UNIVERZITET U NOVOM SADU Prirodno-matematički fakultet Institut za fiziku

Природно-математички факултет

Радна заједница заједничких послова

HOBICAG

Примљеке:	24. 1.	1956	
Орг. јед.	Број	Призог	Вреднос т
03	90/1		

Jaroslav Slivka

MESBAUERSKA STUDIJA KRITIČNIH FLUKTUACIJA SPINA U DVODIMENZIONALNOM ANTIFEROMAGNETIKU KFeF4

- DOKTORSKA DISERTACIJA -

NOVI SAD, 1986.

Za moquénost da preduzmem izradu ove doktorske olsertacije dugujem zahvalnost pre svega dvema institucijama: Institutu za fiziku Prirodno-matematičkog fakulteta u Novom Sadu i Fizičkom institutu Univerziteta u Cirihu. Kolektiv prvog mi je, preuzimajući mote radne obaveze, omogućio da dve godine odsustvujem, a gostoprimstvo i materijalna podrška drugog su mi omogućili da iskoristim postojeće iskustvo naučnog tima, instrumente i opremu jedne od u svetu poznatijih laboratorija za Mössmauemovu spektroskopiju. Poverenje na koje sam od početka naišao velikim delom dugujem ugledu koji je u tom Institutu stekao dr I. Savić, na čiju sam preporuku tamo bio i primlica. Profesor H. Kunoto, rukovodilac naučnog projekta u okviru kojeco se odvijalo i moje istraživanje, svojim velikim iskustvom. savetima i brigom pružio mi je dragocenu pomoć. Verujem de nilada neću zaboraviti izuzetnu atmosferu radnog entuzijazma, nesebične saradnje i prijateljstva za koju najviše dugujem dr H. Kellere Teškoće u izvođenju ovih eksperimenata bile bi nepremostive da nije bilo dobrih kristala KFeF, koje je sintetizovala i ljubazno ustupila dr B. WANKLYN iz Clarendon Laboratorije u Oksfordu.

Dr D. Kapor i dr I. Birit uložili su mnogo svoga znanja dobre volje u procesu formiranja ovog rukopisa. Takođe mislim da ne mogu zaboraviti ulogu koju je u sticanju moga znanja iz Mosseauerove spektroskopije imao profesor L. Marinkov, uz čijo pomoć se formirao i moj pogled na probleme fizičkog eksperimenta uopšte.

UVOD

Fenomeni *faznih prelaza* danas predstavljaju jednu od najznačajnijih preokupacija fizike kondenzovane materije. Može 50 reći da su, zahvaljujući primeni teorije renormalizacione grupe, koja uspostavlja određenu analogiju između metoda statističke fizike i kvantne teorije polja, postignuti takvi dometi u suštinskom razumevanju kritičnog ponašanja materije u okolini faznog prelaza kakvi su se pre petnaestak godina mogli samo naslućivati. Veliku ulogu imala je u tome i pojava dovoljno brzih računskih mašina sa jedne strane, a sa druge obilje eksperimentalnih činjenica sakupljenih zahvaljujući rezvoju suptilnih mernih metoda. Za slučaj statičkih kritičnih fenomena (svojstava materije u termodinamičkoj ravnoteži u okolini faznog prelaza) je mahom uspešno proverena konzistentnost većine sada postojećih osnovnih teorijskih modela sa eksperimentalno utvrđenim svojstvima odgovarajućih realnih modelnih sistema (Poglavlje I).

U slučaju kritične dinamike, koja proučava evoluciju svojstava sistema u okolini kritične temperature sa vremenskog aspekta, neki od teorijskih modela nailaze na teškoće, kako sa stanovišta izračunavanja parametara kojima se opisuje dinamičko kritično ponašanje, tako i sa stanovišta eksperimentalnog određivanja tih parametara. Jedan od takvih izuzetaka među modelima je kinetički Isrmoov model, koji se u kritičnoj dinamici antiferomagnetnih sistema svrstava u dinamičku klasu univerzalnosti Model A. Nasuprot statičkom Isrmoovom modelu u dve dimenzije, čije ponašanje se izuzetno može opisati čak

UVOD

analitičkim rešenjem u konačnom obliku, evaluacija njegovog dinamičkog analogona uporno ostaje van domašaja kako analitičkih tako i numeričkih metoda. Teorijsko objašnjenje ovog izuzetki leži verovatno u tome da ie asimptotski kritični region, tj. region temperature u kome stvarno dolazi do izražaja kritično ponašanje osobeno za ovaj model, izuzetno uzak u odnosu na odgovarajući statički kritični region, dok se regioni kod ostalih modela podudaraju (Poglavlje II).

Eksperimenti opisani u ovoj tezi imali su za cilj da se paci više svetlosti na navedeni problem. Kritički su razmotre i zahtevi koje bi morale ispuniti eksperimentalne tehnuke da 🛼 odslikale pouzdano kritično dinamičko ponašanje nekoa odgovarajućeg realnog sistema, sa posebnim osvrtom na metode hiperfine interakcije. Kao metod istraživanja usvojena je MOSSBAUEROVA spektroskopi ia. koja pod određenim uslovima omogućava da se, koristeći jezgro kao svojevrsnu sondu, iz posledica hiperfine interakcije jezgra sa fluktuirajućio magnetnim poljem koje proizvode elektronski spinovi u rešetki čvrstog tela, dobiju informacije o usmerenosti i trajanju fluktuacija tih elektronskih spinova (Poglavlje III). Kao realna sistem upotrebljen je slojni antiferomagnetik KFeF_a za koga su postojale određene indicije da spada u dinamičku slasu univerzalnosti koja je ovde od interesa i koji je vrlo pogodan 20 ispitivanje usvojenom eksperimentalnom tehnikom (Poglavlje IV).

Opis izvedenih ekperimenata, čija je najvažnija specifičnost održavanje temperature stabilne u vrlo uskim granicama, dat e u Poglavlju V. Početni eksperimentalni podaci sastojali su se od više stotina Mösseauerovih spektara čija je obrada, zasnovana ne relaksacionim teorijama Mösseauerove apsorpcije, dovela do utvđivanja oblika zavisnosti između vremena relaksacije elektronskih spinova u ovom antiferomagnetiku i redukovane

i H

temperature. Interpretacija ove zavisnosti u svetlu ceorija kritične dinamike omogućila je odredivanje dinamičkog kritičnog eksponenta i pružila konačne dokaze da je KFeF₄ dobar reprezentant dinamičkog modela A (Poglavlje VI). Prednosti koje poseduje i ograničenja kojima podleže ovakva evaluacija u poređenju sa drugim malobrojnim pokušajima određivanja ovog kritičnog eksponenta, te zaključci i nihov doseg, prezentovani su u Poglavlju VII.

SADRŽAJ

I. UVOD U KRITIČNE FENOMENE	3,
I.A. FAZNI PRELAZI I KRITIČNI FENOMENI	1
I.B. TEORIJA SREDNJEG POLJA	3
I.C. HIPOTEZA SKALIRANJA I HIPOTEZA UNIVERZALNOSTI	4
I.D. PRIMENA TEORIJE RENORMALIZACIONE GRUPE NA KRITIČNE FENOMENE	7
II. UVOD U KRITIČNU DINAMIKU SISTEMA SPINOVA	12
II.A. OSNOVNI POJMOVI KRITIČNE DINAMIKE	: 3
II.B. KRITIČNA DINAMIKA SISTEMA SPINOVA	14
II.C. DINAMIČKE KLASE UNIVERZALNOSTI	17
II.D. DINAMIČKE KLASE UNIVERZALNOSTI ZA ANTIFEROMAGNETIKE	
II.E. DINAMIČKI KRITIČNI EKSPONENT ZA DVODIMENZIONALNI MODEL A	20
III. METODE MERENJA KRITIČNIH DINAMIČKIH SVOJSTAVA SISTEMA SPINOVA	20
III.A. OSNOVNI ZAHTEVI	26
III.B. EKSPERIMENTALNE METODE MERENJA KRITIČNIH DINAMIČKIH SVOJSTAVA SISTEMA SPINOVA	27
III.C. MERENJE DINAMIČKOG KRITIČNOG EKSPONENTA z POMOĆU TEHNIKA SA HIPERFINOM INTERAKCIJOM	29
IV. SLOJNI ANTIFEROMAGNETIK KFeF4 KAD MODELNI SISTEM ,	33
IV.A. IZBOR MODELNOG JEDINJENJA	33
IV.B. STRUKTURA KFeF4	35
IV.C. MAGNETNE OSOBINE KFeF4	36
IV.D. MAGNETNI FAZNI PRELAZ U KFeF4	37
IV.E. EKSPERIMENTALNO STATIČKO KRITIČNO PONAŠANJE KF@F4	39

112 1		
v. 1	SPERIMENTI	4)
	V.A. APARATURA	41
	V.A.1. Mössbauerov spektrometar	41
	V.A.2. Kriostat	45
	V.A.3. Uređaj za regulaciju i stabilizaciju temperature	47
	V.B. UZORAK	52
	V.B.1. Sinteza	52
	V.B.2. Priprema apsorbera	53
	V.B.3. Montaža apsorbera	53
	V.C. SAKUPLJANJE I PRELIMINARNA OBRADA PODATAKA	56
	V.C.1. Postupak snimanja Mösspeverovih spektara	56
	V.C.2. Postupak promene temperature tokom eksperimenata	41
	V.C.3. Preliminarna obrada podataka	63
vı.	ZULTATI MERENJA I INTERPRETACIJA	6ª
	1.A. MösebauerOVI SPEKTRI	6.ª
	VI.A.1. Spektri KFeF ₄ na niskoj temperaturi	65-
	VI.A.2. Spektri KFeF ₄ na visokoj temperaturi	69
	VI.A.3. Spektri KFeF, u kritičnom regionu	76
	I.B. ZAVISNOST ŠIRINA LINIJA OD TEMPERATURE	83
	I.C. ANIZOTROPIJA FLUKTUACIJA SPINA U KRITIČNOM REGIONU	64
	I.D. TEMPERATURNA ZAVISNOST LONGITUDINALNOG AUTOKORELACIONOG VREMENA z ^H	36
	I.E. ODREĐIVANJE KRITIČNOG EKSPONENTA W	89
	I.F. EVALUACIJA DINAMIČKOG KRITIČNOG EKSPONENTA z	72
VII.	ISKUSIJA REZULTATA I ZAKLJUČAK	74
	II.A. DISKUSIJA REZULTATA	74
	II.B. ZAKLJUČAK	77

SADRŽAJ

VIII. LITERATURA

ABSTRACT

101

105

Vrlo izražene razlike u osobinama jedne supstancije u podležu sistematskom različitim termodinamičkim fazama proučavanju već više od jednog stoleća. Temelji razumevanja faznih prelaza udareni su doktorskom disertacijom J. D. VAN DER godine. Neprestano usavršavanje i 1873. WAALBA objavljenom na osnovu nepreglednog mnoštva generalizovanje teorije eksperimentalnih podataka dovelo je sedamdesetih godina ovog veka fazne prelaze u fokus interesovanja savremene fizike kondenzovana materije i fizike uopšte. To je rezultiralo primenom teorije renormalizacione grupe u objašnjenju faznih prelaza (oko 1972. godine), za šta je K. G. Wrisowu 1982. godine dodeljena Nobelova nagrada. Ovaj veoma značajan prodor u razumevanje univerzalnosti kolektivnih fenomena u kondenzovanoj materiji otvorio je nove vidike na još nerazrešene probleme i stimulirao razvoj niza novih teorijskih pristupa, kao i usavršavanje i ekspanziju novih eksperimentalnih metoda za proučavanje kritičnog ponašanja materije, čega smo svedoci u desetak poslednjih godina.

I.A. FAZNI PRELAZI I KRITIČNI FENOMENI

Transformacije između različitih stanja neke supstancije prouzrokovane su mikroskopskim interakcijama u kojima učestvuje vrlo veliki broj čestica (reda veličine 10²³). Dramatične promene makroskopskih svojstava predstavljaju, dakle, odraz statističkog uređivanja na mikroskopskom nivou (*kooperativni fenomeni*). Vrednosti nekih fizičkih parametara, kao što su magnetizacija,

viskoznost, polarizacija, provodljivost itd., prilikom faznog prelaza naglo iščezavaju, dok vrednosti drugih, kao što su magnetna ili električna susceptibilnost, zatim kompresibilnost itd., teže beskonačnosti. Ove promene i njihova evolucija su iznenađujuće slični za sisteme toliko međusobno različite kao što su to tečnosti, magnetici, superprovodnici, superfluidi, feroelektrici, tečni kristali, binarni rastvori, legure itd., što sugeriše da postoji fundamentalno jedinstvo u fenomenima faznih prelaza.

U osnovi faznog prelaza u većini slučajeva leži evoluc. Je dugodometne uređenosti nekog fizičkog svojstva. Dvo svojstvi se može iskoristiti kao kvantitativna mera razvoja nove fale i uopšteno se tretira pod nazivom parametar uređenosti φ . Za feromagnetike, na primer, ovaj parametar je (spontane) magnetizacija M, za antiferomagnetike je to magnetizacija podrešetke M_s , za prelaz tečnost-para devijacija od kritične gustine $P-P_c$, za feroelektrike spontana polarizacija P, za legure razlika koncentracija komponenata c_A-c_B itd. Vrednost parametra uređenosti iznad temperature faznog prelaza je nula, dok ispod temperature faznog prelaza uzima nenultu vrednost određenu datom temperature kroz temperaturu faznog prelaza menja skokovito, fazni prelaz je prve vrste ili diskontinuirani, a ako parametra ne trpi skok, fazni prelaz je druge vrste ili kontinuirani.

Pojava uređenosti može se shvatiti i kao ukidanje određenih oblika simetrije. Jezikom teorije grupa, ako skup simetrijskih operacija uređene faze (niskosimetrične) čini podgrupu grupe simetrije neuređene (visokosimetrične) faze, ispunjeni su uslovi za kontinuirani fazni prelaz. U ovoj tezi sva dalja razmatranja odnose se samo na kontinuirani fazni prelaz. Parametar oređenosti ne mora biti samo skalarna veličina; njegova složenost izražava

Jedan od pojmova neophodnih kod tretiranja kritičnih fenomena je i korelaciona funkcija parametra uređenosti

$$C(\vec{r}) \equiv \langle \varphi_0(\vec{r} - \vec{r}') | \varphi_0(\vec{r}') \rangle, \qquad (1.1)$$

koja izražava verovatnoću da ako mikroskopski parametar uređenosti φ_0 ima na mestu \vec{r} ' neku vrednost, ima tu vrednost i na mestu \vec{r} . Na malim rastojanjima oblik ove funkcije zavisi od tipa mikroskopske interakcije, ali na većim rastojanjima ova funkcija ima najčešće eksponencijalni oblik

$$C(\vec{r}) = C_0 e^{-7/\xi}$$
,

gde je š dužina koja karakteriše slabljenje korelacija, tzv. *korelaciona dužina*. Korelaciona dužina takođe spada u parametru koji divergiraju na temperaturi faznog prelaza.

I.B. TEORIJA SREDNJEG POLJA

Osnovu za generalizovano (iako ipak samo fenomenološko) razumevanje kvalitativnih zakonitosti faznih prelaza postavila je teorija srednjeg polja L. D. Landaua 1937. godine. Ishodište ove teorije je u van dem Waalsovoj teoriji i u teoriji molekularnog polja, koju je 1907. godine uveo P. Weise za objašnjenje fenomena feromagnetizma. Teorija srednjeg polja polazi od predpostavke da se ponašanje lokalne dinamičke varijable može izračunati iz njene reakcije na lokalno polje generisano uređenom konfiguracijom susednih lokalnih varijabli, odnosno srednjim poljem koje one

Strana 3

stvaraju. Na taj način ignorišu se devijacije od srednje vrednosti -fluktuacije. Energijska razlika između uređene i neuređene faze može se tada izraziti preko razvoja u red sa članovima koji sadrže samo stepene *srednje vrednosti* dinamičke varijable, tj. stepene makroskopskog parametra uređenosti p Temperaturna zavisnost, na primer slobodne energije, u takvom razvoju

$$A = a\varphi^2 + b\varphi^4 + c\varphi^6 + \dots$$

izražena je preko koeficijenata razvoja a, b, c, ..., u kojima temperatura figuriše u obliku tzv. *redukovane temperature* definisane kao

$$t = 1 (T - T_r) / T_r 1 , \qquad (1.2)$$

nezavisno od konkretne vrednosti temperature faznog prelaza -kritične temperature T_c za neki sistem, Ovaj pristup omogućava da se diferenciranjem izraza za termodinamičke funkcije i primenom kriterijuma stabilnosti predvidi ponašanje čitavog niza direktno merljivih generalnih fizičkih svojstava, kao što su parametar uređenosti φ , statička susceptibilnost X, specifična toplota c_p itd. Rezultati pokazuju da se ponašanje ovih svojstava u okolini kritične temperature ($t \rightarrow 0$), tzv. kritično ponašanje, u opštem slučaju može opisati preko stepenog zakona

$$\boldsymbol{\psi} = \boldsymbol{\psi}_0 t^{\sigma}$$
 ili $\boldsymbol{\psi} = \boldsymbol{\psi}_0 t^{-\sigma}$,

gde je σ tzv. kritični eksponent karakterističan za singularno ponašanje fizičkog svojstva ψ , ali nezavisan od konkretnog sistema i konkretnog parametra uređenosti. Tako je vrednost za, na primer, kritični eksponent specifične toplote c_p : $\alpha = 0$ (specifična toplota ne divergira u teoriji srednjeg polja), za

Strane 4

kritični eksponent parametra uređenosti φ : $\beta = 1/2$, za kritični eksponent susceptibilnosti χ : $\gamma = 1$, za kritični eksponent korelacione dužine §: $\gamma = 1/2$.

Ovaj kratki pregled rezultata teorije srednjeg polje pokazuje da ona obuhvata većinu fundamentalnih pojmova (paracetar uređenosti, korelaciona dužina, kritični eksponenti itd.) potrebnih za teorijsku unifikaciju faznih prelaza. Međutim, pošto zanemaruje korelirane fluktuacije parametra uređenosti, ova teorija dolazi do rezultata da u principu svi sistemi sa kontinuiranim faznim prelazima imaju potpuno isto singularno ponašanje sa istim kritičnim eksponentima.

Sistematska eksperimentalna određivanja kritičnih eksponenata na velikom broju realnih sistema pokazala su da su njihove vrednosti (osim retkih izuzetaka) različite od onih koje predviđa teorija srednjeg polja. Više decenija je vladajn uverenje da izmereni rezultati ne opisuju stvarne vrednosti eksponenata. Odstupanje od teorije srednjeg polja opravdavalo 💷 time da teorija ustvari predviđa asimptotske (t \rightarrow 0) vrednosti eksponenata, dok eksperimenti usled ograničenih principijelnih 🔬 tehničkih mogućnosti daju vrednosti iz temperaturnog regiona koji nije dovoljno blizu kritične temperature. U velikom broju radova, kako je kasnije pokazano, to i jeste bio slučaj, a ni danas në postoje jasni kriterijumi prostiranja asimptotskog kritičnog Obzirom na to, gornje objašnjenje izgledalo je regiona. prihvatljivo, ali je ipak stimuliralo (naročito u šezdesetim pojavu mnogih radova sa poboljšanom tehnikom godinama) <mark>ispitivanja kritičnih fenomena. Š</mark>to se tiče sistema sa dve dimenzije, Onsagerovo analitičko rešenje Isingovog modela pokazalo je već 1943. godine da postoje sistemi čije kritično ponašanje ne može da se opiše eksponentima koje daje teorija srednjeg polja.

Strana 5

I.C. HIPOTEZA SKALIRANJA I HIPOTEZA UNIVERZALNOSTI

Na osnovu velikog broja podataka dobijenih rafiniranim mernim tehnikama pokazalo se da, iako kritični eksponenti nemaju vrednosti koje predskazuje teorija srednjeg polja, postoji viće klasa u okviru kojih su odgovarajući eksponenti ipak jednaki za različite sisteme. Time je apsolutna univerzalnost faznih prelaza predviđena teorijom srednjeg polja morala ustupiti mesto realističnijem vidu univerzalnosti kritičnog ponašanja. Sistemi koji pokazuju jednako kritično ponašanje svrstavaju se u iste klase, tzv. klase univerzalnosti. Ispočetka bez formelne teorijske osnove, 1970. godine uvedena je hipoteza univerzalnosti (R. B. GRIFFITHE) koja određuje klasu univerzalnosti u koju ce biti svrstan neki sistem na osnovu određenih osobija hamiltonijana koji ga opisuje: njegovih simetrijskih svojstava (stepeni i kombinacije članova tipa φ^{ρ}), broja komponenala n parametra uređenosti φ i dimenzionalnosti prostora d, što je dovoljno za karakterisanje svih sistema sa kratkodometnim tipom interakcije. Prema ovoj hipotezi dodatni članovi hamiltonijana, koji ne menjaju njegovu simetriju, ne utiču na vid kritičnog ponašanja, iako mogu da promenu napr. kritičnu temperaturu 7 faznog prelaza.

Nešto ranije od hipoteze univerzalnosti uvedena je hipoteza skaliranja (B. Wibom, 1965. godine) kojom se uspostavlja čvrsta veza između pojedinih kritičnih eksponenata istog sistema. Tako na primer, nezavisno od sistema, uvek važi relacija $\alpha + 2\beta + \gamma = 2$. Isto tako, pokazuje se da su odgovarajući eksponenti za kritično ponašanje ispod i iznad kritično

temperature jednaki. Na taj način, znajući neke od eksponenata sistema, moguće je izračunati druge eksponente koristeći relacije skaliranja, pa se broj postojećih nezavisnih eksponenata znatno smanjuje. Hipoteza skaliranja iz koje proizilaze relacije skaliranja polazi od predpostavke da su slobodna energija sistema i korelaciona funkcija homogene funkcije termodinamičkih varijabli koje se mogu skalirati u odnosu na jedinstvenu karakterističnu dužinu (korelacionu dužinu š). Pod skaliranjem 📾 podrazumeva to da se u okolini T_r singularni udeo slobodne energije i jačina spoljašnjeg polja menjaju samo do na faktor kada se temperaturna skala i skala jačine polja menjaju istovremeno na određeni način. Ovaj postulat odraz je činjenice da na rastojanjima reda veličine korelacione dužine, koja divergira na kritičnoj temperaturi, kritično ponašanje makroskopskih parametara ne može zavisiti od detalja kratkodometne mikroskopske interakcije. Relacije skaliranja važe nezavisno od klase univerzalnosti u koju spada razmatrani sistem.

Eksperimenti u kojima se proučavalo statičko singularno ponašanje u blizini kritične temperature pružili su mnogostruku potvrdu ispravnosti hipoteze skaliranja i hipoteze univerzalnosti, pa su ove hipoteze u svoje vreme značile veliki progres u odnosu na teoriju srednjeg polja.

I.D. PRIMENA TEORIJE RENORMALIZACIONE GRUPE NA KRITIČNE FENDMENE

Hipoteza skaliranja i hipoteza univerzalnosti nisu bile ab initio teorijski zasnovane, pa tako nisu ni pružale neki generalni metod za izračunavanje samih kritičnih eksponenata Tokom niza godina postojalo je samo nekoliko teorijskih tehnika

(visokotemperaturni razvoj, Papéovi aproksimanti i sl.) za približno izračunavanje kritičnih eksponenata za pojedine modele i, sa druge strane, ograničen broj egzaktno rešivih modela, kao što je dvodimenzionalni Isinsov model. Sve dok K. G. Wilson 1972. godine nije uveo primenu *teorije renormalizacione grupe* suštinska zasnovanost postojećih teorija bila je sasvim nezadovoljavajuća.

Jedna od važnih karakteristika primene teorije renormalizacione grupe na fazne prelaze je spoznaja o važnosti tzv. marginalne dimenzionalnosti d^{*}. Uopšte uzev, sistem sa mogućnošću faznog prelaza okarakterisan je dimenzionalnošću prostora d i brojem n komponenata parametra uređenosti φ. Tako napr. za sistem lokalizovanih spinova (ili uopšte lokalizovanih varijabli) može da se napiše hamiltonijan

$$\widehat{H} = -\sum_{\langle i,j \rangle}^{d} \sum_{\alpha=1}^{n} \mathcal{J}_{ij}^{\alpha} S_{i}^{\alpha} S_{j}^{\alpha} ,$$

gde sumiranje po i i j teče po parovima najbližih suseda čija je konfiguracija određena brojem prostornih dimenzija d i gde su J^d odgovarajući integrali razmenske interakcije za pojedine od nkomponenata spina. Tačka u d,n ravni predstavlja određeni apstraktni model; nekolicina poznatih modela (koji su ponekad i egzaktno rešivi) zauzima tačke od naročitog interesa (si. 1). Matematički d i n mogu formalno da se tretiraju kao kontinuirane promenljive i da se proučava uticaj promene njihovih vrednosti na kritično ponašanje odgovarajućeg modela.

Slika I.1.

Dijagram konstantnih vrednosti kritičnog eksponenta p parametra uređenosti u (d,n) ravni za različite fizički relevantne slučajeve (prema ref. 1).

Dno što teoriju srednjeg polja čini nemoćnom u predvidanju realnih kritičnih eksponenata je nezadovoljavajuće tretiranje fluktuacija. Primenom Ginesureovog kriterijuma za važenje teorije srednjeg polja, koji traži da fluktuacije parametara uređenosti $\delta \varphi$ moraju biti male u odnosu na njegovu srednju vrednost φ , za proizvoljno male vrednosti redukovane temperature $t \rightarrow 0$ dobija se

da je teorija srednjeg polja konzistentna samo za d > 4. Sa odstupanjem dimenzionalnosti d od marginalne dimenzionalnosti $d^* = 4$ (napr. d = 3, 2, 1) pojačava se uticaj fluktuacija parametra uređenosti u sistemu i povećava odstupanje kritičnih eksponenata od vrednosti koje daje teorija srednjeg polje. Vrednost marginalne dimenzionalnosti d^* zavisi od oblika i dometa mikroskopske interakcije, ali za sve sisteme sa *kratkodometnem interakcijom* je $d^* = 4$. (U ovoj tezi će nadalje biti reči samo p sistemima sa kratkodometnom interakcijom.)

Pojam marginalne dimenzionalnosti iznad koje važi teorija srednjeg polja omogućio je uvođenje formalizma prema kojem se dimenzionalnost sistema tretira kao kontinuirana promenljiva, a razlika do marginalne dimenzionalnosti $\epsilon = d^* - d$ kao parametar razvoja u red. Na taj način mogu se vrednosti kritičnih eksponenata izračunati do različitog reda u razvoju po ϵ za riz različitih sistema. Rezultati ovih izračunavanja u većini slučajeva veoma dobro se slažu sa rezultatima merenja izvršenim na tzv. modelnim jedinjenjima, realnim sistemima koji što je moguće bolje odgovaraju zahtevima teorijskih modela.

Razvoj računskih metoda za određivanje kritičnih eksponenata je samo jedan od značajnih doprinosa teorije renormalizacione grupe u tretiranju faznih prelaza. Dubina razumevanja prirođe faznih prelaza osvojena primenom ove teorije proizilazi iz mogućnosti da se razmatra ne više samo jedan hamiltonijan za dati sistem, nego ceo prostor hamiltonijana u kome se model može kretati primenom propisanih matematičkih transformacija. U slučaju da je problem formuliran u promenljivama realnog prostora, ove transformacije su ustvari sumiranje i usrednjavanje po sve većim i većim zapreminama tako da se očuvaju karakteristike osnovne interakcije odgovorne za uređivanje sistema (a "razmažu" detalji interakcije na mikroskopskopskom

nivou), dok se istovremeno vrši reskaliranje na odgovarajući način. Stvaranje novog hamiltonijana iz starog primenom operatora \hat{R} ove transformacije, tzv. *renormalizacije* može se napisati kao

$$\widehat{H}' = \widehat{R}\widehat{H}$$
.

Sukcesivne primene operatora renormalizacije \hat{R} čine tok u prostoru hamiltonijana. Hamiltonijani koji u početku mogu izgledati sasvim različito mogu ovakvim operacijama konvergirati ka određenoj tački, tzv. *fiksnoj tački*. Ispostavlja se da je uslov za to da su njihove početne razlike izražene samo preko tzv. *irelevantnih varijabli*. Hamiltonijan u fiksnoj tački ima svojstvo

$$\widehat{H}^* = \widehat{R}\widehat{H}^*$$
.

Rezultujući svojstveni problem daje svojstvene vrednosti koje su ustvari kritični eksponenti.

Iako ovde veoma uprošćeni, rezultati primene teorije renormalizacione grupe na fazne prelaze u kondenzovanoj materiji pokazuju da je ona obezbedila matematički formalizam i fizičku zasnovanost kako za hipotezu skaliranja, tako i za hipotezu univerzalnosti, a pored toga je omogućila i izračunavanje funkcija skaliranja i samih kritičnih eksponenata. Zbog toga ona ide u red najvećih teorijskih dostignuća savremene fizike.

Strana 11

II. UVOD U KRITIČNU DINAMIKU Sistema spinova

Do sada izloženi rezultati teorija kritičnog ponašanja materije u okolini faznog prelaza obuhvatili su samo statička svojstva, dok će predmet istraživanja ove teze biti iz oblasti dinamičkih kritičnih fenomena. Dok je teorija renormalizacione grupe postavila fundamentalni okvir za razumevanje statičkog kritičnog ponašanja i omogućila izračunavanje statičkih kritičnih eksponenata, dotle je generalizacija u oblasti dinamičkih kritičnih fenomena po dometu daleko skromnija. Broj eksperimenata vezanih za ovu problematiku takođe je daleko manji nego iz oblasti statičkog kritičnog ponašanja, delom zbog otvorenih pitanja u teoriji, a više zbog toga što metoda kojom su dobijeni najvažniji rezultati u oblasti statičkog kritičnog ponašanja -rasejavanje neutrona, u slučaju studija dinamičkih kritičnih fenomena zahteva neutronske flukseve veoma velikog intenziteta. koji su na raspolaganju na samo nekoliko mesta u svetu. No time ova oblast postaje još izazovnija za druge tipove eksperimentalnih tehnika kao što su, na primer, one sa hiperfinom interakcijom. Poseban značaj kritična dinamika dobija poslednjih godina kao jedan od mostova prema termodinamici otvorenih sistema -sinergetici, koja u ovom periodu doživljava neslućenu ekspanziju.

II.A. OSNOVNI POJMOVI KRITIČNE DINAMIKE

Kod proučavanja statičkih kritičnih fenomena osnovni predmet interesovanja predstavljaju anomalije statičkih svojstava koje 50 javljaju prilikom približavanja temperature kritično temperaturi, a koje su determinirane raspodelama verovatnoća konfiguracija u termodinamičkoj ravnoteži. U statička svojstva ubrajaju se jednovremene korelacione funkcije, termodinamički koeficijenti (napr. magnetizacija, zapremina, pritisak, jačina polja), linearne reakcije na vremenski nezavisne perturbacije (napr. statička susceptibilnost) itd.

U kritičnoj dinamici proučavaju se, za razliku od gornjeg, anomalije dinamičkih svojstava sistema koje se javljaju prilikom približavanja temperature kritičnoj temperaturi, a koje su determinirane vremenskom evolucijom konfiguracija i kao takve dopunski zavise i od jednačina kretanja sistema. U dinamička svojstva ubrajaju se viševremenske korelacione funkcije, transportni koeficijenti (napr. toplotna i električna provodljivost, viskoznost), linearne reakcije na vremenski zavisne perturbacije (napr. dinamička susceptibilnost), brzine relaksacija itd.

Analogno jednovremenoj korelacionoj funkciji C(P) (jedn. I.1), viševremenska korelaciona funkcija parametra uređenosti definiše se kao

$$C(\vec{r},\tau) \equiv (\varphi_0(\vec{r}-\vec{r}',\tau-\tau') \varphi_0(\vec{r}',\tau')) \qquad (II.1)$$

i

izražava verovatnoću da ako mikroskopski parametar uređenosti

 φ_0 ima na mestu \vec{r}' i u vreme τ' neku vrednost, ima tu vrednost i na mestu \vec{r} i nakon vremena $\tau - \tau'$.

II.B. KRITIČNA DINAMIKA SISTEMA SPINOVA

Pošto se predmet ove teze odnosi na antiferomagnetne sisteme, u ovoj i inače pojednostavljenoj slici kritičnog dinamičkog ponašanja, neće se uzimati u obzir sile dugodometne dipol-dipolne magnetne interakcije. Kvalitativna slika dinamičkog kritičnog ponašanja sistema spinova može se steći na osnovil sledećeg opisa: kada se temperatura sistema T približava kritičnoj temperaturi T_c , u sistemu se stvaraju ostrva u kojima su spinovi korelirani ("klasteri"), čije su srednje vrednosti prostornih dimenzija reda veličine korelacione dužine š koje divergira po zakonu

$$\dot{s} \propto t^{-\gamma}$$
, (II.2)

gde je t redukovana temperatura (prema jedn. I.2), a v kritični eksponent korelacione dužine §. Pojedini spinovi unutar klastera korelirano fluktuiraju nekom srednjom karakterističnom frekvencijom spinskih fluktuacija ω_c , koja u slučaju anizotropije može imati različite vrednosti za pojedine prostorne ose, a sa približavanjem temperature kritičnoj temperaturi u opštem slučaju asimptotski teži nuli, što je u literaturi poznato kao kritično usporavanje ("critical slowing down"). Pri tome karakteristično vreme fluktuacija $\tau_c = 1/\omega_c$, naravno, divergira, dok je srednje karakteristično vreme održavanja klastera τ_0 generalno uzev mnogo duže od τ_c .

U kvantitativnom opisu ovih fenomena osnovnu ulogu igra prostorno-vremenska spinska korelaciona funkcija $C^{\alpha\alpha}(\vec{r},\tau)$, koja

Strana 15

se, analogno jedn. II.1, definiše kao

$$C^{\alpha\alpha}(\vec{r},\tau) \equiv \langle \hat{S}^{\alpha}(\vec{r},\tau) | \hat{S}^{\alpha}(0,0) \rangle , \qquad (II.3)$$

gde su $\hat{S}^{\alpha}(\vec{r},\tau)$ operatori komponenata spina u Heieeneegovoj reprezentaciji, a indeks α uzima vrednosti prostornih osa x, y, z. Z. Analogna veličina u inverznom prostoru, tj. u prostoru talasnog vektora \vec{k} i frekvencije fluktuacija ω , je odgovarajući Fourierov transform -dinamički strukturni faktor S^{da}(\vec{k}, ω)

$$C^{\alpha\alpha}(\vec{r},\tau) = \int \frac{d\vec{k}}{(2\pi)^d} \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} e^{i(\vec{k}\cdot\vec{r}-\omega t)} S^{\alpha\alpha}(\vec{k},\omega) \quad . \tag{II.4}$$

Dinamički strukturni faktor može da se napiše u obliku

$$S^{\alpha\alpha}(\vec{k},\omega) = \frac{2\pi}{\omega_r^{\alpha\alpha}(\vec{k})} S^{\alpha\alpha}(\vec{k}) f_{k,\tilde{s}} \left[\frac{\omega}{\omega_r^{\alpha\alpha}(\vec{k})}\right] , \qquad (11.5)$$

gde je $\omega_r^{\alpha\alpha}(\vec{k})$ karakeristična frekvencija kritičnih modova, zatim

$$S^{\alpha\alpha}(\vec{k}) = \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} S^{\alpha\alpha}(\vec{k},\omega) ,$$

tzv. statički strukturni faktor i $f_{ks}[\omega/\omega_c^{\alpha}(\vec{k})]$ -funkcija oblika energijske linije. Prema napred spomenutoj (statičkoj) hipotezi skaliranja, statički strukturni faktor može da se napiše u obliku

$$S^{\alpha\alpha}(\vec{k}) = k^{-2+\eta} g^{\alpha\alpha}(k\xi) , \qquad (II.6)$$

gde je η univerzalni statički eksponent jednovremene korelacione

funkcije, a $g^{\alpha\alpha}(k\xi)$ nesingularna funkcija skaliranja.

Prema dinamičkom analogonu hipoteze skaliranja -*dinamičkoj* hipotezi skaliranja, koju su 1967. godine uveli B. I. Halperim i P. C. Homenserg [2, 3], i karakteristična frekvencija kritičnih modova $\omega_c^{\alpha\alpha}(\vec{k})$ može da se napiše u obliku

$$\omega_{-}^{\alpha\alpha}(\vec{k}) = k^{2} \Omega^{\alpha\alpha}(k\xi) = \xi^{-2} \Omega_{-}^{\alpha\alpha}(k\xi) , \qquad (II.7)$$

gde je z univerzalni dinamički kritični eksponent, a $\Omega^{\alpha\alpha}(k_s)$, odn. $\Omega_s^{\alpha\alpha}(k_s)$ su opet nesingularne funkcije skaliranja. Ne uzimajući u obzir promenu skala, $S^{\alpha\alpha}(\vec{k})$ i $\omega^{\alpha\alpha}(\vec{k})$, kao i $f_{k,s}[\omega/\omega_c^{\alpha\alpha}(\vec{k})]$, zavise samo od prizvoda kš, a ne i od \vec{k} odn. š pojedinačno. Temperaturna zavisnost u svim ovim izrazima izražena je preko korelacione dužine š (jedn. II.2). Jednačina dinamičkog skaliranja II.7 opisuje fizički smisao dinamičkog kritičnog eksponenta z: u asimptotskom regionu ($t \rightarrow 0$)

$$\omega^{aa}(\vec{k}) \propto t^{\gamma_{2}} \to 0 \quad , \tag{II.8}$$

tj. dinamički kritični eksponent predstavlja meru stepena kritičnog usporenja, u ovde posmatranom slučaju, kritičnog usporenja spinskih fluktuacija.

Treba napomenuti da su generalne postavke dinamičke hipoteze skaliranja potvrđene metodama teorije renormalizacione grupe [4, 5], a deo konkretnih rezultata i eksperimentalno, najčešće metodama neelastičnog rasejanja neutrona.

II.C. DINAMIČKE KLASE UNIVERZALNOSTI

Kao što je naglašeno u odeljku I.C, statički kritični eksponenti su univerzalni za datu statičku klasu univerzalnosti (d,n) određenu brojem prostornih dimenzija d i simetrijom parametra uređenosti, odn. u ovom slučaju, dimenzionalnošću spina n. Obzirom da dinamička svojstva dopunski zavise od jednačina kretanja sistema (odeljak II.A), treba očekivati da je univerzalnost u dinamičkom slučaju restriktivnija. Teorija renormalizacione grupe primenjena na dinamičke modele [5] pokazuje da je za sistematizaciju modela u dinamičke klase univerzalnosti, pored d i n, potrebno uzeti u obzir i zakone konzervacije datog modela, odn. relacije Poresonovih zagrada sa hamiltonijanom koji opisuje model. Na taj način generalna shema univerzalnosti ostaje u principu očuvana; dinamičke klase univerzalnosti postaju podklase statičkih klasa univerzalnosti. Drugim rečima, data statička klasa univerzalnosti (d,n) cepa se u opštem slučaju na više dinamičkih klasa univerzalnosti (d,n,zakoni konzervacije). Iz ovoga ujedno sledi da se dinamički kritični eksponent ne može u opštem slučaju izraziti samo prekm kombinacija statičkih kritičnih eksponenata.

Ne ulazeći u opštu shemu dinamičkih modela ovde će biti izložen samo jedan relativno jednostavan primer cepanja statičke klase univerzalnosti na dve dinamičke: statički kritični eksponenti trodimenzionalnog Hereeneeovog modela [(d,n)=(3,3)] ne zavise od toga da li je u pitanju feromagnetni ili antiferomagnetni sistem. Dok je odgovarajući dinamički model za izotropni feromagnetik -model J (prema oznakama iz ref. 5) sa dinamičkim kritičnim eksponentom $z = (d+2-\eta)/2 \approx 2.5$, dotle izotropnom antiferomagnetiku odgovara model G sa dinamičkim

kritičnim eksponentom z = d/2 = 1.5. Razlika u dinamičkim modelima potiče otuda što je parametar uređenosti kod feromagnetika konzervativna veličina (magnetizacija rešetka komutira sa hamiltonijanom), dok kod antiferomagnetika parametar uređenosti nije konzerviran (magnetizacija *podrešetke* ne komutira sa hamiltonijanom sistema). Kritično ponašanje koje proizilazi iz ovakvih modelskih postavki dobro se slaže i sa rezultatima eksperimenata izvršenim na odgovarajućim modelnim jedinjenjima, napr. EuO kao predstavniku klase 3D-Heisensegovih feromagnetika

Do pojave hipoteze dinamičkog skaliranja, interpretacija dinamičkih kritičnih fenomena oslanjala se uglavnom na tzv. konvencionalnu teoriju kritičnog usporenja, koja potiče od L. ven Hovea [6] i L. D. LANDAUA i I. M. KHALATNIKOVA [7]. DSnovna predpostavka ove teorije je da transportni koeficijenti parametra uređenosti zavise primarno od mikroskopske kratkodometne interakcije i ostaju *konačni* na kritičnoj temperaturi. Time se u ovoj teoriji dobija kritično usporenje brzine relaksacije, odn. difuzije spina, koje predstavljaju odnos transportnog koeficijenta i susceptibilnosti parametra uređenosti, 5 🕬 8 poslednja, naravno divergira na kritičnoj temperaturi. Međutim, ova pojednostavljujuća predpostavka onemogućuje konvencionalnoj teoriji da razlikuje modele dinamičkog ponašanja detaljnije od statičkih klasa univerzalnosti. Drugim rečima, prema konvencionalnoj teoriji *dinamički* kritični eksponent za datµ statičku klasu univerzalnosti bio bi univerzalan. Na taj način konvencionalna teorija kritičnog usporenja u odnosu na dinamička kritične fenomene igra istu ulogu kao teorija srednjeg polja u odnosu na statičke kritične fenomene. Međutim, ako i postoji analogon teorije srednjeg polja za kritičnu dinamiku, ono što veoma otežava i konceptualni i računski pristup kritičnoj jeste nedostatak jednog egzaktno rešivog modela dinamici

dinamičkog kritičnog ponašanja, kao što je to Isinsov model kod statičkih kritičnih fenomena.

II.D. DINAMIČKE KLASE UNIVERZALNOSTI ZA ANTIFEROMAGNETIKE

U ovom odeljku su prikazane dinamičke klase univerzalnosti za antiferomagnetike od interesa za predmet proučavanja ove teze u obliku tabelarnog pregleda (tab. II.1). Ova klasifikacija uzima u obzir samo antiferomagnetne izolatore kod kojih se može govoriti o lokalizovanom elektronskom spinu. Vrednosti dinamičkog kritičnog eksponenta z date su uporedo i za konvencionalnu teoriju. Eksponent w, koji predstavlja kombinaciju dinamičkog kritičnog eksponenta z i nekih statičkih kritičnih eksponenata

 $w = v(z+2-d-\eta) ,$

direktno se dobija kao rezultat merenja u eksperimentima sa hiperfinom interakcijom (odeljak III.C), pa su njegove vrednosti prikazane uporedo sa eksponentom z.

Tabela je adaptirana prema ref. 5. Brojne vrednosti statičkih kritičnih eksponenata uzete su iz opšte literature. Dinamički kritični eksponent za dvodimenzionalni model A diskutuje se u sledećem odeljku.

Tabela II.1.

Dinamičke klase univerzalnosti za antiferomagnetike.

Dinamički model	(d,n)	z	M
Konvencionalna teorija	(3,1)	$z = 2 - \eta = 1.968$	0.590
Model A (kinetički Ierne)	(3,1)	$z = 2 - \eta + z' = 1.993$	0.606
Model C (anizotropni)	(3,1)	$z = 2 + \alpha / \nu = 2.174$	0.720
Model G (Heigenberg)	(3,3)	z = d/2 = 1.5	0.329
Konvencionalna teorija	(2,1)	$z = 2 - \eta = 1.75$	1.5
Model A (kinetički IsrNo)	(2,1)	z = 1.4-2.2 1.1	5-1.95
Model C (anizotropni)	(2,1)	$z = 2 + \alpha / \nu = 2$	1.75
Model G (Heisenberg)	(2,3)	z = d/2 = 1	

II.E. DINAMIČKI KRITIČNI EKSPONENT ZA DVODIMENZIONALNI MODEL A

U prethodnoj tabeli pažnju privlači vrednost dinamičkog kritičnog eksponenta z za dvodimenzionalni model A, koja se kreće u širokim granicama z = 1.4-2.2. Dinamički model A koji obuhvata kinetički IzNGOV model i vremenski zavisni GINGBURG-LANDGUOV (GLAUBEROV) model, u opštem slučaju ima n-dimenzionalni realni parametar uređenosti i okarakterisan je disipativnim jednačinama kretanja. Parametar uređenosti je jedini kritični spori mod, a dinamičko kritično ponašanje je čisto relaksaciono. Potpuni

Strang. 24

formalni opis modela dat je u ref. 5.

Prema radu G. F. Mazenkoa i D. T. Vallea [8], koji predstavlja kritičku sintezu do sada objavljenih radova iz ove oblasti, pojavljuju se principijelne teškoće pri izračunavanju vrednosti dinamičkog kritičnog eksponenta z za model A u slučaju (d,n) = (2,1). U tom radu izvršena je interkomparacija velikog broja metoda uobičajenih u evaluiranju kritičnih eksponenata, među kojima: metoda e-razvoja, metoda niskotemperaturnog razvoja, metoda Monte Carlo, kombinovana metoda Monte Carlo renormalizaciona grupa, metoda dinamičke renormalizacione grupe u realnom prostoru itd. Pokazuje se da sve ove metode daju različite vrednosti eksponenta z, koje se kreću u granicama z = 1.4-2.2 iako sve ove različite metode daju įste vrednosti statičkih kritičnih eksponenata za ovaj model. Ne ulazeći u detalje ovih metoda, ovde će priroda računskih teškoća biti ilustrovana na najpristupačnijem primeru ϵ -razvoja. Dva metoda zasniva se na razvoju u red po stepenima od $\epsilon = d^{\dagger} - d$, tj. devijaciji dimenzionalnosti rešetke d od marginalne dimenzionalnosti d^{*} za kratkodometne interakcije. Konvencionalna teorija kritičnog usporenja, nezavisno od dinamičkog modela predviđa za dinamički kritični eksponent izraz

$$z = 2 - \eta$$
. (II.8)

Uzimajući iz egzaktnog ONBAGEROVOG rešenja za 2D-ISINGOV model vrednost statičkog kritičnog eksponenta $\eta = 1/4$, konvencionalna vrednost z za kinetički Isingov model u dve dimenzije je z = 1.75. Metoda ϵ -razvoja koriguje konvencionalnu vrednost predviđajući

$$z=2-\eta+z',$$

gde se korekcija z' izražava u obliku reda sa razvojem po 🚲

 $z' = \epsilon^2 a (1-b\epsilon) + O(\epsilon^4) .$

Dok za trodimenzionalni slučaj (d=3, $\epsilon=1$) ovaj red relativno brzo konvergira, u dvodimenzionalnom slučaju (d=2, $\epsilon=2$) ovaj alternativni red konvergira veoma sporo. Pored ovoga, izračunavanje novog člana reda je mnogo komplikovanije nego kod izračunavanja statičkih eksponenata, pa je broj poznatih članova mnogo manji.

Na bazi ovog i niza sličnih argumenata iz ostalih teorijskih metoda, kao napr. kod kompjuterskih Monte Carlo simulacija, gde je neophodno izračunati enormno veliki broj iteracija da bi se dobilo primetno odstupanje vrednosti z od konvencionalne vrednosti, Mazemko i Valle [8] zaključuju da generalna shema dinamičkih klasa univerzalnosti u principu ostaje očuvana i pored teškoća sa 2D modelom A, ali:

i) prava as*imptotsk*a vrednost z zbog računskih problema nije poznata,

ii) asimptotski dinamički kritični region je ekskluzivno za ovaj model mnogo uži nego asimptotski statički kritični region.

Situacija bi se mogla ilustrovati kao na sl. II.1. Granične vrednosti redukovane temperature za pojedine regione izabrane su na ovom grafiku proizvoljno.

 $(T - T_c)/T_c$

Slika II.1.

Kritični regioni za 2D model A.

Prema ovoj interpretaciji, za eksperimentalne rezultate dobijene merenjem dinamičkog kritičnog eksponenta u nekom realnom sistemu koji adekvatno reprezentuje dinamičku klasu univerzalnosti (2,1) model A moglo bi se očekivati sledeće: u većem delu statičkog kritičnog regiona dinamički kritični eksponent z bi imao konvencionalnu vrednost z = 1.75, a vrko blizu kritične temperature bi ta vrednost trebala da se promeni. (Promene kritičnih eksponenata u kritičnom regionu poznate su u literaturi pod nazivom "critical exponent crossover".) Za eksperimentalnu proveru ovakvog ponašanja očigledno postoji interes iz sledećih razloga:

i) dinamičko kritično ponašanje (2,1) modela A unekoliko
predstavlja izuzetak iz generalne sheme dinamičkih klasa
univerzalnosti,

ii) argumenti ref. 8 u prilog postojanja veoma uskog

kritičnog regiona, iako vrlo ubedljivi, nisu deduktivni, već vida heuristički,

iii) asimptotska vrednost dinamičkog kritičnog eksponenta z za ovaj model je u momentu započinjanja, eksperimenata opisanih u ovoj tezi neodređena i praktično nedostupna za postojeće računske tehnike,

iv) granica asimptotskog kritičnog regiona je nepoznata, a ni generalne teorije ne predviđaju eksplicitne vrednosti za granice kritičnih regiona, odn. "crossover".

Gore nabrojani razlozi ustvari predstavljaju motiv izvođenja ovog eksperimentalnog rada. Do sada je izvršeno svega nekoliko eksperimenata sa ciljem određivanja dinamičkog kritičnog eksponenta za klasu univerzalnosti (d,n) = (2,1). Svi eksperimenti su izvršeni na 2D antiferomagneticima Isrugovog tipa, za koje se generalno smatra da su dobri predstavnici dinamičke klase univerzalnosti opisane modelom A. (Opravdanost ove predpostavke diskutuje se u odeljku VI.A.) Rezultati ovih eksperimenata rezimirani su u tabeli VI.2 i prodiskutovani zajedno sa eksperimentalnim rezultatima ove teze u odeljku VII.Ax Ovde će biti posebno istaknuta samo postojeća neusaglašenost vrednosti z. dobijenih različitim mernim tehnikama. U radu M. T. Hutchingsa sa saradnicima [9] ispitivana je kritična dinamika 20 antiferomagnetika IsiNsovog tipa Rb₂CoF₄ tehnikom neelastičnog rasejanja neutrona uz visoku rezoluciju. Dobijena vrednost z=1.69(5) blizu je konvencionalne vrednosti, dok je iz ranijih merenja M. Suzukija sa saradnicima [10] tehnikom atenuacije ultrazvuka određena znatno manja vrednost z = 1.21(10). U okviru opsežne studije kritičnog ponašanja antiferomagnetika RbFeF₄ i KFeF, metodom Mösssauerove spektroskopije H. Keller i I. M. Savić dobili su za dinamički kritični eksponent u KFeF₄ preliminarnu

vrednost z = 1.29(9) [11], što je vrlo blizu vrednosti iz ref. 10. Prednosti i nedostaci pojedinih mernih tehnika, kao i mogula objašnjenja ovih razlika su prodiskutovana u sledećim odeljcima. U svakom slučaju detaljna eksperimentalna studija sistema koji adekvatno reprezentuje ovu dinamičku klasu univerzalnosti do sada nije sprovedena jednom mernom tehnikom u "celom" kritičnom regionu, što već obzirom na sam karakter merenja kritičnih fenomena (prodiskutovan u poglavlju III) otežava izvlačenje pouzdanih zaključaka o slaganju sa teorijskim predviđanjima.

III. METODE MERENJA KRITIČNIH Dinamičkih svojstava sistema spinova

III.A. OSNOVNI ZAHTEVI

Osnovni zahtevi koje bi trebalo da ispuni određena trbnika merenja da bi njeni rezultati adekvatno opisivali dinamička svojstva sistema spinova bili bi sledeći:

-sa principijelnog aspekta:

i) tražena veličina (kritični eksponent, oblik funkcije)
treba da je što neposrednije izražena preko merenih veličina, sa
što je moguće manje predpostavljenih vrednosti drugih parametara
ili vrednosti parametara merenih drugom tehnikom,

ii) pošto je prema definiciji kritičnih eksponenata od najvećeg interesa anomalno ponašanje fizičkih svojstava bez prisustva spoljašnjih polja, merna tehnika ne bi trebalo da se služi spoljašnjim magnetnim poljima;

-sa praktičnog aspekta:

iii) eksperimentalna tehnika bi trebalo da omogućava što bliži pristup kritičnoj temperaturi, što je tehnički ograničeno napr. preciznošću merenja, regulacije i stabilizacije temperature uzorka, homogenošću temperaturnog polja na uzorku, strukturnom homogenošću samog uzorka itd. III.METODE MERENJA KRITIČNIH DINAMIČKIH SVOJSTAVA SISTEMA SPINOVA Strana 27

III.B. EKSPERIMENTALNE METODE MERENJA KRITIČNIH DINAMIČKIH SVOJSTAVA SISTEMA SPINOVA

Metode koje se najčešće koriste za merenje dinamičkih svojstava sistema spinova su: neelastično rasejanje neutrona uz visoku rezoluciju, rasejanje svetlosti sa frekventnom rezolucijom, visokofrekventne rezonantne metode, elektronska spinska rezonancija (ESR), atenuacija akustičkih talasa, zatim razne tehnike sa hiperfinom interakcijom, kao nuklearna magnetna rezonancija (NMR), vremenski zavisne perturbirane angularne korelacije (TDPAC) i Mosseaucenova spektroskopija. Ni jedna od ovih metoda ne ispunjava u potpunosti zahteve nabrojane u prethodnom odeljku. Ovde su, bez ulaženja u detalje, prodiskutovane prednosti i nedostaci nekih od ovih metoda u svetlu gornjih zahteva.

Principijelni zahtev za neposrednošću merenja (i) najbolje zadovoljavaju tehnike rasejanja pošto omogućuju određivanje sama forme viševremenske spinske korelacione funkcije i vrednosti dinamičkog kritičnog eksponenta bez neophodnog poznavanja vrednosti statičkih kritičnih eksponenata. Primena tehnike rasejanja svetlosti je moguća samo kod onih supstancija kod kojih je magnetni fazni prelaz povezan sa optičkim osobinama, pa je samim tim dosta ograničena. Kao tehnika sa generalnim pristupom nameće se neelastično rasejanje neutrona uz visoku rezoluciju. Pored izvanrednih prednosti koje tehnika rasejanja neutrona ima uopšte zbog obilja informacija koje pruža o magnetnoj strukturi, kod merenja kritičnog ponašanja javlja se sledeći praktični problem: zbog jačine fluksa neophodne za registraciju rasejanih neutrona na neutronskom spektrometru, uzorci ispitivanih kristala III.METODE MERENJA KRITIČNIH DINAMIČKIH SVOJSTAVA SISTEMA SPINOVA Strana 28

moraju biti veliki (reda veličine cm³). Dobijanje ovako velikih uzoraka monokristala, dovoljno homogenih za kritična merenja praćeno je u opštem slučaju velikim teškoćama. (Kod proučavanja ponašanja prednost uvek imaju monokristali nad kritičnog kristalnim prahom, jer je homogenost velikog praškastog uzorka teško obezbediti, već i zbog unutrašnjih napona i Venma efekata koji se neizbežno javljaju u dispergovanom površinskih obliku.) Problemi homogenizacije i stabilizacije temperaturnog brzo rastu sa povećanjem zapremine kristala. Kod polja vrlo dinamičkog kritičnog ponašanja ovi se problemi proučavanja postavljaju još oštrije zbog zahteva za visokom energijskom rezolucijom rasejanih neutrona koja smanjuje izlazni fluks za još nekoliko redova veličine (troosni neutronski spekrometar). Dais priroda ove tehnike je takva da se mereni efekt smanjuje sa toga kritičnim usporenjem (napr. ref. 9). Svi ovi razlozi doprihose da su merenja ovom tehnikom u temperaturnom regionu 2<16 tome praktično nemoguća.

Kod ostalih metoda dinamički kritični eksponent je moguće odrediti samo ako se poznaju neki od statičkih kritičnih eksponenata. Kod rezonantnih metoda (ESR, NMR, NQR) su pored toga potrebne korekcije zbog prisustva spoljašnjeg polja (zahtev ii). Sa eksperimentalnog aspekta (zahtev iii) posebnu prednost imaju tehnike sa hiperfinom interakcijom bez spoljašnjeg polja -- TDPAC i MösseAuerova spektroskopija. U slučaju da ispitivani kristal već jezgro sa Mösseauerovim prelazom, Mösseauerova sadrži spektroskopija pokazuje velike prednosti nad ostalim indirektnim tehnikama. U suprotnom slučaju, kada je potrebno da se jezgro sa implantira u ispitivani kristal, MOSSBAUEROVIM prelazom pojavljuju se problemi ne samo preparativne, već i principijelne prirode, zato što implantirano jezgro treba da zadovoljava posebne uslove da bi realno odražavalo kritično ponašenje originalne rešetke. Ovi uslovi detaljno su razrađeni u ref. 12 i
111. METODE MERENJA KRITIČNIH DINAMIČKIH SVOJSTAVA SISTEMA SPINOVA Strana

13.

Ovde će biti iznete samo najvažnije karakteristike Mösseauerove tehnike za slučaj kada jezgro sa Mösseauerovim prelazom pripada originalnoj rešetki. Najvažnija prednost leži 🗤 tome što uzorci monokristala mogu da budu mali (reda veličine 10⁻¹ mm³), te je relativno lako postići njihovu strukturnu homogenost, kao i homogenost temperaturnog polja u toku merenja. U ekperimentalnom aranžmanu Mössenuesove spektroskopije sa transmisionom geometrijom, ako je ispitivani sistem moguće postaviti kao apsorber, koristi se komercijalni radioaktivni izvor sa odgovarajućim Mösseeverovim prelazom. Priprema uzorka svodi se tada samo na mehaničku obradu i zaštitu kristala predviđenog za ispitivanje. Zahvaljujući relativno niskim eksploatacionim troškovima MösseAugeove tehnike, standardna devijacija merenih parametara može se optimizirati produžavanjem vremena sakupljanja podataka, uz uslov da je obezbeđena dugovremenska stabilizacija temperature.

III.C. MERENJE DINAMIČKOG KRITIČNOG EKSPONENTA z Pomoću tehnika sa hiperfinom interakcijom

1.44

Evaluacija dinamičkog kritičnog eksponenta iz rezultata merenja dobijenih pomoću raznih tehnika sa hiperfinim interakcijama zasniva se na fizičkoj slici na uprošćen način prikazanoj u ovom odeljku.

Kritične fluktuacije elektronskih magnetnih momenata proizvode fluktuirajuće hiperfino magnetru polje koje interaguje sa nuklearnim magnotnim momentom izazivajući relaksacije nuklearnog spina. Karakteristično vreme nuklearnih relaksacija III.METODE MERENJA KRITIČNIH DINAMIČKIH SVOJSTAVA SISTEMA SPINOVA Strane 30

može se meriti na način koji je specifičan za svaku vrstu eksperimenta. U opštem slučaju relacija između karakterističnih vremena fluktuacija elektronskog spina i nuklearnog spina je vrlo složena, ali pod izvesnim restrikcijama ta relacija može biti znatno uprošćena. Na primer, u slučaju da je karakteristično vreme fluktuacija elektronskog spina τ_c najkraće vreme koje se pojavljuje u problemu, tj. ako važe relacije

- $\boldsymbol{\tau}_{c} \ll \boldsymbol{\tau}_{L}$, (III.1) $\boldsymbol{\tau}_{c} \ll \boldsymbol{\tau}_{R}$, (III.2) $\boldsymbol{\tau}_{c} \ll \boldsymbol{\tau}_{N}$, (III.3)
- gde je $\tau_{\rm L}$ vreme precesije nuklearnog spina u hiperfinom polju (nuklearni analogon Lemmomove precesije), $\tau_{\rm R}$ karakteristično vreme nuklearne relaksacije i $\tau_{\rm N}$ vreme života jezgra u odgovarajućem stanju, onda je karakteristično vreme fluktuacija elektronskog spina obrnuto proporcionalno vremenu nuklearne relaksacije, tj.

$$\tau_{\rm R}^{-1} \propto C_{\rm h+} \tau_{\rm c} , \qquad (I \otimes I \cdot 4)$$

gde je C_{hf} konstanta proporcionalnosti hiperfine interakcije. Brzina nuklearne relaksacije τ_R^{-1} se može u principu direktno meriti: kod NMR je to ustvari karakteristična brzina spin-spinskih relaksacija T_2^{-1} , kod TDPAC je to vremenski koeficijent atenuacije λ_2 perturbacionog faktora $G_2(\tau)$, dok je kod Mössbauerovog efekta brzina relaksacije nuklearnog spina direktno proporcionalna proširenju linije u Mössbauerovom spektru

$$\Delta\Gamma = \frac{hc}{E} \tau_{\rm R}^{-1} \quad . \tag{III.5}$$

Kako je pokazano u ref. 14, karakteristično vreme fluktuacija elektronskog spina koje se meri u eksperimentima sa

III.METODE MERENJA KRITIČNIH DINAMIČKIH SVOJSTAVA SISTEMA SPINOVA Strana 31

hiperfinom interakcijom je ustvari autokorelaciono vreme elektronskog spina definisano kao

$$\tau_{c}^{\alpha} = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{C^{\alpha\alpha}(0,\tau)}{C^{\alpha\alpha}(0,0)} d\tau , \qquad (III.6)$$

dakle predstavlja vremensku srednju vrednost prostorno-vremenske korelacione funkcije $C^{\alpha\alpha}(\vec{r},\tau)$ prostorne komponente $\alpha = x, y, z$ spina na mestu $\vec{r} = 0$ sa samim sobom. Pomoću relacija II.4 i II.5 dobija se veza autokorelaciong vremena sa dinamičkim i statičkim strukturnim faktorom:

$$\tau_{c}^{\alpha} \propto \int_{V_{k}} d^{d}k S^{\alpha\alpha}(\vec{k}, 0) = \int_{V_{k}} \frac{S^{\alpha\alpha}(\vec{k})}{\omega_{c}^{\alpha\alpha}(\vec{k})} d\vec{k} , \qquad (III.7)$$

gde je V_k zapremina Brillouinove zone. Koristeći formu skaliranja dinamičkog strukturnog faktora $S^{\alpha\alpha}(\vec{k},0)$ i oblika funkcije energijske linije $f_{k\bar{s}}(0) = f(k\bar{s},0)$ (odeljak II.B), može se pokazati [14] da autokorelaciono vreme spina divergira kao

$$\tau_c^a \propto \tilde{s}^{z+2-d-\eta} , \qquad (III.8)$$

odn. koristeći relaciju II.2

 $\tau_r^{\alpha} \text{ or } t^{-\aleph}$, (III.9)

gde je

$$w = v(z+2-d-\eta)$$
 (III.10)

Na taj način, mereći zavisnost autokorelacionog vremena au_c

III.METODE MERENJA KRITIČNIH DINAMIČKIH SVOJSTAVA SISTEMA SPINOVA Strana 32

od redukovane temperature t u kritičnom regionu može se neposredno odrediti kritični eksponent w. Ako se poznaju neophódne vrednosti statičkih kritičnih eksponenata v i v, moguće je tada odrediti i dinamički kritični eksponent z. Korišćenje međusobnih relacija statičkih kritičnih eksponenata, koje proizilaze iz relacija skaliranja, omogućava da se eksponent N izrazi i preko drugih statičkih kritičnih eksponenata u zavisnosti od toga koja kombinacija statičkih kritičnih

IV. SLOJNI ANTIFEROMAGNETIK KF@F4 Kao modelni sistem

IV.A. IZBOR MODELNDG JEDINJENJA

Eksperimentalno proučavanje kritičnih fenomena često ima za cilj proveru kompatibilnosti kritičnog ponašanja nekog realnog sistema sa kritičnim ponašanjem nekog teorijskog modela. Teorijski model nužno mora biti matematički idealizovani odraz prirode, tj. fenomen koji predstavlja suštinu modela biva istrgnut iz skupa sekundarnih efekata koji ga prate u realnim sistemima. U takvim slučajevima traže se tzv. modelna jedinjenja, tj. realni sistemi kod kojih su ti sekundarni efekti što manje izraženi. Idealna modelna jedinjenja ne postoje, ali ako su odstupanja od modelnog ponašanja mala i ako se mogu objasniti, za realni sistem se sa određenom pouzdanošću može prihvatiti da adekvatno reprezentuje dati model. Slaganje eksperimentalnih podataka sa predviđanjima modela sa jedne strane potvrđuje teoriju, a sa druge omogućava da se prouče i oni aspekti modela koji nisu mogli biti predskazani, napr. usled ograničenosti računske tehnike i sl.

Od interesa za ovaj rad je reprezentant za dinamičku klasu univerzalnosti model A u dve dimenzije. Iz odeljka II.D. jasno je da ga treba tražiti među uniaksijalnim antiferomagneticima, tj. onim antiferomagneticima kod kojih je anizotropija spina veoma izražena u smislu favorizovanja orijentacije po jednoj osi. Dvodimenzionalnost u realnom sistemu postiže se u onim

IV. SLOJNI ANTIFEROMAGNETIK KFeF4 KAD MODELNI SISTEM

Strana 34

strukturama koje imaju slojeve spinova antiferomagnetno kuplovane unutar sloja, a kod kojih je magnetna interakcija između siojeva mala u odnosu na interakciju spinova unutar jednog sloja. Ukoliko su ovi uslovi obezbeđeni, još postoji dilema između modela A i modela C (tab. II.1), koji se razlikuju samo po tome što je kod modela C energija konzervativna veličina, dok, kao što je napred rečeno, kod modela A nema konzervativnih veličina. Za magnetne izolatore bi se na prvi pogled očekivalo da imaju ponašanje prema modelu C, no kako je pokazano u ref. S, u praktično svim realnim magnetnim izolatorima kuplovanje fonona sa ostalim stepenima slobode dovodi do toga da sam sistem spinova nije termički izolovan sistem kakav bi bio neophodan za model C, već treba očekivati dinamičko kritično ponašanje prema modelu A.

Antiferomagnetika koji su dobri predstavnici statičke klase univerzalnosti (d,n)=(2,1) ima nekoliko [15], od kojih većina ima strukturu tipa K₂NiF₄. Među njima se ističe kao najbliži idealnom Rb₂CoF₄, čije je statičko kritično ponašanje detaljno izučeno. Precizna studija dinamičkog kritičnog ponašanja ovog sistema izvedena je tehnikom neelastičnog rasejanja neutrona uz visoku rezoluciju [9] i ona predstavlja do sada najrelevantniji izvor eksperimentalnih činjenica o dinamičkom modelu A, pa će kao takva u ovoj tezi predstavljati najvažniju referencu za upoređivanje ovde dobijenih rezultata merenja. Postoji i studija dinamike spina pomoću MösseAuseove spektroskopije u ovom jedinjenju dopiranom sa Mösseauseovim jezgrom Fe⁵⁷ [RbCo(:Fe⁵⁷)F₂], ali ne 1 kritičnom regionu i bez pokušaja evaluiranja nekog od kritičnih eksponenata [16]. Ova studija pokazuje da bi interpretacija Mösesauerovih spektara u dinamičkom kritičnom regionu bila vrlo složena.

Detaljna studija statičkog kritičnog ponašanja slojnog antiferomagnetika KFeF₄ Mösepeverovom tehnikom [11] pokazala je

IV. SLOJNI ANTIFEROMAGNETIK KFeF4 KAO MODELNI SISTEM Strana 35

da on može biti svrstan u dobre predstavnike 2D-Isıngovog modela i data je indikacija da je njegovo dinamičko kritično ponašanje prema modelu A. Ovi razlozi, zatim gotovo idealna primerenost ovog jedinjenja za proučavanje Möseseverovom tehnikom, kao i niz drugih praktičnih razloga doveli su do odluke da se dinamičko kritično ponašanje KFeF₄ istraži što detaljnije, naravno uz generalnu motivaciju navedenu u odeljku II.E.

Sledeći odeljci imaju svrhu da preko detalja o strukturi KFeF4, njegovih magnetnih osobina, statičkog kritičnog ponašanja da je KFeF₄ dobar predstavnik statičke grupe pokažu univerzalnosti (d,n)=(2,1), što je potreban uslov da se on nade u dinamičkoj klasi univerzalnosti opisanoj modelom A. O stvarnoj kompatibilnosti dinamičkog kritičnog ponašanja KFeF₄ sa modelom A može se suditi tek na osnovu eksperimentalnih rezultata iznesenih u ovoj tezi.

IV.B. STRUKTURA KFeF4

Detalji strukture KFeF $_4$ objavljeni su u ref. 17. KFeF $_4$ kristališe u oktamolekularnim ćelijama u ortorombičnoj A-centriranoj rešetki. Prostorna grupa simetrije je D_{2h}^{17} - Amma. Struktura je prikazana na sl. IV.1. Parametri rešetke 50 a = 0.7596 nm, b = 0.3884 nm i c = 1.227 nm. Joni gvožđa Fe(III) okruženi su oktaedrima jona fluora koji su malo nakrivljeni u odnosu na glavnu kristalografsku osu c i koji su tetragonalno deformisani. Oktaedri FeF_k su kvazikvadratno poređani u ravni (001) čineći slojeve koji su duž ose c razdvojeni nemagnetnim jonima kalijuma. Karakteristično je da je rastojanje među slojevima dosta veliko (c/2 = 0.6135 nm).

IV. SLOJNI ANTIFEROMAGNETIK KF#F4 KAO MODELNI SISTEM

Slika IV.1.

Kristalna struktura KFeF₄ (Frema ref. 17).

Ovaj tip strukture uslovljava izraženu anizotropiju mehaničkih svojstava kristala. Kristali su lako cepljivi u ravni normalnoj na glavnu osu kristala, pa je i najčešći oblik monokristala pločast.

IV.C. MAGNETNE DSOBINE KFeFa

Magnetna struktura KFeF₄ detaljno je istražena metodom neutronske difrakcije u ref. 17-20. Pokazano je da su magnetni momenti u uređenom stanju upravljeni duž kristalografske c-ose. Magnetna elementarna ćelija je udvostručena u odnosu na kristalografsku u pravcu E0101. Zahvaljujući superrazmenskoj interakciji preko jona fluora magnetna uređenost unutar slojeva je antiferomagnetna. Zbog velikog rastojanja između slojeva treba

IV. SLOJNI ANTIFEROMAGNETIK KFeF, KAO MODELNI SISTEM

očekivati da je magnetna interakcija *između* slojeva znatno slabija. No kako se zbog A-centriranosti joni gvožđa u susednim slojevima nalaze tačno na mestu gde je u prvom sloju "rupa", interakcija postoji tek između svakog drugog sloja (c = 1.227 nm) i manja je od one unutar sloja čak za više redova veličine.

Zbog toga što je jon gvožda Fe³⁺ u stanju ⁶S_{5/2}, trebalo bi očekivati da anizotropija magnetne interakcije bude slaba, te bi na prvi pogled KFeF₄ spadao u grupu 2D-Heisessessovih antiferomagnetika. Zašto je njegovo kritično ponašanje sasvim drugačije prodiskutovano je u sledećem odeljku.

Za ovakav slabo anizotropan Heisensersov sistem od slabo povezanih antiferomagnetnih slojeva lokalizovanih spinova može se napisati hamiltonijan

$$H = -2J \sum_{i,j}^{XY} \vec{s}_{i} \cdot \vec{s}_{j} - 2J \cdot \sum_{i,j}^{Z} \vec{s}_{i} \cdot \vec{s}_{j} - g \mu_{B} \sum_{i}^{XYZ} H_{A}^{i} S_{i}^{Z} ,$$

gde su J i J' integrali razmenske interakcije unutar i između slojeva respektivno, a $\mathcal{H}^i_{\hat{A}}$ unutrašnje naizmenično anizotropno polje koje usmerava spinove duž z-ose. Pojam o relativnom redu veličine članova u ovom hamiltonijanu može se steći uvidom u tabelu IV.1.

IV.D. MAGNETNI FAZNI PRELAZ U KF@FA

Na osnovu strogog računa N. D. Mermin i H. Wagner Su pokazali [21] da dvodimenzionalni idealno izotropni Heisensergov sistem spinova ne može biti uređen na temperaturama višim od

IV. SLOJNI ANTIFEROMAGNETIK KF@F4 KAO MODELNI SISTEM

nule. No sa druge strane H. E. STANLEVU i T. A. KAPLANU je uspelo da pokažu [22] da se u posebnom slučaju kada prostorni deo spinske korelacione funkcije (jedn. II.3.) unutar dve dimenzije opada sporije od r^{-2} , javlja specijalna vrsta faznog prelaza u kojem susceptibilnost divergira, ali se ne stvara dugodometna uređenost. Odgovarajuća temperatura faznog prelaza, tzv. STANLEY-KAPLANOVA temperatura T_{SK} , viša je od nule i može se sa malom greškom izračunati iz pojednostavljene formule

$$T_{SK} \approx \frac{1}{5} (z-1) [2S(S+1)-1] \frac{J}{k_B}$$
 (za S > 1/2)

gde je z koordinacioni broj u ravni. Eksperimenti sa kvazidvodimenzionalnim sistemima su pokazali da postoji čitav niz takvih sistema *sa dugodometnom* uređenošću čija se kritična temperatura vrlo dobro poklapa sa odgovarajućom Stancev -Kaplanovom temperaturom. Objašnjenje leži u tome da svaka mala devijacija od idealnog Stanley-Kaplanovog modela, kao, na primer, prisustvo slabe anizotropije, slabe interakcije između slojeva, čak samo uticaj konačnih dimenzija uzorka, iniciraju ili dugodometnu uređenost u realnim sistemima. M. E. Lines je pokazao [23] da je u takvim slučajevima, ukoliko su odnosi |J/J'| i R_A/R_F (gde je H_E polje koje odgovara razmenskoj interakciji unutar sloja) reda veličine 10⁻³ i manji, odstupanje kritične temperature realnog sistema od Stanley-Kaplanove temperature malo i prema naviše. Poređenje Stanlev-Kaplanove temperature sa CURIE-WEISSOVOM temperaturom

$$T_{\rm EW} = \frac{2}{3} zS(S+1) \frac{J}{k_{\rm B}}$$

za slučaj koji je ovde od značaja (z=4, S=5/2) daje teorijski odnos $T_{\rm SK}/T_{\rm CW}$ ≈ 0.42.

U ovoj oblasti značajni su i radovi K. Bindera i D. P.

IV. SLOJNI ANTIFERDMAGNETIK KFeF, KAO MODELNI SISTEM

LANDAUA [24] koji su metodom Monte Carlo simulirali kvazi-dvodimenzionalne modele kod kojih se anizotropija kreće od vrlo slabe $H_A/H_E = 0.005$ (anizotropni Hereenseesov model) do potpune $H_A/H_E = 1$ (Ierneov model). Pokazalo se da je u svim slučajevima za kritično ponašanje bitan odnos energije anizotropije $g\mu_BH_A$ i energije razmenske interakcije između slojeva IJ'I. Bez obzira na malu vrednost energije anizotropije u odnosu na energiju razmenske interakcije unutar slojeva, statičko kritično ponašanje je bilo u skladu sa dvodimenzionalnim Ierneovim modelom uvek kada je $g\mu_BH_A \gg IJ'I$.

IV.E. EKSPERIMENTALNO STATIČKO KRITIČNO PONAŠANJE KFeF4

Eksperimentalni magnetni parametri KFeF₄ rezimirani su u tabeli IV.1. Podaci pokazuju da se KFeF₄ vrlo dobro ukłapa u sliku magnetnog faznog prelaza opisanu u prethodnom odeljku.

Tabela IV.1.

Eksperimentalni magnetni parametri KFeF₄

7 _N (K)	136.0(2)
J/k _B (K)	-13.3(8) [25]
H _A /H _E	5.0(5)×10 ⁻³
131131	≃ 10 ⁻⁴ [26]
TN/TSK	1.03
TNITCW	0.44

Statičko kritično ponašanje KFeF, vrlo detaljno je proučeno u radu H. KELLERA i I. M. Savida [11]. KFeF₄, kao i mnogi kvazidvodimenzionalni anizotropni sistemi, ima relativno širok asimptotski statički kritični region koji počinje već od $t \approx 1 \times 10^{-1}$. Izvan ovog regiona odstupanja kritičnih parametara od asimptotskih vrednosti mogu se sa velikom verovatnoćom objasniti kao prestrojavanje sa trodimenzionalnog na dvodimenzionalno ponašanje ("dimensionality crossover"). Naime, na temperaturama izvan $t \approx 1 \times 10^{-1}$ (ispod T_N) fluktuacije parametra uređenosti su dovoljno male da ne narušavaju trodimenzionalnu uređenost ni pri tako slaboj interakciji kakva je ona između spinskih slojeva kod KFeF, Sa približavanjem kritičnoj temperaturi, fluktuacije dobijaju na značaju, korelacije među slojevima se gube i sam fazni prelaz je definisan dvodimenzionalnom prirodom antiferomagnetnih slojeva. To pokazuje i eksperimentalni asimptotski kritični eksponent parametra uređenosti $\beta = 0.151(3)$ u regionu $3.4 \times 10^{-4} < t < 5.7 \times 10^{-2}$ [11], koji je blizak vrednosti β = 0.125 za dvodimenzionalni Isrweov model, a sasvim daleko 🕬 vrednosti \$ \$ 0.30 za dvodimenzionalni Hereensesov model. Vrednost eksponenta & izmerena u ovom radu [11] znatno se razlikuje od vrednosti dobijenih u ranijim radovima [19,20], kod kojih merenja nisu bila stvarno izvršena u asimptotskom kritičnom regionu.

Imajući u vidu teorijske argumente odeljka IV.D i eksperimentalne podatke iznesene u odeljku IV.E, može se smatrati da je KFeF₄ predstavnik klase univerzalnosti (d,n)=(2,1) i da time ispunjava uslove da njegovo dinamičko ponašanje bude u saglasnosti sa onim koje predviđa dinamički dvodimenzionalni model A, što je predmet eksperimentalne provere opisane u sledećim odeljcima.

V. EKSPERIMENTI

V.A. APARATURA

V.A.1. MösseAussov spektrometar

Mösseeverovi spektri koji čine eksperimentalnu osnovu ove teze snimljeni su na Mösseeverovom spektrometru u Institutu za fiziku Univerziteta u Cirihu. Šema spektrometra prikazana je na sl. V.1.

Princip rada MösseAuerovog spektrometra opisan je u većini monografija posvećenih metodologiji MösseAuerove spektroskopije, pa i u udžbeničkoj literaturi. U ovom odeljku će biti reči mahom samo o onim karakteristikama korišćenih instrumenata koji su od posebne važnosti za ove eksperimente ili predstavljaju neku njihovu specifičnost.

Brzinski pretvarač (velocity transducer MA-250) ovog spektrometra, jedinica za upravljanje (driving unit MR-250) i generator funkcija (function generator FG2) su komercijalni proizvodi firme MWE Wissenschafliche Elektronik GmbH, München. Obzirom da se radi o eksperimentima kod kojih se traži srazmerno velika preciznost u određivanju širine linija Möeseausekovih spektara, bilo je neophodno da se u toku eksperimenata stalno nadgleda apsolutna brzina i linearnost brzinskog pretvarača. Tu funkciju je ispunjavao brzinski kalibrator (Mössbauer velocity calibrator MVC-350), čija je blok shema prikazana na sl. V.2.

Slika V.1.

Blok šema korišćenog MöseBaueRovog spektrometra. A -apsorber,S -izvor γ-zraka, MVT -pretvarač brzine, MDU -jedinica za upravljanje pretvaračem, MFG -generator funkcija, LI -laserski interferometar, HNL -HeNe laser sa izvorom napajanja LPS, MVC -kalibrator brzine, DT -detektor, PA -predpojačivač, HV-izvor visokog napona, MA -pojačivač, SCA -jednokanalni analizator, MR -mikser, MCA(mcs) -višekanalni analizator u režimu višekanalnog skalera, MCA(pha) -višekanalni analizator u režimu amplitudne analize, TTY -teleprinterski izlaz, PDP -kompjuter.

Slika V.2.

Shematski prikaz laserskog interferometra kalibratora brzine MVC-350. *L* -HeNe laser, *BS* -delitelj snopa, *FP* -fiksirana prizma, *MP* -pokretna prizma, *VT* -brzinski pretvarač, *P* -fotodioda.

Osnovni deo kalibratora brzine je ustvari laserski interferometar, čija je pokretna prizma MP pričvršćena za slobodan kraj cevi brzinskog pretvarača VT, koja na drugom kraju nosi radioaktivni izvor spektrometra. Svetlosni zrak LB O iz malog He-Ne lasera L prolazi kroz fiksiranu prizmu FP gde se cepa na dva zraka 1 i 2, od kojih prvi pada na pokretnu prizmu i nakon refleksije ponovo prolazi kroz delitelj snopa BS gde biva delimično skrenut ka fotodiodi P. Drugi zrak biva skrenut ka fotodiodi direktno. Putna razlika ova dva parcijalna zraka zavisi od položaja pokretne prizme. Njenim pomeranjem na fotodiodi se javljaju uzastopni interferencioni maksimumi i minimumi

 $I \propto \cos^2(\frac{2\pi}{\lambda}\Delta x)$,

gde je Ax pređeni put pokretne prizme. Kolebanje fotostruje se u elektronskom delu kalibratora pretvara u logičke impulse. Broj impulsa u jedinici vremena je tako direktno proporcionalan brzini radioaktivnog izvora

$$\frac{\Delta N}{\Delta t} = \frac{2\Delta x}{\lambda \Delta t} = \frac{2}{\lambda} v ,$$

Kalibrator takođe generira i impulse sata, čiji je ukupan broj srazmeran vremenu merenja. Impulsi iz kalibratora dovode se paralelno – sa impulsima iz jednokanalnog analizatora spektrometra na mikser koji omogućava istovremeno upisivanje impulsa iz j**edno**kanalnog analizatora i iz kalibratora u dve susedne memorijske oblasti višekanalnog analizatora, Višekanalni analizator, kao i u uobičajenom Mösseauceovom eksperimentu radi 🗤 režimu višekanalnog skalera. Impulsi sata iz kalibratora brzine odlažu se u prvi i drugi kanal memorijske oblasti rezervisane za kalibrator, dok ostali kanali sakupljaju impulse (logački obrađene) iz interferometra u toku vremena u kome je pojedinj kanal višekanalnog analizatora otvoren. Na taj način se svaka nelinearnost u brzini kretanja brzinskog pretvarača, kao i eventualne razlike u vremenu otvaranja kanala direktno odražavaju i u kalibracionom spektru. Takođe, poznavajući talasnu dužinu zračenja He-Ne lasera λ = 0.632815 μm i vreme merenja, može se sa velikom tačnošću odrediti apsolutna brzina koja odgovara svakom kanalu višekanalnog analizatora.

Upotrebljeni *izvor* Mössbauekovog γ -zračenja bio je Co³⁷ u matrici Rh nominalne jačine 25 mCi, proizvod firme The Radiochemical Centre Amersham. Pošto je apsorber bio malih dimenzija, bilo bi poželjno radi skraćenja trajanja eksperimenta koristiti jači izvor, no sa jačinom izvora raste i širina emitovane Mössbauekove linije zbog povećane koncentracije Co⁵⁷ u

Strana 45

osnovnoj rešetki. Takođe, efekt starenja zbog povećane samoapsorpcije usled stvaranja jezgara Fe⁵⁷ u samom izvoru dolati brže do izražaja kod jačih izvora. Frema podacima proizvođača, ovi efekti se javljaju u merljivom iznosu upravo kod izvora jačih od oko 25 mCi, te je ova jačina prihvaćena kao gornja granica za ove eksperimente. Širina linije emitovane iz upotrebljenog izvora iznosila je $\Gamma = 0.1004(13)$ mm/s, što je vrlo malo proširenje u odnosu na prirodnu širinu linije Mösebauenovog prelaza u jezgru Fe⁵⁷ $\Gamma_n = 0.09703(15)$ mm/s.

U realnom MösseAuemovom eksperimentu haotične vibracije postolja aparature prenose se na kretanje izvora i doprinose nepoželjnom povećanju eksperimentalne širine linije. Obzirom da je naglasak ovde upravo na preciznom određivanju širine linije, posebna pažnja bila je posvećenja uklanjanju vibracija iz mehaničkog dela spektrometra, koje uglavnom potiču od rada mehaničkih vakuum pumpi.

Kao *detektor* γ-zračenja korišćen je standardni proporcionalni brojač sa Xe-CO₂ punjenjem. Pošto je brzina brojanja zbog malog apsorbera bila relativno mala, a snop dobro kolimisan, razlaganje proporcionalnog brojača je bilo veoma dobro u odnosu na standardne Moeseeuesove eksperimente. Efekt starenja brojača takođe nije bio toliko problematičan, tako da su svi Moeseeuesovi spektri, kojih je bilo preko 400, bili sakupljeni sa istim brojačem.

V.A.2. Kriostat

U toku merenja temperatura uzorka-apsorbera regulisana je i održavana u kriostatu čija je principijelna konstrukciona šema prikazana na sl. V.3.

Slika V.3.

Konstukciona šema korišćenog kriostata. S -izvor, MVT -brzinski pretvarač spektrometra, DT -detektor, VC -vakuumske komore, LN -kriogene tečnosti, TS -temperaturni senzor, H -grejač, SH -držač uzorka, MM -prozor od mylar folije. To je relativno veliki kriostat od nerđajućeg čelika predviđen za horizontalnu geometriju Mosesausnovog eksperimenta i hlađenje ili izvora ili apsorbera. Sastoji se od dve kupke LN odvojene evakuisanim komorama VC sa ukupnom zapreminom kriogene tečnosti od oko 10 l. Spoljašnja kupka služi kao radijacioni štit i za nju se koristi tečni azot, dok se za unutrašnju kupku upotrebljava tečni azot ili tečni helijum u zavisnosti od željene radne temperature. Uzorak se hladi pomoću bakarne šipke koja je u direktnom kontaktu sa unutrašnjom kupkom ("cold finger"). Vakuumski prozori MM kriostata su od jake mylar folije, dok je radijacioni štit u predelu prozora izveđen pomoću tanke aluminijumske folije visoke čistoće koja je u dobrom termičkom kontaktu sa držačem uzorka SH na kraju bakarne šipke.

Za obična merenja, temperatura uzorka u ovakvom kriostatu može se održavati stabilnom sa jednim punjenjem kriogenih tečnosti u toku nekoliko dana, no za merenja kritičnog ponašanja neophodno je održavati nivo kriogenih tečnosti u dosta uskie granicama, jer zbog termičkog istezanja dolazi do neznatnih promena pritiska u vakuumskim komorama, što se ipak odražava na stabilnost temperature. Praktično ciklus punjenja iznosi oko jedan dan.

V.A.3. Uređaj za regulaciju i stabilizaciju temperature

U odnosu na aparaturu kod standardnih merenja u Mosesoverovoj spektroskopiji, kod merenja kritičnih fenomena najveći zahtevi se postavljaju pred uređaj za regulaciju i stabilizaciju temperature. Uređaj korišćen u ovim eksperimentina po principu rada ne razlikuje se od standardnih preciznijih uređaja, izuzev što su za njegovu gradnju upotrebljene elektronske komponente vrlo visokog kvaliteta sa za najmanje red veličine užim tolerancijama ud standardnih. Principijelna šema uređaja prikazana je na sl. V.4.

Slika V.4.

Principijelna šema uređaja za regulaciju i stabilizaciju temperature. *CCS* -izvor konstantne struje, *CVS* -izvor konstantnog napona, *PVD* -precizni razdelnik napona, *PVM* -precizni voltmetar, *AA* -pojačivači, *LC* -kolo za ograničavanje, *FA* -pojačivač sa fiksnim pojačanjem, *PA* -pojačivač snage za grejač *H*, *CS* -kriostat, *TS* -temperaturni senzor. Kao temperaturni senzor služi specijalna kalibrisana Si dioda firme Lake Shore Cryotronics koja je termokonduktivnim lepkom učvršćena u telo držača uzorka u kriostatu. Temperaturna karakteristika diode prikazana je na sl. V.5.

Temperaturna karakteristika Si diode.

Dioda je galvanski izolovana od kriostata, a priključci su izvedeni minijaturnim koaksijalnim kablovima, čime se sprećava indukcija lutajućih struja. Koristi se metod merenja sa četimi tačke: kroz dva provodnika dovodi se na priključke diode konstantna struja, a preko druga dva meri se pad napona kompenzacionom metodom. Na taj način minimizira se uticaj promenljivog pada napona na provodnicima na kojima vlada veliki temperaturni gradijent. Zahvaljujući velikom i stabilnom temperaturnom koeficijentu otpora poluprovodničke diode mogu se uz pomoć preciznog voltmetra pouzdano meriti promene temperature sa tačnošću od ±0.1 mK u oblasti temperature od 40 do 300 K. Apsolutna vrednost temperature, koja je u ovim merenjima od manjeg interesa, je data sa mnogo manjom tačnošću (±0.2 - 0.5 K), prvenstveno zbog malih promena karakteristika diode u odnosu na kalibraciju proizvođača prilikom učvršćivanja u držač i lemljenja nožica.

konstantne struje ("contant current source") 24 Izvor dobijanje pada napona na diodi je kritični deo uređaja. Radi smanjenja proizvodnje toplote u temperaturnom senzoru struja ima vrednost od samo 10 µA. Za izvedbu ovog izvora korišćeni su u kaskadi integrisani sklopovi firme Burr & Brown čija je stabilnost znatno bolja od 1 ppm. Slični sklopovi su korišćeni i izvor kompenzacionog napona. Izvori napajanja ovih sklopova kao slične izvedbe, ali nešto veće tolerancije. Na taj načio 5u obezbeđena je dobra izolovanost od varijacija mrežnog naponem uticaja malih promena radne temperature itd. Radi dodatnog eliminisanja uticaja varijacije sobne temperature, ceo uredjaj za regulaciju i stabilizaciju temperature smešten je u toplotno izolovano kućište u čijoj unutrašnjosti se temperatura održava sa tačnošću od oko ±0.1°C.

Precizni voltmetar koji se koristi u ovoj šemi (Fluke 845A) ima izlaz sa specijalnom izvedbom. Naime, između ulaza i izlaza instrumenta mora u potpunosti biti izbegnuta galvanska veza, jer je inače zbog povratne sprege nemoguće postići potrebnu stabilnost temperature. Odvajanje je postignuto pomoću konvertora napona u frekvenciju, pojačavanjem naizmeničnog napona dobijenog preko transformatora sa odvojenim namotajima, te ispravljanjem i filtriranjem izlaznog signala.

Automatska kontrola temperature funkcioniše na sledeći način: iz izvora konstantnog napona preko preciznog razdelnika dobija se naponska referentna tačka odabrana za predviđenu

temperaturu, a koja odgovara padu napona na senzorskoj diodi za tu temperaturu. Predpostavimo li da je temperatura diode u momentu postavljanja napona niža od predviđene temperature, tada voltmetar pokazuje izvestan negativni napon koji predstavlja razliku između referentnog napona i trenutnog napona na diodi (napon greške). Izlaz voltmetra, proporcionalan toj razlici vodi se u regulator struje grejača smeštenog u telu držača uzorka u kriostatu. Na taj način grejaču se isporučuje struja proporcionalna naponu greške. Usled grejanja držača uzorka temperatura diode se podiže, što dovodi do smanjivanja napona greške i . u idealnom slučaju, do uspostavljanja skoro stacionarnog stanja sa malim naponom greške i skoro konstantnom strujom grejanja, koja je upravo dovoljna da održava temperaturu malo nižu od referentne. Međutim, u realnom slučaju, ako želimo da ta razlika temperatura bude mala, ravnoteža ovakvog sistema je labilna, jer se pri pojavi neke perturbacije, usled termičke povratne sprege javljaju oscilacije temperature opasnih amplituda, sa svojstvenom periodom koja zavisi od električnih i termičkih osobina složenog sistema automatska regulacija - senzor - kriostat. Razlika stvarne i referentne temperature se može višestruko smanjiti (i opseg dozvoljenih perturbacija jako povećati) ukoliko se uvede kolo za integraciju struje greške. Kondenzator u tom kolu "pamti" struju greške i struja grejača nastavlja da se povećava i preko prethodno postignute stacionarne. vrednosti sve dok napon greške praktično ne postane zanemarljivo mali. Drugim rečima, prigušenje ovog sistema odabrano je tako da vremenska konstanta sistema ne bude preduga, a da ipak ne dolazi do samooscilovanja. No termičke i električne osobine sistema se menjaju sa većim promenama temperature, pa vremenska konstanta kola za integraciju mora biti promenljiva i mora se uvek nanovo manuelno optimizirati.

Uređaj radi u dva režima: automatska kontrola postavljene

temperature i prelaz na novu temperaturu. Ovaj drugi izvodi se ručno i zbog prirode merenja kritičnih fenomena predstavlja složen postupak opisan u odeljku V.C.

Izlazni signal voltmetra vodi se i na pisač, što omogućava procenu ukupnog odstupanja stvarne temperature od postavljene u toku celog snimanja. Najvažnija performansa ovog sistema za automatsku kontrolu temperature jeste stabilnost temperature u dužim vremenskim periodima dovoljnim za sakupljanje Mömemenuemovog spektra na jednoj temperaturi (tipično 24 - 48 h). Kod ovog sistema, u temperaturnom intervalu od 130 - 150 K devijacija od zadane temperature iznosi samo oko ±3 mK u toku takvog vremenskog perioda.

V.B. UZORAK

V.B.1. Sinteza

Monokristali KFeF₄ sintetizovani su u Clarendon Laboratory u Oksfordu pod rukovodstvom B. M. WANKLYN. Metod sinteze i izrašćivanja kristala detaljno je opisan u ref. 27. U osnovnim crtama postupak je sledeći: U platinski sud tankih zidova koji se može zatvoriti savijanjem stavlja se praškasta smeša FeF₃, KCl, KHF₂ i NH₄HF₂, prethodno pročišćenih pretopljavanjem u atmosferi HF. Smesa se brzo zagreje do 879°C a zatim sporo hladi (2°C/h) do oko 300°C. Ispod te temperature rezultat ne zavisi od brzine hlađenja. Kristali se dobijaju u obliku pljosnatih prizmi sa dimenzijama najvećih primeraka od oko 4 × 4 × 2 mm³. Prozračni su, sa slabom žutosmeđom nijansom. Jedinjenje je stabilno na sobnoj temperaturi u suvom vazduhu, nije higroskopno, ali u dodiru sa vodom sporo reaguje gradeći Fe(OH)₃. Karakteristična je

cepljivost kristala po ravni normalnoj na glavnu kristalografsku osu.

V.B.2. Priprema apsorbera

Dobijeni kristali čuvani su u eksikatoru u atmosferi argora. Pre obrade potopljeni su u parafinsko ulje, koje je takođe izvesno vreme provelo u eksikatoru. Sva obrada vršena je pod slojem parafinskog ulja ili u bezvodnom acetonu. Kristali su rascepljeni na tanke listiće i pod mikroskopom su odabrani primerci najravnomernije debljine, bez napuklina i okluzija. Pomoću najfinijeg dijamantskog brusnog papira ručno je načinjen uzorak sa ravnim paralelnim površinama debljine od oko 50 μ m. Manje debljine se nisu mogle postići zbog neotpornosti kristala na smicanje, iako bi manja debljina bila poželjna zbog smanjenja VI.A.1. Oblik gotovog apsorbera bio je približno kvadratni, površine 2.5 x 2.5 mm².

V.B.3. Montaža apsorbera

Kod merenja kritičnih fenomena pomoću Mosesauseove spektroskopije posebna pažnja mora se posvetiti montiranju apsorbera. On ne sme biti kruto učvršćen jer sa promenom temperature može doći do pojave mehaničkih naprezanja koja pomeraju kritičnu temperaturu, odnosno proširuju distribuciju kritičnih temperatura po oblastima kristala sa različitim naprezanjem. Ovaj zahtev je kontraverzan sa zahtevom da kristal u kriostatu bude u dobrom termičkom kontaktu sa okolinom. Rešenje montaže u ovom slučaju prikazuje sl. V.6.

Kristal je prislonjen uz prednji zid male komore načinjene bakarnog prstena debljine 0.5 mm zatvorenog sa obe strane od zidovima od akrilnog stakla (debljine 0.2 mm na otvoru). Nekoliko (isušenih) vlakana pamuka održava kristal u položaju takvom da je glavna osa kristala paralelna sa snopom γ -zraka, što je jedna od važnih predpostavki u obradi snimljenih Möseseuseovih spektara. Komora je ispunjena helijumom koji poboljšava provođenje toplote (a ne smrzava se ni na najnižim radnim temperaturama), hermetički zatvorena epoksidnim lepkom i smeštena u masivni bakarni držač uzorka zajedno sa olovnim kolimatorom za γ-zrake sa otvorom nešto od kristala (d = 2 mm). Držač uzorka snabdeven je sa manjim nekoliko slojeva aluminizirane mylar folije da bi se što je moguće više smanjio temperaturni gradijent na kristalu. Svi držača uzorka delovi su na dodirnim površinama premazani termokonduktivnom vakuumskom mašću radi osiguranja termičkog hladnom šipkom kriostata. Merenje postojećeg kontakta sa temperaturnog gradijenta na kristalu bilo bi veoma teško, ali u poređenju sa montažom uzoraka opisanom u sličnim preciznim merenjima kritičnih parametara (napr. ref. 12, 28), temperaturni gradijent ovako malom uzorku je sigurno bolji od Da zadovol javajućeg.

Ovakva montaža apsorbera ima i tu povoljnu osobinu da je prostorni ugao pod kojim kroz apsorber prolaze γ -zraci relativno mali i kada je izvor sasvim blizu prozora kriostata. To je od značaja kod preciznog određivanja širine linije, kako je opisano u sledećem odeljku. Nepovoljna osobina ovako male efektivne površine apsorbera je veliko smanjenje brzine brojanja u odnosu na standardne eksperimente u Mömsmournoj spektroskopiji. Kako je napomenuto kod opisa upotrebljenog radioaktivnog izvora, taj nedostatak ne može se ispraviti niti upotrebom jakog izvora zbog povećanja širine emitovane linije sa povećanjem jačine izvora. već jedino produžavanjem vremena sakupljanja podataka.

Slika V.6.

D**ržač uzorka** za kritična merenja na KFeF₄.

V.C. SAKUPLJANJE I PRELIMINARNA OBRADA PODATAKA

V.C.1. Postupak snimanja Mösssaussovih spektara

Pri optimiziranju vremena sakupljanja podataka u Mosseeverovoj spektroskopiji, kao i kod drugih metoda koje se koriste tehnikom sakupljanja nuklearnih događaja, odlučujuća je standardna devijacija koja se traži od parametara koji se obradom dobijenih spektara. Najčešće standardna evaluiraju devijacija opada sa kvadratnim korenom iz vremena sakupljanja podataka. U najjednostavnijem slučaju Mösseauceov spektar snimljen u transmisionoj geometriji određen je sa nekoliko parametara kao što su: nivo osnovnog zračenja bez rezonantne apsorpcije I(m) (definisan transparencijom apsorbera u oblasti brzina $\nu \rightarrow \pm \infty$ daleko od položaja linija rezonantne apsorpcije), brzina maksimalne rezonantne apsorpcije p_{j} (pozicija linije), maksimalna vrednost apsorpcije a (amplituda linije) i širina linija ^Pe na polovini visine. Ako se predpostavi da je snop γ-zraka potpuno kolinearan sa pra∨cem po kome se kreće radioaktivni izvor, da brzinska raspodela γ -zraka emitovanih iz izvora ima strogo Lomentzov oblik, da je apsorpcija u apsorberu vrlo mala i da i rezonantna apsorpcija u apsorberu ima oblik Lorentzove raspodele, tada apsorbancija u merenom spektru takođe ima oblik Lorεντzove raspodele čija je širina Γ_ρ jednaka zbiru širine linije izvora Γ_s i širine linije rezonantne apsorpcije u apsorberu F :

$$I(\nu) = I(\infty) - \sum_{l=1}^{n} \frac{a_{l}}{\left[\frac{2(p_{l}-\nu)}{\Gamma_{e}}\right]^{2} + 1}$$
 (V.1)

Uslov kolinearnosti *y*-zraka sa pravcem kretanja izvora u ovim eksperimentima je zbog malog dijametra apsorbera dobro zadovoljen, kao i predpostavka o Lonentzovom obliku emisione linije. Profil linije apsorpcije detaljno je prodiskutovan u odeljku VI.A.

Vrednosti nabrojanih parametara Mössseverovih spektara dobijaju se uz pomoć kompjuterskih programa za numeričku obradu koji omogućavaju podešavanje ("fit") teorijske funkcije tipa jedn. V.1 na setove merenih podataka pomoću nelinearne metode najmanjih kvadrata.

Širina linije u spektru je parametar koji se obično fitovanjem dobija sa relativno najvećom neodređenosću. Pored toga, širina linije je jako korelirana sa nivoom osnovnog zračenja, pa je podložna sistematskim greškama. Pošto je cij ovih eksperimenata bio određivanje *proširenja* linije u odnosu na osnovnu eksperimentalnu širinu linije, velika pažnja je posvećena preciznom određivanju širine linije, naročito u oblasti gde su proširenja mala. U tu svrhu izvedena je serija merenja kojom su utvrđeni optimalni uslovi sakupljanja podataka, kako je ukratko opisano u nastavku.

Broj intervala u kojima se skokovito menja signal za brzinu iz generatora funkcija, odn. broj kanala višekanalnog analizatora po spektru utvrđen je na 512. Smanjivanje ovog broja na 256 pri istom ukupnom odbroju smanjivalo je preciznost širine linije u Mössegumovom spektru, dok je povećanje na 1024 kanala doprinosilo povećanju ove preciznosti tek neznatno, ali je osetno povećavalo probleme transfera, obrade i čuvanja podataka.

Generator funkcija FG2 podržava rad MösseAuerovog spektrometra u testerastom, trougaonaom i sinusoidalnom modu.

Prednosti režima rada pri kome se odbroj sakuplja kako pri približavanju, tako i pri udaljavanju izvora od apsorbera (trougaoni i sinusni mod) nad režimom rada pri kome se odbroj sakuplja samo tokom približavanja *ili* udaljavanja (testerasti mod) su neosporne i sastoje se u sledećem. Odbroji iz jednokanalnog analizatora tokom progresivne i tokom regresivne faze kretanja beleže se u posebne memorijske oblasti višekanalnog analizatora. Naknadno sabiranje sadržaja kanala koji odgovaraju istim brzinama u spektru progresivnog i regresivnog kretanja omogućava gotovo potpuno uklanjanje efekata prostornog ugla, do kojih inače dolazi usled konačnih dimenzija izvora i detektora, koje se ne mogu zanemariti u odnosu na rastojanje između njih [29]. Pri tome je ipak neophodno da prostorni ugao bude mali, što je u geometriji ovog eksperimenta (apsorber malog dijametra) dobro ostvareno.

Očekivalo bi se da režim rada brzinskog pretvarača sa sinusoidalnim kretanjem, na kome se često insistira kod preciznih merenja u Möbebenuerovoj spektroskopiji, doprinese smanjivanju neodređenosti širine linije, zbog toga što je uklonjen prelazni režim kretanja brzinskog pretvarača pri promeni znaka ubrzanja koji se javlja u režimu rada sa konstantnim ubrzanjem. Zato je izvedena serija merenja u sinusoidalnom režimu na razlicitim temperaturama apsorbera. Neznatno poboljšanje preciznosti k reproducibilnosti u odnosu na spektre dobijene u režimu sa konstantnim ubrzanjem pri istom vremenu snimanja i podudarnost dobijenih širina linija pokazali su da uvođenje sinusoidalnog režima rada nije opravdano, posebno zbog toga što je i obrada ovih spektara znatno složenija od onih snimljenih u režimu konstantnog ubrzanja.

Iz ovih razloga prihvaćen je režim rada sa konstantnim ubrzanjem u trougaonom modu u kome su snimljeni svi spektri koji

V. EKSPERIMENTI

su korišćeni za dalju obradu. Probna serija merenja pri ovom uslovima pokazala je da je u kompromisu između ukupnog trajanja eksperimenata i postignute preciznosti evaluiranih parametara najoptimalniji odbroj od oko (0.3 - 0.5)×10⁶ po kanalu, za šta je pri upotrebi novog radioaktivnog izvora bilo potrebno oko 20 h, a produžavalo se sa opadanjem jačine izvora.

Zbog saturacionih efekata transmisije γ -zraka u apsorberu konačne debljine neophodan je postupak za korekciju širine linije u Mosebauerovom spektru koji je detaljnije opisan u odeljku VI.A.2. Ovaj postupak zahteva da odnos ukupne površine linija u Mosebauerovom spektru i površine pod fonom bude konstantan, odn. da se menja samo usled promene jačine efekta, tj. faktora bezuzmačne apsorpcije. Slučajevi koji mogu dovesti do narušavanja ovog uslova (ne uračunavajući stvarne promene u kristalu) prilikom dugotrajnih eksperimenata su sledeći:

i) pomeranje prozora jednokanalnog analizatora sa pozicije linije od 14.4 keV u amplitudnom spektru γ -zraka,

ii) promena karakteristika izvora usled povećavanja rezonantne samoapsorpcije zbog nagomilavanja Fe⁵⁷,

iii) promene karakteristika brojača u toku vremena,

 iv) promene geometrije usled promena dimenzija kriostata sa promenom temperature,

v) "znojenje" prozora kriostata itd.

U konkretnim eksperimentalnim uslovima posebna kontrolna serija merenja pokazala je da je od svih najznačajniji izvor ovakve sistematske greške onaj pod *i*), pa su tokom eksperimenata,

Strana 60

u temperaturnoj oblasti gde su proširenja linije mala, stalno vršene kontrole odnosa signal/šum za liniju od 14.4 keV u amplitudnom spektru, koristeći pomoćni višekanalni analizator. U eksperimentima u temperaturnoj oblasti gde su proširenja linije veća, zbog opadanja amplituda linija opada i uticaj saturacionog efekta, tako da je amplitudni spektar u toj oblasti uzorkovan povremeno. Spektri kod kojih je odnos signal/šum bio promenjen više od male tolerancije bili su rigorozno odbacivani. Od ostalih navedenih faktora u toku "pravih" eksperimenata do izražaja je došao još uticaj starenja izvora *ii*) na širinu linije, pošto je trajanje najdužeg eksperimenta bilo oko 7 meseci. Malo sistematsko proširenje linije od oko 2 standarne devijacije mogle se odrediti pomoću ekperimenata ponovljenih pod istim uslovima sa ostarelim izvorom i uzeto je ubzir prilikom obrade konačnih rezultata.

Posebne mere predostrožnosti bile su preduzete radi eliminacije uticaja nivoa osnovnog zračenja na određivanje širine liniie. Naime, usled toga što je Mösssauerov spektar uzorak ograničenog intervala brzina, ukoliko se tim intervalom 🕬 obuhvati i region u kome je (negativni) doprinos linija spektra zaista mali, programi za fitovanje parametara imaju tendenciju da iskažu manju širinu linije od stvarne i manji nivo osnovnog zračenja. S druge strane, ako se interval odabere široko, standardna devijacija širine linije postaje veća, jer površima pod linijom zahvata manji deo ukupnog spektra. Ako se spektar sastoji od linija približno iste širine, relativno je jednostavno naći optimalni interval brzina, ali ako je proširenje linija. različito. kao što je to slučaj kod ovih eksperimenata, kompromisni izlaz se može naći u sledećem: snimaju se dva spektra jedan za drugim pod svim uslovima istim, osim toga što je jednom interval brzina optimalan za široku liniju, a jednom za usku. Nivo osnovnog zračenja i širina široke linije određuju se iz

V. EKSPERIMENTI

Strana 61

spektra sa širokim intervalom brzina, a zatim se sa te dve fiksne vrednosti ulazi u fitovanje spektra sa užim intervalom brzina. Ovakav postupak daje 2 - 3 puta manju standardnu devijaciju širine uske linije nego samo iz prvog spektra. Pored ovoga, konzistentnost podataka može se proveriti i na osnovu apsolutnog odbroja u nivou osnovnog zračenja i trajanja snimanja. Ovakve provere konzistentnosti vršene su u onim intervalima temperature gde se to pokazalo korisno, pri čemu su iz dalje obrade izuzeti svi spektri kod kojih je uočeno neslaganje.

V.C.2. Postupak promene temperature tokom eksperimenata

U izvođenju preciznih eksperimenata u vezi sa kritičnim fenomenima uobičajeni metodi podešavanja željene temperature ne zadovoljavaju iz sledećih razloga:

 i) uzorak-monokristal prilikom naglih i velikih promena temperature može malo da promeni svoju kritičnu temperaturu,

ii) temperaturni senzor (poluprovodnička dioda) takođe menja svoju karakteristiku,

što može da dovede do male sistematske greške u merenju temperature. Kod uobičajenih temperaturnih merenja sa preciznošću od oko ±0.1 K obe ove promene (do oko 20 mK) su praktično zanemarljive, dok kod merenja kritičnih fenomena, gde se očekuje približavanje kritičnoj temperaturi sa vrednošću redukovane temperature od oko $t = 10^{-4}$, ove promene mogu uneti veliku sistematsku grešku i predstavljaju jedan od glavnih uzroka uzajamnog neslaganja rezultata mnogih ranijih eksperimenata o kritičnom ponašanju materije [12]. Radi minimiziranja uticaja navedenih faktora u ovim eksperimentima preduzete su mere opisane u nastavku.

Eksperimenti su izvedeni u kontinuumu, tj. bez prekida vakuuma kriostata i stabilizacije temperature u toku 7 meseci merenja. Na taj način izbegnuto je zagrevanje jednom ohlađenog sistema do sobne temperature (razlika oko 140 K). Promene temperature bile su isplanirane tako da se u prvom delu merenja kristal hladio od sobne temperature do kritične, a zatim su sva merenja ponovljena u obrnutom smeru promene temperature. Ovako dobijena dva seta podataka predstavljaju dobru osnovu za proveru pouzdanosti dobijenih rezultata. Same promene temperature između merenih tačaka trajale su po nekoliko sati, vođene tako da se do sledeće željene temperature dođe približno asimptotski, bez značajnog prebačaja odn. podbačaja, naročito u kritičnom regionu, a da sama promena pri tome ne traje predugo.

Poseban problem ovde predstavlja nepoznavanje tačne vrednosti kritične temperature pre merenja. To potiče sa jedne strane otuda što za sve primerke kristala kritična temperatura i nije ista (±0.1 K), a sa druge strane otuda što apsolutna temperaturna kalibracija senzora u granicama ±3 mK, koliko je preciznost temperature u *relativnoj* skali, nije ni moguća. Kao što je pokazano u odeljku VI.E, kritična temperatura u relativnoj skali je tek rezultat obrade svih prethodno snimljenih spektara, tako da se u toku merenja dobija sa sve većom preciznošću.

Jedna nezavisna serija merenja na manjem broju temperatura sa istim uzorkom, koja je izvedena nakon obustavljanja vakuuma kriostata i zagrevanja uzorka do sobne temperature, dala je kritičnu temperaturu višu u apsolutnoj skali za oko 15 mK, što sa tehničke strane potvrđuje visoku reproducibilnost rezultata, ali ujedno pokazuje i da je eksperimente kod kojih se traži preciznost u kritičnom regionu neophodno izvoditi bez prekida u kontroli temperature.

V.C.3. Preliminarna obrada podataka

Spektri sakupljeni u pojedinim memorijskim oblastima višekanalnih analizatora prebacivani su preko teleprinterskih izlaza u datoteku čvrstog diska komjutera PDP 11/60, gde su stajali na raspolaganju za obradu. Prvi korak u obradi spektara bio je kontrola apsolutnog odbroja za poznato vreme merenja, zatim, u većini slučajeva, obrada i kontrola pratećeg amplitudnog spektra, kako je opisano u prethodnom odeljku. Parovi spektara dobijeni iz kalibratora brzine su prvo obrađivani odvojeno (za progresivno i regresivno kretanje izvora) i pri tome su kontrolisani sledeći pokazatelji: linearnost kretanja, jednakost apsolutnih vrednosti kalibracionih konstanti za obe faze kretanja, položaj kanala oko koga treba presaviti spektar radi sabiranja odbroja dobijenih u progresivnoj i regresivnoj fazi. Samo spektri koji bi prošli ovu kontrolu su uzimani u dalju obradu, dok je oko 5% snimljenih spektara moralo biti odbačeno. Presavijeni i kalibrisani spektri su predstavljali ulazne podatke za dalje faze obrade, pri čemu su već uklonjeni efekti prostornog ugla kako je naglašeno u prethodnom odeljku.

Kompjuterski programi napisani za ovu fazu obrade podataka relativno su jednostavni i nisu specifični za problem koji je ovde od interesa, pa njihovi detalji neće biti dalje diskutovani.

VI. REZULTATI MERENJA I INTERPRETACIJA

VI.A. MÖSSBAUEROVI SPEKTRI

Konvencija grafičkog predstavljanja Mössbeugeovih apektara u ovom poglavlju je sledeća: na apscisi je apsolutna brzina izvora dobijena kalibracijom skale kanala višekanalnog analizatora-kako je to opisano u prethodnom poglavlju, dok je na ordinabi transparencija apsorbera, tj. normalizovani odbroj, pri čemu je za jedinicu uzeta vrednost osnovnog nivoa $I(\infty)$ dobijena kao rezultat fitovanja odgovarajućeg teorijskog modela. Dobijeni odbroj odgovara sredini vertikalne crtice, dok njena ukupna dužina predstavlja dvostruku standardnu devijaciju odbroja. Puna linija predstavlja vrednosti funkcije dobijene fitovanjem odgovarajućeg teorijskog modela.

VI.A.1. Spektri KFeF₄ na niskoj temperaturi

MösseAuerovi spektri opisanog apsorbera KFeF₄ snimljeni su na dve niske temperature daleko ispod kritičnog regiona, na T = 4.2 K i na T = 100 K. Tipičan niskotemperaturni spektar snimljen na temperaturi tečnog He prikazan je na sl. VI.1. Spektar na T = 100 K se kvalitativno od njega ne razlikuje.

Slika VI.1.

Mossequerov spektar KFeF₄ na temperaturi tečnog He.

Na niskoj temperaturi KFeF₄ se nalazi u uređenoj antiferomagnetnoj fazi. Fluktuacije elektronskih spinova su retke, spontana magnetizacija rešetke je skoro sasvim saturirana. Spektri se mogu interpretirati sa aspekta interakcije jezgra Fe⁵⁷ sa *statičkim* ekstranuklearnim poljima u ovom kristalu.

Statička interakcija jezgra sastoji se od skalarne Coulommove interakcije \hat{V} nuklearnog naelektrisanja sa električnim poljem, interakcije \hat{H}_{q} nuklearnog kvadrupolnog momenta Q sa gradijentom električnog polja \vec{q} i interakcije \hat{H}_{μ} nuklearnog magnetnog momenta $\vec{\mu}$ sa magnetnim poljem \vec{H} , tako da je ukupan hamiltonijan interakcije

$$\widehat{H} = \widehat{V} + \widehat{H}_0 + \widehat{H}_0 \quad . \tag{VI.1}$$

<u>Skalarna Coulomeova interakcija</u> dovodi do razlike u ukupno, energiji prelaza jezgra u različitim hemijskim okruženjima. Mosesauskovom spektru ona se manifestuje kao pomeranje centroida spektra u skali brzine u odnosu na centroid spektra nekog referentnog okruženja rezonantnog jezgra (najčešće metalnog Fe) i naziva se *hemijsko pomeranje*. U eksperimentalno dobijenim spektrima ono je kombinovano sa tzv. *temperaturnim pomeranjem* usled Dopelekovog efekta drugog reda zbog termičkog kretanja, čineći zajedno sa njim *izomerno pomeranje* koje se eksperimentalno relativno lako određuje. U ovoj tezi je izomerno pomeranje dobijeno iz Mosesauskovih spektara od malog značaja, pa u daljem tekstu neće biti diskutovano.

Hamiltonijan <u>kvadrupolne interakcije</u> može da se napiše u obliku

$$\widehat{H}_{Q} = \frac{e^{2}qQ}{4I(2I-1)} [3\widehat{I}_{z}^{2} - I(I+1) + \eta(\widehat{I}_{x}^{2} - \widehat{I}_{y}^{2})] , \qquad (\forall (.2)$$

gde je e elementarno naelektrisanje, $q = V_{zz}/e$, V_{zz} komponenta tenzora gradijenta električnog polja u kristalu na mestu jezgra duž glavne ose z, Q kvadrupolni moment jezgra, I spin jezgra, \hat{I}_{y} , \hat{I}_{y} , \hat{I}_{z} , operatori komponenata spina jezgra, a $\eta = (V_{xx} - V_{yy})/V_{zz}$ parametar asimetrije gradijenta električnog polja.

Hamiltonijan magnetne interakcije može da se napiše u obliku

$$\widehat{H}_{\mu} = -g_{I}\mu_{N}\widehat{I}\cdot\widehat{\vec{H}} ,$$

gde je g_I nuklearni giromagnetni odnos, μ_N nuklearni magneton, a \vec{H} jačina hiperfinog magnetnog polja na mestu jezgra. U opštem slučaju pravac magnetnog polja nije kolinearan sa pravcem z glavne ose tenzora gradijenta električnog polja, pa u koordinatnom sistemu određenom osama ovog tenzora

$$\widehat{H}_{u} = -g_{I} \mu_{N} \vec{H} [\widehat{I}_{z} \cos\theta + (\widehat{I}_{x} \cos\varphi + \widehat{I}_{y} \sin\varphi) \sin\theta]$$

gde su θ i φ uglovi koji definišu pravac hiperfinog magnetnog polja u ovom sistemu (sl. VI.2).

Slika VI.2.

Drijentacija magnetnog hiperfinog polja (θ , φ) i pravca γ -zraka (θ_{γ} , φ_{γ}) u odnosu na sistem glavnih osa tenzora gradijenta električnog polja u monokristalu.

U opštem slučaju rešenje hamiltonijana VI.1 ne može se dobiti u konačnoj formi; hamiltonijan sadrži vandijagonalne matrične elemente. Za jezgro Fe^{57} sa prelazom $I_e = 3/2 \rightarrow I_g = 1/2$ $(I_g, I_e$ spin osnovnog, odn. pobuđenog stanja jezgra) može se očekivati prisustvo svih 8 linija u Mössenuemovom spektru. Svojstvene vrednosti hamiltonijana, odn. pozicije linija i njihovi intenziteti određuju se numeričkim metodama za dijagonalizaciju matrice. Vrlo složeni kompjuterski program razvijen u ovu svrhu u Instututu za fiziku Univerziteta u Ciribu

130-32] omogućava da se procedura za dijagonalizaciju matrice uklopi u rutinu za fitovanje nelinearnom metodom najmanjih kvadrata. Pomoću ovog programa mogu se iz izmerenog Mösesenuerovog spektra monokristala u principu odrediti sledeći parametri: centroid spektra (odn. izomerno pomeranje δ), jačina magnetnog polja H, kvadrupolno cepanje $\Delta = e^2 q Q/2$ i uglovi θ i φ koji definišu pravac magnetnog polja u sistemu glavnih osa tenzora gradijenta električnog polja vezanog za monokristal, te uglovi θ_{γ} i φ_{γ} koji određuju položaj monokristala u odnosu na pravac γ -zraka. Pored toga, u program je ugrađena i rutina za korekciju amplituda i širina linija na saturaciju rezonantne apsorpcije u apsorberu konačne debljine. Sve ove veličine zajedno mogu da se fituju kao slobodni parametri samo u izuzetno povoljnim uslovima. Azimutalni uglovi φ i φ_{γ} su definisani samo kada tenzor

Opisani program primenjen je na niskotemperaturne spektra KFeF₄. Zahvaljujući veoma dobroj definisanosti spektara bilo je moguće evaluirati sve veličine navedene u tabeli VI.1 kao slobodne parametre fita.

Za sve spektre χ^2 fita bio je praktično nezavisan od vrednosti azimutalnih uglova φ i φ_{γ} , što potvrđuje aksijalnu simetriju tenzora gradijenta električnog polja ($\eta = 0$). Vrednosti izomernog pomeranja δ , kvadrupolnog cepanja Δ i jačine magnetnog polja H koje se poklapaju sa podacima u literaturi [11,19,25] i savršeno podudaranje teorijske funkcije sa izmerenim spektrima ukazuju na visoki kvalitet uzorka u kome nema ni tragova stranih linija [napr. od primesa Fe(OH)₃], što je od fundamentalnog značaja za precizno fitovanje spektara u kritičnom regionu.

Tabela VI.1.

Parametri niskotemperaturnih spektara KFeF4.

temperatura 7 (K)			4.2	100
izomerno pomeranje	5			
u bonosu na mecaino Fe	0	(mm/s)	0.558(2)	0.551(2)
kvadrupolno cepanje	Δ	(mm/s)	-1.46(2)	-1.44(3)
jačina magnetnog polja	H	(T)	54.55(2)	42.92(3)
korigovana širina linije	Γ _e	(mm/s)	0.198(2)	0.200(2)
polarni ugao <i>y</i> -zraka	θγ	(")	11(2)	11(2)
polarni ugao magnetnog polja	θ	(")	12(1)	12(2)

Niskotemperaturni spektri KFeF₄ snimljeni su kako na početku, tako i na kraju kontinuiranog perioda merenja u kritičnom regionu. Podudarnost svih evaluiranih podataka pokazuje da u kristalu tokom 7 meseci merenja nije došlo ni do kakvih relevantnih promena, kao ni u njegovoj orijentaciji. Jedino je primećeno malo sistematsko povećanje ukupne eksperimentalne širine linije, koje je protumačeno kao povećanje širine linije izvora i uzeto u obzir prilikom određivanja stvarnog proširenja linija apsorpcije. (Vidi odeljak V.C.1.)

VI.A.2. Spektri KFeF4 na visokoj temperaturi

Pod "visokom" temperaturom u ovom odeljku se podrazumevaju temperature iznad kritične temperature izvan kritičnog regiona.

Spektar apsorbera KFeF₄ na "sobnoj" temperaturi (7 = 296 K) prikazan je na sl. VI.3.

MösseAuerov spektar $KFeF_4$ na temperaturi T = 296 K.

Na sobnoj temperaturi, 160 K iznad kritične temperature KFeF₄ je u paramagnetnoj fazi. Fluktuacije elektronskih spinova su veoma brze, njihovo karakteristično vreme je mnogo redova veličine manje od vremena precesije nuklearnog spina u odgovarajućem statičkom hiperfinom polju, pa se u Mösepauerovom spektru magnetna hiperfina struktura uopšte ne ispoljava. Drugim rečima, u toku karakterističnog vremena interakcije jezgra sa hiperfinim magnetnim poljem, ono "vidi" samo vremensku srednju vrednost polja u rezultatu brzih fluktuacija elektronskog spina, koja je jednaka nuli. Preostaje opet samo statička kvadrupolna interakcija, koja za slučaj Mösepauerovog prelaza u jezgru Fe⁵⁷, $I_e = 3/2$, $I_g = 1/2$ rezultira pojavom dveju linija u Mösepauerovom spektru sa rastojanjem $\Delta = e^2 q Q/2$ (kvadrupolni dublet). Kako je tenzor gradijenta električnog polja u kristalu KPeP, aksijalno simetričan ($\eta = 0$), iz hamiltonijana VI.2 na osnovu opšte formule za relativne intenzitete komponenata radijacionog prelaza

$$J_{\mathbf{m}_{i}M} = EC(I_{i}LI_{f}; \mathbf{m}_{i}M)]^{2} F_{L}^{M}(\vec{k}_{\gamma}) , \qquad (\forall I, \forall$$

gde je $C(I_i L I_f; m_i M)$ CLEBBCH-GORDONOV koeficijent za stalje se inicijalnim spinom I_i , magnetnim kvantnim brojem m_i , final spinom I_f i magnetnim kvantnim brojem $m_f = m_i - M$, L multipolares zračenja, a $F_L^H(\vec{k}_q)$ funkcija direkcione distribucije

$$F_{L}^{\mathcal{H}}(\vec{k}_{\gamma}) = \prod_{p} P^{\sigma} e^{i I \varphi_{\gamma}} D_{\mathcal{H}p}^{L} |^{2} ,$$

 $(P = \pm 1 - \text{indeks polarizacije}, \sigma = 0 \text{ odn. 1 za magnetne odn.}$ električne prelaze, φ_{γ} -azimutalni ugao, $D_{\beta\beta}^{L}$ -matrica konačnih rotacija), mogu se odrediti relativni intenziteti linija kvadrupolnog dubleta

$$\frac{J_{3/2}}{J_{1/2}} = \frac{1 + \cos^2 \theta_{\gamma}}{2/3 + \sin^2 \theta_{\gamma}} . \tag{V1.4}$$

Pošto je znak kvadrupolne interakcije u KFeF₄ negativan, linija manje energije odgovara prelazu 3/2 \rightarrow 1/2. Koristeći vrednost θ_{γ} dobijenu iz spektara na niskoj temperaturi dobija se

$$\frac{J_{3/2}}{J_{1/2}} = 0.363(5) \quad . \tag{VI.5}$$

Kao što je u prethodnom poglavlju napomenuto, apsorber KFeF₄ korišćen u ovim eksperimentima nije bio naročito tanak. Iako je njegova geometrijska debljina samo 50 μ m, efektivna bezdimenziona debljina $t_a = n_a \sigma_0 f_a$, gde je n_a površinska gustina Mosepauskovih jezgara u apsorberu, σ_0 maksimalni presek za rezonantnu

apsorpciju jezgra Fe⁵⁷, sa predpostavljenom vrednošću faktora bezuzmačne apsorpcije $f_a \approx 0.5$ iznosi $t_a \approx 2$, što je za svrdo preciznog određivanja širine linije daleko od zadovoljavanje uslova $t_a \ll 1$ za tanak apsorber.

Da bi se iz Mösseeuemovih spektara dobila stvarna širina linije apsorcije neophodno je u teorijsku funkciju, koja se u principu sastoji od dva lorencijana uneti korekciju na saturacija apsorpcije u apsorberu konačne debljine opisanu u nastavku ovog odeljka.

U opštem slučaju intenzitet zračenja J koje dospeva u detektor u transmisionom Mössenuerovom spektrometru pri relativnoj brzini v izvora u odnosu na apsorber može da se napiše kao

$$J(\nu) = B + U(1-f_{5}) + Uf_{5} \int_{-\infty}^{+\infty} L(\nu'-\nu)T(\nu') d\nu', \qquad (VI.6)$$

gde je *B* intenzitet zračenja koje ne potiče iz MoseBAUEROVOG prelaza (rasejano zračenje od linija više energije), *U* intenzitet zračenja iz MoseBAUEROVOG prelaza, f_s faktor bezuzmačne emisije u izvoru, $L(\nu')$ brzinski profil linije emisije (obično vrlr približan LORENTZOVOJ raspodeli) i $T(\nu')$ brzinski profil transmitancije rezonantnog zračenja dat sa

$$T(v') = e^{-t A(v')},$$

gde sada brzinski profil apsorbancije $A(\nu')$ sadrži suštinsku informaciju o hiperfinoj strukturi i obliku linije Mösseauerovog prelaza. Samo u graničnom slučaju tankog apsorbera $t_a \ll 1$ treći član u formuli VI.6 svodi se (uzimajući samo linearni član u razvoju funkcije $e^{-t_a A(\nu')}$ u red) na konvoluciju Lobentzovin

Stra

raspodela koja rezultira eksperimentalnim profilima linija kojo opet imaju Lorentzov oblik. U suprotnom slučaju, oblik linija odstupa od Lorentzovog, eksperimentalna širina linije se privida povećava, amplitude intenzivnijih linija se više smanjuju nejo amplitude manje intenzivnih, pa relativni intenziteti linija o spektru više ne odgovaraju onima koji slede iz relacije VI.3.

Postoji niz relativno jednostavnih poluempirijskih ili numeričkih formula koje omogućavaju korekciju širine linije za 🗤 apsorber date debljine za slučaj da se ekperimentalni spektar. ipak fituje skupom linija Lorentzovog oblika. Nažalost, zao potrebe ove teze te formule nemaju dovoljnu tačnost, pa je bilov neophodno da se koristi procedura koja fituje čitavu funkciju tipa VI.6. Pokazuje se da je u opštem slučaju praktično nemojuća (osim u izvanredno dobro definisanim spektrima) istovremetri fitovati efektivnu debljinu apsorbera t_s i širine obe lini \mathbb{R}^{3} Γ_{3/2}, Γ_{1/2} kao nezavisne parametre, pošto su ove veličina jako korelirane. Efektivna debljina apsorbera se inače dosta teško eksperimentalno određuje zato što zavisi od faktora bezuza ine apsorpcije f, koji opet zavisi od temperature, pa bi se za svaduje temperaturu morao određivati posebno. Međutim, kod spektarjum kojima postoje linije znatno različitih amplituda, ako je odnos 👘 intenziteta poznat iz drugih uslova, kao što je to napr. VI.5, bo se može u proceduri fiksirati jer je nezavisan od širine linijas ti. debljine apsorbera, odn. temperature. Ovakav pristo omogućuje da se stvarna širina linije u spektru odredi sa dovoljnom tačnošću.

Tipične vrednosti parametara Mossevurnovih spektara dobijenih procedurom konstruisanom na gore opisani način su sledeće:

izomerno pomeranje		0.450(4)	mm/s,	
kvadrupolno cepanje	⊿ =	1.447(2)	mm∕s,	
eksperimentalna širina linije	$\Gamma_{p} =$	0.197(3)	mm/s.	

Froblem paramagnetnog spektra time još nije iscrpljen. Suštinska informacija o dinamičkom kritičnom ponašanju dobija se iz proširenja linija spektara snimljenih u kritičnom regionu, p je stoga vrlo poželjno imati preciznije određenu osnovnu širimu F_0 linije u spektrima. Dok korekcija efekta saturacije apsorptije koriguje sistematsku grešku, dotle se preciznost osnovne širima F_0 može poboljšati ponovljenim merenjima. U tu svrhu snimljena je serija od 20 spektara na "sobnoj" temperaturi. Primenjujući svaki spektar gornju proceduru dobijene su širime linija F_e i iz njih srednja vrednost osnovne eksperimentalne čirimo $F_0 = 0.1982(16)$ mm/s. U idealnom slučaju ova vrednost bi trebaha

$$\Gamma_0 = \Gamma_s + \Gamma_n = 0.1974(13) \text{ mm/s}, \quad (V2.72)$$

gde je $\Gamma_s = 0.1004(13)$ mm/s širina linije korišćenog radioaktivnog izvora, a $\Gamma_n = 0.09703(15)$ mm/s prirodna širina Mösebauerove linije. Uzimajući prosek od deset najužih Γ_e dobija se srednja vrednost $\Gamma_e = 0.1974(16)$ mm/s, dakle potpuno poklapanje sa očekivanom vrednošću VI.7. Ovo je značajno zbog toga što pokazuje da je inače dosta složena procedura za korekciju efekta saturacije apsorpcije pouzdana. Koliko je ta korekcija u ovom slučaju bitna može se zaključiti iz vrednosti širine linija dobijenih fitovanjem teorijskog spektra koji se sastoji samo od dva lorencijana bez prinudnih relacija među njihovim parametrima:

 $\Gamma_{3/2} = 0.243(2) \text{ mm/s}, \Gamma_{1/2} = 0.216(3) \text{ mm/s}$

i vrednosti odgovarajućeg odnosa intenziteta

$$\frac{J_{1/2}}{J_{3/2}} = 0.406(7) \quad .$$

Sa druge strane, poklapanje dobijene širine linije P₀ sa očekivanom pokazuje da brzinski pretvarač spektrometra radi besprekorno i da su iz sistema gotovo potpuno ukloniene parazitske vibracije.

Ostali spektri na "visokoj" temperaturi, od "sobne" 7 = 296 K do početka kritičnog regiona 7 ≃ 148 K snimljeni su u intervalima temperature koji se sve više smanjuju sa snižavanjego temperature, tako da na gornjem kraju taj interval iz del $\Delta T = 20$ K, a sa ulaskom u kritični region $\Delta T = 0.5$ K, sa ukupnim brojem ovih spektara od oko 30. Kvalitativno oni se ne razlikuju od spektara na sobnoj temperaturi. Kod njih je značajno to da 🔗 zbog snižavanja temperature povećava faktor bezuzmačne apsorpcije $f_{_{A}}$, čime se stavlja na probu napred opisana procedura π_{A} korekciju širine linija na efekt saturacije apsorpcije u apsorberu konačne debljine. U rezultatu ove procedure korigovana širina linije pokazuje se kao praktično nezavisna od faktora bezuzmačne apsorpcije. On se u intervalu od 7 = 296 K do 7 = 148 K povećava za faktor 1.4 dok prosečna širina linije u ovom intervalu iznosi $\Gamma_p = 0.199(2)$ mm/s sa statističkim varijacijama bez uočljive korelacije sa sniženjem temperature. To znači da se može očekivati da ova procedura u osnovi ispravno radi i u samom kritičnom regionu 7 = 148 - 136 K, gde je promena faktora bezuzmačne apsorpcije daleko manja. U ovom intervalu "visokih" temperatura može se govoriti o jednakosti eksperimentalnih širina obe linije u eksperimentalnim spektrima. Korigovane širine linija u jednom spektru statistički se ne rezlikuju od širine linija u različitim spektrima.

VI.A.3. Spektri KFeF₄ u kritičnom regionu

U kritičnom regionu od 7 = 147.5 K do 7 = 136.0 K snimljeno je oko 110 spektara. Koraci temperature na ulazu u kritični region bili su ΔT = 0.5 K, dok su u neposrednoj okolini kritične temperature T_N bili ΔT = 10 mK. Kao gornja granica kritičnog regiona uzeta je temperatura ispod koje počinje sistematsko proširenje linija. Nekoliko tipičnih spektara snimljenih u kritičnom regionu prikazano je sl. VI.4 uporedo sa jednim spektrom na sobnoj temperaturi.

Karakteristično za ove spektre je proširenje linija. Proširenje linije na manjoj brzini koja odgovara prelazu $3/2 \rightarrow 1/2$ je mnogo više izraženo nego proširenje linije na većoj brzini, koja odgovara prelazu $1/2 \rightarrow 1/2$. Spektri pokazuju veliku sličnost sa spektrima dobijenim u već spomenutoj studiji dinamike spina u "idealnom" dvodimenzionalnom antiferomagnetiku Isinaovog tipa RbCo(:Fe⁵⁷)F_A [16].

Sa približavanjem temperature kritičnom regionu odozgo dolazi do smanjenja brzine relaksacije elektronskog spina. Kada autokorelaciono vreme spinskih relaksacija τ_c postane dovoljno dugo tako da je samo nekoliko redova veličine kraće od vremena koje je potrebno jezgru da preskoči sa jednog magnetnog podnivo na drugi, odn. od odgovarajućeg vremena Lammomove precesije τ_L u fiktivnom statičkom magnetnom polju proizvedenom elektronskim spinom na mestu jezgra, dolazi do "povlačenja" jezgra za relaksirajućim hiperfinim magnetnim poljem. Dok je brzina relaksacije elektronskog spina velika, brzina nuklearne relaksacije je mala, a sa produžavanjem vremena relaksacije elektronskog spina vreme relaksacije jezgra se skraćuje.

Slika VI.4.

Tipični Moseeeuemovi spektri KFeF₄ snimljeni u kritičnom regionu iznad kritične temperature $T_{\rm N} = 136.15$ K. Sa t je označena odgovarajuća vrednost redukovane temperature. Radi poređenja gore je prikazan spektar snimljen na sobnoj temperaturi.

Različito proširenje linija ukazuje na postojanje anizotropije relaksacija spina. Veće proširenje linije prelaza $3/2 \rightarrow 1/2$ daje osnovu predpostavci da je brzina nuklearne relaksacije u stanju sa većim mogućim magnetnim kvantnim brojen (3/2) veća, a time i vreme relaksacije elektronskog spina duž z-ose sistema τ_c^{μ} duže. Dvo je takođe u kvalitativnom skladu sa predpostavkom da je favorizovani pravac orijentacije spina onaj duž glavne ose kristala.

Izračunavanje oblika MösseAuerovih spektara koji potiču iz jezgara u flukturajućem okruženju (tzv. relaksacionih spektara), koje bi omogućilo kvantitativnu interpretaciju gornje uprošćena kvalitativne slike, je generalno uzev veoma složen problema Rešenja ovog problema u zatvorenoj formi primenljiva za kvantitativnu evaluaciju parametara eksperimentalnih spektara dobijena su samo u malom broju slučajeva. U osnovi postoje dva komplementarna pristupa ovom problemu. Jedan je tzv. stohastički model čiji se počeci javljaju u radovima M. Blumea [33], F. vom DER WOUDER 1 A. J. DEKKERA [34], H. H. WICKMANA, M. P. KLEINA 1 D. A. SHIRLEYA [35] itd. Osnovna karakteristika ovog pristupa je zamena realne fluktuirajuće hiperfine interakcije haotično varirajućim spoljašnjim magnetnim poljem (odn. gradijentom električnog polja). Prednost ovog pristupa je mogućnost simulacije Mosseeverovih spektara u širokom dijapazonu brzina relaksacije, pa i u kritičnim slučajevima intermedijarnih vremena relaksacije ($\tau_r \approx \tau_l \approx \tau_R$). Međutim, zbog toga što stohastički model nije zasnovan na opštevažećim polaznim fizičkim principima, stohastičko relaksaciono vreme, koje bi se eventualno dobilo u rezultatu fitovanja eksperimentalnih spektara ovim modelom, teško bi se moglo povezati sa autokorelacionim vremenom elektronskog spina III.6, koje predstavlja okosnicu teorije kritičnog usporenja (vidi poglavlje II i III).

Strana 74

Drugi, tzv. perturbacioni pristup, čiji razvoj počinje sa radovima A. M. AFANAB'EVA i Yu. Kagana [36,37], H. Wegenera [38], BRADFORDA i W. MARBHALLA [39], polazi od korektnog Ε. hamiltonijana za celokupni sistem koji se sastoji od hamiltonijana MösseAucrovog jezgra, hiperfine interakcije jezgra sa elektronskim spinom, interakcije elektronskog spina sa ostalia elektronskim spinovima i konačno ovih spinova sa ostalim stepenima slobode. Pri tome se sve direktne i indirektne interakcije jezgra sa okolinom tretiraju kao perturbacije osnovnog hamiltonijana elektromagnetnog prelaza u jezgru. Nedostatak ovog pristupa je mogućnost dobijanja rešenja u konačnoj formi samo u graničnim slučajevima brzih ($au_{
m c} \ll au_{
m l}$) i sporth $(au_{_{
m C}} \gg au_{_{
m L}})$ relaksacija elektronskog spina. Sa druge strane, vreme relaksacije spina τ_c koje ulazi u ovaj model je po definiciji upravo autokorelaciono vreme III.6 [14].

Za interpretaciju Monanavenovih spektara KFeF₄ u kritičnom regionu u ovoj tezi su korišćeni rezultati teorije Braneromoja i Manahoula [39] koji su izračunali oblike relaksacionih Monanavenovih spektara za prelaz $3/2 \rightarrow 1/2$ (Fe⁵⁷) u graničnom slučaju brzih relaksacija elektronskih spinova. Od svih rezultata ove teorije izraženih u aplikabilnoj formi, realnoj situaciji u kristalu KFeF₄ najbolje odgovara specijalan slučaj kada je tenzor gradijenta električnog polja aksijalno simetričan i kada se glavna osa z tenzora gradijenta električnog polja poklapa sa pravcem preferirane orijentacije elektronskog spina. U tom slučaju hamiltonijan osnovnog stanja sistema jezgro-elektron je

 $\widehat{H}_{q} = \widehat{H}_{e1} + \overrightarrow{I}_{q} \cdot \widehat{A}_{q} \cdot \overrightarrow{S} ,$

gde je \widehat{H}_{el} hamiltonijan elektronskog dela, \overline{I}_{g} spin osnovnog stanja jezgra, \widehat{A}_{g} operator hiperfine interakcije, a Š spin

elektrona. Hamiltonijan pobuđenog stanja je

$$\widehat{H}_{\rm e} = \widehat{H}_{\rm e1} + \hbar\omega_0 + \frac{e^2 q Q}{4} (J_z^2 - \frac{5}{4}) + \vec{I}_{\rm e} \cdot \widehat{A}_{\rm e} \cdot \vec{S} \ , \label{eq:Helpha}$$

gde je ħω₀ energija prelaza jezgra, I_e spin pobuđenog stanja jezgra, a Â_e operator hiperfine interakcije u pobuđenom stanju. U oba slučaja hiperfina interakcija ima formu

$$\vec{I} \cdot \hat{A} \cdot \vec{S} = A^{"} I_{s} S_{s}(\tau) + A^{i} [I_{s} S_{s}(\tau) + I_{s} S_{s}(\tau)] \qquad (\forall 1.7)$$

sa aksijalnom simetrijom oko ose z,gde su A" i A¹ konstante hiperfine interakcije u pravcu paralelnom i normalnom na z-usu. Pored ovoga, pretpostavljeni oblik spinske autokorelacione funkcije II.4 je .

$$C^{\alpha\alpha}(0,\tau) = \delta_{\alpha z} e^{-|\tau|/\tau_z^{\mu}} + (\delta_{\alpha x} + \delta_{\alpha y}) e^{-|\tau|/\tau_z^{\mu}}, \qquad (VI.B)$$

gde su v_c^μ i v_c^i različita autokorelaciona vremena za relaksacije duž *z*-ose i normalno na nju, respektivno. Iz teorije Beapeoece i Messuella pod uslovima

$$\frac{\hbar}{\tau_c} > 1A1 , \qquad (VI.9)$$

$$\frac{\hbar}{\tau_c} > \frac{e^2 I q Q I}{A} , \qquad (VI.10)$$

dobija se forma MösseAugeovog spektra opisana relativno komplikovanim formulama, ali ipak u obliku primenljivom za simulaciju numeričkim metodama. Ukoliko su uslovi VI.9 i VI.10 strožije ispunjeni

$$\frac{\hbar}{\tau_c} \gg |A| , \qquad (\forall I.11)$$

$$\frac{\hbar}{\tau_c} \gg \frac{e^2 |qQ|}{4} , \qquad (\forall I.12)$$

može se pokazati da se forma spektra svodi na dve spektralna linije čiji oblik zanemarljivo malo odstupa od Lonesvrzovog oblika, a odnos intenziteta zanemarljivo malo odstupa od odnose intenziteta VI.4 određenog statičkom hiperfinom interakcijom. Ono što se suštinski menja u odnosu na spektre u paramagnetnos regionu su samo širine linija. Proširenje linije koja odgovaro prelazu 3/2 → 1/2 iznosi

$$\Delta \Gamma_{1} = \frac{S(S+1)}{6\delta^{2}} \left[\left(A_{g}^{"} - 3A_{e}^{"} \right)^{2} \tau_{c}^{"} + 2 \left(A_{g}^{1^{2}} + 3A_{g}^{1^{2}} \right) \tau_{c}^{1} \right] , \qquad (VI.13)$$

a proširenje linije koja odgovara prelazu 1/2 → 1/2

$$\Delta \Gamma_2 = \frac{S(S+1)}{6\hbar^2} E (A_q^{\parallel} + A_q^{\parallel})^2 \tau_c^{\parallel} + 2 (A_q^{\perp}^2 + 7A_q^{\perp}^2) \tau_c^{\perp}], \qquad (\forall 1, 14)$$

gde su A_g i A_e konstante hiperfine interakcije u osnovnom 🕼 pobuđenom stanju jezgra respektivno.

Na osnovu ovog rezultata teorije Bradforda i Marshella, spektri snimljeni u kritičnom regionu fitovani su korišćenje. iste procedure koja je upotrebljena za fitovanje spektara na "visokoj" temperaturi, podrazumevajući sada nezavisne širine linija dubleta. Ipak, postupak za korekciju efekta saturacije apsorpcije nije mogao da bude jedinstven za sve spektre u kritičnom regionu. Postupak opisan kod visokotemperaturnih spektara omogućava određivanje efektivne debljine t. samo dok se amplitude linija dovoljno razlikuju. Kada se usled jačeg širenja linije većeg intenziteta amplitude linija gotovo izjednače, određivanje t_a postaje nepouzdano. Sa druge strane, ima osnove predpostavka da se u preostalom delu kritičnog regiona efektivna debljina usled promene temperature (AT = 0.4 K) zanemarljivo maio menja. Zato <mark>je prilikom f</mark>itovanja ovih spektara sa jako proširenim linijama fiksirana veličina t_a, a za njenu vrednost

uzeta je srednja vrednost iz 20-tak spektara kod kojih je određivanje ove veličine još moguće. Postoji dosta široki region temperature u kojem obe ove procedure daju praktično iste rezultate. Takođe treba imati u vidu da je uticaj netačnosti efektivne debljine apsorbera t_a kod spektara sa proširenim linijama vrlo mali (korekcija je $\approx e^3$ puta manja nego kod spektara sa prirodnom širinom linije).

Frema BRADFORD-MARSHALLOVOj teoriji, kada uslovi VI.11 : VI.12 nisu ispunjeni strogo, tj. kada najduže autokorelaciono vreme v_r^{H} postane dovoljno dugo, pored širenja linija, dolazi i d ω narušavanja Lomentzovog profila linija. Na sl. VI.4, na spektru snimljenom na 7 = 136.240 K, koji je najbliži kritičnoj temperaturi, vide se kod šire linije mala odstupanja od teorijska funkcije koja je strogo Lomentzovog oblika. Na spektrima snimljenim ispod 7 = 136.210 K ova odstupanja su jače izražena, pa ovi spektri nisu bili uzeti u obzir prilikom evaluarije vremena relaksacije spina opisane u odeljku VI.4. Pokušaj da se spektri snimljeni ispod 7 = 136.210 K simuliraju opštijim formulama BRADFORD-MARSHALLOVE teorije nije u potpunosti uspec. Objašnjenje leži verovatno u nesavršenosti teorije kada nisu ispunjeni strožiji uslovi VI.11 i VI.12. Takođe treba imati u vidu da predpostavka o kolinearnosti ose preferirane orijentacija spina i glavne ose tenzora gradijenta električnog polja samo približno važi za kristal KFeF, ($\theta = 12^{\circ}$). Pri dugim relaksacionim vremenima zato treba računati sa prisustvom (doduše slabih) linija koje potiču od prelaza indukovanih vandijagonalnim elementima hamiltonijana. Na žalost, teorija relaksacionih Mösseeverovih spektara koja bi egzaktno tretirala ovakav opštiji slučaj ne postoji u obliku primenljivom za konkretan račun kojim bi se mogle kvantitativno proveriti pretpostavke o ovim efektima drugog reda.

VI.B. ZAVISNOST ŠIRINA LINIJA OD TEMPERATURE

Širine linija Mosseaureovih spektara snimljenih u kritičnom regionu od 7 = 148.000 K do 7 = 136.210 K, određene po procedur opisanoj u prethodnom odeljku, prikazane su u funkciji redukovane temperature na sl. VI.5.

Slika VI.5.

Širine linija MösseAuesovih spektara KFeF₄ u funkciji redukovane temperature. Γ_1 (ispunjeni kružići) je širina linije prelaza $3/2 \rightarrow 1/2$, a Γ_2 (otvoreni kružići) je širina linije prelaza $1/2 \rightarrow 1/2$. Greške su radi preglednosti predstavljene samo na nekim tačkama. Na temperaturama $t > 10^{-3}$ greške su manje od dimenzija kružića.

Ova slika sadrži praktično celokupnu eksperimentalno informaciju dobijenu pomoću Moeseeveesove spektroskopije, koja je korišćena u daljoj interpretaciji rezultata. U njoj se sadrže podaci dobijeni kako pri približavanju kritičnoj temperaturi, tako i pri udaljavanju od nje. Oba seta podataka se poklapaju u granicama greške, što svedoči o stabilnosti temperaturne skale u toku više meseci snimanja. Kvalitativno, ova slika ilustruje stepeni zakon kritičnog usporenja (jedn. 11.8).

VI.C. ANIZOTROPIJA FLUKTUACIJA SPINA U KRITIČNOM REGIONU

Koristeći' rezultate BRADFORD-MARGHALLOVE teorije može se iz poznatih proširenja Mosonauceovih linija kvadrupolnog dubleta ΔF_i i ΔF_2 odrediti veličina p koja je mera stepena anizotropije spinskih relaksacija:

$$\rho = \left(\frac{A^{1}}{A^{n}}\right)^{2} \frac{\tau_{c}^{1}}{\tau_{c}^{n}} \quad . \tag{VI.15}$$

Na osnovu jednačina VI.13 i VI.14 dobija se za p numerički izraz u kome figuriše odnos proširenja linija

$$p = \frac{1}{2} \left(\frac{c}{a - \Delta \Gamma_2 / \Delta \Gamma_1} - b \right) , \qquad (V1.16)$$

gde su

$$a = \frac{1+7r^2}{1+3r^2}$$
, $b = \frac{(1-3r)^2}{1+3r^2}$, $(VI.17)$

$$c = \frac{a(1-3r)^2 - (1+r)^2}{1+3r^2}, \qquad r = \frac{g_{\rm P}}{g_{\rm q}} .$$

Strana 84

Strana 85

Uzimajući eksperimentalno određene vrednosti širina linija r_1 i r_2 u kritičnom regionu i osnovnu vrednost eksperimentalne širine linije r_0 iz VI.7, na sl.VI.6 prikazan je ovaj parametar u funkciji redukovane temperature.

Slika VI.6.

Parametar anizotropije p spinskih fluktuacija u funkciji redukovane temperature. Radi preglednosti greške su prikazane samo na nekim tačkama.

Temperaturna zavisnost parametra anizotropije p potiče od zavisnosti autokorelacionih vremena τ_c^{\parallel} i τ_c^{\perp} od temperature. Iz izraza VI.15 vidi se da u slučaju potpuno izotropnih relaksacija

Strana 80

parametar anizotropije uzima vrednost p = 1, a u slučaju čistu longitudinalnih relaksacija vrednost p = 0. Kao što je napomenuto u poglavlju IV, za KFeF₄ bi se očekivalo da je slabo anizotropan Heiseneemov sistem (S =5/2). Kao što se jasno vidi na sl. VI.6, na temperaturama daleko iznad kritične temperature T_N fluktuacije spina su izotropne $p \approx 1$, dok sa približavanjem temperature kritičnoj temperaturi fluktuacije postaju anizotropne, a u relaksacionim spektrima preovladavaju efekti longitudinalnih fluktuacija $p \approx 0$. Ovo je važan rezultat zato što daje realnu osnovu predpostavki učinjenoj u odeljku IV.A da je KFeF₄ dobar predstavnik dinamičke klase univerzalnosti opisane modelom A sa (d,n) = (2,1).

VI.D TEMPERATURNA ZAVISNOST LONGITUDINALNOG AUTOKORELACIONOG VREMENA τ_r^{μ}

Na osnovu grafika VI.6 i formule VI.15 može se zaključiti da sa približavanjem kritičnoj temperaturi divergira longitudinalno autokorelaciono vreme spinskih fluktuacija τ_c^{μ} . Iz eksperimenata sa rasejavanjem neutrona [40, 9] na dvodimenzionalnim antiferomagneticima poznato je da je kritično rasejavanje određeno samo *longitudinalnom* komponentom $S^{\mu}(\vec{q},\omega)$ dinamičkog strukturnog faktora. Na usnovu relacije autokorelacionog vremena i dinamičkog strukturnog faktora III.7 može se takođe zaključiti da bi u Mosseauceovoj spektroskopiji upravo *longitudinalno* autokorelaciono vreme trebalo da odražava stvarno kritično ponašanje.

BRADFORD-MARBHALLOVA teorija takođe omogućava odredivanje longitudinalnog autokorelacionog vremena τ_r^{μ} iz proširenja $\Delta \Gamma_i$ i

ΔΓ₂ linija kvadrupolnog dubleta. Iz jednačina VI.13 i VI.14 dobija se

$$\tau_{c}^{"} = \frac{a\Delta\Gamma_{1} - \Delta\Gamma_{2}}{\frac{S(S+1)A_{q}^{n/2}}{6\delta^{2}} [a(1-3r)^{2} - (1+r)^{2}]}, \quad (\forall I.18)$$

gde su a i r bezdimenzioni faktori definisani relacijama VI.17, a $A_g^u = \mu_N g_g H_0$, označavajući sa H_0 vrednost hiperfinog magnetnog polja na T = 0 K, $H_0 = 54.0(4)$ T [11].

Uzimajući eksperimentalno određene vrednosti širina linija Γ_1 i Γ_2 i osnovnu vrednost širine linije Γ_0 iz VI.7 izračunata su prema izrazu VI.18 vrednosti longitudinalnog autokorelaciondo vremena τ_c^* i grafički prikazane u funkciji redukovane temperature na sl. VI.7.

Sa grafika treba uočiti da je u ovim eksperimentima uspelo određivanje jednog kritičnog parametra sa promenom u rasponu od 3 reda veličine (od $\tau_c^{"} = 10^{-12}$ s do $\tau_c^{"} = 10^{-9}$ s) u kritičnom regionu, što je u odnosu na druge eksperimente vrlo dobar rezultat.

Slika VI.7.

Longitudinalno autokorelaciono vreme spinskih fluktuacija τ_c^{\parallel} u funkciji redukovane temperature t. Nagibi pravih linija određuju vrednosti kritičnog eksponenta w dobijene ispod i iznad t $\simeq 5 \times 10^{-3}$ postupkom opisanim u tekstu. Greške su radi preglednosti prikazane samo na nekim tačkama.

VI.E. ODREĐIVANJE KRITIČNOG EKSPONENTA N

Da bi se napravio grafik sa slike VI.7 potrebno je poznavil tačnu vrednost kritične temperature T_N. Kao što je napomenulo u odeljku V.C.2, u relativnoj temperaturnoj skali koja je koristena prilikom merenja kritična temperatura je poznata samo sa tačnošću od oko ±0.5 K. Tačna vrednost kritične temperature može se dobiti zajedno sa kritičnim eksponentom na sledeći način. Relacija 111.9 može da se napiše u obliku

$$\tau_c^{\mathbb{H}} = \tau_0 \left(T/T_{\mathbb{N}} - 1 \right)^{-\mathbb{N}} . \qquad (VI.19)$$

Uzimajući v_0 , T_N i w kao slobodne parametre, iz eksperimentalno dobijene zavisnosti longitudinalnom autokorelacionog vremena $\tau_c^{\prime\prime}$ od temperature T fitovanje metodom najmanjih kvadrata daće odgovarajuće najbolje vrednosti kritične temperature i kritičnog eksponenta w.

Prema relaciji III.9 očekivalo bi se da u log-log skali grafik $\tau_c^{\mu} = \tau_0^{\mu}(t)$ bude prava linija čiji je nagib određen eksponentom w. Međutim, relacija III.9 važi samo asimptotski $(t \rightarrow 0)$; granica kritičnog regiona nije tačno određena. Da bi se dobila prava vrednost T_N i asimptotska vrednost w postupljeno je na sledeći način, koji je uobičajen kod evaluacije kritično eksponenata [41, 11]. Pravi se niz gore opisanih ritovanja jednačine VI.19 sukcesivno ispuštajući zadnju tačku na strani visoke temperature sve dok nije preostalo oko 15 tačaka najbližih T_N . Dalje smanjivanje broja tačaka dovodi do naglog povećanja neodređenosti fitovanih parametara. (Treba imati u vidu da su prema obliku funkcije VI.19 parametri τ_0 , T_N i w jako korelirani,

te je održavanje dovoljnog broja stepeni slobode u fitu značajno.) Niz tako dobijenih vrednosti kritičnog eksponenta w prikazan je na grafiku na sl. VI.8 u funkciji maksimalne redukovane temperature t_{max} upotrebljene u fitu.

Slika VI.8.

Varijacija kritičnog eksponenta w sa maksimalnom redukovanom temperaturom t_{max} dobijena u procesu fitovanja stepenog zakona u jedn. VI.18. Desna ordinata prikazuje odgovarajuće vrednosti dinamičkog kritičnog eksponenta z.

Za $t_{max} > 3 \times 10^{-2}$ kritični eksponent w je gotovo konstantan. Ispod $t_{max} \simeq 3 \times 10^{-2}$ on kontinuirano opada, sve dok kod

Strana 90

 $t_{max} \simeq 5 \times 10^{-3}$ ne dođe do izrazitog skoka eksponenta w na nižu i skoro konstantnu vrednost, što je propraćeno primetnim smanjenjem vrednosti χ^2 fita.

Isprekidane horizontalne linije na sl. VI.8 odgovaraju najboljim vrednostima kritičnog eksponenta w = 1.36(1) i w = 1.20(4) koje se dobijaju, prva, u celom kritičnom regionu $4 \times 10^{-4} < t < 10^{-1}$, a druga samo u užem delu blizu kritične temperature $4 \times 10^{-4} \le t \le 5 \times 10^{-3}$. Iz ove diskusije sledi da se kritični eksponent w menja u posmatranom kritičnom regionu i da postoji neka granica ispod koje je stabilan. Da bi se utvrdilo da li je u pitanju prelaz sa jedne određene vrednosti na drugu ("crossover") načinjen je fit sa vrednostima longitudinalnog autokorelacionog vremena $\tau_{c}^{\mu}(t)$ samo *iznad* $t = 5 \times 10^{-3}$. Obzirom da je neodređenost kritične temperature T_N u rezultatu takvog fita relativno velika, jer ne učestvuju tačke blizu T_N , u ovom slučaja $T_{\rm N}$ je fiksirano na precizniju vrednost $T_{\rm N}$ = 136.150 K dobijenu fitovanjem u užem delu $4 \times 10^{-4} < t < 5 \times 10^{-3}$. Rezultat je prikazan na sl. VI.7 pomoću dve prave linije čiji nagibi odgovaraju vrednostima kritičnog eksponenta w = 1.20(4) i w = 1.42(2) ispod i iznad približne granične redukovane temperature $t \simeq 5 \times 10^{-3}$ respektivno. Vidi se da eksperimentalne tačke leže na dve prave linije bliskog nagiba, ali ipak jasno odvojene sa relativno uskom prelaznom oblašću, što ide u prilog tezi da su u pitanju dve oblasti sa različitim kritičnim ponašanjem. Male neodređenosti tačaka u delu kritičnog regiona ispod granične redukovane temperature i veliki broj tačaka sa većom neodređenošću u delu regiona iznad granične redukovane temperature omogućava da se obe vrednosti kritičnog eksponenta w dobiju sa relativno malom standardnom devijacijom.

VI.F. EVALUACIJA DINAMIČKOG KRITIČNOG EKSPONENTA z

Za izračunavanje vrednosti dinamičkog kritičnog eksponenta z iz kritičnog eksponenta w korišćene su sledeće relacije

$$z = \frac{d(\omega + 2\beta)}{\gamma + 2\beta} , \qquad (\forall I.20)$$

$$z = \frac{\omega + 2\beta}{\nu} , \qquad (VI.21)$$

koje su uvedene umesto jednačine III.10 korišćenjem veza između kritičnih eksponenata (relacije skaliranja). Ova varijanta relacija kritičnih eksponenata z i ω je naročito povoljna zbog toga što je vrednost statičkog kritičnog eksponenta $\beta = 0.151(3)$ za KFeF₄ precizno izmerena [11] na kristalima istog porekla, koristeći sličnu eksperimentalnu tehniku i sličnu metodologiju obrade rezultata. Statički kritični eksponenti γ i ν nisu do sada izmereni za KFeF₄, pa se ovde izračunate vrednosti dinamičkog kritičnog eksponenta z baziraju na sledećim predpostavljenim vrednostima: $\gamma + 2\beta = 1.95(5)$ i $\nu = 0.95(6)$. Ove su vrednosti dobijene kao otežane srednje vrednosti iz podataka izmerenih rasejavanja neutrona [40] za nekolicinu slojnih tehnikom dvodimenzionalnih antiferomagnetika, po statičkom kritičnom ponašanju vrlo sličnih kristalu KFeF₄, kao što su K₂NiF₄, K₂MnF₄, K₃Mn₂F₇ itd. Vrednosti dinamičkog kritičnog eksponenta z prezentovane u tab. VI.2 su otežane srednje vrednosti rezultata izračunavanja iz obe formule VI.20 i VI.21. Ista operacija korišćena je za kalibraciju desne ordinate na sl. VI.8.

Tabela VI.2.

Pregled dinamičkih kritičnih parametara za različite dvodimenzionalne antiferomagnetike Isingovog tipa.

Kristal	7 _N (к)	ы	z	Oblast t	Metoda	Re ^s .
K ₂ CoF ₄	107.44	1.53(3)	1.74(13)	a 10 ⁻¹ <t<2<sup>b</t<2<sup>	¹⁹ F NMR	42
Rb ₂ Co ₂ F ₄ 99. 103. 102.	99.8	1.40(5)	1.61(13)	a $10^{-1} < t < 4 \times 10^{-1}$	87 Rb NMR	43
	103.20(2)		1.21(10)		atenuacija	1 20
	102.96(1)		1.69(5)	3×10 ⁻² <t<4×10<sup>-1</t<4×10<sup>	ultrazvuka rasejanje neutrona	Ŧ
KFeF ₄	135.796(6)	0.91(5)	1.29(9)	$10^{-4} < t < 10^{-3}$	MORBRAUER	1.1
	136.131(3)	1.36(1)	1.71(4)	$4 \times 10^{-4} < t < 10^{-1}$	MOBSBOUEL	a
	136.15 ⁰	1.42(2)	1.77(5)	5×10 ⁻³ <t<10<sup>-1</t<10<sup>	MOSSAUER	d
	136.150(5)	1.20(4)	1.54(2)	$4 \times 10^{-4} < t < 5 \times 10^{-3}$	Mössbaler	ġ

^a U originalu publikovano samo w. Vrednosti z su izvedene analogno postupku u ovoj tezi.

^b Procenjeno iz grafika dotične reference.

^c Fitovanje pri fiksnom $T_{\rm N}$ = 136.15 K.

^d Rezultati ek**sperimen**ata opisanih u ovoj tezi.

VII.A. DISKUSIJA REZULTATA

Najvažniji rezultat koji se može uočiti u tabeli VI.2 je taj da je vrednost dinamičkog kritičnog eksponenta z = 1.71(4) koja je dobijena iz najboljeg fita u celom ispitivanom regionu redukovane temperature $4 \times 10^{-4} \le t \le 10^{-1}$ konzistentna aa vrednošću z = 1.75 koju predviđa konvencionalna teorija dinamičkog kritičnog ponašanja za sisteme sa (d,n) = (2,1). To potvrđuje i predpostavku koja je učinjena o vrednostima statičkih kritičnih eksponenata neophodnim za evaluaciju eksponenta z (odeljak VI.F). Ova vrednost takođe se slaže sa vrednošću koju su izmerili M. T. Hutchings i saradnici [9] metodom neelastičnog rasejavanja neutrona uz visoku rezoluciju na Rb₂CoF₄ gotovo idealnom predstavniku klase univerzalnosti (d,n) = (2,1). Slične vrednosti eksponenta z mogu da se izračunaju iz rezultata merenja pomoću NMR takođe na Rb_2CoF_4 kao i na K_2CoF_4 , koje su ranije izveli C. Buccı i saradnici [42, 43]. Međutim, merenja pomoću NMA izvedena su dosta daleko od kritične temperature.

U temperaturnom regionu $4 \times 10^{-4} < t < 5 \times 10^{-3}$ blizu kritično temperature $T_{\rm N}$ podaci sakupljeni u ovim merenjima daju vrednost dinamičkog kritičnog eksponenta z = 1.54(6) koja se donekla razlikuje od vrednosti koja proizilazi iz konvencionalne teorije (sl. VI.7 i VI.8). Ova vrednost je bolje zasnovana nego vrednost z = 1.29(9) koju su preliminarno dobili H. Keller i I. M. Savzć [11] u sličnom temperaturnom intervalu iz sledećih razloga: i) sa tehničke strane ovo su mnogo detaljniji eksperimenti sa daleko više eksperimentalnih podataka, sa mnogo manjom i dosledno sprovedenom korekcijom na konačnu debljinu kristala i, konačno, mnogo manjom mogućnošću "razmazivanja" kritičnih rezultata usled temperaturnog gradijenta na kristalu (poglavije V),

ii) sa principijelne strane, za razliku od ref. 11 gde je do kraja zadržana predpostavka o izotropnom karakteru spinskih fluktuacija u KFeF₄, ovde je evaluacijom parametra anizotropije fluktuacija spina u kritičnom regionu direktno pokazano da su fluktuacije sve više anizotropne sa približavanjem kritičnoj temperaturi, tako da za $t < 10^{-2}$ longitudinalne fluktuacije spina sasvim preovlađuju. Ovo se izvanredno dobro uklapa u sliku koju daju teorije navedene u poglavlju IV.D, prema kojima mala anizotropija Isineovog tipa u razmenskoj interakciji normalnoj na magnetne slojeve kvazi-dvodimenzionalnog antiferomagnetnog inače Hereensereovog sistema prouzrokuje kritično ponašanje u skladu sa ponašanjem dvodimenzionalnog Isineovog sistema. To je takođe u saglasnosti sa ranije izmerenom [11] vrednošću statičkog kritičnog eksponenta $\beta = 0.151(3)$, koja je bliska teorijskoj vrednosti za Isineove sisteme.

Ovde se postavlja principijelno pitanje da li je izmereno odstupanje od konvencionalne teorije fizički realno ili je ono samo artefakt korišćene teorije relaksacionih Mosađaučkovih spektara. Korišćena teorija Bradromoda i Marehalla je razuman pristup zbog toga što su autokorelaciona vremena dovoljno kratka, $\tau_c < 10^{-10}$ s, da se predviđena forma spektra može dobro aproksimirati kombinacijom dva lorencijana i da važe jednačine VI.13 i VI.14. Potvrda ovog modela je takođe činjenica da se eksperimentalno dobijeni spektri vrlo dobro fituju na lorencijane u praktično celom temperaturnom regionu (sl. VI.4). Ipak, ispod

redukovane temperature $t \approx 10^{-3}$ vidljive su male devijacije od Lomentzovog oblika linija, koje se najverovatnije mogu objasniti uticajem nedijagonalnih elemenata u hamiltonijanu hiperfine interakcije koji se pojavljuju zbog malog ugla između glavne komponente tenzora gradijenta električnog polja V_{zz} i hiperfinog magnetnog polja H u kristalu KFeF₄. No u tom regionu odstupanje od stepenog zakona w = 1.42(2), koji znači konvencionalno dinamičko kritično ponašanje, je već definitivno uspostavljeno.

U primeni BRADFORD-MARSHALLOVE teorije takođe je prećutno korišćena predpostavka da spinska korelaciona funkcija $C^{aa}(0,g)$ ima eksponencijalni oblik (jedn. VI.8). Međutim, kod kritičnih fluktuacija korelaciona funkcija opada sporije od eksponencijalne funkcije [44, 45]. Doduše, A. M. Gottlies i saradnici su pokazali [44] da BRADFORD-MARBHALLOVA teorija važi za proizvoljan oblik korelacione funkcije ako su autokorelaciona vremena $au_c^{ extsf{H}}$ i $au_c^{ extsf{L}}$ Ab jedn. VI.13 i VI.14 definisana vremenskim integralima III.6. Ipak, da bi BRADFORD-MARSHALLOV model važio, ako ne baš eksponencijalno, korelaciona funkcija mora opadati dovoljno brzo, jer su granice integracije u jedn. III.6 u praksi konačne. Kod relativno dugih kritičnih fluktuacija ovo može predstavljati problem zbog vremenski jako razvučene korelacione funkcije. Otuda sledi da se ne može u potpunosti isključiti mogućnost da do "preloma" u funkciji autokorelacionog vremena longitudinalne komponente spinskih fluktuacija $au_{c}^{''}$ od redukovane temperature (sl. VI.7 i VI.8) dolazi usled nesavršenosti modela upotrebljenog za interpretaciju podataka.

U temperaturnom regionu $t > 5 \times 10^{-3}$ spinska autokorelaciona vremena su sigurno dovoljno kratka, $\tau_c^{\parallel} < 3 \times 10^{-11}$, da sve predpostavke korišćenog teorijskog modela važe sasvim strogo. To se vidi i sa slike VI.4 gde je slaganje eksperimentalnih spektara sa fitovanim modelom savršeno. Kao rezultat ovoga, u

ograničenijem regionu redukovane temperature $5 \times 10^{-3} < t < 10^{-3}$ određena je sigurna vrednost z = 1.77(5), koja se savršeno poklapa sa vrednošću z = 1.75 koju predviđa konvencionalna teorija kritičnog dinamičkog ponašanja za klasu univerzalnosti (d,n) = (2,1).

VII.B. ZAKLJUČAK

U ovoj tezi opisani su rezultati eksperimentalnog istraživanja dinamičkog kritičnog ponašanja kvazi-dvodimenzionalnog slojnog antiferomagnetika KFeF₄ iznad kritične temperature $T_N = 136.2$ K koje je izvršeno vrlo detal no metodom Mössemuskove spektroskopije. Najvažniji zaključci koji su mogli da se izvuku interpretacijom eksperimentalnog materijala no osnovu trenutnog stanja torije kritične dinamike i relaksacion teorije Mössemuskovih spektara su sledeći:

Nasuprot ne tako starom uverenju da je KFeF₄ predstavnik slabo anizotropnih Hersenseemovih antiferomagnetika, ovde je pokazano da su kritične spinske fluktuacije u KFeF₄ jako anizotropne, njihova je longitudinalna komponenta, koja ustvari odražava kritično ponašanje, normalna na magnetne slojeve. Iz longitudinalnog spinskog autokorelacionog vremena $\tau_c^{"}$ dobijencij u rezultatu fitovanja metodom najmanjih kvadrata u celom ispitivanom kritičnom regionu sa redukovanom temperaturom $4 \times 10^{-4} < t < 10^{-1}$ izvedena je vrednost dinamičkog kritičnog eksponenta z = 1.71(4). Ova vrednost je u dobrom slaganju sa vrednošću z = 1.75 koju predskazuje konvencionalna teorija kritičnog ponašanja za model (d,n) = (2,1), kao i sa vrednošću z = 1.69(5) dobijenom merenjima na "idealnom" dvodimenzionalnom antiferomagnetiku Istneovog tipa Rb_2CoF_4 metodom neelastičnog

rasejavanja neutrona uz visoku rezoluciju [9]. Počev od $t \simeq 5 imes 10^{-5}$ konstatovano je odstupanje dinamičkog kritičnog eksponenta 2 od konvencionalne ka manjoj vrednosti z = 1.54(6), (sl. $\forall 1.7$) VI.8), što bi ukazivalo na uspostavljanje nekonvencionalnug ponašanja. Ova eksperimentalna vrednost leži u opsegu z = 1.4 - 2.2 u kojem leže i rezultati sadašnjih teorija za model A sa različitim pristupima [8]. [Da model C, koji je u principu dozvoljen u ovoj statičkoj klasi univerzalnosti, ne dolazi u obzir jasno je, prvo, otuda što ni jedna od eksperimentalnih vrednosti z ne leži ni blizu odgovarajućih teorijskih vrednosti (tab. II.1) i, drugo, što se nekonvencionalno kritično ponašanje ne uspostavlja ni približno u celom kritičnom regionu.] Ipak, usled nesavršenosti, teorijskog modela primenjenog ma interpretaciju relaksacionih Mösseauerovih spektara ne može se sa sigurnošću tvrditi da je izmerena prava asimptotska vrednost dinamičkog kritičnog eksponenta za model A. Predpostavke iznesene u diskusiji o drugim mogućim uzrocima ove devijacije od konvencionalnog ponašanja moguće bi bilo proveriti samo uz pomoć teorija relaksacionih Möseseverovih spektara "drugog reda" koje, na žalost, do danas nisu razvijene u numerički primenljivom vidu.

U regionu redukovane temperature $t > 5 \times 10^{-3}$, u kome je slaganje spektara sa teorijom Bradprorda i Marshella savršeno dobijena je vrednost dinamičkog kritičnog eksponenta z = 1.77(5). Ova je vrednost još bliža vrednosti predviđenoj konvencionalnom teorijom nego ona koja je dobijena u celom ispitivanom regiona. Otuda se može zaključiti da *konvencionalna teorija ostaje na snazi najmanje do t* \simeq 5×10⁻³. Ovaj je rezultat u skladu sa teorijskim predviđanjima Mazenkoa i Vallea [8] da je za dinamičku klasu univerzalnosti (d,n) = (2,1) model A asimptotski dinamički kritični region mnogo uži nego odgovarajući statički kritični region. Radi poređenja, statički kritični region KFeF₄ je relativno širok i prostire se sve do $t \approx 10^{-1}$ [11]. Dakle, KFeF₄

je dobar predstavnik ove dinamičke klase univerzalnosti.

Ove utvrđene eksperimentalne činjenice, bez obzira na ograde oko interpretacije dobijene asimptotske vrednosti dinamičkog kritičnog eksponenta, pružaju kvalitativno novi uvid u dinamičko kritično ponašanje realnih sistema koji se mogu opisati dinamičkim modelom A. U poredenju sa do sada najserioznijim eksperimentalnim pristupom ovom problemu [9], izvedenom tehnikom koja sigurno pruža veće obilje opštih podataka o magnetnim sistemima (neelastično rasejavanje neutrona), ovde utvrđene vrednosti izvedene su kao rezultat praćenja kritičnog usporenje u intervalu redukovane temperature u kome se ona menja više od tri reda veličine i prilazeći kritičnoj temperaturi bliže nego što to pružaju sadašnje mogućnosti tehnike neutronskog rasejanja.

Otuda, shvatajući KFeF₄ kao modelni sistem, izneseni rezultati daju važnu podršku postojećoj shemi dinamičkih klasa univerzalnosti u kojoj dvodimenzionalni model A igra ulogu "karike koja nedostaje". Predpostavka Mazenkoa i Vallsa (8), opširnije prodiskutovana u uvodu, da se prividna anomalija dinamičkog kritičnog eksponenta za ovaj model može objasniti samo izvanredno uskim asimptotskim dinamičkim kritičnim regionom, a ne nekom suštinskom nekonzistentnošću generalnog teorijskog pristupa, dobija ovde svoju eksperimentalnu potvrdu. Šire gledano, to znači i novi korak u upotpunjavanju generalne sheme dinamičkih klasa univerzalnosti čije bi narušavanje uzdrmalo same osnove predstava o dinamici faznih prelaza.

Sa stanovišta metodologije, u ovoj tezi je pokazano da Mossemuerova spektroskopija predstavlja tehniku za studiranje kritične dinamike spina u magnetnim sistemima komplementarnu drugim metodama koje zahtevaju nesrazmerno mnogo intenzivnija ulaganja materijalnih resursa, kao što je to napr. tehnika

rasejavanja neutrona.

Ipak, postoji jedan problem koji je zajednički svim sada poznatim eksperimentalnim metodama: izgleda da je, kao i kod teorijskog pristupa, vrlo teško da se eksperimentalno odredi sasvim pouzdana asimptotska vrednost dinamičkog kritičnog eksponenta za (d,n) = (2,1) dinamički model A jer se eksperimenti toliko blizu kritične temperature ($t < 10^{-4}$) u realnim sistemima vrlo teško mogu izvesti i interpretirati.
VIII. LITERATURA

- 1. M. E. FISHER, Rev. Mod. Phys. 46, 597 (1974).
- 2. B. I. HALPERIN and P. C. HOHENBERG, Phys. Rev. Lett. 19, 700 (1967).
- 3. B. I. HALPERIN and P. C. HOHENBERG, Phys. Rev. 177, 932 (1969).
- 4. B. I. HALPERIN, P. C. HOHENBERG, and S. MA, Phys. Rev. B 10. 139 (1974).
- 5. P. C. HOHENBERG and B. I. HALPERIN, Rev. Mod. Phys. 49, 435 (1977).
- 6. L. VAN Hove, Phys. Rev. 93, 1374 (1954).
- 7. L. D. LANDAU and I. M. KHALATNIKOV, Dokl. Akad. Nauk 555R 96, 469 (1954).
- 8. G. F. Mezenko and O. T. Velle, Phys. Rev. B 24, 1419 (1981).
- 9. M. T. HUTCHINGE, H. IKEDA, and E. JANKE, Phys. Rev. Lett. 49, 386 (1982).
- 10. M. SUZUKI, K. KATO, and H. IKEDA, J. Phys. Soc. Jpn. 49, 514 (1980).
- 11. H. KELLER and I. M. Savić, Phys. Rev. B 28, 2638 (1983).
- 12. G. K. SHENOY in Perspectives in Mössbauer Spectroscopy, ed. Сонем and Разтевмак; Plenum Publishing Co. (1973).

- 13. C. Hohenember, T. Kachnowski, and T. K. Bergstresser, Phys. Rev. B 13, 3154 (1976).
- 14. C. HOHENEMBER, L. CHOW, and R. M. SUTER, Phys. Rev B 26, 5056 (1982).
- 15. L. J. DE JONGH and A. R. MIEDEMA, Experiments on Simple Magnetic Model Systems; Taylor and Francis Ltd., London (1974).
- 16. A. Ito and M. HORIIKE, J. Phys. (Paris) Colloq 40, C2-290 (1979).
- 17. G. HEGER, R. GELLER, and D. BABEL, Solid State Commun. 9, 335 (1971).
- 18. G. HEGER and R. GELLER, Z. angew. Fhysik 32, 63 (1971).
- 19. M. Ermachütz, G. R. DAVIDBON, H. J. GUGGENHEIM, and D. E. Cox, in Magnetism and Magnetic Materials - 1971 (Chicago), Proceedings of the 17th Annual Conference on Magnetism and Magnetic Materials, ed. C. D. GRAHAM and J.J. RHVNE; AIP. New York (1972).
- 20. G. HEGER, R. GELLER, Phys. Stat. Sol. (b) 53, 227 (1972).
- 21. N. D. MERMIN and H. WAGNER, Phys. Rev. Lett. 17, 1133 (1966).
- 22. H. E. STANLEY and T. A. KAPLAN, Phys. Rev. Lett. 17, 713 (1966).
- 23. M. E. LINES, J. Appl. Phys. 40, 1352 (1969).
- 24. K. BINDER and D. P. LANDAU, Phys. Rev. B 13, 1140 (1976).
- 25. M. EIBBCHÜTZ, G. R. DAVIDBON, and H. J. GUGGENHEIM, Phys. Rev. B 9, 3885 (1974).

2

3

- 26. L. J. DE JONGH and A. R. MIEDEMA, Adv. Phys. 23, 1 (1974).
- 27. B. M. WANKLYN, J. Mater. Sci. 10, 1487 (1975).
- 28. M. A. KOBEIBSI and C. HOHENEMBER, Rev. Sci. Instrum. 49, 601 (1978).
- 29. J. J. Base and B. F. Bosecz, Mössb. Effect Ref. Data J. 3, 154 (1980).
- 30. W. Künnerg, Nucl. Instr. and Meth. 48, 219 (1967).
- 31. W. Kündig, Nucl. Instr. and Meth. 75, 336 (1969).
- 32. W. HOFFMANN, H. KELLER, and W. KÜNDIG, NUCL. Instr. and Meth. 143, 609 (1977).
- 33. M. BLUME, Phys. Rev. Lett. 14, 96 (1965).
- 34. F. VAN DER WOUDE and A. J. DEKKER, Phys. Stat. Sol. 9, 735 (1965).
- 35. H. H. WICKMAN, M. P. KLEIN, and D. A. SHIRLEY, Phys. Rev. 152, 345 (1966).
- 36. A. M. AFANAB'EV and YU. KAGAN, ZETF 45, 1660 (1963).
- 37. Yu. KABAN and A. M. AFANAB'EV, ŽETF 47, 1108 (1964).
- 38. H. WEGENER, Z. Physik 186, 498 (1965).
- 39. E. BRADFORD and W. MARSHALL, Proc. Phys. Soc. 87, 731 (1966).
- 40. J. BIRGENEAU, J. ALB-NIELSEN, and G. SHIRANE, Phys. Rev. 8 16, 280 (1977).
- 41. R. M. SUTER and C. HOHENEMBER, J. Appl. Phys. 50, 1814 (1979).

VIII. LITERATURA

P

r1

2

1

- 42. C. Bucci and G. Guibi, J. Phys. (Paris) Collog. 32, C1-897 (1971).
- C. BUCCI, G. GUIDI, and V. VIGNALI, Solid State. Commun. 10 803 (1972).
- 44. A. M. GOTTLIEB and C. HOHENEMBER, Phys. Rev. Lett. 31, 1222 (1973).
- 45. M. A. KOBEIBSI, R. SUTER, A. M. GOTTLIEB, and C. HOHENEMSER, Phys. Rev. B 11, 2455 (1975).

ABSTRACT

A detailed investigation of the dynamic critical behavior of the layered antiferromagnet KFeF, is presented in this thesis. It was performed by means of Fe⁵⁷ Mösseques spectroscopy above the critical point $T_{\rm N}$ = 136.15 K taking much care about sample purity and preparation, avoiding temperature gradients in the sample as much as possible, and keeping the temperature during data acquisition as stable as ±3 mK/24 h. On the basis of experimental data consisting of several hundred Mösseauer spectra, evidence is given that KFeF₄ is a good representative for the dynamic universality class (d,n) = (2,1) where the nonconserved order parameter is the only slow mode (dynamic model A). The temperature dependence of the longitudinal spin autocorrelation time as evaluated from the spectra using a relaxation theory of MösseAuer absorption yielded the dynamic critical exponent z. In entire reduced temperature range investigated, the $4 \times 10^{-4} < t < 10^{-1}$, a global value of z = 1.71(4) was found which is compatible with z = 1.75 predicted by the conventional theory of the critical slowing down. In a more restricted region $4 \times 10^{-4} < t < 5 \times 10^{-3}$ a small deviation from conventional behavior is indicated, whereas the dynamic critical behavior of KFeF, is in perfect accordance [z = 1.77(5)] with the conventional theory down to at least $t = 5 \times 10^{-3}$. This is in agreement with the suggestion of Mazenko and Valle [8] that the dynamic critical region of the 2d model A must be exceptionally narrow thus disabling a reliable evaluation of the dynamic critical exponent z by existing standard procedures which are not subject to such limitations when applied to other models.