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Abstract

The coincidence measurements of annihilation radiation from a sample of CrO3
containing 4.72 g of 50Cr were performed using a horizontal HPGe detector
shielded by a NaI annulus with a NaI plug. The whole setup was within a
heavy iron shielding. The signature of both the two neutrino and the neutrino-
less positron-electron capture decay of 50Cr is considered to be the 511−511 keV
coincidence from the HPGe detector and the NaI plug, with no signal from the
NaI annulus. No such events were observed during the twelve days measure-
ment which yields an upper limit for the half-life of 50Cr against the positron-
electron capture decay of 2.6 · 1018 y (at the 68% CL), what is an order of
magnitude improvement over existing results.

Key words: Double-beta decay, low-level gamma spectroscopy

1. Introduction

Unanswered questinos on the properties of the neutrino and the nature of weak inter-
action are strongly reltated to the existance of the 0ν double beta decay.

While the most experimental efforts have been cast on the double - β− decays, the β+

side is also important. Since the electron capture (EC) and the positron emission (β+) are
possible in a single - GT+ transition, there are three cases in the double - GT+ transitions;
EC/EC, β+/EC and β+β+ [1]. It has been pointed out that, in the 0ν mode, they seem
to yield quite a different constraint on the neutrino masses and right-handed weak-current
parameters, although the double - GT+ transitions are more difficult to be observed than
the double - β− cases [2].

Because of the possible implications for lepton-number conservation and the mass of
the neutrino, it is important to search for evidence of the β+/EC decay. If a β+/EC
decay occured within a thick sample of material, almost all of the positrons would stop
and annihilate within the sample. Subsequently, either two or four strongly correlated
coincident 511-keV annihilation gamma rays would be emitted and carry off the full decay
energy. The comparatively low-energy x-rays that would also be emitted in the process of
β+/EC decay would be severely attenuated in the sample [3].

Double beta decay is the slowest nuclear transmutatuion observed. The experimental
half-lives are 1019 − 1021 years. The detection of such a rare process demands extreme
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care in the suppresion of all possible forms of background. The first consequence is that
no direct detection of ββ decay is possible on nuclei that are not stable with respect to
other types of decay. This restrict the llist of ββ candidates to those even-even nuclei in
which the pairing interaction forbids the single β decay. In all candidates, both the parent
and the daughter nuclei have a 0+ ground state [4]. The 0ν decay mode as well the 2ν one
is strongly influenced by the generally not well-known nuclear matrix element. Therefore,
experimental data on 0ν and 2ν mode half-lives on large number of nuclides are needed.

Some time ago we started a systematic study of four double positron beta decay in-
volving nuclei around the magic number 28, either as a parents or as daughters. These
four cases are:

50
24Cr28 →50

22 Ti28,
54
26Fe28 →54

24 Cr30,
58
28Ni30 →56

26 Fe32,
64
30Zn34 →64

28 Ni36

The first of the decay is seen to complete the N=28 magic number, the second one
destroys the N=28 magic number, the third destroys the Z=28 magic number while the
fourth one completes the Z=28 magic number. It is to be expected that the decay which
complete this magic number should be enhanced as compared to those which destroy it.
Up to now we measured the second [5-7] and the fourth [8] of these cases and the hint that
it indeed may be so came from the case of 64Zn which gave the non-zero result, suggesting
a strong structure effect. The case of the postiron-electron capture double beta decay of
50Cr should be similar in this respect, though the sensitivity of existing measurements of
this decay [5] as by far too low cheek this conjecture. We thus set to measure this decay
again aiming at raising the sensitivity and eventually resolving this question.

2. Experimental details

Our previous study [9] of the electron-positron conversion decay of 64Zn yielded a
positive result for the (0ν + 2ν) half-life; thus, we decided to measure the 50Cr de-
cay with a similar technique. The mass difference between the nuclei 50Cr and 50Ti
∆mc2 = 1173.3(1.2) keV, (besides the (K,K) process which proceeded without positron
emission) allows the β+/EC decay with the transition energy of 144 keV. This value is
more than two times bigger than the 64Zn transition energy, enhancing thus the right-
handed interaction amplitude contribution to the probability of the 0ν decay mode. The
50Cr transition energy is far from the 1554 keV energy of the first excited state of 50Ti,
so the β+/EC decay can lead only to the 50Ti ground state. The abundance of 50Cr in
natural Cr is 4.345% [10]. The enhancement of this decay might be due the fact that the
daughter nucleus here is a Z magic one.

We measured the number 511 keV γ-rays from positron annihilation in CrO3, aiming
to investigate the (0ν+2ν) half-life. An event of possible interes was defined to be one for
which there were coincident signals in the two inner detectors (HPGe and NaI(Tl) plug)
and no signals in the annular shield.

In the experiment, the cylindrical samples with the diameter of φ = 70 mm and
thickness of h = 25 mm were sandwiched between a 7.6 cm × 7.6 cm NaI(Tl) and a
25% efficiency HPGe detector. The CrO3 sample contained 4.72 g of

50Cr. The positron
creation in the sample from cosmic and environmental γ-rays was simulated by Fe and
Cu ”blank” samples. The detectors were connected to a coincidence circuit, presented in
Fig. 1. The 511 keV SCA window was set on the more stable HPGe spectrum, and the
NaI(Tl) spectrum was accumulated in the MCA gated with coincident slow signals. Due
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Figure 1. The setup for measuring β+/EC decay of 50Cr.

to the excellent time resolution of the fast circuit, the number of random coincidences
was negligible. Both the NaI(Tl) and the HPGe detectors were actively shielded by the
23 cm× 23 cm NaI(Tl) guard detector. The whole assembly was operated inside a 25 cm
wall thickness 4π passive iron shield. The coincidence efficiency of the system ε = RC/A
(RC - true coincidence count rate, A - positron source activity) is determinated by the
Monte Carlo simulation and direct measurements with a calibrated 22Na source has the
value of ε = 1.9% [9].

3. Results and discussion

The results obtained by integration in the 511 keV region are summarized in Table 1.
Thus in the coincidence spectrum the net 511 keV intensity was not found.

Table 1. The results obtained by integration in the 511 keV region.

Cr background

511-511 coinc.count rate [(ks)−1] 53(11) 57(12)
measurement time [ks] 1040 926

In the experiment for the 209 g Cr03, which contains 4.7 g
50Cr, we derived the upper

limit of the half-life T (0ν + 2ν) ≥ 2.6 · 1018 y (at 68% CL). Our limit is by an order of
magnitude more stringent than the value T (0ν+2ν) ≥ 1.8 · 1017 y derived by Norman [3].
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V. Babović and M. Kovačević
Faculty of Science, University of Kragujevac, R. Domanovića 12,
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Abstract

Analysis of different formulas for surface electron plasma waves has shown the
necessity for evaluating the dispersion relation. Since this equation is very
complex and implicit, the calculations are not clearly seen. In this paper an
attempt has been made in order to overcome the difficulties, by applying the
fast convergent iteration algorithm.

Key words: Electromagnetic propagation, surface electron plasma waves, fixed-point
method

1. Definition of the surface function

The dispersion relation of surface electron plasma waves can be written down in a form
which immediately points to the existence of a guiding surface crucial for the wave:

−εp = εgF [X,Y (X)] . (1)

The function F [X,Y (X)], which appears in the above equation, can be named as the
surface function. The surface function traces the way how the resonance condition of a
surface mode −εp = εg is modified for limited values of wave wavelengths and, in the case
of vanishing small wavelengths, it approaches unity, i.e.

lim
X→∞

F [X,Y (X)] = 1 . (2)

Here X stands for the wavenumber of the surface wave, normalized by means of a
suitable geometrical variable (e.g. the radius of the plasma column), whereas Y is the
normalized angular frequency: Y = ω

ωp
, with ωp as the angular plasma frequency. In this

paper we treat only cold homogeneous plasmas which could be conceived as dielectrics
of permittivity εp = 1 − 1

Y 2 . This is a simple and very frequent case which imposes no
principle limitations on the procedure we will propose. The plasma is in contact with an
ordinary dielectric, having permittivity εg, in accordance to the model of a sharp boundary.
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We will now concretize the relation (1) i.e. the surface function for several important
specific configurations.

A) For a plasma half-space we have

F [X,Y (X)] ≡ F− =
t
X2 + p20(1− Y 2)s
X2 − Y 2p2 (3)

where p = ωpR
c and p0 =

ωpR
c0
, c0 being the speed of light in the vacuum and c = c0√

εg

the speed of light in the surrounding glass. Parametres p, or p0, give the level of electron
concentrations in the plasma and will be referred to as the electron density parametres.
The normalizing length R is the height of a slot-antenna arrangement (or an analogous
quantity for other launchers).

B) For a plasma layer of half-width a it holds that

F [X,Y (X)] ≡ F= =
t
X2 + p20(1− Y 2)t
X2 − Y 2p20εg

coth
t
X2 + p20(1− Y 2) . (4)

Here X = 2πa
λ and the expression is valid for the anti-symmetric mode of surface waves.

C) As long as we have in mind a plasma cylinder placed in an infinitely thick glass it
must be

F [X,Y (X)] ≡ F0 = ua

νa

I0(ua)

I1(ua)

K1(νa)

K0(νa)
. (5)

The expression contains various modified Bessel functions of orders 0 and 1 and arguments

ua =

v
X2 − p2Y 2 εp

εg
, (6)

νa =
t
X2 − p2Y 2 . (7)

D) Finally, in the most realistic case describing a plasma column in a cylindrical vessel
of a wall thickness δ = b− a ≡ a(d− 1) and permittivity εg we can put

F [X,Y (X)] ≡ F⊕ = r31m1

r32m2 − r33m3
. (8)

The coefficients rij are derivatives of the type
d
dz [zZ(z)], i.e.

r31 = [u1aI1(u1a)]
� ; (9)

r32 = [u2aI1(u2a)]
� ; (10)

r33 = [u2aK1(u2a)]
� . (11)

The structure of the matrices mi is as follows

m1 =

⎡⎢⎣ −I1(u2a) −K1(u2a) 0
I1(u2b) K1(u2b) −K1(u3b)

[u2bI1(u2b)]
� [u2bK1(u2b)]

� −εg [u3bI1(u3b)]�

⎤⎥⎦ ; (12)
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m2 =

⎡⎢⎣ I1(u1a) −K1(u2a) 0
0 K1(u2b) −K1(u3b)
0 [u2bK1(u2b)]

� −εg [u3bI1(u3b)]�

⎤⎥⎦ ; (13)

m3 =

⎡⎢⎣ I1(u1a) −I1(u2a) 0
0 I1(u2b) −K1(u3b)
0 [u2bI1(u2b)]

� −εg [u3bK1(u3b)]�

⎤⎥⎦ . (14)

The transverse wavenumbers ui are defined in the standard way

u1 =
t
β2 − k20εp; u2 =

t
β2 − k20εg; u3 =

t
β2 − k20. (15)

Here k0 =
ω
c0
is the free space wavenumber, and β = 2π/λ.

2. On the necessity of approximation of the dispersion relation

The D) model of a surface wave guiding medium, though fairly complicated, is the
most important one, being closely related to many experimental arrangements, particu-
larly in the area of gas discharge plasmas. In applications, when we have to implement
the dispersion relation into a formula, it should be very convenient manipulate with an
expression of the type Y = f(X), instead of an implicit equation D(X,Y (X)) = 0 in
accordance with (1). In order to overcome this difficulty one often uses the quasistatic
approximative expression of the dispersion relation; it formally follows from eqs. (1) and
(8) considering the limiting process c0 →∞. Having in mind that such a treatment leads
to the reduction ui → β = 2π

λ (s. eq. (15)), the function F⊕ loses the term containing
the angular frequency ω. Unfortunately, the quasistatic dispersion relation appears to be
useless in the region of small wavenumbers.

In papers [1], [2] we stressed that an interesting approximative expression can be
achieved by means of the concept of an equivalent dielectric. The basic idea is in the
application of a layer model in the hierarchy of various guiding structures. So, one treats
the plasma column as an unbounded homogeneous dielectric and replaces the permittivity
εg with the effective permittivity like this:

εeffg = 1 + (εg − 1) tanh[(d− 1)X] . (16)

Here d is the width parameter of the glass tube surrounding the plasma cylinder, in
fact the quotient of radii, d = b

a . In that way, the dispersion relation follows from eqs. (1)
and (5) and reads

Y =
1t

1 + εeffg F0

. (17)

This approximation can in many cases successfully replace the full dispersion relation
of the more complicate model (D), eq. (8).

In paper [3] the authors tested the validity of a square-root approximation in the initial
part of the dispersion relation (the important regionX ∼ 0.5 characterized by an increased
power of the wave). A good agreement with experimental results has been established.
In addition to this, a square-root function can be proved to be an analytical reduction
of the expression consisting of many Bessel functions regularly existing in the full wave
dispersion relation. Otherwise, dispersion relations of the type ω = const ·√k are known
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in some wave propagation theories and the reduction to such an investigated class could
serve as a source of additional useful analogies. Unfortunately, this type of approximation
leads to unacceptable deviations already for wavenumbers X ∼ 1. During the last decade,
the practical possibilities of a numerical processing of complicated formulas have been
radically improved. In this context, it is interesting to consider the efficiency of the fixed-
point method in connection with the mentioned dispersion relation. As far as we know,
the existing literature has not reported about this topic and we are here going to say in
some details more on the iteration procedure.

3. Iterative process

Starting from eq. (1) we can write the dispersion relation in the form

Y = f(X,Y (X)) , (18)

where

f(X,Y (X)) =
1t

1 + εgF (X,Y (X))
. (19)

Let Y0(X) be an initial, or zero order approximation (deduced via the method of an
equivalent dielectric, or in any other way). Putting Y0 into the right-hand side of eq. (18)
we formally get the first-order approximation

Y1 = f(X,Y0(X)) . (20)

Continuing the iterative process, we can now use the above result as a starting value
in order to get the second-order approximation, i. e.

Y2 = f(X, f(X,Y1(X))) . (21)

Of course, we can also perform any of the higher-order approximations according to
the algorithm

Yi = f(X, f(X,Yi−1(X)))) (22)

although there is no true need for solutions with i > 2, as we are going to confirm in this
paper.

By the fixed point method one can easily control the desired precision. Up-to-date
PC packets, such as various Mathematica programs, contain developed algorithms in full
agreement with our idea. For example, by means of the command

FixedPointList[Y, Y0, SameTest → (Abs[#1-#2]< 10−3 &)]

the iterative action (22) is activated and it stops after two successive results differing by
less than 0.001. This shows how fast the Y function converges to its fixed point.

The fixed-point method noticeably simplifies software manipulations, computations
are faster and programming more clear.

4. Our results

Let us now present several results of our computations based on the fixed-point method.
We have chosen the zero-order approximation in accordance with the equivalent dielectric
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model, i. e.

Y0 =
1u

1 + (1 + (εg − 1) tanh[(d− 1)X]) I0(X)I1(X)
K1(X)
K0(X)

. (23)

Following eq. (20), we can construct the expression for the first-order approximation
Y1, having in mind eq. (19), too. This function is graphically represented in Fig. 1, for
the following set of parametres: d = 1.2, p = 0.5 and εg = 4.8.

Figure 1. The first-order approximation of the dispersion relation; the reduced angular frequency
as a function of the normalized wave number for the following set of parameters: d = 1.2, p = 0.5
and εg = 4.8.

We have proved that practically the same graphic is obtained when the starting func-
tion Y0 is the known quasistatic approximation

Y0 = (1 + εgM)
−1/2 (24)

where

M =
I0(X)

I1(X)

(εg − 1)I1(X)K0(Z)K1(Z) +K1(X)S(Z)
(1− εg)I0(X)K0(Z)K1(Z) +K0(X)S(Z)

, (25)

with the abbreviation

S(Z) = I0(Z)K1(Z) + εgK0(Z)I1(Z) , (26)

having the value Z = Xd as the argument of Bessel functions.
In the Table 1 we have given a comparative survey of various approximations of the

dispersion relation, for several values of the wave number of the axially symmetric surface
electron wave where we have defined δ1 as the relative difference between Y1 and Y0, δ2
between Y2 and Y1 and δ between true value Y and Y0. All the results stated in the Table
hold for the following set of parameters: d = 1.2, p = 0.5 and εg = 4.8.

One can easily prove that the iterative process rapidly converges. The approximations
Y2 and Y1 differ by less than one percent, even for the wave numbers much less then unity.
The results are more convincing for low values of the density parameter p, for example
in the region p ∼ 0.1 (gas discharge plasmas). It is important that the approximation Y1
almost entirely cancels the known defects innate to the quasistatic function in the region
of small wave numbers. Of course, in the region of small wave lengths the errors δi are
negligible.
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Table 1. Approximations of the dispersion relation and related errors for several values
of the wave number of the axially symmetric surface wave.

X 0.2 0.3 0.5 0.7 1 1.5 2 3

Y 0.161735 0.214277 0.288741 0.336827 0.380444 0.413968 0.424977 0.424323
Y0 0.175879 0.228176 0.300517 0.346542 0.387934 0.419213 0.428857 0.426639
Y1 0.159431 0.212742 0.288055 0.336491 0.380307 0.413924 0.424957 0.424317
Y2 0.162088 0.214439 0.28878 0.336838 0.380446 0.413968 0.424977 0.424323
δ 8.74517 6.48646 4.0784 2.88427 1.96875 1.26701 0.91299 0.54581
δ1 10.31669 7.254797 4.326257 2.987004 2.005485 1.277771 0.91774 0.547232
δ2 1.639233 0.791367 0.251056 0.103017 0.036536 0.010629 0.004706 0.001414

In Fig.2 we see the dependence of δ1 on X for various values of p. The necessary
corrections in regard to the zero-order approximation gives Y1 for small wave numbers,
especially if plasmas are sufficiently dense (when ωpa tends to the velocity of light).

Figure 2. Percentage error as a function of the normalized wave number of the surface waves for
various values of electron density.

The dependence of δ1 on p for various values of X is shown in Fig. 3.

Figure 3. Percentage error as a function of electron density for several relevant values of surface
wave numbers.
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If the parameter of electron density p is not greater than 0.5 and the wave number
is not greater than 0.3, the deviation of the first-order approximation from the zero-
order one is not greater than 5%. At the beginning, the dependence δ1 = f(p0) goes as
δ1 = C(X)p

2
0, the function C(X) decreases as the wave number increases and, in fact, can

be approximated as C(X) ≈ C0
Xn , if the exponent n is adequately chosen (s. Fig. 2, our

guess is n = 2).

5. Conclusion

In conclusion we stress the following. In problems connected with surface electron
plasma waves one always faces the need to implement the dispersion relation. Neverthe-
less, the dependence D(X,Y (X)) = 0 is (as a rule) unusually complicated and in fact
implicitly defined, so, computations can be somewhat inconvenient and the results often
fairly opaque.

As far as we know, in literature has not yet been reported that the mentioned difficulties
could be efficiently overcome by applying the iterative procedure. We have shown that
the fixed point method offers indeed an adequate treatment of the dispersion relation;
the method is especially effective if one has to compute the frequency from the equation
of the type D(X,Y (X)) = 0 in the scope of a general problem connected with surface
electron plasma waves. The axially symmetric wave has the dispersion relation which can
be put into the form (1). The plasma permittivity depends on the wave number via a set
of expressions and, implicitly, via the frequency in several transverse wave numbers of the
type X2

Ti = X2 − Y 2p20εi. The second term in this expression is usually much less than
the first one; the permittivity εp is almost entirely insensitive to the term X2

p = Y
2p20εi,

unless X ∼ ω
c0

√
εg. So, it is important that we can retain the term X2

p and, at the same

time, it is unessential whether X2
p has its true value or an approximative one. This means

that we can successively compute more and more precise approximations, the convergence
being achieved and the iteration process short. The zero-order approximation can be
chosen by many possible means, each of them will lead to a correct result after some
definite number of iterations. We have tried starting with the approximation based on
our method of an equivalent dielectric. The good zero-order approximation is also the
quasistatic approximation. One can also try starting with a constant term Xp = const,
for example putting initially Y0 =

1√
1+εg

(the resonant frequency of surface waves).

For p0 ≤ 0.1 (gas-discharge plasmas, in various gases and vapors), the solution Y1 is
quite satisfactory, the errors cannot be greater than one percent for any reasonable value
of wave numbers.

It is important that the short iterative procedure offers the useful way of explication
of a dispersion relation, which is fully compatible with up-to-date computational abilities.

In this paper we have treated only the axially symmetric surface electron wave. We
believe a similar procedure could be applied to higher-order modes, too. In addition,
it seems that the fixed-point method could be powerful for plasma media and guiding
structures more complicated than treated here. The investigations directed toward such
problems are in progress and the results will be reported elsewhere.
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6. B. A. Aničin, V. M. Babović, K. E. Lonngern, Excitation of nanosecond waves on
positive columns, Journal of Plasma Physics 7, 403 (1972).
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Abstract

Using quite general terms, the cold - fusion research programme can be de-
veloped from three physically independent approaches, one classical, another
quantum - mechanical, yet another electrodynamical. Equations of motion are
applied to a specific model of three - particle clusters, e−pe−, or e−de−. Here
the heavy particle (proton p, deuteron d) is assumed to perform a rotation with
respect to the axis which joins these two motionless electrons. The binding en-
ergies and separation distances are evaluated by employing classical as well as
quantum - mechanical approaches. One should emphasize that the former two
approaches, classical as well as quantum - mechanical, agree fairly well within
the geometric - structural model of the clusters about the order of magnitude
for the mentioned physical quantities. In particular,

|E(e−p(d)e−)| ≈ 22(44) keV; r0 ≈ 30(15) fm;

|E(e−p(d)e−)| ≈ 19(38) keV; r0 ≈ 70(35) fm.
Here r0 designates a separation distance of the proton (deuteron) from the axis
of rotation. The above cited figures are associated with the classical and quan-
tum - mechanical approximations, respectively. At the end of the paper we
consider a simple idea, by studying the action of combined electric and mag-
netic induction fields within the third physical approach, of how to introduce a
possible mechanism to materialize the predicted states of the particle clusters.
This would depend on many technical details within the specific experimental
arrangement.

Key words: Cold-fusion research, tightly bound states, Niels Bohr’s third postulate,
Lorentz force

1. Statement of the problem

Recently observed ”excess heat”, in a cold-fusion research programme, requires a more
fundamental approach to the problem of the binding energies of a non-nuclear origin. Here
obviously we are dealing with a research field which is somewhere between atomic physics,
on one side, and nuclear physics, on the other. Energies and classical distances in atomic
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physics are expressed by the order of magnitude 10 eV and 1 A
o

= 10−10 m, respectively.
Here by definition, 1 eV = 1.60210 · 10−19 J, where J designates one joule, m is one
metre. However, these two quantities in nuclear physics are approximately five orders of
magnitude greater (106 eV, binding energies; 1 fm = 10−15 m, separation distances). In
the present report we start with the idea of a deeply bound state for a three - particle
cluster, e.g. the system e−pe− = H−, or an electrically equivalent system e−de− = D−,
where p(d) designates the proton (deuteron). Our present study is directed towards three
various approaches, classical, quantum - mechanical, and electrodynamic. First, we look
at the system of three bound particles under the classical action of various Coulomb
forces (attractive as well as repulsive), where the heavy particle (proton, deuteron) has
an angular momentum about the axis which passes through the two motionless electrons,
Section 2. Second, there is a general quantum - mechanical approach which is based
on a series of algebraic transformations of the operators that are associated with the
kinetic and potential energies of the constituents of any three - particle cluster, Section
3. Furthermore, the motion of the heavy particle (p, d) under the action of the Coulomb
forces as generated by two separate sources is studied quantum - mechanically in Section
4.

There is finally an electrodynamic approach. Just how the two kinds of particle (elec-
trons on one side, the heavy particles on the other) behave under the action of an applied
Lorentz force, which might lead to the collapse of the three - particle cluster to deep bound
states, as imagined in the present research paper, is considered in Section 5. The order
of magnitude of a few physical quantities (e.g. binding energies, separation distances,
magnetic induction fields) are discussed in Section 6.

2. A classical approach to the three - particle cluster

This is one of the important problems in contemporary physics. It involves the atomic
clusters which consist of three particles, as follows: H−, He , Li+, Be++, etc. The present
problem is different from that in celestial mechanics. However, in atomic mechanics
(whether classical or quantum - mechanical) we deal with all kinds of forces, attractive as
well as repulsive, of a short as well as long range. On the contrary, in celestial mechanics
we consider only the exclusively long - range attractive forces, so that the methods in one
mechanics are not any more available in the other mechanics.

Having studied a three - particle cluster, which is characterized by 9 degrees of freedom,
we must end up with a solution which has 9 constants of motion. Let us enumerate all the
constants of motion by studying a very specific atomic model. In fact, with three particles
in mind we can develop two different geometric - structural models, whose distinctions
will come solely from the electrostatic arguments.

(i) There is a model where one particle stays almost still all the time while the other two
are moving around, the model usually associated with the helium - atom problem.

(ii) Another model is materialized where two particles stay almost motionless all the
time while the third particle is moving around their joining line, the model similar
to a hydrogen molecular ion, H+2 .

We shall consider the model under (ii) in more detail, but with the nucleus playing
the role of the electron, while the electrons would stay almost motionless. Here we have
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to introduce 9 constants of motion as a consequence of having a physical system with 9
degrees of freedom. Three degrees of freedom are associated with the centre of mass of
the entire cluster, as illustrated by the point C in Figure 1. Additional three degrees of
freedom are associated with the identical particles A1 and A2 (a fixed separation distance
R, plus the fixed line A1A2, making three degrees of freedom altogether), Figure 1.

Figure 1. Two identical particles (A1, A2) are placed a distance R apart with a centre of mass C,
while the third particle B is orbiting around the common centre C in a plane which is perpendicular
to the A1A2 line. The unit vectors �e1 and �e2 are parallel with A1B and A2B, respectively.

Finally, the problem is reduced to the consideration of another set of three degrees
of freedom, i. e. three constants of motion left available for the third particle. Clearly
and obviously, this particle may move in a plane which is perpendicular to a line which
joins A1 with A2, so that there are two constants of motion materialized by the angular
momentum of the third particle. (An angular momentum being a vector is defined by two
elements, one scalar quantity and the direction of the vector). Lastly the ninth constant of
motion is just the energy of the third particle, which at the same time is the energy of the
entire cluster. Hence, there are three degrees of freedom, or equivalently three constants
of motion, associated with the third particle (angular momentum, plane of the motion,
total energy).

Actually we have to prove that such a geometric - structural model, as illustrated
in Figure 1, can be materialized to have the angular momentum as the true constant of
motion. Suppose that the third particle B has to move under the influence of two various
forces, �F1 and �F2, whose origins come from the identical particles placed at the points A1
and A2, respectively. Then an angular momentum �L of the third particle is defined by a
sum of two terms, each term coming from an appropriate vector product, as follows

�L = �r1 × �p+ �r2 × �p , (1)

where �p designates a linear momentum associated with the B particle. It is just a product
over the mass of the particle (m3) and its velocity. The equation of motion for the vector
�L is given by

d�L

dt
=
d

dt
(�r1 + �r2)× �p+ (�r1 + �r2)× d�p

dt
, (2)

where t is a local laboratory time. Writing,

�F1 + �F2 =
d�p

dt
; �p = m3

d

dt
(�r1 + �r2) = �p1 + �p2 , (3)
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we obtain,

d�L

dt
=

1

m3
(�p1 + �p2)× (�p1 + �p2) + (�r1 + �r2)× (�F1 + �F2) . (4)

It should be emphasized that a vector sum �r1 + �r2 in equations (2) to (4) appears
as a single vector in a plane which is perpendicular to the A1A2 line, hence the angular
momentum vector �L is parallel with the above mentioned line, Figure 1. Having in mind
that central forces act simultaneously on the particle B, i. e. �F1 is parallel to �r1 while �F2
is parallel to �r2, and taking into account that a vector product of parallel vectors vanishes,
we can write equation (4) as follows,

d�L

dt
=

1

m3
(�p1 × �p2 + �p2 × �p1) + (�r1 × �F2 + �r2 × �F1) . (5)

The first term in equation (5) is obviously equal to zero. As to the second term in
brackets, it can be transformed to a specific form appropriate for the equation of motion
for �L. Hence,

d�L

dt
= −Ze2( 1

r31
− 1

r32
) �r1 × �r2 . (6a)

We know that the vector product �r1 × �r2, due to the geometric - structural model,
cannot vanish and yet the angular momentum must be one of the constants of motion
associated with the B particle, Figure 1. Hence,

d�L

dt
= 0 . (6b)

Therefore, it follows that a scalar equation r1 = r2 must hold all the time.

It should be emphasized that this proof holds if and only if the particles A1 and A2
are identical so long as we are concerned with electrostatic forces.

Suppose, we have to study an atomic cluster which consists of two electrons and the
nucleus, as a binding particle. This model might be materialized in simple atomic clusters,
like H−, He, etc. Here two electrons are separated by a distance R, while the ground state
is either symmetric or antisymmetric, according to the arguments of quantum mechanics.
However, by employing classical arguments, the energy of the B particle, with the mass
m3 of the heavy particle, will be composed of the potential and kinetic terms,

E(R, r1) = −2Z e
2

r1
+
e2

R
+
m3v

2

2
, (7a)

a(R, r1) = r21 − (R/2)2; L = m3va(R, r1) = nh̄. (7b)

Here a(R, r1) designates a classical radius of the orbital motion. The last definition in
equation (7b) comes from Niels Bohr’s so-called third postulate, applied to the orbital
motion of the proton (deuteron), n = 1, 2, ..., while h̄ = 1.05 ·10−34 Js is Planck’s constant
divided by 2π. Obviously, the third term in equation (7a) can be transformed accordingly,

m3v
2

2
=

2L2

m3(4r21 −R2)
. (7c)
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In this case we obtain an equation that can be varied at the same time with respect to
both R and r1 as independent parameters. Therefore, a minimum of the binding energy
of such a physical system is obtained from

∂E

∂R
=

∂E

∂r1
= 0. (8)

With m3 being the B particle, the result is given in a general case,

E(R, r1)⇒ E(Z,L) = Z − 16Z + 24(Z/2)1/3 − 6(2/Z)1/3 + 1

Z

m3e
4

8L2
, (9)

a(R, r1)⇒ a(Z,L) =
4L2

Zm3e2
4− (2/Z)2/3 −3/2. (10)

Notice that the binding energy, according to equation (9), is negative whenever the
charge number Z takes the values greater than Z0 ≈ 0.3. For Z = 1, the binding energy
and a radius of the effective orbital motion become,

E(1, L) ≈ −0.439m3e
4

L2
; a(1, L) ≈ 1.067 L2

m3e2
. (11)

In all preceding approximations one might insert the value L = h̄ to meet an agreement
with Niels Bohr’s atomic model. What is more important, we may expect for this model
a rather realistic picture as far as the motion of a heavy particle is concerned. However,
the limitations of such an approach are discussed in detail by Berry (1989).

These motions are stable in the sense that the binding energy takes a minimum value.
In this particular case we can write,

R0 = 2
1/3r1,0 = 2

1/3 0.25R20 + r
2
0

1/2
, (12a)

R0 = A1A2; r1,0 = A1B; r0 = BC; (12b)

R0 ≈ 1.6216r0. (12c)

We shall name equations (12a,b,c) the classical stability condition which must be satisfied
by the three - particle cluster in order to maintain a stable motion of the heavy particle
B, Figure 1. This set of equations is to be compared with a similar set (34a,b,c) in the
quantum - mechanical case.

3. A quantum-mechanical approach to the three-particle cluster

Consider a system of three particles P1, P2, and P3, with masses m1, m2, and m3,
respectively, Figure 2. According to classical mechanics and Figure 2, the position vector
of the centre of mass �R and of the three individual position vectors �ri, i = 1, 2, 3, can be
defined by

�R =
1

M
m1�r1 +m2�r2 +m3�r3 ; M = m1 +m2 +m3; (13)

�r = �r1 − �r3; �r� = �r2 − �r3. (14)
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Figure 2. An arbitrary system of rectangular Cartesian axes, Oxyz, where three particles (P1,
P2, P3) and their centre of mass C are depicted at four different points, separated by the vectos �r1,

�r2, �r3, and �R, respectively, from the common origin. Here �r and �r3 designate relative coordinates,
from P1 to P3 and P2 to P3, respectively.

We want to transform the operator of the total energy, thus including the kinetic
energies as well as all three potential interactions due to the Coulomb forces among the
particles, by employing various rectangular Cartesian axes. Hence

H = − h̄2

2m1
∆1 − h̄2

2m2
∆2 − h̄2

2m3
∆3 + V (r13) + V (r23) + V (r12); (15)

∆1 =
∂2

∂x21
+

∂2

∂y21
+

∂2

∂z21
. (16)

Similar definitions hold for the operators ∆2 and ∆3. Let us introduce three additional
operators, one associated with the variables (x, y, z), another with (x�, y�, z�), and yet
another with the centre of mass (X,Y,Z). Therefore,

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
; (17)

∆c =
∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2
. (18)

A similar definition holds for ∆�.
There are a number of algebraic transformations which involve various derivations, for

example,
∂

∂x1
=

∂

∂x

∂x

∂x1
+

∂

∂X

∂X

∂x1
=

∂

∂x
+
m1

M

∂

∂X
;

∂2

∂x21
=

∂2

∂x2
+ 2

m1

M

∂2

∂x∂X
+

m1

M

2 ∂2

∂X2
. (19)

There are similar expressions for the remaining operators. Therefore,

∆1 = ∆+ 2
m1

M
A+ m1

M

2
∆c; (20a)
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∆2 = ∆
� + 2

m2

M
A� + m2

M

2
∆c; (20b)

A = �∇ · �∇c; A� = �∇� · �∇c. (20c)

Obviously, the operators A and A� are just scalar products between the vector operators
�∇ and �∇c, and �∇� and �∇c, respectively. Furthermore,

∆3 = ∆+ 2B +∆� − 2m3

M
A− 2m3

M
A� + m3

M

2
∆c , (21)

B = ∂2

∂x∂x�
+

∂2

∂y∂y�
+

∂2

∂z∂z�
= �∇ · �∇�. (22)

Here equation (22) is just a scalar product between the vector operators �∇ and �∇�.
Another set of transformations leads to

μ =
m1m3

m1 +m3
; μ� =

m2m3
m2 +m3

; (23)

1

m1
∆1 +

1

m2
∆2 +

1

m3
∆3 =

1

μ
∆+

1

μ�
∆� +

2

m3
B + 1

M
∆c. (24)

Here B is defined in equation (22). Therefore, the total Hamiltonian of a three - particle
system has suffered a number of transformations. Its final form is given by

H = − h̄
2

2μ
∆− h̄2

2μ�
∆� − h̄2

2M
∆c − h̄2

m3
B + V (r13) + V (r23) + V (r12). (25)

The eigenvalue problem is now reduced to the solution of the following equation,

Hφ(�r,�r�, �R) = Etφ(�r,�r�, �R), (26)

where one can write the total wave function φ as a product of three independent wave
functions. Hence the original eigenvalue problem is further reduced to a system of three
independent eigenvalue problems, as follows,

φ(�r,�r�, �R) = φc(�R) · ψ(�r) · χ(�r�); (27)

− h̄
2

2μ
∆+ V (r13) ψ(�r) = Eψ(�r); (28a)

− h̄2

2μ�
∆� + V (r23) χ(�r�) = E�χ(�r�); (28b)

− h̄
2

2M
∆cφc(�R) = Ecφc(�R); (28c)

E +E� +Ec = Et. (28d)

Here Et designates the total energy of the physical system. If we succeed in solving
equations (28a,b,c,d), we can treat, at least in principle, the rest of the Hamiltonian H as a
weak perturbation. Actually, this operator can be written as a sum over the unperturbed
part H0 and a perturbation V �. Hence,

H = H0 + V �; (29)
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H0 = − h̄
2

2μ
∆− h̄2

2μ�
∆� − h̄2

2M
∆c + V (r13) + V (r23); (30a)

V � = − h̄
2

m3
B + V (r12). (30b)

For a physical system of three particles in the helium - atom problem ( H−, He, Li+,
Be++,...), we take m1 = m2 to be the mass of an electron, m3 the mass of the nucleus.
Notice that such a situation is characterized if the ratio m1/m3 = m2/m3 tends to zero.
At the same time m3 tends to infinity. In this case,

V (r13) = −Z e
2

r13
; V (r23) = −Z e

2

r23
; V (r12) =

e2

r12
; (31)

B = gradψ(�r) · gradχ(�r�) = ∂ψ

∂x

∂χ

∂x�
+

∂ψ

∂y

∂χ

∂y�
+

∂ψ

∂z

∂χ

∂z�
, (32)

where the introduced wave functions ψ and χ are certain functions of �r and �r�, respectively.
Furthermore, using the system of spherical coordinates where the origin is placed at the
nucleus of the helium atom, we write

ψ = f(r,ϑ,ϕ); χ = g(r�,ϑ�,ϕ�); (33a)

gradf(r) = f �(r)�e1; gradg(r�) = g�(r�)�e2. (33b)

Here the unit vectors �e and �e� are associated with the triangle P1P2P3, Figure 2. The
symbol f � designates the first derivative of f with respect to r. A similar definition holds
for g� with respect to r�. The unit vectors are depicted along the lines P3P1 and P3P2,
respectively. Similarly, the unit vectors �e1 and �e2 are associated with the triangle A1A2B,
along the lines A1B and A2B, respectively, Figure 1. A very important situation arises
whenever the unit vectors �e1 and �e2 are mutually perpendicular. Hence, the kinetic part
of the perturbation V � would in this case vanish identically, i.e. B = 0. The unit vectors
introduced above, close an angle α that can be evaluated by elementary considerations.
Indeed, looking at the triangle A1A2B, Figure 1, we obtain

R2 = (A1B)
2 + (A2B)

2 − 2(A1B) · (A2B)cosα; (34a)

R = A1A2; r1 = r2 = A1B = A2B; r = BC; (34b)

R0 =
√
2r1,0 = 2r0. (34c)

The result of the last equation (34c) implies that α must be a right angle (900) if
the unit vectors �e1, �e2 are perpendicular one with respect to the other. This leads to
the minimum values for all three introduced distances, R, r1, r, as indicated by equation
(34c). We shall name equations (34a,b,c) the quantum - mechanical stability condition
which must be satisfied by the three - particle cluster in order to maintain the stable
motion of the heavy mass m3 at the point B in Figure 1. This set of equations is to be
compared with a similar set (12a,b,c) in the classical case.

There are two options as to the general quantum - mechanical solutions of equations
(25) to (33b). Those solutions may be specified as follows:
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(i) If m1 = m2 is small and m3 is large then the above system of equations may be
reduced to the helium - atom problem, where the B term in equation (32) can be
neglected while V (r12) remains the only perturbation to be taken into consideration.
This problem is already treated in literature, e. g. Baker et al (1990), Davis (1963),
Novaković (a, 1991; b, 1997);

(ii) If however we assume the mass ratio as that quoted under item (i), but having
the model where the light particles stay still (e. g. the electrons), while the heavy
particle moves around the line which joins the two light particles (e. g. the proton, or
deuteron), then the model is similar to that of a hydrogen molecular ion, H+2 . It could
be reduced to a series of various approximations, see Blokhintsev (1976), Pauling
and Wilson (1935). It could be treated exactly in terms of elliptic coordinates, see
Landau and Lifshitz (a, b, 1987).

In the present paper we adopt a method based on a combination of a classical approach
where the angular momentum of the heavy particle L is treated according to Niels Bohr’s
model with L = nh̄, n = 1, 2,... Also we may select the coordinate system r,ϑ,ϕ in such
a way that a z axis coincides with the line A1A2, Figure 1. In this case ϑ = π/2 while ϕ
is arbitrary. Here the operator of the angular momentum, according to Dirac (1962), or
Edmonds (1960), becomes,

L2 = −h̄2d
2ψ

dϕ2
; ψ(ϕ) =

1√
2π
exp(imϕ). (35)

In equation (35) m = 0,±1,±2, ... is a magnetic quantum number. In this particular case
the quantity |m|, for m different from zero, can be identified in Niels Bohr’s atomic model
with the angular momentum quantum number n, Section 2.

4. Motion of a particle in the potential field 2Ze2/ r2 + (R/2)2

In the present section we shall consider a quantum - mechanical solution of the following
equation,

− h̄2

2m3

∂2

∂x2
+

∂2

∂y2
Φ+ V (r)−E Φ = 0,

V (r) = −2Z e2

r2 + (R/2)2
. (36)

In equation (36) m3 is the heavy particle (possibly proton), E is the total energy of the
particle whose motion is restricted in the xy plane passing through the midpoint between
A1 and A2, Figure 1. The solution will be achieved in a series of three computing stages.
First, the total wave function will be represented by a product of two wave functions, one
depending on r, another on the azimuthal angle ϕ. We write,

Φ(r,ϕ) = χ(r) · ψ(ϕ), (37a)

x = rcosϕ; y = rsinϕ,

∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+ r−2

∂2

∂ϕ2
. (37b)
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Second, we introduce a dimensionless coordinate ρ and a dimensionless energy �, as
follows,

r = η−1a0ρ; E = ηEa�; η =
m3

m1
;

a0 =
h̄2

m1e2
= 0.5291 · 10−8 cm;

Ea =
e2

a0
=
m1e

4

h̄2
= 27.214 eV; ξ =

R

a0
. (38)

Hence, equation (36) goes over into,

ρ2
∂2

∂ρ2
+

∂2

∂ϕ2
Φ+ 2ρ2�Φ+ 4Z

ρ2

ρ2 + (ξ/2)2
Φ = 0. (39)

Third, we now separate χ(ρ) from ψ(ϕ), by introducing a constant C, which leads to

d2ψ

dϕ2
= −Cψ(ϕ); C = m2, (40a)

d2

dρ2
+ 2�+

4Z

ρ2 + (ξ/2)2
− C

ρ2
χ(ρ) = 0. (40b)

The term involving the potential field in equation (40b) must be transformed according
to the quantum - mechanical stability condition derived in equations (34a,b,c), i.e. the
condition by which the position vectors �r1 and �r2 close a right angle, as indicated in Figure
1. This condition leads to

R = 2r; ξ = 2ρ; ⇒ 4Z

ρ2 + (ξ/2)2
=
2
√
2Z

ρ
. (41)

The last equation (40b), if supplemented with the stability condition according to equation
(41), can be reduced to the eigenvalue problem whose solution is actually available, see
Landau and Lifshitz (b, 1987). Having introduced a substitution,

χ(ρ) = exp(−αρ)ρk · h(ρ), (42a)

2� = −α2; k =
1

2
1 + 1 + 4m2 , (42b)

we arrive at the following equation for h(z), instead of h(ρ),

zh��(z) + (c− z)h�(z)− ah(z) = 0; (43a)

z = 2αρ; c = 2k; a =
αk − 2√2Z

α
. (43b)

The actual solution of equations (43a,b) is obtained by employing the confluent hy-
pergeometric function,

h(z) = N(a, c) 1 +
az

c1!
+
a(a+ 1)z2

c(c+ 1)2!
+ ... , (44)
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where N(a, c) is a normalization factor to be determined from the condition,

∞

0
[χ(ρ)]2ρdρ = 1. (45)

First, we would like to emphasize that the above introduced integration runs over a
plane, rather than the entire three-dimensional space as employed in conventional quantum
- mechanical problems. Second, the representation (44) for the function h(z) must be
interrupted in order to make the expansion series convergent. This will take place whenever
the parameter a is a negative integer or zero. Therefore, by writing

a = −nr, nr = 0, 1, 2, ... (46a)

we obtain,

α =

√
2Z

k + nr
; � = −α

2

2
= − Z2

(k + nr)2
. (46b)

Here nr designates the number of nodes, i.e. the number of null - points of the polynomial
h(z). It is easy to evaluate the radius r at which the wave function [χ(ρ)]2ρ, (it represents
a quantum - mechanical distribution associated with a planar motion of the particle),
has a maximum. Indeed, assuming the lowest stationary state generated by the quantum
number nr = 0, we search for the solution

d

dρ
[exp(−2αρ)ρ2k+1] = 0⇒ ρ0 =

2k + 1

2α
. (47)

5. A three-particle cluster under the action of a time-dependent Lorentz
force

Just how the electrons might attain some motionless positions, even for a short time
interval, while the heavy particle (p, or d) performs a rotational motion may be gained from
the following idea. Suppose, the mentioned composite cluster moves in a linear direction
under the action of the crossed electric and magnetic induction fields, Ey and Bx, with an
initial velocity �v0, Figure 3. Such a combined field is known under the name of a Lorentz
force, Burghes and Downs (1975), Feynman et al (1964), Yavorsky and Pinsky (1987).

The motion of each particle with the charge q and mass m is compelled by the Lorentz
force �F according to the equations,

�F = q �E + �v × �B , (48a)

�v × �B =

�i �j �k
vx vy vz
−Bx 0 0

. (48b)

We shall consider specifically the following clusters e−1 pe
−
2 , or e

−
1 de

−
2 , with the following

characteristic parameters, electron (q = −e,m = m1), proton (q = e,m = m3), and
deuteron (q = e,m = 2m3). Obviously, the three unit vectors �i,�j,�k, are oriented along
the rectangular Cartesian axes x, y, z, respectively. We write the equations of motion,

Fx = mv̇x = 0; Fy = mv̇y = qEy − qBxvz;
Fz = mv̇z = qBxvy. (49)
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Figure 3. An electric field �E = (0, Ey, 0), a magnetic induction field �B = (−Bx, 0, 0), and the
initial velocity of the particle �v0, are depicted to represent a Lorentz force acting on a material
cluster. A square marked S is the region where the action of the magnetic induction field joins
a similar action of the electric field. Notice that an electron will move parallel to the vector �v0
whereas heavy particles (p, d) will move in the opposite direction.

Here e = 1.60210 · 10−19 C is an elementary electrostatic charge, C designates one
coulomb. Dots on the components of the velocity designate the appropriate time deriva-
tives. The solutions to the system of the above linear equations with constant coefficients
(m, q,Bx) are some functions of a local laboratory time t, y(t) and z(t), as well as Ey,
such that the entire motion, under the action of a Lorentz force, develops in the yz plane.
In the first step we write the set of solutions jointly with the initial conditions, C1 being
the integration constant, as follows,

vy = v0cosωt+ C1;

vz = v0sinωt+ C1ωt;

vy = v0; vx = vz = 0; t = 0;

Ey = BxC1ωt; mω = |q|Bx. (50)

In the second step, another integration with respect to t leads to another set of solutions
jointly with the initial conditions,

y(t) = R(m, |q|)sinωt+ y0;
z(t) = −R(m, |q|)cosωt+ z0;
x(t) = y(t) = z(t) = 0; t = 0;

y0 = C1t; z0 =
1

2
C1ωt

2 +R(m, |q|);

R(m, |q|) = v0
ω
=
mv0
|q|Bx . (51)

Having studied the above derived equations we come to an important conclusion con-
cerning the shape of the trajectory described by a given particle. Either particle, be it
the electron m1, or the proton m3, or the deuteron with mass 2m3, moves in the yz plane
along a circle with a radius R(m, |q|) whose centre is placed at the point (0, y0, z0). Hence,
by transforming equations (50) and (51) we obtain,

[y(t)− y0]2 + [z(t)− z0]2 = R(m, |q|)2. (52)
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Figure 4. Electric field lines Ey and magnetic induction field lines Bx are depicted to illustrate
the action of a Lorentz force on two different kinds of particle.

Therefore, the electrons move in one direction around the magnetic induction field �B,
while the heavy particle (p, or d) moves in the opposite direction, as illustrated in Figure
4. Light particles (electrons) will describe smaller circles in such a way as to materialize a
left - handed coordinate system with respect to the vector of the magnetic induction field.
On the contrary, heavy particles (protons, deuterons) will describe larger circles, exactly
η = m3/m1 times, in the opposite direction, whereby materializing the right - handed
coordinate system with respect to the vector of the above mentioned field. At the origin,
marked by O, the material cluster starts its simple spiralling, highly rhythmic dancing,
along the magnetic induction field lines. Compared to heavy particles, electrons will
perform their motions in the opposite direction. Also the circles are centered differently for
the two kinds of particle. A similar problem was studied by Burghes and Downs (1975) in
relation to the Hall drift, an effect coming from a classical theory of magnetoconductivity.

Having analyzed this situation it seems that there is a strong probability of having the
three - particle cluster to collapse to a more profound bound state as predicted by the
specifically geometric - structural model.

6. Discussion and conclusions

(1) Within quantum mechanics, the results of Sections 3., 4., and 5. can be visualized
rather straightforwardly. If the heavy particle (proton, deuteron) should perform its orbital
motion in a plane which is perpendicular to the line connecting the two electrons, as
depicted in Figure 1, then we may associate an angular momentum operator L, whose
square is given by equation (35). In this sense the heavy particles (protons, deuterons)
may perform rotational motions around the line A1A2 which joins the motionless electrons
in Figure 1. By inserting into equations (8) to (10) Z = 1, L = h̄, m3(2m3) the mass of the
proton (deuteron), we obtain the binding energy, according to a classical approximation,

E(Z,L)⇒ |E1(e−pe−)| ≈ 22 keV; |E1(e−de−)| ≈ 44 keV. (53)

Also, we obtain the radius of the effective orbital motion for the two particles as follows,

a(Z,L)⇒ a1(e
−pe−) ≈ 30 fm; a1(e

−de−) ≈ 15 fm. (54)
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Similarly, using equations (46a,b) and (47) in the quantum - mechanical approximation,
we arrive at the following result,

Z = 1; η(p, d) = 1836(3672); nr = 0; |m| = 1;

k =
1

2
(1 +

√
5); α =

2
√
2

1 +
√
5
; (55a)

E = ηea� = − η

k2
Ea = − 4η

(1 +
√
5)2
Ea; (55b)

d

dρ
exp(−2αρ)ρ2k+1 = 0 ⇒ ρ0 =

(2 +
√
5)(1 +

√
5)

4
√
2

; (55c)

r0 = η−1a0ρ0. (55d)

Having inserted the proper numerical values for Ea, a0, and η, we obtain the energies and
separation distances in the quantum - mechanical approximation,

|E(e−p(d)e−)| ≈ 19(38) keV; r0(e
−p(d)e−) ≈ 70(35) fm. (56)

Our present numerical values (so far as the binding energies are concerned) seem to
agree with measurements recently performed by Antanasijević et al (1993) on a cold -
fusion plasma in connection with the Fleischmann - Pons experiment.

(2) Here one question arises that is related to the precise mechanism by which a three
- particle cluster may generate a state considerably deeper than that predicted by the
ordinary quantum mechanical lowest bound state. Using the usual vocabulary it is named
the ground state whose numerical value for hydrogen and deuterium is approximately
13 eV. In view of the results of Section 3., it is obvious that there must exist an even
lower bound state, in the 50 keV energy range, for which we have no explanation of how
dynamically it may take place. Even if it does take place, its lifetime must be rather
short compared to ordinary atomic or molecular time scales. Indeed, the latter quantity,
according to Heisenberg’s uncertainty relation connecting the energy (δE) and time (δt),
may be written,

δE · δt ≈ h̄. (57)

Here the uncertainty δE must be identified with the quantity |E1| from equation (53).
Therefore, a time duration associated with the above mentioned energy range is a quantity
of the order δt ≈ 10−20 s. Immediately we notice that such a lifetime is rather close to a
typical nuclear time scale.

If such a situation should take place, then the Hamiltonian derived in equations (25) to
(33a,b) can be based on the assumption by which the operator B must vanish identically,
while the electron - electron interaction 1/r12 is expected to remain unaltered all the
time. In other words, the two electrons may stay motionless along the A1A2 straight
line, Figure 1, whereas the heavy particles (proton, deuteron) become ready to perform
a rotation in a plane that is placed perpendicular to this straight line. Although this
rotation, according to Heisenberg’s uncertainty principle, might be materialized for a very
short time, nevertheless our present theoretical knowledge is insufficient to offer a proper
explanation as to the full mechanism taking place.

(3) Just how the two kinds of particle, bound at the beginning as a linear triatomic
molecule e−pe−, or e−de−, like a helium atom, may achieve a very deep bound state is
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observed from a series of very fundamental theoretical arguments presented in Section
5. Indeed, under the action of a couple of crossed electric and magnetic induction fields,
the linear triatomic molecule becomes broken in such a way as to form a right angle
(or, almost the right angle) as closed by the straight lines electron(e−1 ) − proton(p) and
proton(p)− electron(e−2 ). According to equations (51) and (52) the electrons would stay
almost motionless while the heavy particles (p, or d) would perform a spiralling, highly
rhythmic dancing, in circles which are three orders of magnitude larger than those per-
formed by the electrons. Using a proper vocabulary, this situation will greatly enhance the
chance of generation of partially stable states, until the linear triatomic molecule collapses
into a tightly bound state as studied and analyzed in detail in Sections 2., 3., and 4.

In order to gain a numerical insight into the physical mechanism we quote the following
estimation. With a rather small initial velocity v0, which is obtained if the applied electric
field is either weak or actually next to zero, we can investigate the order of magnitude
of the magnetic induction field Bx to be applied to a triatomic linear molecule e

−
1 pe

−
2 in

order to inforce it to the process of collapsing. We obtain,

Ey = 0; Bx =
m3v0

qR(m3, q)
. (58)

As a numerical illustration we quote the following example,

v0 = 10
−2 ms−1; m3 = 1.6725 · 10−27 kg; (59a)

R(m3, q) = 2a0 = 1.06 · 10−10 m; Bx = 1 T. (59b)

Here T designates one tesla. Under these conditions the shape of the linear triatomic
molecule e−1 pe

−
2 has a considerable chance to be transformed from a straight line to a

triangle with a right angle at the point materialized by the proton. Depending on a specific
experimental arrangement, one further step is required by this geometric - structural model
to collapse into a profound bound state as predicted in Sections 3., 4., and 5. It should be
emphasized that only the very slow particles are more favourable for a generation of the
above mentioned material units, as compared to the fast particles.
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Abstract

Irreversible deposition of line segments on square and triangular lattices ini-
tially and randomly occupied with point-like impurities is studied by Monte
Carlo simulation. At the late stage of deposition the approach to the jam-
ming coverage is exponential with the same rate as in the case of initially clean
lattice. The total jamming coverage decreases when the concentration of im-
purities p increases and reaches a minimum for the value of p which depends
on the length of the line segments. A significant difference in the dependence
of the jamming coverage on the concentration of impurities on the square and
on the triangular lattice was found only for the deposition of dimers.

Key words: Adsorption, substrate, impurities, jamming coverage

1. Introduction

When particles are deposited onto a surface there are two characteristic time scales:
the time between depositions, td, and the time taken for the particle reorganization on
the surface, tr. If td  tr, particles have sufficient time to change their positions on
the surface between depositions and the distribution of particles on the surface is an
equilibrium distribution. On the other hand, if td � tr, the particles are effectively fixed
in a position once deposited, there is a non-equilibrium distribution of particles and the
kinetics is described by the process of random sequential adsorption (RSA). A number of
processes in physics, chemistry and biology, where events occur essentially irreversibly on
the time scales of interest, can be studied as RSA or irreversible deposition.

RSA is a process in which objects of a specified shape are randomly and sequentially
adsorbed onto a substrate. In real systems one needs to take into account the interaction
between the bulk particles and the surface and also the interaction between the adsorbed
and the bulk particles. We shall focus our attention on the case in which the particle-
surface interaction disallows desorption from or diffusion on the surface and its range is
small compared to the size of the particles. We shall also assume that the forces among
the adsorbing particles are repulsive so they allow formation of only one layer. Since the
diffusion of adsorbed objects is not allowed, once an object is placed it affects the geometry
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of all later placements, even though each placement happens completely randomly. Thus,
the dominant effect in RSA is the blocking of the available substrate area and the limiting
(”jamming”) coverage θ(∞) is less than in close packing. The kinetic properties of a
deposition process are described by the time evolution of the coverage θ(t) which is the
fraction of the substrate area occupied by the adsorbed particles. For a review of RSA
models, see [1].

Experimentally, RSA has for example been observed in oxidization of one-dimensio-
nal polymer chains [2], adhesion of colloidal particles on solid substrates [3], quenched
chemisorption of proteins at specific two-dimensional solid surface sites (effectively pro-
ducing bonds between two or more sites) [4], particles in biological membranes [5], spatial
patterns in ecological systems [6], etc..

In the recent work [7] the kinetics of deposition of colloidal hematite particles on
glass beads in the presence of cationic surfactant 1-dodecylpyridinium chloride (DPC)
was studied at two different pH values: 10.5 and 4.0. At the high pH the surfactant
was adsorbed both on particles and beads and depending on the surfactant concentration
either monolayer or multilayer deposition was observed. At pH 4.0 only a monolayer of
hematite was observed. Deposition of hematite particles occurs only on the surfactant-free
collector sites, which is due to the electrostatic repulsion between the adhering particles
and the sites of collector covered with surfactant. Thus, DPC adsorbed on glass beads
makes a part of collector surface inaccessible for the adsorption of hematite particles.

Theoretical studies of RSA include some analytical results [8-10] (for one-dimensional
systems), series expansions [11-13] and Monte Carlo simulations [14-19].

Depending on a system of interest, substrate can be continuum or discrete, and RSA
models can differ in substrate dimensionality. The precise form of the long-time behavior
of θ(t) depends also on the shape and orientational freedom of the adsorbing objects.

For lattice RSA models, approach to the jamming coverage is exponential [16], [18],
[19]:

θ(t) = θ(∞)−Ae−t/σ (1)

where A and σ are parameters which depend on the shape and orientational freedom of
depositing objects. In Monte Carlo study [16] of deposition of line segments on a square
lattice, it was found that A depends on the line length c (A ∼ 1/c), but σ is independent
of c with a numerical value σ * 0.5. The jamming coverage decreases exponentially with
the size of depositing objects, for small object sizes [18].

A lot of attention has been paid to the RSA on square lattices, but there are only a
few studies of RSA on other types of lattices, such as triangular or hexagonal lattice [20,
21].

Here we present the results of Monte Carlo simulations of irreversible deposition on
discrete substrates initially occupied with quenched point-like impurities. The results are
given both for the square and for the triangular lattice.

2. Irreversible deposition on disordered substrates

For RSA of k-mers on a 1D lattice initially occupied with point-like impurities, an
exponential approach to the jamming coverage of the form (1) was found. The value of
the rate σ was found to be the same as in the case of initially non-occupied 1D lattice, that
is σ = 1. This result was obtained analytically [10] and numerically [17]. The jamming
coverage depends on the segment length and on the concentration of impurities. The total
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jamming coverage, which includes deposited particles and point-like impurities, decreases
as the relative concentration of impurities p increases and reaches a minimum value for
p = 1

2 in the case of dimer deposition [10]. For increased concentrations, jamming coverage
grows and for p = 1 reaches unity. Exact results were also obtained for longer objects,
covering three and four lattice sites, and the minimum is shifted towards lower impurity
concentrations when the length of the objects increases.

In the present work disordered substrates are modeled by the square and by the tri-
angular lattice with randomly distributed inaccessible sites. The depositing objects are
line segments which can be placed along the lattice axis only. The size of the lattice is
L = 128 in both cases and periodic boundary conditions are used in all directions.

Before each run through the system the lattice is initially and randomly occupied with
point-like impurities at concentration p. At each deposition attempt we randomly select
a lattice site and try to place the line segment of length c (covering c + 1 lattice sites).
On the square lattice a line segment can be placed in four possible orientations and on
the triangular lattice in six possible orientations with one end at the selected lattice site.
If the selected site is unoccupied, we try to deposit the object, i.e., we fix one end of the
line at this site and try to place the segment in any of the possible orientations. If all
succesive c sites are unoccupied, we occupie these c+1 sites and deposit the segment. If the
attempt fails, we randomly choose another orientation, and so on, until all possibilities are
examined. In the case that the object cannot be placed in any of the possible directions (it
is irrelevant whether it was because some of the c sites were occupied by impurities or by
an already deposited segment), this site is denoted as inaccessible. During the simulation
we record the number of all inaccessible sites in the lattice. These include the occupied
sites and the sites which are unoccupied but cannot be one end of the line segment. If we
select an inaccessible site we do not attempt to deposit the object but increase the time
by one unit. Jamming limit is reached when the number of inaccessible sites is equal to
the total number of sites in the lattice. The time is counted by the number of attempts to
place the objects and scaled by the total number of lattice sites. The data are averaged
over 100 independent runs for each lattice, each length of the lines and each concentration
of impurities.

Simulations are performed for a wide range of impurity concentrations and for objects
of various lengths. The plots of ln(θ(∞) − θ(t)) vs. t are straight lines at the late stages
of deposition, for all the cases, suggesting that the approach to the jamming coverage is
exponential of the form (1). Moreover, the slopes of these lines are the same as in the
case of initially clean lattice, σ * 0.57. That means that in the presence of quenched
impurities rapidity of the approach to the jamming limit does not change. The quantity
which depends on the impurity concentration is the jamming coverage θ(∞).

3. Jamming coverages on disordered substrates

The results of simulations of RSA on disordered substrates can be considered in two
ways. If we are interested in total coverages, then the coverage includes deposited line
segments and point-like impurities and it starts with value θp(0) 9= 0. Simulations are
performed for line segments of length c = 1, 2, 3 and 4 and for impurity concentrations
up to 70% for the square lattice and up to 80% for the triangular lattice. The results
for the total jamming coverages are given in Table 1 and Table 2 for the square and for
the triangular lattice, respectively. As the relative concentration of impurities p increases,
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θp(∞) decreases, reaches a minimum value, and grows for increased concentrations as a
consequence of high impurity concentrations. For p = 1 we have a trivial result θ(∞) = 1.
When the line segments covering two lattice sites (c = 1) are deposited on the square
lattice, the total jamming coverage reaches the minimum value for p between 55% and
60%. In the case of deposition of longer line segments, the minimum is reached at 50%,
45% and 40% of impurities for c = 2, 3 and 4, respectively. When the line segments of
length c = 1, 2, 3 and 4 are deposited on the triangular lattice, the minimum is reached
at 70, 50, 43 and 40 percent of impurities, respectively. The values from Table 1 and
Table 2 are plotted in Figure 1. We can see that the minimum is shifted towards lower
concentrations of impurities when c increases.

Table 1. The total jamming coverages for
line segments of length c = 1, 2, 3, 4 and for
impurity concentrations up to 70% on the
square lattice.

p [%] θp(∞)
l = 1 l = 2 l = 3 l = 4

0 0.9191 0.8541 0.8145 0.7877
2 0.9163 0.8470 0.8021 0.7694
4 0.9131 0.8402 0.7903 0.7528
6 0.9112 0.8334 0.7791 0.7375
8 0.9091 0.8280 0.7690 0.7230
10 0.9068 0.8219 0.7592 0.7092
15 0.9018 0.8088 0.7377 0.6789
20 0.8974 0.7979 0.7203 0.6558
25 0.8931 0.7881 0.7050 0.6377
30 0.8898 0.7809 0.6932 0.6234
35 0.8870 0.7744 0.6848 0.6145
40 0.8843 0.7685 0.6799 0.6102
45 0.8817 0.7657 0.6770 0.6114
50 0.8804 0.7648 0.6793 0.6180
55 0.8797 0.7659 0.6854 0.6314
60 0.8797 0.7699 0.6967 0.6512
65 0.8811 0.7778 0.7139 0.6784
70 0.8842 0.7898 0.7382 0.7131

Table 2. The total jamming coverages for
line segments of length c = 1, 2, 3, 4 and for
impurity concentrations up to 80% on the
triangular lattice.

p [%] θp(∞)
c = 1 c = 2 c = 3 c = 4

0 0.9243 0.8456 0.7960 0.7636
2 0.9243 0.8415 0.7878 0.7506
4 0.9246 0.8382 0.7783 0.7355
6 0.9244 0.8342 0.7710 0.7238
8 0.9245 0.8311 0.7634 0.7124
10 0.9244 0.8277 0.7572 0.7013
15 0.9241 0.8203 0.7428 0.6810
20 0.9241 0.8156 0.7315 0.6635
25 0.9239 0.8105 0.7229 0.6525
30 0.9235 0.8077 0.7175 0.6447
35 0.9230 0.8043 0.7128 0.6396
40 0.9226 0.8025 0.7097 0.6382
45 0.9223 0.8011 0.7096 0.6404
50 0.9214 0.8000 0.7104 0.6446
55 0.9206 0.8005 0.7139 0.6538
60 0.9200 0.8029 0.7218 0.6690
65 0.9196 0.8061 0.7337 0.6910
70 0.9194 0.8142 0.7527 0.7209
75 0.9204 0.8259 0.7781 0.7574
80 0.9230 0.8443 0.8113 0.8006

In order to see how the arrangement of the impurities affects the jamming coverage,
we performed some aditional simulations for the square lattice. In these simulations the
impurities were distributed only before the first run through the system and this distrib-
ution remained unchanged for all 100 runs. The results of these simulations are in Figure
1a plotted with open symbols, while the results for the simulations in which the impu-
rities are distributed before each run through the system are plotted with corresponding
closed symbols. The difference in the total jamming coverage in these two cases can be
observed only for large values of impurity concentrations and it is always less than 0.5%.
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Figure 1. Dependence of the total jamming coverage on impurity concentration for c = 1, 2, 3, 4:
a) for the square lattice; b) for the triangular lattice.

Figure 2. The total jamming vs. impurity concentration for c = 1, 2, 3, 4 and p ≤ 20%: a) for the
square lattice; b) for the triangular lattice. The dotted lines represent the exponential fit of the
form: θp(∞) = C0 + C1e−p/β

In Figure 2 the total jamming coverage is given as a function of impurity concentration
p for p ≤ 20%. The dotted lines represent the exponential fit of the form:

θp(∞) = C0 + C1e−p/β (2)

where C0, C1 and β are parameters which depend on the length of the lines, and they are
given in Table 3 for the square lattice and in Table 4 for the triangular lattice. As the length
of the depositing objects gets larger, β decreases, i.e., the total jamming coverage decreases
more rapidly with impurity concentration. For higher concentrations of impurities domains
available for deposition are smaller and deposition of longer line segments is more affected
by this fact. The decrease of β with c is more prominent in the case of the triangular
lattice than in the case of the square lattice. In Figure 3 the same data are shown on a
semi-log scale.

On the other hand, the quantity of interest can also be the fraction of substrate
area covered with depositing objects (line segments only). In Figure 4 the jamming
coverages due to the line segments of lengths c = 1, 2, 3, 4 are plotted vs. impurity
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concentration for p ≤ 20% . These plots are nearly straight lines for low values of
impurity concentration and their slope increases with the length of depositing objects.

Table 3. Parameters C0, C1 and β for c =
1, 2, 3, 4 in the case of the square lattice.

l C0 C1 β

1 0.8676 0.0514 36.390
2 0.7304 0.1237 33.250
3 0.6256 0.1891 28.756
4 0.5350 0.2526 26.985

Table 4. Parameters C0, C1 and β for c =
1, 2, 3, 4 in the case of the triangular lattice.

c C0 C1 β

1 0.8971 0.0275 940.764
2 0.7847 0.0610 29.097
3 0.6825 0.1138 23.760
4 0.6012 0.1633 20.687

Figure 3. As Figure 2 on semi-log scale: a) for the square lattice; b) for the triangular lattice.

Figure 4. Dependence of the jamming coverage (due to the depositing line segments only) on
impurity concentration for c = 1, 2, 3, 4: a) for the square lattice; b) for the triangular lattice.

4. Conclusion

The deposition of line-segments on discrete substrates initially occupied with point-like
impurities has been studied by Monte Carlo simulation. The simulations were performed
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for the square and for the triangular lattice. The approach to the jamming coverage is
exponential with the same rate as in the case of initially clean lattice.

The total jamming coverage decreases with impurity concentration p for low values
of p, reaches a minimum, and increases for high impurity concentrations. The minimum
is shifted towards lower values of p for longer objects. A similar behavior is obtained
analytically for one-dimensional deposition of k-mers [10]. The total jamming coverage
decays exponentially with p for low values of impurity concentration and this decay is
more rapid for longer objects.

If we compare these results for the square and the triangular lattice, we can see that
there is a significant difference in the case of dimer deposition (c = 1): the minimum values
of the total jamming coverage are reached at higher values of impurity concentration and
the total jamming coverage exhibits only a slight decay in the case of the triangular
lattice. This difference is due to the orientational freedom of depositing objects, i.e.,
on a triangular lattice there is a greater number of possible orientations and enhanced
possibility for avoiding the point-like impurities, so the deposition of dimers is almost
not affected by the presence of impurities. On the other hand, the deposition of longer
line segments is more influenced by the domain sizes available for the deposition, i.e., by
the impurity concentration, and this influence produces similar effects in the cases of the
square and the triangular lattice.

The jamming coverage due to the depositing objects only, decreases almost linearly
with p for low values of p. This decrease is also more rapid for longer line segments.

Acknowledgments

This work was supported by the Serbian Ministry of Science and Technology under project
”Dynamical and Thermodynamical Properties of Strongly Correlated Systems with Com-
plex Structures” (No 1895).

References

1. J. W. Evans, Rev. Mod. Phys. 65, 1281 (1993).

2. J. J. Gonzalez, P. C. Hemmer and J. S. Hoye, Chem. Phys. 3, 228 (1974).
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Abstract

A simple all-optical fiber compressor, based on an idea of dispersion manage-
ment using a fiber of positive dispersion in the first part and of negative disper-
sion in the second one at the working wavelength, is investigated. The method
allows a combination of the advantages of the classic fiber-grating and of the
multisoliton compression. It is possible to improve substantially the quality
of the compressed pulse compared to the multisoliton compression. The com-
pression factor could be increased up to 2-2.5 times when the fraction of the
input pulse energy appearing within the compressed pulse enhances more than
2 times. Thus, the peak power of the compressed pulse is able to increase about
5 times and the quality of the obtained pulses should be comparable with those
obtained by the fiber-grating compressor.

Key words: Laser pulse compression, optical fiber, dispersion of light

1. Introduction

Fiber-optical methods are one of the most powerful techniques for laser pulse com-
pression. So-called ”fiber-grating compressor” is used within the spectral range of positive
dispersion of the group velocity in quartz fibers. The input pulses are first spectrally
broadened when passing through an optical waveguide with a positive velocity dispersion
of the quartz fiber, as a result of the self phase modulation. After that, the pulse is com-
pressed up to the time duration determined by its spectral bandwidth by pair gratings
which consist of an optical line of negative dispersion. The method is quite efficient [1,2]
and it allows obtaining of pulses without a pedestal because of the possibility to realize
linear chirp J practically over the entire pulse duration. The main disadvantage is namely
the pulse passing through two qualitatively different optical media which complicates its
practical realization.

The method of ”multisoliton compression” [1,3] is used within the range of negative
dispersion of the group velocity and the compression is performed due to the mutual
influence of the self-phase modulation and of the negative dispersion of the fiber. The
disadvantage of this method is the appearance of a broad pedestal, where most of the en-
ergy is concentrated. In that, the energy within the pedestal grows with the enhancement
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of the input pulse energy. The reason for that is that the chirp is linear only within the
central part of the pulse and as a result only a small part of the full energy remains within
the compressed pulse and the other goes to the pedestal.

Contemporary progress in technology and performances of fibers, especially of fibers
with a shifted dispersion allows the production a fiber of positive as well as of negative
dispersion at the same fixed wavelength (for example λ = 1.4 μm) [1].

Such a combination of both techniques was first applied in [4] and then improved in
[5,6], where the pulse is first compressed by a fiber-grating compressor in an up-shifted
fiber and after that the same is additionally compressed by the multisoliton compression
in a dispersion down-shifted fiber. This technique allows a higher degree of compression
(up to 5000 times) but it is complicated for realization and the obtained pulses are of very
bad quality. The possibility of one after another use of fibers with positive and negative
dispersion for a fixed wavelength is shown and experimentally demonstrated for the first
time in [7].

Recently, the idea of using an optical waveguide of positive as well as of negative
dispersion is broadly applicable in order to realize the so-called ”dispersion management”
in optical communication lines, i.e. a compensation of the dispersion pulse broadening is
possible.

In this paper we consequently apply fibers of positive and negative dispersion in order
to compress the pulses of energy exceeding essentially that of the fundamental soliton. As
a matter of fact, this is a combination of both methods: the fiber grating compressor and
the 0 multisoliton compression. Thus, the compression degree increases up to 2-3 times
and the pulse quality improves substantially, when more than half of the energy from the
pedestal is transferred to the compressed pulse. Such scheme realization is simpler, which
allows its application in the production of solid-state lasers with a ∼ 20 times compression.

2. Model

Analysis of the nonlinear dynamics of the pulse propagation in single mode optical
fibers is performed by the standard split-step Forrier method in numerical solving of the
nonlinear Schrodinger equation [8]. It is taken into account that the dispersion for both
fibers differs by its module and not only by the sign. Normalization is made concerning
the initial pulse parameters and the dispersion module of the second fiber which is of
negative dispersion. We should note that the effects of cubic dispersion, self-steepening
and the delayed nonlinear response in optical fibers are neglected, since we assume that
the interaction is far from the zero dispersion point, and a compression of relatively long
pulses (∼ 50 − 100 ps) is realized which is typical for solid-state cw lasers. As a results,
we will write the equation for an evolution of temporal and of frequency pulse parameters
in the first fiber:

i
du

dξ
− β∗

1

2

d2u

dτ2
+ |u|2u = 0 (1)

Also, for the second optical waveguide we have

i
du

dξ
+
1

2

d2u

dτ2
+ |u|2u = 0 , (2)
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where

u =
γτ20
|β−2 |

A ; ξ =
z

LD
; LD =

τ20
|β−2 |

; τ =
t− z/vg

τ0
; β∗ =

|β+2 |∗
|β−2 |

; (3)

Here A is the slowly varying amplitude of the pulse envelope, γ is the coefficient of nonlin-
earity, τ0 is the initial pulse width, β

+
2 , β

−
2 are group velocity dispersion parameters in the

first and second fiber respectively, LD is the dispersion length, νg is the group velocity.
Such manner of normalization of the equation allows easier comparison of the com-

pression quality for one and the same pulse using either the multisoliton compression or
the method proposed in this paper. We neglect the optical losses in both fibers. Besides,
we assume that the transition between both fibers is realized without any changes of the
transverse size of the radiation.

The initial pulse shape is assumed to be u(0, τ) = Nsech(τ). If N - the soliton’s
number is an integer, the last expression is the precise solution of the nonlinear Schrodinger
equation. Our research is done till N < 15. Such an expression of the shape allows us
to compare our obtained results with those from multisoliton compression studied by
other authors. The case of N ≤ 15 is also analyzed in order to avoid the appearance
of the effect of modulation instability in a fiber of negative dispersion [9], since such an
effect is not taken into account in equations we use. We should note, that the pulse shape
sech(τ) and the integer N are not obvious for the proposed method, since such a technique
allows a pulse compression of arbitrary shape (for example a Gaussian or Lorentz shape),
whose amplitude and duration do not correspond to the integer number of solitons. The
expressions by sech(τ) and the N integer are used only because of comparison of our
results obtained by the proposed method with those following the method of multisoliton
compression.

3. Results

Several configurations of various ratios of the dispersion module of both fibers β∗ =
1.25, 1.00, 0.75 and 0.50, are investigated. The quality of the compressed pulse is de-
termined by the compression factor and the quality factor. The compression factor
Fc = T0/Tcomp, where T0 and Tcomp are the full width at half maximum (FWHM) mea-
sured to the impulse intensity of the initial as well as of the compressed pulse. The quality
factor Qc is defined as a fraction of the input pulse energy appearing in the compressed
pulse.

In order to optimize the compression in every version (we fix the pulse energy and
the dispersion of the first fiber), we vary the length of the first part which is of positive
dispersion and we determine the second length which gives a maximum compression degree.
The results of numerical modeling show that we can approximate the optimal length
of the first part of the fiber as zopt = 0.46LD/N . At such a length of the fiber with
positive dispersion and optimizing the fiber’s length with negative dispersion, we achieve
the highest quality dispersion. This result substantially differs from the optical length
of the fiber usable in the ”fiber grating compressor” which gives zopt = 2.5LD/N . This
fact leads to less spectral broadening and to an essentially smoother temporal pulse shape
compared to the case of the fiber-grating compressor. Probably this is connected with
a substantial difference between our proposed method and the fiber grating compressor.
As a distinction of the pair diffraction gratings, the fiber of negative dispersion is an
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essentially nonlinear medium and there is a strong nonlinear impact on the pulse, besides
the compression. The edges of the spectrally-broadened pulse are steep and they lead to
strong fluctuations, due to the nonlinearity during compression, and to the worse quality
of this process.

We also studied the variation of the optimal length of the second fiber when the first
fiber length is optimized and this allows achievement of the most qualitative compression.
The results show that when fixing the number of solitons N , the second fiber length
zD depends weakly on the ratio of both fiber dispersions. For example at N = 10, the
z2,opt/zD = 8.7 − 9.7 when β∗ changes from 1.25 to 0.5. We can explain such a weak
dependence as follows. If L = zopt in the first fiber and the energy (the number N of
solitons) is fixed, then the pulses obtain one and the same frequency broadening which
does not depend on the dispersion. This determines the same dynamics of propagation
through the fiber of negative dispersion, and as a result its optimal length depends weakly
on the dispersion of the first fiber.

Advantages of the studied method are shown by comparison of the compression dy-
namics for the 10-soliton pulse at β∗ = 1.25 (Fig. 1a) with the compression dynamics
of the 10-soliton pulse for the multisoliton compression (Fig. 1b). It is evident that the
pulse in the first fiber acquires a nearly rectangular shape. This is due to the spectral
broadening and to the linearization of the chirp of the whole pulse. We do not give results

Figure 1. Compression dynamics for the 10-soliton pulse following the here proposed method (a)
and the multisoliton compression (b).
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from the spectral dynamics study, since they are not new compared to the well known effect
of phase self-modulation in a fiber of positive dispersion. When the chirped and spectrally
broadened pulse passes through the fiber of negative dispersion, it compresses much more
with great quality compared to the case of multisoliton compression. The improving of
the compression degree and the introducing of more energy within the compressed pulse
leads to a substantial increase of the peak power, which in particular is nearly five times
greater when compared to the multisoliton compression.

Results for a dependence of the Fc compression degree versus the soliton number and
the dispersion ratio module for both pieces of fibers, are given in Fig. 2. Enhancement
of the compression degree is achieved more than 2 times compared to the multisoliton
compression (curve 5 in Fig. 2). As an example for 10-soliton pulse, the compression
degree is: 74 at β∗ = 1.25, 78 at β∗ = 1 and 88 at β∗ = 0.75, when the multisoliton
compression gives only 38. We should also note the increase of the compression degree
with the growth of the soliton number and with the β∗ reduction. Anomalous behavior
takes place at high values of N . We can obtain a sharp reduction of the compression
degree with the increase of the pulse energy. Such a reduction appears, as earlier, as
smaller in value for β∗. The explanation is connected with the fact that for small values
of β∗ and N , the model is close to the model of the fiber-grating compressor because of
stronger impact of the dispersion than that of the nonlinearity. For fixed β∗ at the high
soliton number, the nonlinearity becomes essential and its influence is comparable with
that of the dispersion, then, the model is closer to the model of multisoliton compression.
Nevertheless, we think that the clarification of this problem needs some further studies.

Figure 2. Compression factor Fc versus the soliton number corresponding to: 1,2,3,4 according
to our proposed method with β∗ = 1.25, β∗ = 1, β∗ = 0.75, β∗ = 0.5, 5 - multisoliton compression.

Results for a variation of the quality factor Qc depending on the soliton number and
the ratio of dispersion modules of both pieces of fibers, are given in Fig. 3. We obtain
substantial increase of the pulse energy compared with the multisoliton compression (curve
5 in Fig. 3) and the results are improved with the soliton number increase and with
the growth of the dispersion module in the second fiber. As an example, the energy
of the compressed pulse is only 30% of the input pulse energy for the pure multisoliton



42 N. I. Kaymakanova, L. M. Ivanov, P. P. Branzalov, L. I. Pavlov

compression at N = 10, while our method gives 53% for the compressed pulse energy at
β∗ = 1.25, 56% for β∗ = 1, 64% at β∗ = 0.75. Thus, about a 2 times improvement of the
compressed pulse quality is demonstrated. The deviation from this dependence is observed
at a great soliton number and at small β∗ values. Anomalous behavior is obtained exactly
at the same values of N , when it appears, if taking into account the compression degree.
The reason is the same as for the variation of the compression degree versus N and β∗.
In order to avoid the anomalous behavior, we should choose the second fiber of greater
dispersion.

Figure 3. Quality factor Qc versus the soliton number corresponding to: 1,2,3,4 according to our
proposed method with β∗ = 1.25, β∗ = 1, β∗ = 0.75, β∗ = 0.5, 5 - multisoliton compression.

4. Conclusion

A scheme of optical pulse compression is investigated when it is based on an idea of the
”dispersion management” i.e. on the consequent using of a fiber of positive and of negative
dispersion. This all-optical fiber compressor combines the advantages of the classic fiber-
grating compressor and of multisoliton compression. Such a scheme allows an improvement
of the compression degree as well as of the quality factor. This improvement depends on
the soliton number of the input pulse as well as the dispersion of the used fibers. Thus,
we have obtained about a 2.5 times increase of the compression degree compared with
the multisoliton compression and more than double increase of the percent-content of the
compressed pulse energy. As a result, we achieve a more than about 5 times growth of the
peak power of the compressed pulse compared to the classic multisoliton compression.

The proposed method is suitable for pulse compression within the spectral range 1.3−
1.5 μm, where, using one and the same material, we are able to produce a fiber of positive
or negative dispersion only by change of the optical waveguide diameter.

Acknowledgments

This study was done under contract F-807 of the National Foundation of the Bulgarian
Ministry of Education and Technology.



Fiber-Optical Compressor Based on Consequent Using of Fiber... 43

References

1. Govind P. Agrawal, Nonlinear fiber optics, 2nd ed. (Academic press, San Diego,
1995).

2. R. L. Fork, C. H. Brito Cruz, P. C. Becker and C. V. Shank, Opt. lett. 12, 483
(1987).

3. L. F. Mollenauer, R. H. Stolen, J. P. Gordon and W. J. Tomlinson, Opt. Lett. 8,
289 (1983).

4. K. Tai and A. Tomita, Appl. Phys. Lett. 48, 1033 (1986).

5. A. S. Gouveia-Neto, A. S. L. Gomes, J. R. Taylor, Opt. Lett. 12, 395 (1987).

6. A. S. Gouveia-Neto, A. S. L. Gomes, J. R. Taylor, J. Mod. Opt. 35, 7 (1988).

7. K. J. Blow, N. J. Doran, B. P. Nelson, Opt. Lett. 10, 393 (1985).

8. R. H. Fisher and W. K. Bischel, Appl. Phys. Lett. 23, 661 (1973).

9. A. Hasegawa and Brinkman, IEEE J. Quantum Electron. QE-16, 694 (1980).













Journal of Research in Physics Vol. 29, No. 1, 51 - 59 (2002)

Considerations Concerning the Pseudoharmonic Oscillator Model
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Abstract

Even if the harmonic oscillator potential has its advantages, it is unrealistic in
several aspects, when compared to the real interaction potentials involved in the
many branches of physics. As an intermediate potential between the harmonic
(an ”ideal” potential) and the anharmonic potentials , in the present article we
deal with the so-called ”pseudoharmonic potential”. We have calculated the
expected values of some thermodynamical functions, which characterize the
quantum ideal gas of pseudoharmonical oscillators and some thermal moments
of the internuclear distance, generally and for two approximations related to
the internuclear distance r0.

Key words: Pseudoharmonic oscillator, thermal average, Hellmann-Feynman

1. Introduction

In many branches of physics, even if the harmonic oscillator (HO) potential certainly
has its advantages and applications, it is unrealistic in several aspects. First, the HO
potential is used for its mathematical solvability, i.e. it allows the exact mathematical
solution of the Schrödinger equation. When compared to the real interaction potentials
involved e.g. in diatomic molecule physics, then these disadvantages become more evident.
The HO potential is a good theoretical model, but comparison with the experimental
spectroscopic data shows that this model is often unsatisfactory, because many properties
of real physical systems are not harmonical but anharmonical. So, it is necessary to use
one of the anharmonic potentials.

As an intermediate potential between the HO potential (an ”ideal” potential) and the
anharmonic potentials (such as the Morse potential, the more ”realistic” potential), in the
present article we deal with the so-called pseudoharmonic oscillator (PHO) potential.

We consider that the physical system is a quantum ideal gas of the diatomic molecules,
which fulfil the conditions of the quantum canonical distribution. The PHO potential,
which describes the molecular vibrations, is a spherically symmetric potential, with the
effective potential defined as in Ref.[1]:

V
(p)
J (r) =

mω2

8
r20

�
r

r0
− r0
r

�2
+
h̄2

2m

J(J + 1)

r2
, (1)
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where r0 is the equilibrium distance between the nuclei of the diatomic molecule.
This potential admits, also, the exact analytical solution for the Schrödinger equation

and this is one of the reasons we deal with it. The radial eigenfunctions and eigenvalues
have been calculated in Ref.[1] and the final expressions are:

R
(p)
vJ (r) ≡

1
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uαv (r) =
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where v and J are the vibrational and the rotational quantum numbers. We observe
that the vibrational and the rotational degrees of freedom are uncoupled, which offers
some mathematical advantages in the calculations related to the PHO potential. This will
become more evident in the next sections.Also, we have used the notations:

B =
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� 1
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2. Density matrix

In Ref.[2] we have deduced the expression for the whole (total) density matrix for PHO
in the position representation:

ρ(p)(�r,�r�;β) =
1

4π

∞[
J=0

(2J + 1)PJ(cos γ)ρ
(p)
J (r, r

�;β), (5)

where PJ(cos γ) is the Legendre polynomial and γ - the angle between the vectors �r and
�r�.

The radial density matrix in the position representation ρ
(p)
J (r, r

�;β) was deduced as
the solution of the Bloch equation and it is [2]:
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where Iα(x) is the modified Bessel function.
The trace of the whole density matrix is the whole partition function:

Z(p)(β) =

]
d�r ρ(p)(�r,�r;β) =

∞[
J=0

(2J + 1)Z
(p)
J (β), (7)

while the trace of the radial density matrix is the rotational partition function:
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Finally, we obtain:

Z(p)(β) =
1

2 sinh y
eβ

mω
4
r20 Tα(y), (9)

where we have used the following notations:

y = β
h̄ω

2
; Tα(y) =

∞[
J=0

(2J + 1)e−yα. (10)

The partition function Z(p)(β) is a quantity of maximal informational importance
because, by means of the partition function, it is possible to express all the characteristic
observables of the PHO quantum gas.

So, the internal energy of the system of quantum PHO gas is:

U
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4
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where N is the whole number of the PHO in the quantum gas.
Using the expression of the internal energy, the specific heat for one mole (i.e. the

molar heat capacity) of the PHO-s quantum ideal gas is:
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For the PHO-s system, it is useful to write this expression with respect to the variable
y and, then, it becomes:
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On the other hand, the free energy of the PHO quantum gas, which corresponds to
one molecule (one PHO) is:

F (p) = − 1
β
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4
r20 −
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β
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In the previous equations we have used the superscript (p) for the observables concern-
ing the PHO, while the superscript (0) will be used for similar observables concerning the
HO.

3. Quantum-statistical averages

The quantum-statistical average or the thermal average for an observable A, which
characterize the quantum gas of pseudoharmonical oscillators obeying the quantum canon-
ical distribution can be calculate as follows:
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where we have used the corresponding expressions for the whole density matrix in the
position representation and the whole partition function.

The free energy is connected with the position thermal moments, that is, with the
quantum-statistical averages of the powers of displacement from the equilibrium position
operator. The formalism of the moments of the spectral density distribution has already
been applied in the case of spectra of oscillators coupled by kinetic terms (see, Ref.[3]
and references therein), though we use here not the spectral but the thermal moments.
For this reason, we consider that the free energy of the PHO-s gas is a function of some
parameters h̄,m,ω and r0, generically denoted by λi, so that:

dF (p) =
[
i

∂F (p)

∂λi
dλi. (16)

On the other hand, in Ref.[4], we have extended the quantum virial and Hellmann-
Feynman theorems to the quantum-statistical averages in the case of the central field
potentials. As a consequence, we have obtained the following equation involving the
quantum-statistical averages:

∂F (p)

∂λi
=

-
∂H(p)

∂λi

.
=
1

2

#
∂

∂λi
ln
h̄2

2m

$ -
r
∂V (p)

∂r

.
+

-
∂V (p)

∂λi

.
. (17)

By using Eq.(4), the effective potential of the PHO (1) can be written in the following
manner:

V
(p)
J (r) =

mω2

8
r2 − mω2

4
r20 +

h̄2

2m

�
α2 − 1

4

�
1

r2
. (18)

After straightforward calculations, by performing the partial derivatives of the free
energy expression (14) on the one hand and by applying Eq.(17) to the effective potential
(18) on the other hand, we obtain successively:

∂F (p)

∂h̄
=

ω

2
coth y − ω

2

∂

∂y
Tα − ω

2
T (−1)α =

mω2

4h̄
< r2 > − h̄

m

�
mω

2h̄
r20

�2 � 1
r2

 
, (19)

∂F (p)

∂m
= −ω

2

4
r20 +

h̄ω

2m

�
mω

2h̄
r20

�2
T (−1)α = −ω

2

4
r20 +

h̄2

m2

�
mω

2h̄
r20

�2 � 1
r2

 
, (20)

∂F (p)

∂ω
=
h̄

2
coth y − mω

2
r20 −

h̄

2

∂

∂y
Tα +

h̄

2

�
mω

2h̄
r20

�2
T (−1)α =

=
mω

4
< r2 > −mω

2
r20 +

h̄2

mω

�
mω

2h̄
r20

�2 � 1
r2

 
, (21)

∂F (p)

∂r0
= −mω2

2
r0 +

h̄ω

r0

�
mω

2h̄
r20

�2
T (−1)α = −mω2

2
r0 + 2

h̄2

mr0

�
mω

2h̄
r20

�2 � 1
r2

 
, (22)

where we have used the following notation:

T (−1)α =
1

Tα

∞[
J=0

(2J + 1)
1

α
e−yα. (23)
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By combining these relations, we obtain the following quantum-statistical or thermal
averages for the position variable:

< r2 >=
2h̄

mω

�
coth y − ∂

∂y
lnTα

�
, (24)

�
1

r2

 
=
mω

2h̄
T (−1)α . (25)

In order to verify the above obtained relations concerning the PHO we must apply the
harmonic limit defined as [2]:

lim
ω → 2ω0
r0 → 0

α→ J + 1
2

A ≡ lim
HO

A = A0, (26)

i.e. when we apply the harmonic limit to a certain observable A(p) concerning the PHO,
if the relation is proper, we must obtain the corresponding observable A(0) concerning the
HO-3D (the 3-dimensional isotropic harmonic oscillator) which has the frequency ω0.

Before performing this limiting operation, it is useful to point out the harmonic limit
for the following expressions, which are obtained after straightforward calculations:

lim
HO

Tα = TJ+1
2
=
1

2

1

sinh2 β h̄ω02
coshβ

h̄ω0
2
, (27)

lim
HO

∂

∂y
Tα = − cothβ h̄ω0

2
+
1

2

1

cothβ h̄ω02
, (28)

lim
HO

T (−1)α = 2 tanhβ
h̄ω0
2
. (29)

Therefore we obtain [2]:

lim
HO

Z(p) =

#
1

2 sinhβ h̄ω02

$3
= Z(0), (30)

lim
HO

U (p) = 3N
h̄ω0
2
cothβ

h̄ω0
2
= U (0), (31)

lim
HO

F (p) =
1

β
ln 2 sinhβ

h̄ω0
2
= F (0), (32)

lim
HO

C
(p)
V

R
= 3

#
β h̄ω02

sinhβ h̄ω02

$3
=
C
(0)
V

R
. (33)

lim
HO

< r2 >= 3
h̄

2mω0
cothβ

h̄ω0
2
=< r2 >(0), (34)

lim
HO

�
1

r2

 
=
2mω0
h̄

tanhβ
h̄ω0
2
=

�
1

r2

 (0)
. (35)
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4. Two approximations

It is easy to observe that the sum T−1α can be written in the following manner:

T−1α =
1

Tα

∞[
J=0

(2J + 1)
1

α
e−yα =

1

Tα

] ∞
y
Tα(y) dy. (36)

Because of the presence of an infinite series (like Tα and their derivatives), the above
obtained quantum-statistical averages for the PHO can be calculated only numerically, i.
e. with limited precision. So, it is useful to simplify the expression of the sum denoted by
Tα, taking into account the possible values of the equilibrium distance r0.

We examine two approximations concerning these values: the approximation of small
values of r0 (called m-approximation) and the approximation of large values of r0 (called
M-approximation). The corresponding observables and thermal moments will be denoted
by the m, respectively M-index.

In the m-approximation, i.e. if r0 is small, by performing the power series development
of the expression of α up to the power two, we obtain:

αm =

%�
J +

1

2

�2
+ C

& 1
2

≈ J + 1
2
+
C

2

1

J + 1
2

, (37)

where we have denoted:

C =

�
mω

2h̄
r20

�2
. (38)

For such values of temperature T for which the variable y is small, the sum Tα can be
written as the following integral:

Tm = 2
∞[
J=0

�
J +

1

2

�
e−yαm = 2

] ∞
0
dxxe−yx−

1
2
yC 1

x , (39)

where we have denoted x = J + 1
2 .

This integral is of the following kind [7]:

] ∞
0
dxxν−1e−γx−

β
x = 2

�
β

γ

� ν
2

Kν(2
s
βγ), [Reβ > 0,Reγ > 0], (40)

where Kν(z) is the Bessel function of the second kind. This function becomes, for ν > 0
fixed and z → 0 [6]:

Kν(z) ≈ 1
2
Γ(ν)

�
2

z

�ν

, (41)

where Γ(ν) is the Euler’s gamma function.

In this manner we obtain:

Tm =
2

y2
(42)

and, consequently:

T−1m = y. (43)
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By using these last two equations and also Eqs.(9), (11)-(14), (24) and (25), after
straightforward calculations, we obtain successively:

Zm =
1

y2
1

sinh y
ey

mω
2h̄
r20 , (44)

Fm = −mω2

4
r20 +

h̄ω

2

1

y
ln sinh y + h̄ω

1

y
ln y, (45)

Um = −mω2

4
r20 +

h̄ω

2

�
coth y + 2

1

y

�
, (46)

CV ;m
R

=

�
y

sinh y

�2
+ 2, (47)

G
r2
H
m
=
2h̄

mω

�
coth y + 2

1

y

�
, (48)

�
1

r2

 
m
=
mω

2h̄
y. (49)

The M-approximation, i.e. the case of large values of r0 is more interesting. We can
transform the expression for α from Eq.(4) and perform the power series development of
the square root up to the power of order two:

αM =
mω

2h̄
r20

⎡⎣1 + #J + 1
2

mω
2h̄ r

2
0

$2⎤⎦ 1
2

≈ mω

2h̄
r20 +

1

2

�
J + 1

2

�2
mω
2h̄ r

2
0

. (50)

In this approximation, the sum Tα becomes:

TM = 2exp

#
−βmω2

4
r20

$ ∞[
J=0

�
J +

1

2

�
exp

%
−β h̄2

2mr20

�
J +

1

2

�2&
. (51)

As it is usual (see, e.g. Refs.[7], [8]), the last sum may be replaced by an integral.
The motivation is simple: if we again denote J + 1

2 = x, then the quantity before x into

the exponential (i.e. −β h̄2

2mr20
≡ Θrot

T , where Θrot is the rotational constant) is very small

for more gases and for all temperatures for which these gases are not in the liquid state.
In other words, the separation between the rotational energy levels is so small that this
replacement is wholly possible. So, the last equation becomes:

TM = 2exp

#
−βmω2

4
r20

$ ] ∞
0
dxx exp

#
−β h̄2

2mr20
x2
$
=

=
mω

h̄
r20
1

y
exp

�
−ymω

2h̄
r20

�
. (52)

Consequently, the sum T−1M is:

T−1M =
1

TM

] ∞
y
TM(y) dy = y e

ymω
2h̄
r20

] ∞
y
dy
1

y
e−y

mω
2h̄
r20 . (53)
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This integral leads to the integral exponential function (Ei(z)) [5]:] ∞
x
dx
1

x
e−ax = −Ei(−ax), (54)

which has the following series development [5]:

Ei(−z) = e−z
n[
k=1

(−1)k (k − 1)!
zk

+Rn,

|Rn| < n!

|z|n+1 cos ϕ2
, z = |z|eiϕ, ϕ2 < π2. (55)

For the M-approximation are relevant the first two terms of the series development
and so, we obtain:

T−1M =
2h̄

mω

�
1

r20
− 1
y

2h̄

mω

�
1

r40

�
+ . . .

�
. (56)

By using the above obtained expressions for TM and T−1M , after straightforward calcu-
lations, Eqs.(9), (11)-(14), (24) and (25) lead to the following relations:

ZM =
mω

2h̄
r20
1

y

1

sinh y
, (57)

FM =
h̄ω

2

1

y
ln 2 sinh y +

h̄ω

2

1

y
ln y +

h̄ω

2

1

y
ln

h̄

mω

1

r20
, (58)

UM =
h̄ω

2

�
coth y +

1

y

�
, (59)

CV ;M
R

=

�
y

sinh y

�2
+ 1, (60)

G
r2
H
M
= r20 +

2h̄

mω

�
coth y +

1

y

�
, (61)�

1

r2

 
M
=
1

r20
− 1
y

2h̄

mω

1

r40
. (62)

The expression of the potential practically is the same in both representations, i.e.:

V
(p)
J ;m(r) ≈ V (p)J ;M(r) ≈ V (p)J (r), (63)

since:
α2m ≈ α2M ≈ α2, (64)

if we neglect the term containing (r20)
4, respectively (r20)

−4. As a consequence, the
quantum-statistical averages for r2 and r−2 in both approximations can be obtained also
by the moment methods, i.e. by the method based on the application of hypervirial and
Hellmann-Feynman theorems, in the same manner as in Section 3. This fact shows that
both approximations are suitable.

This method allows the possibility also to obtain the quantum-statistical averages of
the other observables which characterize the quantum system (the PHO-s quantum ideal
gas). It is well known that, in these calculations, the partition function (i.e. the trace
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of the density matrix) is a very important quantity because this function contains all
statistical-thermodynamical information about the quantum system.

5. Conclusion

In the present article we try to present an alternative anharmonic potential confronted
by the harmonic oscillator (HO) potential. This potential is the so-called pseudoharmonic
oscillator (PHO) potential, which is a central field potential and a more realistic potential
in comparison with the HO potential. It becomes infinite at the origin of the internu-
clear coordinate r and it extends only in the physical region (0 < r < ∞). Due to the
mathematical facilities in the approach of the PHO (it admits an exact solution of the
Schrödinger equation and the exact expression of the expected values), the PHO is useful,
for instance, for the examination of molecular vibrations.

In the article we have calculated some thermodynamical functions, which character-
ize the PHO-s quantum ideal gas (i.e. partition function, free energy, internal energy,
specific heat) and some thermal moments of the internuclear distance. Due to the fact
that these expressions contain the infinite sum (Tα and T

−1
α ), we have tried to obtain the

corresponding expressions for two approximations: m-approximation (for small internu-
clear equilibrium distance r0) and M-approximation (for large r0). In these expressions
the contribution of the anharmonicity is evinced in an analytical manner.

All these results (Eqs.(9), (11)-(14), (24) and (25)) can be obtained also if we use the
density matrix in coherent states representation. It is easy to demonstrate that the PHO
agrees with the Barut-Girardello coherent states. This question is the subject matter of
our other article [9]. Moreover, the connection between PHO and the Barut-Girardello
coherent states leads to the idea that the pseudoharmonical oscillator may have some
applications in quantum optics.
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Abstract

A sample of Sm3Fe5O12 was sintered from corresponding mixed hydroxides that
were obtained by coprecipitation of mixed nitrates. The x-ray diffraction exper-
iment was done with monochromatized CuKα radiation at room temperature.
The sample crystallizes in the garnet structure type. The iron ions occupy both
the tetrahedral and octahedral positions, while the samarium cations occupy
the dodecahedral position. The refinements were done in the cubic space group
Ia3d and the rhombohedral space group R-3c with a hexagonal axis. Note that
the group R-3c is a subgroup of the symmetry group of the magnetic moment
and subgroup of the Ia3d group. The transformation of the refined atomic co-
ordinates from the group Ia3d into the group R-3c gives the same values, within
the sum of standard deviations, as the values obtained from the refinement in
the rhombohedral space group. The Debye temperatures, obtained from ther-
mal displacement B-factors, are 320 and 560 K from the refinements in the
cubic and the rhombohedral space group, respectively. The later temperature
agrees with the Debye temperature obtained by independent measurements.

Key words: Garnets, x-ray diffraction, symmetry, Debye temperature

1. Introduction

Since their discovery, magnetic garnets have played an important role in basic and
applied science [1]. Their importance is based on their applicability for different magnetic
media. On the other hand, these compounds are a test for Neel’s theory of ferrimagnetism.

Sm3Fe5O12 (SmIG) belongs to the family of rare earth magnetic garnets whose proto-
type is the ferrimagnetic Y3Fe5O12 [1]. In the garnet structure, the space group Ia3d in
the paramagnetic phase, the yttrium or rare earth ions occupy the special position 24c,
with dodecahedral coordination, the iron ions occupy the special 24d sites, with tetrahe-
dral coordination and the 16a position with octahedral coordination, and all oxygen ions
are in the general 96h position [1]. The unit cell contains eight formula units.

From the theoretical point of view, there is no doubt that the garnet structure below
the Curie point, about 560 K for all rare earth iron garnets (REIG) and yttrium iron garnet
(YIG), can not be cubic. Namely, the existence of the ordered magnetic phase requires
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a lowering of symmetry, according to the Curie principle [2]. However, the YIG and
REIG structures are described in the cubic system at room temperature [3]. Only at low
temperatures some REIG structures, which exhibit additional reflections in comparison
with Ia3d reflections, are described in the rhombohedral space group [4]. It has been
recently shown that, even if the new reflections do not appear as in the case of the YIG
and yttrium aluminum iron garnet, only description in the rhombohedral space group gives
the magnetic moment and Debye temperature in agreement with independent experiments
[5,6].

In this work our intention is to check whether the SmIG is really cubic at room tem-
perature. SmIG cannot be investigated by neutron diffraction, due to the giant absorption
of neutrons by Sm. For that reason we have performed x-ray diffraction measurements.

2. Experimental

A powder sample of Sm3Fe5O12 was sintered from corresponding mixed hydroxides
that were obtained by coprecepitation of mixed nitrates. The presintering was done at
temperature 950◦C for 24 hours. The sample was cooled and subsequently pressed to a
pressure of 1.5 t/cm2 and refired at 1350◦C for 8 hours in order to get samples of higher
density.

The x-ray diffraction data for the Rietveld analysis of Sm3Fe5O12 sample were col-
lected by a Philips PW1710 powder diffractometer with graphite monochromatized CuKα

radiation at ambient temperature. The scanning 2θ range was 9−135◦, with the scanning
time of 15 s per step and a step width of 0.02◦. This experiment confirmed the garnet
phase without impurities.

3. Results

The crystal structure was refined by the Rietveld profile method with the use of the
Fullprof program [7]. At first the crystal reflections were indexed in the space group Ia3d.
In this space group all cations occupy special positions: the yttrium ions are in the 24c
positions whose local symmetry is 222, the iron ions are in the 16a and 24d positions with
site symmetries -3 and -4, respectively. Only the oxygen ions in the general 96h positions,
local symmetry 1, have three degrees of freedom.

The starting model for the refinement procedure was the refined crystal structure of
Tb2.5Y0.5Fe5O12 [8]. The assumed peak shape corresponded to the pseudo-Voigt function.

In the last cycle of the refinement of Sm3Fe5O12, total of 19 parameters were varied:
one scale factor, one zero point, one mixing parameter, one asymmetry and one preferred
orientation parameter, three parameters for the description of the background, three pa-
rameters for the halfwidths description and the lattice constant parameter. The atomic
parameters were three free coordinates of the oxygen anion and four displacement B fac-
tors - one for each ion at four different crystallographic positions. 152 reflections were
used in the refinement.

The space group R-3c was also used for the refinement. In this space group, the starting
lattice constants and coordinates were obtained by transforming refined lattice parameters
and coordinates from the space group Ia3d. Two hexagonal axes of the rhombohedral cell
are the face diagonals of the cubic cell and the third is one half of the body diagonal. In
the group R-3c, samarium ions occupy two dodecahedral 18e sites, iron ions occupy 6b
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Figure 1. Observed (points) and calculated (line) x-ray diffraction pattern of Sm3Fe5O12 by
using space group R-3c. The line at the bottom represents the difference between observed and
calculated values.

and 18d octahedral positions as well as 36f positions. The oxygen ions are in four 36f
sites. In the last cycle of the refinement in this space group, a total of 32 parameters were
varied: one scale factor, one zero point, one mixing parameter one asymmetry and one
preferred orientation parameter, three parameters for the description of the background,
three parameters for the halfwidths description and two lattice constant parameters. The
atomic parameters were three free coordinates of iron in 36f positions, altogether 12 free
coordinates of the oxygen anions for four oxygens in 36f sites, and four displacement B
factors - one for samarium cations in dodecahedral positions, one for iron in tetrahedral
sites, one for iron in octahedral positions and one for oxygen ions. 626 reflections were
used in this refinement.

The parameters of the crystal structure are listed in Tables 1. and 2.

Table 1. The atomic parameters from the Rietveld refinement of Sm3Fe5O12 by using
space group Ia3d.

a [A
o

] 12.53255(9)
Ox -0.0303(6)
Oy 0.0529(9)
Oz 0.1494(7)

BFe,octa [A
o 2] 0.24(7)

BFe,tetra [A
o 2] 0.45(6)

BSm [A
o 2] 0.34(3)

BO [A
o 2] 1.0(2)

RB [%] 6.94
RExp. [%] 10.03
RP [%] 17.4
RWP [%] 22.5
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Table 2. The atomic parameters from the Rietveld refinement of Sm3Fe5O12 by using
space group R-3c.

a [A
o

] 17.7250(3)

c [A
o

] 10.8519(4)

atom x y z B [A
o 2]

Fe, octa 0 0 0 0.23(6)
Fe, octa 0.5 0 0 0.23(6)
Fe, tetra 0.209(2) 0.166(2) 0.419(3) 0.38(8)
Sm 0.625 0 0.25 0.35(3)
Sm 0.125 0 0.25 0.35(3)
O1 0.337(4) 0.566(3) 0.776(6) 0.2(2)
O2 0.747(3) 0.817(4) 0.415(7) 0.2(2)
O3 0.748(4) 0.715(5) 0.617(6) 0.2(2)
O4 0.149(5) 0.884(6) 0.184(6) 0.2(2)

RB [%] 7.02
RExp. [%] 10.56
RP [%] 17.8
RWP [%] 22.6

4. Discussion

The atomic coordinates obtained in the space group Ia3d can be transformed into the
atomic coordinates in the group R-3c. The transformed coordinates are the same, within
the sum of standard deviations, as the refined coordinates in the group R-3c.

The samarium ion is coordinated with four oxygen ions at 2.41 A
o

and four oxygen
ions at 2.52 A

o

. If one takes an oxygen radius of 1.40 A
o

, the radius of the samarium ion is
1.01 A

o

. The tetrahedral iron is surrounded with four oxygens at the distance of 1.85 A
o

.
This distance corresponds to the oxygen radius of 1.40 A

o

and high spin radius of Fe3+ of
0.47 A

o

in tetrahedral position. There are 6 oxygens around the octahedral site at 2.02 A
o

.
This distance corresponds to the high spin ferri radii of 0.62 A

o

. The literature values of
ionic radii in the garnet structure for Sm3+ and Fe3+ in tetrahedral and octahedral sites
are 1.04 A

o

, 0.49 A
o

and 0.64 A
o

, respectively [9]. Note that the here obtained values of
radii are somewhat smaller than those from literature which indicates a small presence of
the covalent bond.

In the space group Ia3d, the B factors for the oxygen anions are always larger than
the B factors for the cations, as expected. The B factor for the heaviest Sm ion is notthe
smallest, unexpectedly. This means that in this compound the strength of the bonds
affects the B factors. By using expression for the mass averaged B factor [10]:

B̄ =
6h2

makBθD

Φ(x)

x
+
1

4
(1)

where h represents Planck’s constant,ma average atomic weight, kB Boltzmann’s constant,
θD the characteristic Debye’s temperature, x the ratio of θD to absolute temperature and
Φ(x) is Debye’s integral, the characteristic Debye’s temperature is found to be 320(40) K.
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This result is in big disagreement with independent determination of θD, from thermal
expansion of lattice parameters, which gives the value of 540± 30 K [11].

In the space group R-3c the B factor of oxygen ions is the smallest one. However, this
can be true if the oxygen ions are strongly bonded to metallic ions. For this case θD is
also calculated from equation (1). It was found that θD is 560(60) K. This result is in full
agreement with the already mentioned result: 540± 30 K [11].

All R factors are slightly better for the refinement in the cubic space group. Also note
that refinement in the Ia3d space group was done with less parameters than in the group
R-3c.

An attempt was also made to refine crystal structure of magnetically ordered Sm3Fe5O12
in the space group R-3. Note that the crystal and magnetic structure of Y3Fe5O12 has
been already refined in this space group [5], which is a subgroup of the group R-3c. How-
ever, these attempts were not successful, after many cycles the refinements did not reach
a convergence.

5. Conclusion

There is no doubt that refinement in the cubic space group, characterized by smaller R
factors and a less number of parameters, is better than the refinement in the rhombohedral
space group. However, the refinement in the rhombohedral space group cannot be rejected
from two reasons. The first is that theoretically the magnetically ordered sample can not be
cubic [2]. In this case the magnetic moments oriented along the body diagonal in the cubic
system require a rhombohedral space group. The other reason is agreement of the Debye’s
characteristic temperature from independent measurements only with the refinements in
the rhombohedral space group. This temperature is between 500 and 600 K for all REIG
and YIG [11]. The neutron diffraction measurements of mixed yttrium aluminum iron
garnet showed that this sample, which is rhombohedral at low temperatures approaches
cubic symmetry with an increase of temperature [6]. In the case of SmIG it seems that
the cubic model better fits the experimental x-ray diffraction data but the rhombohedral
model better describes Debye’s temperature, i.e. a coarse description of lattice dynamics
is better in the rhombohedral model.
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Abstract

Mean-Field theory is developed for the system of magnetic ions located on
three or four sublattices, described by the Heisenberg Hamiltonian with all the
exchange integrals different. It is shown that for a certain ratio of exchange
parameters, the system with all antiferromagnetic interactions can manifest
two compensation temperatures. On the other hand, the same theory applied
to the superlattices with three or four planes in the unit indicates that there
can occur two compensation points with all possible choices of interaction signs.
PACS: 75.10.Jm,75.50.Ee,75.50.Gg

Key words: Heisenberg ferro- and antiferromagnet, compensation temperature, Mean-
Field approximation, several sublattice system, magnetic superlattices

1. Introduction

Recent advances in the theoretical prediction and synthesis of materials with com-
plicated structures have enabled the production of a material with two compensation
temperatures [1]. Ohkoshi et al. have first developed a Mean-Field (MF) theory for the
random material (NiIIa Mn

II
b Fe

II
c )1.5 [Cr

III(CN)6] · zH2O and predicted the existence of
two compensation points for the system: a = 0.20, b = 0.61, c = 0.19. They continued
with the synthesis and succeeded experimentally to obtain this behaviour for the material
with a = 0.22, b = 0.60, c = 0.18.

The structure proposed was the system of four sublattices where the Cr ion is sur-
rounded in a random manner by Ni and Fe with ferromagnetic coupling and Mn with
antiferromagnetic coupling.

In order to extend their studies theoretically, we looked in the literature for similar
complex systems. We noticed the work of Herbst [2] and del Moral [3] who studied the
systems with several sublattices. Herbst [2] reviews the properties of the compounds of
the general formula R2Fe14B where R is the rare-earth atom. It is noticed that light
rare-earth members of the series are coupled ferromagnetically with iron, while heavy
rare-earth atoms are coupled antiferromagnetically (or ferrimagnetically). At the moment
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when this report was prepared, no compensation points were recorded in any of the pure
materials, although such behaviour was known in some other rare-earth compounds, so it
seems plausible to start looking for compensation temperatures in the systems with several
sublattices. Our aim here is to study such systems. The next step is the choice of the
theoretical formalism. It seems that, however simple it may be, the MF approximation
leads to results which agree with experimental data, where available. The very success of
the work [1], is one of the arguments, yet the results of some other papers dealing with
Heisenberg superlattices [4,5], also encourage us in this choice. For this reason, we shall
study such systems within the framework of the MFA theory, as the first step of the study.

In this paper we shall first formulate the MF theory for the system with three and
four sublattices, where one can obtain interesting behaviour of the total and sublattice
magnetization at finite temperatures. The model is presented in Section 2 where MF
theory is formulated. The results of the numerical studies are discussed. In Section 3, MF
theory is developed for the superlattices. Some final remarks are given in the Conclusion.

2. The Model and Mean Field Equations

The model of a bulk crystal with several sublattices is formulated in the following way:
the underlying lattice of sites is a simple cubic one and interpenetrating sublattices are
distributed among these sites.

In the case of three sublattices, an ion of the given sublattice (say a) is surrounded by
an equal number (three) of sites belonging to other two sublattices (b and c), and none
of its own. Furthermore, along each direction (x coinciding with crystallographic a - axis,
y with b and z with c), the neighbours always belong to different lattices. The possible
configuration which provides translational invariance is presented in Figure 1a.

This configuration can most easily be described by looking at the alternating ion dis-
tribution along any direction. The same principle can be applied for the construction of
the four sublattice system. One can see that the repeating configuration of all four types
of ions along any direction, as given in Figure 1b, can assure the translational invariance.

Figure 1. The system of three sublattices (a) and four sublattices (b) treated in this paper.
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Such a complicated structure obviously demands certain simplification. The basic
simplification here is that we shall assume the interaction between the nearest neighbours
only. We shall also assume that we are dealing with the system of localized spins, so it
can be described by the Heisenberg Hamiltonian:

H = −1
2
Onα, Omβ

JOnα, Omβ
�SOnα · �SOmβ

α,β = a, b, c, d (1)

Here �nα is the symbolic description concerning the position of the ion within the
sublattice. We shall now write down the explicit form assuming that all spins are different:
Sa 9= Sb 9= Sc 9= Sd and all exchange integrals are different: Jab 9= Jbc 9= Jcd 9= Jda and
each one can be either ferromagnetic (> 0) or antiferromagnetic (< 0).

H = −1
2
Ona, Ona+Oλba

Jab �SOna · �SOna+Oλba −
1

2
Ona, Ona+Oλda

Jad �SOna · �SOna+Oλda

−1
2
Onb, Onb+Oλ

a
b

Jab �SOnb · �SOnb+Oλab −
1

2
Ond, Ond+Oλ

a
d

Jad �SOnd · �SOnd+Oλad + (bc+ cb) + (cd+ dc) (2)

Here �na denotes the particular site in the a - sublattice and �na+�λba denotes three sites
which are occupied by the neighbouring sites of b lattice and so on. The meaning of the
last two terms is obvious.

2.1. Mean-Field Approximation

In order to apply the standard Mean-Field Approximation [6], we shall assume that
an external field H in z - direction, is added:

HZEM = −gμBH
Onα

SzOnα (3)

This introduces an Ising symmetry into the problem, so the decoupling can be per-
formed in the following manner:

�SOnα · �SOnβ ≈ kSzOnαlSzOnβ + SzOnαkSzOnβ l − kSzOnαlkSzOnβ l (4)

Assuming the translational invariance kSzOnαl = kSzαl = σα (α = a, b, c, d), we can
write down the MFA Hamiltonian :

HMFA = H0 − 1/2 kH0lH=0 (5)

H0 =
α=a,b,c,d Onα

H̃αS
z
Onα (6)

The effective fields are given as:

H̃a = z

2
(Jabσb + Jadσd) + gμBH (7)

H̃b = z

2
(Jabσa + Jbcσc) + gμBH (8)
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H̃c = z

2
(Jbcσc + Jcdσd) + gμBH (9)

H̃d = z

2
(Jadσa + Jcdσc) + gμBH (10)

Here z = 6 equals to the number of the nearest neighbours. If we introduce the number
of sites per sublattice N = Ntot/4, we can write:

H0 = −N
α=a,b,c,d

H̃αS
z
α (11)

Using the standard procedure, we obtain the free energy as

F = F

N
= −θ

4

α=1

lnZα (12)

Zα =
Sα

ν=−Sα
exp[−βH̃αν] =

sh(Sα + 1/2) xα
shxα/2

(13)

where xα = βH̃α and

σα = SαBSα(Sαxα) α = a, b, c, d (14)

and BSα is the standard Brillouin function [4].In order to unify the notation, we shall use
the following conventia Jab = J1, Jbc = J2, Jcd = J3, Jda = J4 and for spin Sa = S1, Sb =
S2, Sc = S3, Sd = S4.

The system of four equations (14) must be solved in a self-consistent manner. It will
be discussed numerically in the following section for some particular choices of interac-
tion, although an estimate of the transition temperature θc can be obtained by a simple
linearization.We shall solve the equation for sublattice magnetization and plot the total
magnetization (simply ”magnetization” further on) obtained as the algebraic sum of all
sublattice magnetizations.

Working in an identical manner, we can obtain the system of Mean-Field equations
for the system with three sublattices, which explicit form need not be quoted here.

2.2. Numerical Results

Let us now analyze numerically some relevant examples. We treated first the follow-
ing configuration (↑ ↑ ↓ ↑) described by the exchange parameters: J1 = 1.5 cm−1, J2 =
−3 cm−1, J3 = −2 cm−1, J4 = 1 cm−1 and following spin values S1 = 1, S2 = 1/2, S3 =
5/2, S4 = 3/2. The behaviour of the magnetization is given at Figure 2 .
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Figure 2. The magnetization of the system with four sublattices with the following parameters:
J1 = 1.5 cm

−1, J2 = −3 cm−1, J3 = −2 cm−1, J4 = 1 cm−1, S1 = 1, S2 = 1/2, S3 = 5/2, S4 =
3/2.

We see that there occurs a single compensation point. Some other choice of parame-
ters may lead to none or a single compensation temperature, but never to two, for this
configuration. Of course, one should be careful with this conclusion, since it follows purely
from our numerical experience, while we were not able to prove it in an analytical manner.

However, a ”zig-zag” structure described by completely antiferromagnetic couplings
J1 = −1 cm−1, J2 = −10 cm−1, J3 = −7 cm−1, J4 = −2 cm−1, S1 = S2 = S4 = 1, S3 =
3/2 happens to have two compensation temperatures, although the reverse magnetization
is rather low, as seen in Figure 3.

Figure 3. The magnetization of the system with four sublattices with the following parameters:
J1 = −1 cm−1, J2 = −10 cm−1, J3 = −7 cm−1, J4 = −2 cm−1, S1 = S2 = S4 = 1, S3 = 3/2

Finally, we have not managed to obtain any set of parameters leading to two compen-
sation points in the three sublattice structure.
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Now we can comment on these results. The values of exchange integrals are chosen
in the range as proposed in [1]. However, they have shown that the results are very
sensitive even to small changes of the stochiometry. The fact that we managed to find a
set of parameters which predicts the occurrence of two compensation temperatures even
at ordered structures can be formulated as our basic result: disorder (non-stoichiometry)
is not a prerequisite for the phenomenon.

In our case that would mean that the system is sensitive to small changes of the ratios
of parameters. Yet, once the ratios of the parameters allowing two compensation temper-
atures are established, one can vary their numerical values and obtain two compensation
points again. The compensation temperatures obtained in this way lie in a broad range of
values, which offers some good perspective for the possible ”construction” of such materi-
als. We present here an example (Figure 4.) where the parameters from Figure 3. are all
multiplied by a factor of five. The compensation points and critical temperature all rise
by the same factor of five, since the magnetizations (14) are functions of the ratios rα (for
instance rα =

Jα
J1
) and reduced temperature β̃ = J1β only .

Figure 4. The magnetization of the system with four sublattices with the following parameters:
J1 = −5 cm−1, J2 = −50 cm−1, J3 = −35 cm−1, J4 = −10 cm−1, S1 = S2 = S4 = 1, S3 = 3/2.

We are now going to show that in the case of superlattices, the conditions for the
occurrence of two compensation points are much more favorable.

3. Mean-Field Approximation for the Superlattices

The basic underlying lattice can also support the superlattices. The superlattices are
assumed to consist of ferromagnetically ordered layers (yz - planes) and the group of
3 or 4 layers is the unit repeated along the x - axis. Interlayer coupling can be either
ferromagnetic or antiferromagnetic, which will be explained in each particular case.

The system of MF equations can be written in the completely general form irrespective
of coupling. The Hamiltonian of the system can be written as

H = −1
2
Onα, Onα+Oδl

Iα �SOnα · �SOnα+Oδl −
1

2
Onα, Onα+Oδxβ

Jα β
�SOnα · �SOnα+Oδxβ α, β = a, b, c(d) (15)
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The first term describes the interaction of spins within each layer, so that α denumer-
ates the layer, �n is the 2D vector within the layer and �δl connects each spin with all its
neighbours within the layer. The spins within the layer interact ferromagnetically, so that
all Iα > 0.

The second term describes the coupling between the layers α and β, so that �nα + �δxβ
connects the spin at the site �nα with the spin in the neighbouring plane β, positioned
directly ”above” it along the x - axis. The sum over �nα+�δ

x
β always includes both neighbours

and the factor 1/2 takes care of the proper number of interactions.

We assume that the spins within the layer are equal, but need not be equal among the
layers (Sa 9= Sb 9= Sc 9= Sd). In order to preserve the translational invariance along all
directions, we assume periodic boundary conditions in all directions.

The notation is the following: Jab = J1, Jbc = J2 and for three superlattices Jca = J3,
while for four superlattices Jcd = J3, Jda = J4. As for in-plane interactions, Ia = I1 etc.

We allow J to be either positive or negative, since it is possible nowadays to produce
such superlattices depending on the layer width and non-magnetic ions inserted in the
space between the layers.

Taking into account the translational invariance of the spins within the layer and the
cells along the x - axis, we can use: kSzOnαl = kSzαl = σα (α = 1, 2, 3, 4). The basic set of
equations is again of the type (14), and the effective fields are given by:

a) four layer unit:

H̃1 = z2I1σ1 + z1
2
(J1σ2 + J4σ4) + gμBH (16)

H̃2 = z2I2σ2 + z1
2
(J1σ1 + J2σ3) + gμBH (17)

H̃3 = z2I3σ3 + z1
2
(J2σ2 + J3σ4) + gμBH (18)

H̃4 = z2I4σ4 + z1
2
(J3σ3 + J4σ1) + gμBH (19)

b) three layer unit:

H̃1 = z2I1σ1 + z1
2
(J1σ2 + J3σ3) + gμBH (20)

H̃2 = z2I2σ2 + z1
2
(J1σ1 + J2σ3) + gμBH (21)

H̃3 = z2I3σ3 + z1
2
(J2σ2 + J3σ1) + gμBH (22)

Here z1 = 2 denotes the number of out - of - layer neighbours while z2 = 4 is the
number of the neighbours within the layer.

The superlattices are of more practical interest since it seems possible to influence the
interaction between the planes in a more efficient way by adding non-magnetic materials
between the planes, similar to sandwich structures. It turns out that it is much easier to
find a set of parameters for which two compensation temperatures occur. In fact, for each
configuration of supperlattices, it is possible to obtain such a phenomenon. (Figures 5.-6.)
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Figure 5. The magnetization of the superlattice with four-layer unit with the following parameters:
J1 = 0.5 cm−1, J2 = −3 cm−1, J3 = −2 cm−1, J4 = 0.4 cm−1, I1 = 1 cm−1, I2 = 3 cm−1, I3 =
0.5 cm−1, I4 = 3 cm−1, S1 = 1, S2 = 1/2, S3 = 5/2, S4 = 3/2 (Unit configuration is shown in the
insert).

Figure 6. The magnetization of the superlattice with four-layer unit with the following parameters:
J1 = −1 cm−1, J2 = −10 cm−1, J3 = −4 cm−1, J4 = −2 cm−1, I1 = 0.5 cm−1, I2 = 1.5 cm−1, I3 =
3 cm−1, I4 = 2 cm−1, S1 = 3/2, S2 = S3 = S4 = 1 (Unit configuration is shown in the insert).

Obviously, the manipulation is facilitated by the larger number of parameters which
can be fitted. Also, even here one can increase the values of exchange parameters retaining
their ratios and it will lead to the similar behaviour again. Examples are given in Figure
7. (parameters of Figure 5. multiplied by a factor of 5) and Figure 8. (parameters of
Figure 6. multiplied by a factor of 10).
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Figure 7. The magnetization of the superlattice with three-layer unit with the following para-
meters: J1 = −5 cm−1, J2 = −10 cm−1, J3 = −2.5 cm−1, I1 = 2.5 cm−1, I2 = 6 cm−1, I3 =
12.5 cm−1, S1 = 1, S2 = 5/2, S3 = 2 (Unit configuration is shown in the insert).

Figure 8. The magnetization of the superlattice with four-layer unit with the following parameters:
J1 = 5 cm−1, J2 = −30 cm−1, J3 = −20 cm−1, J4 = 4 cm−1, I1 = 10 cm−1, I2 = 30 cm−1, I3 =
5 cm−1, I4 = 30 cm−1, S1 = 1, S2 = 1/2, S3 = 5/2, S4 = 3/2 (Unit configuration is shown in the
insert).

It is instructive to follow the behaviour of particular layer magnetizations and see how
the compensation arises in one particular case for three and four-layer superlattices (Fig-
ure 9.a i 9.b) (Similar calculation for sublattices also shows why it is so diffucult to reach
the compensation in that case.)
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Figure 9. The magnetization of the layers in the superlattice with (a) four-layer unit with
the following parameters: J1 = 0.5 cm−1, J2 = −3 cm−1, J3 = −2 cm−1, J4 = 0.4 cm−1, I1 =
1 cm−1, I2 = 3 cm−1, I3 = 0.5 cm−1, I4 = 0.4 cm−1, S1 = 1, S2 = 1/2, S3 = 5/2, S4 = 3/2,
and (b) three-layer unit with the following parameters: J1 = −1 cm−1, J2 = −2 cm−1, J3 =
0.5 cm−1, I1 = 0.5 cm−1, I2 = 1.2 cm−1, I3 = 2.5 cm−1, S1 = 1, S2 = 5/2, S3 = 2 (Unit configura-
tion is shown in the insert).

4. Concluding Remarks

We have shown within the Mean-Field approximation that even the ordered systems
with several sublattices can be made to posses two compensation temperatures by a suit-
able choice of components (i.e. system parameters), while there are much more possible
combinations in the case of superlattices. When it comes to the practical realization of
these systems, we do not have experimental facilities to produce them, but the success
of the Japanese team [1] indicates that one could obtain such materials based on our
models, especially since we have shown that such a possibility appears in a wide range of
temperatures.

One should finally address the justification of the application of MF theory. There is
no problem with the system with several sublattices (study [1] clearly shows that), since
these are typical three-dimensional samples where MFA leads to plausible results (except
in the vicinity of Tc, which is not of interest in this study). The problem may arise in the
study of superlattices, since we have assumed that we deal with ferromagnetically ordered
(two-dimensional) layers which are then coupled either ferromagnetically or antiferromag-
netically. It is well-known that there is no purely two-dimensional ferromagnetism [7], but
it is precisely the interlayer coupling in these models (however small it may be) that makes
long range order in each layer possible.

One should, however stress, that in the limit of strong interlayer antiferromagnetic
coupling (|Jα| >> Iα), the long range ferromagnetic ordering may be also destroyed due
to the possibility of creation of singlets in the neighbouring sites of two layers. (These
results will be published elsewhere.) We do not consider such extreme cases here, so from
the theoretical point of view, we think that this is an indication that the materials pro-
posed by our models here might be constructed, although some more, both, theoretical
and experimental effort is necessary.
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M. Vučinić 1, M. Mitrić 2, V. Kusigerski 2, A. Kapor 1, A. Szytula 3
1 Institute of Physics, University of Novi Sad,
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Abstract

The manuscript contains new measurements and calculations of magnetic sus-
ceptibility of Cr(III) and Fe(III) ions in hexaaqua-nitrate-trihydrate. The mag-
netic properties of the ion M=Cr(III), Fe(III) in hexaaqua-nitrate-trihydrate
M(H2O)6(NO3)3·3H2O were studied from the temperature dependence of mag-
netic susceptibility determined using the SQUID susceptometer, within the
temperature range 4 K ≤ T ≤ 290 K. The detected deviation from the Curie-
Weiss law is explained by the splitting of the ground state energies of the
magnetic ions under the influence of the crystalline field (splitting in the zero
field) and the contribution of the temperature independent Van-Vleck para-
magnetism.

Key words: Magnetic susceptibility, Cr(III) and Fe(III) ions, crystalline field

1. Introduction

It is known that magnetic ions in crystals are exposed to the influence of the crystal
surrounding (named ”ligand” or ”crystalline” field). The crystalline field can change
the magnetic properties of ions in relation to free ion properties. The systems, which
contain isolated magnetic ions, are close to an ideal paramagnetic substances and they
are very convenient for research of the crystalline field effect. The absence of magnetic
interaction between ions, gives an opportunity to observe only the crystalline field effect.
The hexaaqua-nitrate-trihydrate M(H2O)6(NO3)3·3H2O, M=Cr(III), Fe(III), which is the
object of this research is a very good example of such systems.

The single crystals of Cr(III) and Fe(III) hexaaqua-nitrate-trihydrates were obtained by
slow crystallization from a saturated aqueous solution of pure compounds Cr(NO3)3·9H2O
and Fe(NO3)3·9H2O. The crystal structures of Cr(III) and Fe(III) hexaaqua-nitrate- trihy-
drates were solved using a single crystal X-ray diffraction method. It was confirmed that
the samples are isostructural. These materials crystallize in monoclinic system, space
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group P21/c (No 14) [1,2]. Cations Cr(III) and Fe(III) occupy two distinct unequivalent
special positions [(a) 0,0,0; 0,0.5,0.5; (d) 0.5,0.5,0.5; 0.5,0.5,0] local symmetry 1̄. Coor-
dinated polyhedra of cations are distorted octahedra. The distortion can be considered
as an axial symmetric and equal for both special positions. The electron structure of
Cr(NO3)3·9H2O was analyzed using diffusion-reflection and UV spectra of powder sample
[3].

It is known that the free ion Cr(III) ground state is 4F (S = 3/2, L = 3). The regular
octahedra crystalline field splits this state into three orbital multiplets. The ground level
is orbital singlet 4A2(g) with spin S = 3/2 (Figure 1(a)). Because of axial distortion of
the octahedral surrounding, this ground state splits (zero field effect) into two doublets
S = ±3/2, S = ±1/2 [4]. The energy level distance between these doublets is D (Figure
1(a)). The energy level distances between ground multiplet and excited multiplets 4T2(g)
and 4T1(g) are approximately 17000 cm

−1 and 24000 cm−1, respectively [3].
The free ion Fe(III) ground state is an orbital singlet 6S (S = 5/2, L = 0). The regular

octahedral crystalline field does not split the ground state of free Fe(III) ion. The distorted
octahedral surrounding (zero field effect) splits this ground state into three doublets with
energy level distances D1 and D2, as shown in Figure 1(b). The energy level distances
formed by zero field effect could be determined using magnetic measurements.

Figure 1. Orbital singlet splitting in regular (I) and distorted (II) crystalline field for: (a) Cr(III)
ion, (b) Fe(III) ion.

Generally, the magnetic susceptibility of isolated ions in the crystalline field could be
described by Van-Vleck equation [4]:

χ =
N n[(E

(1)
n )2/kT − 2E(2)n ] exp{−E0n/kT}

n exp{−E0n/kT}
(1)

In the previous equation, the energy level is developed into a series in terms of the applied
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magnetic field - H: En = E
0
n +HE

(1)
n +H2E

(2)
n

2. Results and discussion

We wanted to connect the physical properties of Cr(II) and Fe(III) hexaaqua-nitrate-
trihydrates with the known crystal structure. For this purpose, we additionally performed
magnetic measurements. The temperature dependence of the magnetic susceptibility of
the examined materials was determined using the SQUID susceptometer, within the tem-
perature range 4 K≤ T ≤ 290 K in magnetic field 1T. The experimental data of the inverse
magnetic susceptibility, per gram-ion are shown in Figures 2 and 3. We concluded that
both samples are in paramagnetic phase in a whole measurement temperature range. It
can be clearly seen that the experimental data show deviation from the Curie-Weiss law,
so we can describe the experimental data with Van-Vleck equation (1) applied to 3d ions
in crystalline field, with energy spectra as it is shown in Figures 1(a) and 1(b).

In both cases of ions Cr(III) and Fe(III) we can ignore the excited level population due
to the great energy splitting. The only levels, which are populated, are formed from the
ground state splitting in the crystalline field. The influence of excited multiplets, are taken
into consideration only as the temperature independent Van-Vleck contribution (second
order Zeeman effect) χTIP , in case of Cr(III) ions. In the case of Fe(III) ions, there is
no ground state splitting in the regular crystalline field, so we can ignore the temperature
independent Van-Vleck paramagnetism. Taking into account the above explained, as well
as the fact that the zero field effect exists in case of both ions, Van-Vleck equation obtain
forms:

χ =
Ng2μ2B
4kT

1 + 9 exp{−D/kT}
1 + exp{−D/kT} + χTIP (2)

χ =
Ng2μ2B
4kT

1 + 9 exp{−D1/kT}+ 25 exp{−D2/kT}
1 + exp{−D1/kT}+ exp{−D2/kT} (3)

for Cr(III) and Fe(III) ions, respectively.

Figure 2. Inverse magnetic susceptibility for Cr(III) ions in hexaaqua-nitrate-trihydrate. Theo-
retical curve is obtained using equation 2 for fitting experimental data.
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Figure 3. Inverse magnetic susceptibility for Fe(III) ions in hexaaqua-nitrate-trihydrate. Theo-
retical curve is obtained using equation 3 for fitting experimental data.

The experimental data for Cr(III) and Fe(III) ions in hexaaqua-nitrate-trihydrates
were fitted using expressions (2) and (3) respectively. In the case of Cr(III) ions, the fitted
parameters were energy level distance D, temperature independent Van-Vleck paramag-
netism χTIP and Lande splitting factor g. Including the Lande splitting factor as the
fitted parameter, we considered the contribution of spin-orbit interaction as a result of
orbital momentum incomplete freezing. The fitted parameters in the case of Fe(III) ions
were energy level distances D1 and D2. In this case, we treated the Lande splitting factor
as constant value. The calculated values of inverse susceptibility are shown in Figures 2
and 3. Calculated values of fitted parameters are given in Table 1.

Table 1. Calculated values of fitted parameters.

ion calculated values of fitted parameters

Cr(III) D = (1.6± 0.2) cm−1; g = 1.9± 0.05; χTIP = (8± 2) · 10−4 emu/mol
Fe(III) D1 = (80± 3) cm−1; D2 = (12± 1) cm−1

3. Conclusion

We performed the measurements of the temperature dependence of the magnetic sus-
ceptibility of Cr(III) and Fe(III) hexaaqua-nitrate-trihydtates samples. The results of the
measurements show that the samples are in a paramagnetic phase in whole measurement
temperature range. The results also show deviation from the Curie-Weiss law. On the
basis of identified crystal and electron structure, we calculated zero field splitting para-
meters in the case of both ions. In the case of Cr(III) ions, we calculated the temperature
independent Van-Vleck contribution and the Lande splitting factor value.

The calculated value D for the Cr(III) ion is close to the values from literature [5]. The
level with S = ±1/2 is the lowest in energy level arrangement, inverse from Figure 1(a).
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The calculated Lande splitting factor value differs slightly from spin only value. This fact
shows a partial orbital momentum ”unfreezing” as a result of spin-orbital coupling. The
calculated value for χTIP agrees with literature data [6].

The level with S = ±3/2 is the lowest in the energy level arrangement of Fe(III) ion,
the level with S = ±1/2 comes next.

Obtained results show that the used model of axial distorted crystalline field is a
good approximation for observed materials. It should also be mentioned that the energy
level splitting is more frequently determined by spectroscopic methods, since magnetic
measurements are unsatisfactorily sensitive.
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