
0 1

&
and

%
0 0
0 0

&
,

respectively. Eigenvalues of B3 are λ
(3)
1 =

√
2, λ

(3)
2 = 0, λ

(3)
3 = −√2 with corresponding

eigenvectors b
(3)
1 = [1,

√
2, 1]T , b

(3)
2 = [−1, 0, 1]T and b(3)3 = [1,−√2, 1]T , respectively and

eigenvalues of B2 are λ
(2)
1 = 1 i λ

(2)
2 = −1 with corresponding eigenvectors b(2)1 = [1, 1]T

and b
(2)
2 = [−1, 1]T . Now, eigenvalues of C are:

r(11) = λ
(3)
1 + λ

(2)
1 = 1 +

√
2, r(12) = λ

(3)
1 + λ

(2)
2 = −(1−

√
2), r(21) = λ

(3)
2 + λ

(2)
1 = 1

r(22) = λ
(3)
2 + λ

(2)
2 = −1, r(31) = λ

(3)
3 + λ

(2)
1 = (1−

√
2), r(32) = λ

(3)
3 + λ

(2)
2 = −(1 +

√
2)

with corresponding eigenvectors:

Φ(11) = [1, 1,
√
2,
√
2, 1, 1]T , Φ(12) = [−1, 1,−

√
2,
√
2,−1, 1]T , Φ(21) = [−1,−1, 0, 0, 1, 1]T

Φ(22) = [1,−1, 0, 0,−1, 1]T ,Φ(31) = [1, 1,−
√
2,−
√
2, 1, 1]T ,Φ(32) = [−1, 1,

√
2,−
√
2,−1, 1]T .

The energies of this system (for i and j fixed) are

E(11) = 4D + V [1 +
√
2 + 2 cos(czkz)]; E

(32) = 4D − V [1 +
√
2− 2 cos(czkz)]

E(12) = 4D − V [1−
√
2− 2 cos(czkz)]; E(31) = 4D + V [1−

√
2 + 2 cos(czkz)]

E(21) = 4D + V [1 + 2 cos(czkz)]; E
(22) = 4D − V [1− 2 cos(czkz)].

b) Example II.

The case n = 1 and m = 1 was the topic of paper [18]. Since the corresponding eigenprob-
lem was not correctly solved there, we call attention to this case again. The eigenvalues

of the matrix C =

%
B2 I2
I2 B2

&
are:

r(11) = λ
(2)
1 +λ

(2)
1 = 2, r(12) = λ

(2)
1 +λ

(2)
2 = 0, r(21) = λ

(2)
2 +λ

(2)
1 = 0, r(22) = λ

(2)
2 +λ

(2)
2 = −2
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with corresponding eigenvectors:

Φ(11) = [1, 1, 1, 1]T ,Φ(12) = [−1, 1,−1, 1]T ,Φ(21) = [−1,−1, 1, 1]T ,Φ(22) = [1,−1,−1, 1]T ,
respectively. Both the algebraic and geometric multiplicities of the eigenvalue zero are
2 and the corresponding eigenspace is the linear combination ϕ(0) = {λΦ(12) + μΦ(21) |
λ,μ ∈ ?}. The coefficients φnxny in Eq. (5) are coefficients of an arbitrary vector from the
intersection ϕ(0)∩S4, where S4 is the sphere {(x00, x01, x10, x11) ∈ ?4 | x200+x201+x210+
x211 =

1

N∗
}. In Ref. [18] the authors neglected that the eigenspace for the eigenvalue zero

is a two-dimensional subspace of ?4 and dealt with the vector 1

2
√
N∗
[1, 0, 0,−1]T (in our

notation) as the unique solution of equation (5) for r = 0 satisfying Eq. (7). Therefore
their conclusions are not generally valid.

4. Conclusion

We have used in this paper the single-particle wave-function to determine the energy
levels of arbitrary elementary excitations described by the quadratic harmonic Hamiltonian
in a quantum wire. All our calculations are based on zero-order approximation, when the
boundary variations of intermolecular interactions can be neglected, i.e. in the case of
free surfaces. The results were obtained by the application of graph theory to solve the
corresponding eigenvalue problem. It turned out to be highly efficient, elegant and rather
simple to use, once the connection with the particular physical problem is established.

The more general study of QW demands the application of rather sofisticated numerical
methods of the physics of low-dimensional systems. The results obtained are valid for
an arbitrary number of layers along X and Y directions. We stress that in the case
of extremely thin QW we are able to reproduce rather easily, by this approach, all of
the results from paper [18]. The examination of many other interesting phenomena which
appear in these structures is possible only by the utilization of very cumbersome numerical
calculations, so it will be presented separately.
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Abstract

We studied here the ferrofluid lubrication of a porous bearing with its slider
having a convex pad surface considering slip velocity at the interface of film
and porous matrix. Our aim was to study, especially, the effect of slip velocity
on the bearing characteristics. Expressions were obtained for dimensionless
pressure, load capacity, friction on the slider, coefficient of friction and the
position of the centre of pressure. Increase in the slip parameter caused decrease
in load capacity, friction and in the coefficient of friction. But, increase in
the permeability parameter caused decrease in load capacity and friction and
increase in coefficient of friction. Both the parameters could not significantly
affect the position of the centre of pressure.

Key words: Ferrofluid, lubrication, slider, convex pad, porous, slip velocity

1. Introduction

Puri and Patel [1] analysed a porous slider bearing with a convex pad surface and
found that the load capacity, friction on the slider and the coefficient of friction were
greater in this case than those of the corresponding bearing with a flat surface [2]. A
convex pad surface can be centrally pivoted so that the bearing can operate stably under
varying operating conditions and can be used in marine and other applications.

Ferrofluid lubrication of porous slider bearings were considered by Agrawal [3] as well
as Ram and Verma[4]. They found that the use of ferrofluid as a lubricant increased the
load capacity of such bearings without altering the friction on their sliders. Recently, Shah
et al. [5,6] considered the effect of magnetic fluid lubricant on the squeeze films between
curved porous rotating circular plates and between porous annular curved plates. All the
above investigators assumed that there was no slip at the porous interface. Sparrow et
al [7] and Beavers and Joseph [8] showed that such assumptions could not hold at the
nominal boundary of a naturally permeable material.
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In this paper our aim was to study the effects of slip velocity on a porous slider bearing
with a convex pad surface lubricated with a ferrofluid.

2. Analysis

The bearing shown in Fig.1 consists of a slider with a convex pad surface moving with
a uniform velocity U in the x-direction and the stator having a porous matrix of uniform
thickness H∗ backed by a solid wall.

Figure 1. Porous slider bearing with a convex pad surface.

The film thickness h is given by the equation

h = 4Hc
x2

A2
− x

A
+ h2 − (h2 − h1) x

A
(1)

where Hc is the central thickness of the convex pad, A is the bearing length, h1 and h2
are minimum and maximum film thicknesses.

The eq. governing the film pressure p is [3]

∂2u

∂z2
=
1

ζ

∂

∂x
p− μ0μ̄H

2

2
(2)

where u is the x-component of the fluid in the film, ζ is the fluid viscosity, μ0 is the free
space permeability, μ̄ is the magnetic susceptibility of the fluid particles and H is the
magnitude of the external magnetic field

H̄ = H(cosΦ(x, z), 0, sinΦ(x, z)), (3)

with
H2 = Kx(A− x), (4)

where K is a constant chosen to suit the dimensions of both sides of eq.(4) and Φ is the
inclination of the magnetic field with the x-axis as determined in [3].

Solving eq.(2) under the slip boundary conditions [7]

u = U when z = h, u =
1

s

∂u

∂z
when z = 0 (5)
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we obtain

u =
1 + sz

1 + sh
U +

(z + shz + h)(z − h)
2ζ(1 + sh)

∂

∂x
p− 1

2
μ0μ̄H

2 . (6)

The integral form of the continuity equation for an infinitely broad slider bearing is

∂

∂x

h

0
u dz + wh − w0 = 0 (7)

where w is the axial component of the film fluid velocity and w0, wh are its values at
z = 0, h respectively.

Since the surface z = h is impermeable, wh = 0, and eq.(7) reduces to

∂

∂x

h

0
u dz = w0. (8)

The velocity components of the fluid velocity in the porous matrix are [3]

ū = −k
ζ

∂

∂x
P − 1

2
μ0μ̄H

2 , w̄ = −k
ζ

∂

∂z
P − 1

2
μ0μ̄H

2 , (9)

P being the fluid pressure there.
Using continuity equation, eq.(9) yields

∂2

∂x2
P − 1

2
μ0μ̄H

2 +
∂2

∂z2
P − 1

2
μ0μ̄H

2 = 0. (10)

Integrating eq.(10) across the porous matrix, i.e. in the interval (−H∗, 0), we obtain
∂

∂z
P − 1

2
μ0μ̄H

2

z=0
= −H∗ ∂

2

∂x2
p− 1

2
μ0μ̄H

2 , (11)

remembering that the surface z = −H∗ is impermeable and using the Morgan-Cameron
approximation [3].

Owing to the continuity of fluid velocity components across the surface z = 0, we have

w0 = w̄0 = −k
ζ

∂

∂z
P − 1

2
μ0μ̄H

2

z=0
, (12)

using eq.(9).
Using eqs.(6), (11) and (12), eq.(8) yields the Reynolds type equation in this case as

d

dx
12kH∗ +

h3(4 + sh)

(1 + sh)

d

dx
p− 1

2
μ0μ̄H

2 = 6ζU
d

dx

h(2 + sh)

1 + sh
(13)

where k is the permeability of the fluid and 1/s is the slip parameter.
Introducing the dimensionless quantities

X =
x

A
, Ψ =

kH∗

h31
, h̄ =

h

h1
, s̄ = sh1, p̄ =

h21p

ζUA
, μ∗ =

μ0μ̄KAh
2
1

ζU
,

H̄c =
Hc
h1
, a =

h2
h1

(14)
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and using eqs.(1), (4) and (13), we have

d

dX
G
d

dX
p̄− 1

2
μ∗X(1−X) =

dE

dX
, (15)

where

G = 12Ψ+
h̄3(4 + s̄h̄)

(1 + s̄h̄)
, E =

6h̄(2 + s̄h̄)

(1 + s̄h̄)
(16)

h̄ = 4H̄c(X
2 −X) + a− (a− 1)X (17)

3. Solutions

Solving eq.(15) under the boundary conditions

p̄ = 0 when X = 0, 1, (18)

we obtain the dimensionless film pressure p̄ as

p̄ =
1

2
μ∗X(1−X) +

X

1

E −Q
G

dX (19)

where

Q =
1
0
E
GdX

1
0
1
GdX

(20)

The load capacity W , friction on the slider F , coefficient of friction f and the position of
centre of pressure X̄ can be expressed in dimensionless forms as

W̄ =
h21W

ζUA2B
=

μ∗

12
−

1

0
X
E −Q
G

dX (21)

F̄ =
h1F

ζUAB
=

1

0

s̄

1 + s̄h̄
+
h̄(2 + s̄h̄)(E −Q)
2G(1 + s̄h̄)

dX (22)

f̄ =
Af

h1
=
F̄

W̄
(23)

Y =
X̄

A
=
1

W̄

μ∗

24
− 1
2

1

0
X2E −Q

G
dX (24)

where B is the breadth of the bearing.

4. Results and discussion

Expressions for dimensionless pressure p̄, load capacity W̄ , friction on the slider F̄ , the
coefficient of friction f̄ and the position of the centre of pressure Y are given by eqs.(19),
(21) to (24). Values of W̄ , F̄ , f̄ , Y are computed using Simpson’s one third rule with step
size 0.1 for various values of the slip parameter 1/s̄ and the permeability parameter Ψ are
displayed in Figures 2 - 4 and Table 1 respectively.
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Figure 2. Dimensionless load capacity for different values of slip parameter and permeability
parameter.

Figure 3. Dimensionless friction for different values of slip parameter and permeability parameter.

Figure 4. Dimensionless coefficient of friction for different values of slip parameter and perme-
ability parameter.
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Fig.2 shows that W̄ decreases when 1/s̄ or Ψ increases. It can be seen from Fig.3 that
F̄ decreases when 1/s̄ or Ψ increases. From Fig.4 we see that f̄ generally decreases when
1/s̄ increases while it increases when Ψ increases. The position of the centre of pressure
Y is not significantly altered by altering 1/s̄ or Ψ, as can be seen from Table 1.

Table 1. Values of the dimensionless position of the centre of pressure Y
for different values of 1/s̄ and Ψ.

1/s̄ Ψ 0.0 0.0001 0.001 0.01 0.1

0.1 0.5156 0.5156 0.5154 0.5136 0.5020
0.2 0.5140 0.5140 0.5139 0.5123 0.5023
0.4 0.5128 0.5128 0.5127 0.5115 0.5032
2.0 0.5136 0.5136 0.5135 0.5128 0.5072

H̄c = 0.3, a = 2,μ
∗ = 0.5

The present analysis reduces to the analysis [1] for a conventional lubricant by setting
1/s̄ = μ∗ = 0 and to the analysis [3] by setting 1/s̄ = H̄c = 0.

The present analysis and analysis [3] agree on the fact that the increase in load capacity
is μ∗/12 and there is no change in friction due to ferrofluid lubricant. However, the present
analysis shows that both load capacity and friction decrease due to slip velocity. From
Figures 2 and 3, decrease in load capacity is not more significant than that in friction.

5. Conclusions

Existence of slip causes decrease in the load capacity, friction and the coefficient of
friction; the position of the centre of pressure is not significantly altered. However, the
advantage of the bearing’s stability under varying operating conditions remains. Such a
bearing can be used in moderate heat environments where low friction is required, inspite
of the disadvantage of lower load capacity. The present analysis may help in the design of
bearings where naturally permeable material is used in the porous matrix.
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Abstract

Realistic test particles in general relativity occupy a non-zero region of space-
time. Therefore, the measured metric differs from the actual one, and so does
the corresponding effective geometry. In this paper, a simple procedure is sug-
gested to mimic the realistic averaging effect. It is shown that the resulting
effective geometry possesses a number of interesting properties. In particular,
the Riemannian spaces can acquire non-vanishing torsion, as a result of this
kind of averaging.

Key words: Spacetime geometry, averaging, effective geometries

1. Introduction

Starting with Einstein’s general relativity [1-3], spacetime geometry became a wide
arena for physical investigations. The basic ingredients which characterize spacetime are
its metric gμν and the connection Γ

μ
νλ. They influence the matter field equations which,

depending on the theory adopted, can have a variety of forms. The commonly accepted are
the field equations that follow from the equivalence principle of general relativity. In what
follows, we shall restrict our considerations to the Riemannian geometry, characterized by
the absence of torsion.

Realistic measurements of the spacetime geometry employ matter fields to detect the
internal spacetime structure. In general relativity, for example, point particles move along
geodesics, and are used to probe spacetime geometry. However, there are no such matter
structures as point particles. In reality, the particles occupy a region of spacetime, and
consequently, the resulting metric is not the actual metric in a given spacetime point, but
instead its average over the region occupied by the particle. In this paper, we shall try to
take this fact into account, and obtain the observed effective geometry by averaging the
metric over small regions of spacetime. For simplicity, we shall restrict our considerations
to spaces of Euclidean signature. The more realistic Minkowski case will be considered
elsewhere.

The motivation for this kind of investigation comes from the hope that effective geome-
tries can account for quite a number of observed spacetime properties. For example, the
well known dimensional reduction procedure in Kaluza-Klein theories [4-6] is an example
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of averaging higher-dimensional spacetimes. The metric is averaged over the regions much
larger than the size of the extra dimension, and as a consequence, the effective spacetime
of different dimension and topology is obtained. There is also a hope that the Minkowski
signature is, in fact, the effective property of a properly chosen space of Euclidean signa-
ture. If the small scale structure of a space with Euclidean signature defines a privileged
direction, the averaging may result in an effective Minkowski space. This is another reason
why we decided to restrict our considerations to spaces of Euclidean signature. Finally, the
quantum behaviour of a point particle may be a consequence of the small scale fluctuations
of flat geometry [7]. The averaged metric would then look as a standard flat space, and
the irregular particle trajectory could be interpreted as a quantum effect. There have been
attempts in the literature to use the stochastic approach to quantum mechanics [8,9], and
the concept of non-local fields of extended particles [10], to give geometric interpretation
to quantum physics [11]. In this paper, we shall not attempt to achieve all these results.
Instead, we shall investigate a simple averaging model to show that searching for more
serious effects is worthy of our attention.

The results obtained in this paper can be summarized as follows: a) the effective
geometry has a non-vanishing torsion, no matter that the actual space is torsionless, b)
the effective scalar curvature is larger than the actual curvature, and c) the effective
volume becomes smaller if R > 0, and larger if R < 0. All these are perturbative results.
The drastic changes of space geometry described above can only be obtained by non-
perturbative methods, which will be the objective of our subsequent investigations.

The layout of the paper is as follows. In Section 2., we define the notion of the vicinity
of a space point, and define a covariant averaging procedure for world scalars. Then, in
Section 3., we use the Klein-Gordon equation to define effective metric and connection.
Also, the analysis of the obtained results and some examples are given. Section 4. is
devoted to concluding remarks.

2. Averaging scalars

Let us first define the vicinity of a point in an n-dimensional space of Euclidean sig-
nature with metric gμν . To do this in a covariant way, we shall make use of the function

fk(x, y) ≡ N(x) e−k2�2(x,y) . (1)

The normalization factor N(x) is chosen to ensure

dny g(y)fk(x, y) = 1 , (2)

and c(x, y) measures the distance between the points x and y. It is defined as the length
of the shortest line (geodesic) connecting these two points. The function fk(x, y) will be
used as a weight function to suppress the region outside the 1/k vicinity of the point x.

In what follows, the points in the 1/k vicinity of x will be considered indistinguishable.
This is the model of space probed by the test particle which is not localized in a point,
but instead occupies the region defined by the sphere of radius 1/k. As a consequence,
measuring the scalar field ϕ in the point x will result in ϕ̄ = the average value of ϕ in the
1/k vicinity of x. The simplest way to define ϕ̄ is

ϕ̄(x) = dny g(y)fk(x, y)ϕ(y) . (3)
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This is a covariant definition: ϕ̄ is also a world scalar.
Let us compute this quantity. First, the function ϕ(y) is covariantly expanded in a

power series of the form

ϕ(y) = ϕ(x) + ϕ,μ(x)c
μ(x, y) +

1

2
ϕ;μν(x)c

μ(x, y)cν(x, y) + · · · , (4)

where cμ(x, y) is a vector in x tangent to the geodesic connecting x and y, and having
length c(x, y). The semicolon stands for the covariant derivative with respect to the Levi-
Civita connection of the metric gμν . Using this expansion in (3), we arrive at

ϕ̄ = b+ bμϕ,μ +
1

2
bμνϕ;μν + · · · , (5)

where b’s are given by

b = ϕ(x) ,

bμ = dny g(y)fk(x, y)c
μ(x, y) , (6)

bμν = dny g(y)fk(x, y)c
μ(x, y)cν(x, y) , . . .

The coefficients b, bμ, bμν , ... are world tensors. Using the geodesic equation, we find

cμ(x, y) = xμ − yμ + 1
2
Γμνλ(x

ν − yν)(xλ − yλ) + · · · . (7)

The easiest way to compute b’s is to make use of the local Euclidean coordinate frame
attached to the point x. In this frame, gμν(x) = δμν , Γ

μ
νλ(x) = 0, and all the integrals

become Gaussian. After we finish calculations in this particular frame, we rewrite the
results in a covariant form, and obtain

bμν =
1

2k2
gμν +O(1/k4) , others = O(1/k4) . (8)

Consequently,

ϕ̄ = ϕ+
1

4k2
ϕ+O(1/k4) . (9)

Here, stands for the covariant d’Alembertian, and O(1/k4) denotes terms of order 1/k4
or higher. In what follows, we shall restrict our considerations to the lowest order in 1/k,
aware of the fact that thereby many interesting non-perturbative effects can not be seen.

The effective scalar field ϕ̄(x) is what we measure in x by the detector having a size of
the sphere of radius 1/k. There is, however, another kind of error which is a consequence
of the impossibility to distinguish close space points. If we want to measure ϕ in more
than one point, the points can not be closer than 2/k to each other. To obtain a smooth
everywhere defined scalar field in a given region, we approximate its experimental values
with the simplest polynomial function. For example, the region defined by the sphere of
radius 1/k (1/k region) is seen as only one space point. Consequently, in that region, the
function ϕ̄(x) can only be approximated with a constant. Similarly, in a 2/k region, there
are two distinguishable points, and the simplest polynomial to approximate ϕ̄ is a linear
function. If we want our experimental function to have well defined second derivatives, we
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need at least three points, or equivalently, a 3/k region of space. There, we approximate
our ϕ̄ with a quadratic polynomial q(x, y):

q(x, y) = c(x) + cμ(x)c
μ(x, y) +

1

2
cμν(x)c

μ(x, y)cν(x, y) . (10)

The coefficients c, cμ and cμν are determined from the requirement that the functional

J(x) ≡ dny g(y) ϕ̄(y)− q(x, y) 2fk/3(x, y) (11)

has minimal value. Consequently, we solve the equation δJ = 0, or equivalently

dny
√
g (ϕ̄− q) fk/3 = 0 ,

dny
√
g (ϕ̄− q) cμfk/3 = 0 , (12)

dny
√
g (ϕ̄− q) cμcνfk/3 = 0 ,

and obtain
c = ϕ̄+O(1/k4) ,

cμ = ϕ̄,μ +
3

4k2
3 ( ϕ̄),μ − 2Rμρ ϕ̄

, ρ +O(1/k4) , (13)

cμν = ϕ̄;μν +
9

4k2
( ϕ̄);μν −

2

3
(Rλμνρ + gνρRμλ + gμρRνλ) ϕ̄

; ρλ

+
1

6
(Rμν; ρ − 3Rμρ; ν − 3Rνρ;μ) ϕ̄

, ρ +O(1/k4) .

The coefficients c, cμ and cμν minimize the functional J , and consequently, determine
quadratic polynomial q(x, y) which is the best approximation for what we measure in 3/k
vicinity of the point x. Therefore, the average scalar field in 3/k vicinity of the point x
will be defined as

kϕ(y)l = q(x, y) . (14)

This approximation can only be used if we are interested in not higher than second deriv-
atives of kϕl in point x. Then, the average measured field and its first two derivatives in
x are defined as the value of q(x, y) and its two y-derivatives in y = x. Using (10), we find

kϕl = c ,

kϕ,μl = cμ , (15)

kϕ,μνl = cμν + Γ
λ
μν cλ .

Higher derivatives should not be calculated from (14). Instead, we need an approximation
by higher order polynomials, in a wider vicinity of the point x. More precisely, to measure
n-th derivative, we need (n+ 1)/k vicinity of the point where the derivative is taken.

3. Averaging metric

The averaging procedure for the space metric gμν can not follow the same rules as in
the case of a scalar field. This is because integration of a world tensor over a space region
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gives a non-tensorial quantity. To define average metric, we shall make use of the fact
that geometry is never directly measured, but is, instead, probed by test matter fields,
and then deduced from the known field equations.

Definition. Suppose we know how to measure a scalar field ϕ. Assuming that ϕ
satisfies the Klein-Gordon equation in curved space,

+m2 ϕ = 0 , (16)

we can use it to directly read the metric. Indeed, in a curved Riemannian space with
metric gμν , the Klein-Gordon equation reads

gμνϕ,μν − Γμϕ,μ +m2ϕ = 0 , (17)

where Γμ ≡ Γμνλgνλ. Measuring the scalar field ϕ and its two derivatives, and comparing
with (17), we find the metric and the trace connection as the coefficients by ϕ,μν and ϕ,μ,
respectively. Also, we can read the mass of our scalar field.

We know that what we measure is not ϕ, but instead kϕl. The measured values of the
scalar field and its two derivatives, as given by (15), do not generally satisfy an equation
of the (17) type. It is not difficult, however, to find what equation the average scalar field
satisfies. First, we notice that, in the lowest order in 1/k, ϕ̄ obeys the same Klein-Gordon
equation as the actual field ϕ :

+m2 ϕ̄ = O(1/k4) . (18)

Then, we find

+m2 kϕl ≡ gμνkϕ,μνl − Γμkϕ,μl+m2kϕl (19)

= cμμ +m
2c ,

which, after using the Klein-Gordon equation (18), and the known values of the coefficients
cμν and c, leads to

ḡμνkϕ,μνl − Γ̄μkϕ,μl+ m̄2kϕl = O(1/k4) , (20)

with

ḡμν = gμν +
3

2k2
Rμν +O(1/k4) ,

Γ̄μ = Γμ +
3

4k2
2ΓμνλR

νλ −R,μ +O(1/k4) , (21)

m̄2 = m2 1− 9m
2

4k2
+O(1/k4) .

As we can see, the average scalar field kϕl satisfies the Klein-Gordon equation in a curved
space with metric ḡμν , which differs from the actual metric gμν . The new metric ḡμν is the
average metric we have been looking for. Similarly, Γ̄μ is the average trace connection. It
can be rewritten as

Γ̄μ = ḡνλ Γ̄μνλ , (22)

where

Γ̄μνλ = Γ
μ
νλ − 3

4k2
δμνR,λ +A

μ
νλ +O(1/k4) . (23)
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The average connection Γ̄μνλ is determined up to an arbitrary traceless function A
μ
νλ ,

ḡνλAμ
νλ = O(1/k2) , (24)

which is a consequence of using scalar fields to probe space geometry. If we want to measure
all the components of the connection, we need vector or spinor test fields. Finally, m̄ is
the average mass of the scalar field. To summarize,

the quantities ḡμν and Γ̄μνλ are the average values of space metric and connection,
and m̄ is the average mass of the test scalar field. In the lowest order in 1/k, they
are given by the equations (21) and (23).

Note that the equation (20) determines ḡμν and m̄ only up to a multiplicative constant. We
fixed it by the requirement that the average and actual metrics coincide in flat geometries.

Analysis. Let us see how the effective and actual geometries differ from each other.
To do that, we shall first complete the definition of the effective connection Γ̄μνλ by
appropriately choosing the arbitrary traceless function Aμ

νλ . One should have in mind
that this procedure can not give us the real effective connection, since it can only be
obtained by performing experiments with vector or spinor test fields. Still, analyzing
different choices of Aμ

νλ will tell us which effective geometries are excluded.

The first question concerns the possibility that the effective geometry remains Rie-
mannian. Is there a choice of Aμ

νλ that makes Γ̄
μ
νλ a Levi-Civita connection? Equiv-

alently, can an appropriate choice of Aμ
νλ make the effective torsion and non-metricity

vanish? The analysis is straightforward, and shows that two distinctive cases can be
achieved. First, the effective non-metricity (Qμνλ ≡ −gμν;λ) vanishes, and the torsion
(Tμ

νλ ≡ Γμνλ − Γμλν) remains non-trivial:

Q̄μνλ = 0 , T̄μ
νλ = − 3

4(n− 1)k2 δμνR,λ − δμλR, ν . (25)

Second, the effective torsion vanishes, but non-metricity remains non-trivial:

T̄μ
νλ = 0 , Q̄μνλ = − 3

4nk2
gλμR, ν + gλνR,μ . (26)

As we can see from (25) and (26), the simultaneous vanishing of both, effective torsion
and non-metricity, is possible only if R = const. In general, the effective geometry is
not Riemannian. In what follows, we shall always work with Q̄μνλ = 0, as non-metric
geometries can hardly be given physical interpretation. As seen from (25), this means
that the general effective geometry accommodates a non-zero torsion. (The basics of
torsion dynamics can be found in [12, 13].)

Let us see what happens to the space volume in the process of averaging. Using the
formula for ḡμν in (21), we find

ḡμν = gμν − 3

2k2
Rμν +O(1/k4) , (27)

wherefrom

ḡ = g 1− 3

2k2
R +O(1/k4) . (28)
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Thus, the effective volume is larger or smaller than actual, depending of whether R > 0
or R < 0. As an example, consider an Einstein space defined by Rμν = λ gμν , λ = const.
The averaging procedure then gives

T̄μ
νλ = O(1/k4) , Q̄μνλ = O(1/k4) ,

ḡμν = gμν 1− 3λ/2k2 +O(1/k4) , (29)

R̄μ
νλρ = R

μ
νλρ +O(1/k4) .

The effective scalar curvature is then found to be always larger than the actual:

R̄ = R+
3R2

2nk2
+O(1/k4) . (30)

In the case of a 2-sphere, R = −2/r2, and consequently, the effective radius r̄ > r . Thus,
the effective sphere is larger than the actual, in agreement with the result (28) concerning
space volumes.

The above analysis is strictly perturbative, and holds for small values of 1/k. In
other words, only when the test particle is much smaller than the characteristic length of
geometry fluctuations, the low order results can be meaningful. For example, averaging
the 2-sphere of radius r over regions much smaller than 4πr2 gives a larger effective 2-
sphere. If, however, the averaging region is larger than 4πr2, the sphere will look as a
point to us, and consequently, the effective volume will be zero.

4. Concluding remarks

We have shown in this work how realistic measurements define effective geometries.
Starting with the idea that matter fields are used to detect internal spacetime structure,
we first defined the averaging procedure for world scalars. The average has been taken
over small regions of space, thereby mimicking experiments with non-localized test parti-
cles. Then, matter field equations have been used to determine the effective metric and
connection. Assuming that scalar fields obey the Klein-Gordon equation in a curved geom-
etry, we have shown that their averages do the same. This time, however, the metric and
connection that enter the Klein-Gordon equation, were different. They define the effective
geometry.

The properties of the effective space have been analyzed only perturbatively. It has
been shown that non-zero torsion can appear after the averaging procedure, no matter
that the actual space was Riemannian. The effective space volume turns out to be larger
or smaller than the actual one, depending on the sign of the scalar curvature. The effective
scalar curvature, on the other hand, has been considered in the case of an Einstein space,
with the result that averaging increases its value.

The work reported here has been done in the lowest order of the averaging parameter.
This means that the averaging area is supposed to be much smaller than the correlation
length associated with the fluctuations of geometry. As a consequence, many attractive
non-perturbative averaging effects are missed. To obtain Minkowski space by averaging
geometry of Euclidean signature, or to explain quantum behaviour as originating from
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spacetime fluctuations, we need a more complex, non-perturbative averaging procedure.
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Abstract

This paper presents Stark shift measurement results of Ar I 794.818 nm and
Ar I 810.369 nm lines. These results are part of a systematic and high precision
experimental study of argon spectral line widths and shifts. The measured
shifts were compared with available theoretical and other experimental data.

Key words: Stark broadening, Stark shift, spectral line shapes

1. Introduction

Stark effect influence on the width and shift of neutral argon spectral lines has been
extensively investigated during the last three decades, since argon is a widely available
inert atomic gas which produces a variety of favourable conditions for stable discharges.
Stark parameters are important for plasma diagnostic purposes of laboratory as well as
astrophysical plasmas and also for theory testing and different plasma applications.

Subject of this paper is a Stark shift determination for two red, Ar I 794.818 nm
(4s�[1/2]o0 - 4p�[3/2]1) and Ar I 810.369 nm (4s[3/2]o1 - 4p[3/2]1), spectral lines. In the
literature there are only two results for shift measurements of the 794.818 nm line [1, 2].

The shifts are measured for electron density interval from 0.74 · 1022 m−3 to 2.90 ·
1022 m−3 and temperature interval from 9280 K to 10760 K. Because the two considered
lines are very narrow and they have very small shifts for the plasma conditions, we take
care about a number of experimental details related to the plasma source, line shape, shift
recording, measured data treatment and plasma diagnostics.

2. Spectral line broadening and shifting

Broadening mechanisms of spectral lines of atoms and ions in plasma can be divided
into three groups:

a) Natural broadening, caused by the finite average lifetime of atoms in the excited
state,
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b) Doppler broadening, due to the motion of the emitter atoms with respect to the
observation system,

c) Pressure broadening, caused by the interaction of the emitter with the neutral or
charged particles.

Natural broadening is practically always negligible in comparison to other broadening
mechanisms. Pressure broadening includes resonance, van der Waals and Stark broadening
mechanism. The most important broadening effect for our experimental conditions is
the Stark broadening. Doppler and instrumental broadening must always be taken into
account. The Stark shift of the spectral line should always be corrected to the van der
Waals shift.

As perturbing particles, ions are usually less effective in spectral line broadening than
electrons. The exceptions are the lines belonging to one-electron systems and the lines with
forbidden components, though in these cases ion broadening is not dominant. Because
of this, in considering the isolated line profiles ion broadening is calculated as a small
correction to the electron impact broadening. Calculation of the Stark profile, the so-
called j(x) profile, in quasi-static approximation [3 - 5], can be written in the form:

jA,R(x) =
1

π

∞

0

WR(β)dβ

1 + x−A4/3β2 2 , (1)

where x = (λ − λ0 − de)/we is the reduced wavelength, λ0 is the central wavelength of
the profile, de and we are the electron impact Stark shift and half-halfwidth respectively,
WR(β) is the distribution of the plasma electric microfield defined in [6], R is the ratio of
the mean distance between ions to the Debye radius and A is the static ion broadening
parameter (also known as α see [2, 3]). The total theoretical width, wth, and the total
theoretical shift, dthp, at the peak of the j(x) profile can be expressed as [2, 3, 7]:

wth = 2 1 + 1.75 · 10−4N1/4
e A 1− 0.068N1/6

e T−1/2 · 10−16weNe (2)

dthp = de ± 2 · 10−4N1/4
e Awe 1− 0.068N1/6

e T−1/2 · 10−16Ne (3)

Because of the profile asymmetry, the shift at the halfwidth position dth1/2 has a slightly
different value [8]:

dth1/2 = de ± 3.2 · 10−4N1/4
e Awe 1− 0.068N1/6

e T−1/2 · 10−16Ne (4)

Electron half-halfwidth we, shift de and ion broadening parameter A are tabulated in
Ref. 2 at Ne = 10

16 cm−3. Ne and T are electron density (cm−3) and temperature (K)
respectively, for which wth and dth will be calculated. There are certain restrictions on
the applicability of Eqs. (2), (3) and (4) and they are R ≤ 0.8 and 0.05 ≤ A ≤ 0.5 [4].

3. Experimental apparatus for spectral line profile recording

a) Plasma source
As a plasma source we used a wall stabilized electric arc. The arc operates in argon

under atmospheric pressure, with a small addition of hydrogen, which is used for diagnostic
purposes. Arc consists of six water-cooled discs, 7.1 mm in thickness separated by 0.5 mm
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Teflon gaskets which serve as insulators and seal off the arc channel from the air. Diameter
of the arc channel is 5 mm and its length is 50 mm. Argon is introduced into the plasma
through the hollow electrodes at both ends of the arc channel with a flow rate of 3 l/min
(Fig. 1). Gas mixture of argon and 4 % hydrogen is introduced into the arc channel
through the hole in the copper disc placed next to the cathode with flow rate of 0.1 l/min.
Gases are exhausted through the hole in another copper disc placed next to the anode.
In order to perform optical alignment of the arc and for side-on plasma spectroscopic
observations through the slot between two parts, located in the middle of the arc channel,
glass windows are mounted (Fig. 1). The current of 30 A is supplied to the arc from the
current stabilized (±0.3 %) power supply.

b) Spectral intensity recording

Plasma spectroscopic observations are performed side-on like in experiments [9, 10].
Plasma image is projected using the mirror system M1 and M2 onto the entrance slit
of the monochromator at the ratio 1:1 (Fig. 1). The choice of the appropriate spher-
ical mirror M2 (the focal length is 1.5 m) and its position with respect to the plasma
source and monochromator ensure total irradiation of the monochromataor dispersion
grating. Inverse linear dispersion of the 1 m monochromator with a 1200 grooves/mm
grating is 0.833 nm/mm. The monochromator is also equipped with a stepping motor
with 36000 step/rev. An He-Ne laser is used for optical alignment of the system plasma
source mirror monochromator.

Figure 1. Experimental setup.

The plan-parallel glass plate is located between mirrors M2 and M3. The rotation
of this glass plate enabled us to shift the plasma image across the entrance slit of the
monochromator. In this way radial scanning of the plasma is performed. The 10 mm
diaphragm in front of mirror M2 and 0.3 mm slot placed in front of the entrance slit,
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limited light coming from the plasma and enabled observations of thin horizontal slices of
the arc plasma.

Radiation coming from the plasma source passes also through the partially transparent
(reflecting) mirror M3. This enables observation of the radiation from the reference source,
used for spectral line shift measurements. In this way by using a chopper, light from the
reference source (position B, Fig 1.) or from the arc plasma (position A, Fig 1.) can be
detected alternatively by the photomultiplier placed at the exit slit of the monochromator.
A low pressure argon Geissler tube is used as a reference source of unshifted argon lines.
Lines emitted from this source are also used for the instrumental width measurements.
Another He-Ne laser enables optical alignment of the reference source. Both signals are
recorded at each wavelength step along the investigated wavelength interval.

Signals from the photomultiplier are led to the digitizing oscilloscope working in an
averaging mode, 32 samples over 200 ms for each experimental point. The stepping mo-
tor (HP-IB interface), chopper (RS-232 interface) and oscilloscope (HP-IB interface) are
controlled by the personal computer which is also used for data acquisition.

4. Plasma diagnostics

Radial distribution of electron density Ne in the range (0.74 2.90)·1022 m−3 along the
plasma radius was determined from the halfwidth of the Balmer Hβ line. Ne measure-
ment is performed in conjunction with theoretical calculations [11]. Estimated errors of
measured electron densities, which do not exceed 9 %, were derived from the error in Hβ

halfwidth measurements and the typical uncertainty in Ne determination from Hβ profile
[12].

Electron temperature Te in the range (9280 10750) K is deduced from [13]. Calcula-
tions from the plasma composition data, using the procedure described in [14], show that
the plasma of the mixture of argon and a small addition of hydrogen (less than 4 %) can
be treated as pure argon plasma. Under these conditions, Ref. [5] is used for temperature
determination. The error in electron temperature measurements of 3 % is estimated from
the uncertainty of Ne and its influence on Te determination.

5. Experimental data treatment

In this experiment argon is used at the same time as a working gas and a gas whose
spectral lines are considered. In order to avoid absorption effects and distortion of line
profiles caused by emission from the electrode region, the spectroscopic observations were
made side-on. Set of raw experimental Ar I 794.818 nm line profiles, observed perpen-
dicularly to the arc axis at 16 points along the radius, is given in Fig. 2. Due to the
inhomogeneity of the arc radially symmetric plasma, it is necessary to use an Abel inver-
sion procedure to separate contributions from different plasma layers and to obtain the
true radial plasma intensity distribution. Here we used an Abel inversion procedure based
on the Jacobi polynomials as described in Ref. 15. The Abel inverted profiles of Ar I
794.818 nm line at 12 points along the plasma radius are given in Fig. 3. The profile of
the same Ar I line emitted from the reference source is also included in Fig. 3.

The same Abel inversion procedure is also applied to Hβ line profiles. For further data
analysis we used only 12 profiles along the radius. The weak intensity of the last 4 Hβ

profiles disabled proper plasma diagnostic procedure.
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Figure 2. Set of raw experimental data. r is
the arc channel radius.

Figure 3. Set of the profiles after the Abel
inversion procedure.

The obtained Abel profiles for both Ar I 794.818 nm and Ar I 810.369 nm line are
convolution of all broadening mechanisms. As already mentioned, for our experimental
conditions Stark broadening and shifting is dominant while Doppler and van der Waals
mechanisms are not completely negligible. Resonance broadening is negligible for these
plasma conditions. In this case for both lines Stark halfwidth has a very small value. For
example for the Ar I 794.818 nm line and plasma conditions Ne = 2.9 · 1022 m−3 and
T = 10760 K, Stark halfwidth = 0.0299 nm (2), van der Waals halfwidth = 0.0016 nm
[3, 8], Doppler halfwidth = 0.009 nm [3], instrumental halfwidth = 0.03 nm (measured).
Furthermore, the same values of the Stark and instrumental halfwidth disabled proper
deconvolution procedure and Stark halfwidth determination. Ion broadening parameter is
also very small, A = 0.022 [4]. So, in this case the considered line profiles are practically
symmetric. It means that symmetrical Lorentzian profile can be used for the theoreti-
cal description of Stark profile, instead of the j(x) one. Convolution of the Lorentzian
profile and Gaussian profile, which contains the Doppler and instrumental profile, gives
the so-called Voigt profile [16]. So, for determination of the spectral line center position,
symmetrical function can be used, and comparing it to the reference line position, exper-
imental shift can be determined.

6. Results and discussion

Shift measured data for the Ar I 794.818 nm line for different electron densities and
temperatures along the plasma radius are given in Table 1. The measured shift values
Smeas have to be corrected to the shift caused by the van der Waals effect. Van der
Waals shift can be estimated as SvW = −2/3WvW , where WvW is the van der Waals half-
halfwidth [3]. For calculations of the van der Waals half-halfwidth one can use Refs. [3]
and [8]. Data, necessary for these calculations, density of perturbers and corresponding
energy level data, are taken from Refs. [13] and [17] respectively. The corresponding poor
Stark shift values SS are also given in Table 1. Estimated experimental errors for Stark
shifts are 1026 % from the highest to lowest electron density.

The obtained results are compared with available theoretical data [4] which are also
given in Table 1. Theoretical shift SGrcalc is calculated from Eq. (4). These values should
be corrected to the Debye shielding effect (SDscor) [4]. Corrected theoretical data SGr and
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the ratio Stark shift over the theoretical one are given in the last column of the Table 1.

Table 1. The measured shift data for the Ar I 794.818 nm line. Ne electron density, T
electron temperature, Smeas measured shift, SvW van der Waals shift, SS Stark shift,
SGrcalc theoretical shift (4), SDScor correction to Debye shielding effect [4], SGr
corrected theoretical shift and SS/SGr Stark shift over the theoretical one.

Ne T Smeas SvW SS SGrcalc SDScor SGr SS/SGr
(1022m−3) (K) (10−1nm) (10−1nm) (10−1nm) (10−1nm) (10−1nm) (10−1nm)
2.90 10760 0.124 -0.0055 0.119 0.1148 -0.0265 0.0883 1.35
2.82 10730 0.118 -0.0055 0.113 0.1116 -0.0254 0.0861 1.31
2.70 10700 0.115 -0.0055 0.109 0.1068 -0.0239 0.0829 1.32
2.46 10550 0.111 -0.0056 0.105 0.0974 -0.0209 0.0765 1.37
2.15 10400 0.092 -0.0057 0.086 0.0849 -0.0172 0.0677 1.27
1.90 10250 0.078 -0.0058 0.072 0.0749 -0.0144 0.0605 1.19
1.60 10050 0.072 -0.0060 0.066 0.0629 -0.0112 0.0517 1.28
1.40 9900 0.059 -0.0061 0.053 0.0550 -0.0093 0.0457 1.16
1.20 9720 0.054 -0.0062 0.048 0.0470 -0.0074 0.0396 1.21
0.98 9520 0.049 -0.0063 0.043 0.0383 -0.0055 0.0328 1.31
0.83 9400 0.037 -0.0064 0.031 0.0324 -0.0043 0.0280 1.11
0.74 9280 0.029 -0.0065 0.023 0.0288 -0.0037 0.0251 0.92

Data, necessary for Debye shielding corrections, are taken from Refs. [3], [4] and [17].
The comparison of measured Stark shifts and theoretical ones for Ar I 794.818 nm line is
graphically presented in Fig. 4.

The same above described procedure is applied to the Ar I 810.369 nm line also. Results
are presented in Table 2 and Fig. 5.

Table 2. The measured shift data for the Ar I 810.369 nm line. Ne electron density, T
electron temperature, Smeas measured shift, SvW van der Waals shift, SS Stark shift,
SGrcalc theoretical shift (4), SDScor correction to Debye shielding effect [4], SGr
corrected theoretical shift and SS/SGr Stark shift over the theoretical one.

Ne T Smeas SvW SS SGrcalc SDScor SGr SS/SGr
(1022m−3) (K) (10−1nm) (10−1nm) (10−1nm) (10−1nm) (10−1nm) (10−1nm)
2.90 10760 0.119 -0.0053 0.114 0.1412 -0.0341 0.1070 1.07
2.82 10730 0.119 -0.0053 0.114 0.1372 -0.0328 0.1044 1.09
2.70 10700 0.116 -0.0053 0.111 0.1316 -0.0308 0.1008 1.10
2.46 10550 0.106 -0.0054 0.101 0.1197 -0.0269 0.0928 1.09
2.15 10400 0.09 -0.0055 0.085 0.1044 -0.0222 0.0823 1.03
1.90 10250 0.086 -0.0056 0.081 0.0923 -0.0186 0.0738 1.10
1.60 10050 0.071 -0.0058 0.065 0.0776 -0.0145 0.0631 1.03
1.40 9900 0.065 -0.0059 0.059 0.0677 -0.0119 0.0558 1.06
1.20 9720 0.052 -0.0060 0.046 0.0579 -0.0096 0.0484 1.00
0.98 9520 0.043 -0.0061 0.037 0.0472 -0.0071 0.0400 1.00
0.83 9400 0.041 -0.0062 0.035 0.0398 -0.0056 0.0342 1.02
0.74 9280 0.033 -0.0063 0.027 0.0354 -0.0047 0.0307 1.00

Stark shift results for both Ar I 794.818 nm and Ar I 810.369 nm line show small and
similar disagreement with Griem’s theoretical results [4]. Average ratio of the measured
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and theoretical shift for Ar I 794.818 nm line is 1.23, while for Ar I 810.369 nm line the
ratio is 1.05. These ratios (SS/SGr > 1) are different from ratios for most blue argon lines
considered in Ref. [10] (SS/SGr < 1).

Figure 4. Comparison of measured and theo-
retical Stark shifts for Ar I 794.818 nm line.

Figure 5. Comparison of measured and theo-
retical Stark shifts for the Ar I 810.369 nm line.

In both cases measured shift vs electron density show the proper trend, which implies
that there was no systematic error in measurement.

The shift measurements presented in this paper are new reliable data. There is not
enough other experimental data available in the literature for any serious comparison
with the measured shifts. There are only two experimental results of the Stark shift
measurements and only for Ar I 794.818 nm line. In Ref. [1] the authors reported only
one shift measurement with SS/SGr = 1.21 for Ne = 1·1023 m−3 and T = 13000 K. In Ref.
[2] the authors also reported only one shift result with SS/SGr = 0.60 for Ne = 1·1023 m−3
and T = 12500 K. For these results see also Refs. [18] and [19].

7. Conclusion

Measurement of the Stark broadening parameters is important for precise plasma diag-
nostics and for various plasma applications. In this work, the values of the Stark shift of Ar
I 794.818 nm and Ar I 810.369 nm lines for various electron densities are presented. In order
to obtain good and reliable experimental data, we used a stable continuous plasma source
and experimental technique, which enabled high precision shift measurements. Particular
attention was paid to proper numerical procedures for experimental data treatment.

The obtained results are higher than the theoretical ones and indicate that further
improvements of the theory are needed. However, the discrepancy between these and
other experimental data shows that new precision measurements should be done in order
to clear this discrepancy.
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