UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET F I Z I K A

ODREDJIVANJE EFIKASNOSTI Ge (Li) SPEKTROMETRA ZA CILINDRIČNE IZVORE KONAČNIH DIMENZIJA POMOĆU FOSFATA

- Diplomski rad -

Tot Haršanji Ilona

Novi Sad 1985. god.

.

Zahvaljujem se profesorima Dr.Ištvanu Bikitu, Dr.Lazaru Marinkovu i Mr.Miroslavu Veskoviću na pruženoj pomoći i objašnjenjima, koja su mi pružili tokom rada. SADRŽAJ

I OS	SNOVI	١E	KAF	XAK T	ER	IST	IKE	E G	e (Li) D	ΕT	ЕКТ	0R	A	•	•	• •	•	•	•		2.
۱.	Ge	(L	i)	det	:ek	tor	•	•	•	•	•••	•	•	•	•	•	••	• •	· ·	•	•	· .	2.
	a)	Pr	oc€	s j	ion	sko	g c	iri	fto	va	nja	•	•	•	•	•	•	•	•	•	•		2.
	b)	0 p	is	det	ek	tor	a .	•	•	•	• •	•	•	•	•	•	•	 • .	•	•	•		5.
	c)	En	erg	jijs	ka	re	zol	uc	ija		•••	•	•	•	•	•	•	•	•	•	•		5.
	d)	0Ь	lik	in	ıp u	l s a	•	•	•	•	• •	•	•		•	•	• •	•	•	•	•		7.
	e)	Up po	ore lup	dji rov	v a i o di	nje nič	dr kim	if d	tov ete	an kto	ih ori	det ma	e k	toi	ra	S	a (ost	a 1 •	im •	•		9.
2.	Gan	ia s	spe	ktr	os	<op)< td=""><td>ija</td><td>Sa</td><td>a G</td><td>e</td><td>(Li</td><td>) (</td><td>let</td><td>e k t</td><td>:01</td><td>rir</td><td>na</td><td>•</td><td>•</td><td>•</td><td>•</td><td></td><td>10.</td></op)<>	ija	Sa	a G	e	(Li) (let	e k t	:01	rir	na	•	•	•	•		10.
	a)	Fui	n k c	ija	0	dziv	/ a	•	•	•	• •	•	•	• •	• •	•	•	 • •	•	•	•		10.
	b)	Fui si	n k c n a s	ija pro	o sti	dziv ran;	va jen	koa im	iks iz	ija voi	aln °om	og ga	Ge ma	(L zr	i) ac) (Ser	det nja	ek	to •	ra •	•		11.
IG	e (L	i)	SP	EKT	RON	1ET/	٩RS	ΚI	SI	STE	M	•	•				· ·	•	•	•	•		15.
1.	Ge	(L	i)	spe	ktı	rome	eta	r	•	•	· ·	•	•	• •	•		• •	•	•	•	•		15.
2.	0 s o	bir	ıe	spe	ktı	ome	etr	a	•	• •	•	•	•	• •	•	, • . • •	, , ,	•	•	•	•		17.
	a)	Ef	ika	sno	st	spe	ekt	ron	net	ra	•	•	•	• •	•		•	•	•	•	•		17.
	b)	P∶i1 spe	e- ekt	up, rom	mı etr	rtvo ra .	v	ren	1e •	i s • •	sumi •	nin	g	kac •••) C	s c	bi	ne •	•	•	•		17.
II	EKSP	ERI	ME	NTA	LNI	RA	١D	•	•	• •	•	•	•	•	•	•	•	 •	•	•	•		20.
1.	Ιzb	or	ma	ter	ija	la	za	k a	li	bra	ıci,	ju	•	• •		•	•	•	•	•	•		20.
2.	Eks	per	im	ent	alr	ia c	pr	ema	L.	•••	•	•	•	• •	•	•	•	•	•	•	•		20.
3.	0dr	edj	jiv	anj	e e	fik	as	nos	ti	sp	e k	tro	me	tra	S	a	QC	Y ·	•	•	•		20.
4.	0dr	edj	jiv	anj	e k	onc	en	tra	ci	je	23	Β _U	u	fos	fa	tu	I .	•	•	199 2015 ●	•		21.
5.	0dr	edj	iv	anj	ee	fik	as	nos	sti	sp	e k	tro	me	tra	S	a	fo	sf	at	om	•		24.
A	ΚL	J. L	JČ	А	К	•	•	•	•	: .	•	•	•	• •		•	•	•	•	•	•		25.

.

UVOD

Ge (1i) spektrometri se danas sve više koriste za istraživanja, kako u privredi, tako i u istrživanjima u nuklearnoj fizici. Ge (Li) spektrometri imaju čitav niz prednosti pred ostalim spektrometrima, kao naprimer imaju veoma dobro energetsko razlaganje i za snimanje ne zahtevaju izvore visokih aktivnosti. Jedna od širokih oblasti primene svih spektrometra je merenje radioaktivnosti prirodnih uzoraka tj. uzoraka čija je aktivnost niska.

Cilj ovog rada je bio kalibrisati Ge (Li) gama spektrometar i izbor pogodnog kalibracionog materijala, imajući u vidu da se spektrometar pretežno koristi za merenje radioaktivnosti prirodnih uzoraka. Ovo je prva kalibracija posle opravke detektora. U radu je odredjena specifična aktivnost fosfata, kao kalibracionog materijala, pošto je taj materijal pristupačan za merenje. Fosfati su sastavni delovi veštačkih djubriva, pa odredjivanjem specifične aktivnosti fosfata možemo doneti neke zaključke o tome, koliko se uran nagomilava na zemljištu prilikom djubrenja.

I OSNOVNE KARAKTERISTIKE Ge (Li) DETEKTORA

1. Ge (Li) detektor

Ge (Li) detektor se koristi za detektovanje gama zračenja, jer ima dosta veliku aktivnu zapreminu. Aktivna zapremina Ge (Li) detektora dobija se procesom jonskog driftovanja. Ovim postupkom stvara se jedan široki sloj, koji ima osobinu čiste materije i može se koristiti za sakupljanje elektron - šupljinskog para, koji se stvaraju upadom radijacije.

a) Proces jonskog driftovanja

Silicijum i germanijum i sa najvećom mogućom čistoćom su kristali p-tipa. Zbog toga im se moraju dodati donorski atomi da bi se dobila željena kompenzacija. Alkalni metali (Li, Na, K) formiraju medjuprostorne donore u kristalu silicijuma i germanijuma. Jonizovani donorski atomi su prilično pokretljivi na povišenim temperaturama, tako da ih je moguće driftovati jakim električnim poljem. Samo litijum se može uneti u Si i Ge u odgovarajućoj koncentraciji, kao kompenzirajuća primesa. Dobrom tehnikom nivo nekompenzovane nečistoće u driftovanoj oblasti može se držati ispod 10⁹/cm³. Litijumovi joni se mogu driftovati u silicijumove i germanijumove kristale i tako se mogu proizvesti korisni detektori. Jonski driftovan detektor ima pojednostavljenu konfiguraciju, koja je predstavljena na slici 1.

- 2 -

- 3 -

Višak litijuma na ovoj površini, gde je sa driftovanjem startovalo, služi za pretvaranje površine u n⁺ sloj koji se može upotrebiti kao električni kontakt. Nekompenzovani p-sloj na suprotnom kraju se prevuče metalom, koji služi kao omski kontakt.

U idealnom slučaju kada u "i" oblasti nema slobodnih nosilaca naelektrisanja, rezultujući napon se odredjuje iz Poisson--ove jednačine u jednoj dimenziji:

$$\frac{d^2 \phi}{d x^2} = \frac{g(x)}{\varepsilon}$$

1.

gde je 🔶 - napon, 🖇 - gustina naelektrisanja.

Za S = 0 je linearna funkcija duž "i" oblasti, pa je električno polje konstantno. Specifični otpor "i" oblasti je znatno veći od specifičnog otpora p ili n⁺ slojeva, u stvari ceo napon se pojavljuje duž "i" oblasti i električno polje naglo pada ka nuli na krajevima. Tako dimenzije "i" oblasti odredjuju aktivnu zapreminu detektora i migracija nosilaca naelektrisanja prema p-i i i-n krajeve stvara osnovni impuls (signal).

U homogenom polju jačina električnog polja je konstantna i zavisi od debljine "i" oblasti (d) i od primenjenog napona (V): $\mathcal{E} = \frac{V}{2}$

$$\frac{v}{b} = 3$$

Ova konstatacija se bazira na pretpostavci da je Li - kompenzacija perfektna,tako da nema slobodnih nosilaca u "i" sloju. Razni tipovi detektora prikazani su na sledećoj slici:

Slika 2.

Veće aktivne zapremine (i do 150 cm³) moguće je postići kod nekih koaksijalnih detektora. U koaksijalnoj geometriji električno polje više nije konstantno u celoj aktivnoj zapremini, već je radijalna funkcija odstojanja (r) od ose rotacije koaksijalnog detektora:

$$\frac{\mathcal{E}(r)}{r\ln(r_2/r_1)} = \frac{V}{3}$$

gde je r₁, unutrašnji a r₂ je spoljašnji radijus "i" sloja, a V je priključeni napon.

b) Opis detektora

Litijumski driftovani germanijumski detektori moraju se stalno držati i raditi na niskim temperaturama. Svi Ge (Li) detektori su stavljeni u vakuumski kriostat, što čini termalni kontakt izmedju kristala germanijuma i rezervoara tečnog azota /"dewar"/ na temperaturi 77 K (Slika 3.).

c) Ene≋gijska rezolucija

Glavna karakteristika germanijumskog detektora je njegova izvrsna energijska rezolucija, kada se koristi za gama spektroskopiju. Opšta energijska rezolucija, koja je postignuta u Ge (Li) sistemu je odredjena sa tri faktora:unutrašnjom statistikom u raspodeli nosilaca naelektrisanja, nepotpunim sakupljanjem naelektrisanja i fonom. Širina polovine maksimuma W_t tipičnog vrha u spektru monoenergijskih ga**m**a zraka je sintetizovana od:

Slika 3.

$$W_t^2 = W_b^2 + W_x^2 + W_F^2 \qquad 4.$$

W_D² predstavlja unutrašnju statističku fluktuaciju u broju stvorenih nosilaca naelektrisanja.

 W_{χ}^2 potiče od nepotpunog sakupljanja naelektrisanja, (to je više izraženo kod detektora velike zapremine i niskog srednjeg elekt-ričnog polja).

Treži faktor W_F² predstavlja uticaj cele elektronike koja prati detektor.

Prvi član u gornjoj jednačini je isti za sve Ge - detektore. Tako, razlika u rezoluciji pojedinih Ge (Li) detektora korišćenih u gama spektroskopiji, potiče od razlika u efikasnosti sakupljanja naelektrisanja i od fona i nestabilnosti elektronike.

d) oblik impulsa

Detaljan oblik impulskog signala koji se dobija sa Ge (Li) detektorom je važan zbog nekoliko činjenica. Konačna vremenska rezolucija što se može postići sa ovim detektorima u velikoj meri zavisi od srednjeg vremena rasta signala. Poželjno je da vreme oblikovanja signala, a i vreme sakupljanja naelektrisanja bude što kraće. Impulsi sa minimalnom vremenom rasta se dobiju, ako se na detektor priključi dovoljno visok napon, tako da je električno polje prisutno u celoj aktivnoj zapremini. Detaljan oblik rasta impulsa kod Ge (Li) detektora se može menjati od slučaja do slučaja, zavisno od pozicije, gde je u aktivnoj zapremini

- 7 -

kreiran par elektron-šupljina. Oblik vodećeg dela impulsa iz Ge (Li) detektora zavisi od pozicije, gde su u aktivnoj zapremini formirani nosioci naelektrisanja. Ako je mesto interakcije blizu jednoj ivici aktivne zapremine, posmatrani rast signala će zavisiti prvenstveno od pomeranja samo jedne vrste nosilaca naelektrisannja. Za radijaciju čiji domet nije mali u odnosu na aktivnu zapreminu distribucija vremena sakupljanja će rezultovati iz odgovarajuće prostorne distribucije tačaka, gde su se elektron i šupljina formirani. (Slika 4.)

Slika 4.

Na slici je prikazana distribucija vremena sakupljanja naelektrisanja u zavisnosti od mesta interakcije u detektoru.

- 8 -

 e) Uporedjivanje driftovanih detektora sa ostalim poluprovodničkim detektorima

U nekim vidovima osobine jonski driftovanih detektora su identične sa osobinama detektora sa površinskom barijerom i difuznim spojem. Osnovne poluprovodničke karakteristike, kao što je naprimer energija potrebna za stvaranje para elektron-šupljina,nisu se promenile, pošto je koncentracija nečistoće, koja je dodata kao kompenzacija vrlo mala. Ostale karakteristike koje zavise od aktivne zapremine detektora, kao što su kapacitet i vreme formiranja impulsa, pokazuju sasvim drugačije ponašanje kod driftovanih detektora. Aktivna zapremina je odredjena isključivo širinom kompenzovane oblasti i njegove dimenzije su konačne posle završetka driftovanja. Širina aktivne zapremine u driftovanim detektorima ne varira primetno sa naponom, dok širina aktivne zapremine P-n spoja ima baš tu osobinu. Kapacitet ovih detektora je skoro konstantan. U poslednje vreme sve više se koristi čist germanijumski detektor, koji ima niz dobrih osobina, i to veliku aktivnu zapreminu, dobru efikasnost u sakupljanju naelektrisanja, a i ne treba da se hladi.

2. Gama spektroskopija sa Ge (Li) detektorima

U merenju energije gama zračenja iznad nekoliko stotina KeV-a postoje za sada samo dve važnije kategorije detektora: neorganski scintilatori od kojih je Na I (Tl) daleko najpopularniji i germanijumski detektori uglavnom Ge (Li) tipa. Dobra rezolucija Ge (Li) detektora pomaže ne samo kod razdvajanja i suviše bliskih pikova, već i kod detekcije slabih izvora diskretnih energija. Detektori, koji imaju podjednaku efikasnost, imaće za rezultat jednake površine ispod pika, ali oni sa dobrom energijskkom rezolucijom proizvode uzan i visok vrh, koji tada može da se podigne iznad statističkog šuma kontinuma.

a) Funkcija odziva

Funkcija odziva koji daje detektor potiče od fotoelektrične apsorbcije, Comptonovog rasejanja i proizvodnje para. Niži atomski broj germanijuma i manja tipična aktivna zapremina Ge (Li) detektora uporedjujući sa Na J scintilatorima dovodi do značajnih razlika u važnosti raznih karakteristika impulskog spektra. Niži atomski broj se rezultira u fotoelektričnom preseku, koji je manji za faktor od 10 - 20, ako uporedimo sa NaJ-om. Zbog toga fotoelektrična apsorpcija u jednoj interakciji je manje verovatno kod Ge (Li) detektora. Mnogostruke interakcije, kao što je Comptonovo rasejanje praćen fotoelektričnom apsorpcijom su takodje relativno malo verovatne, zbog male aktivne zapremine tipičnih detektora. Iako je površina ispod vrha totalne apsorboije manja kod Ge (Li) detektora, ti pikovi su ipak istaknuti, pošto je njihova širina jako mala. Comptonov kontinuum je takodje istaknuti deo spektra Ge (Li) detektora. Dobra energijska rezolucija dovodi do preciznije definicije položaja vrha totalne apsorpcije.

Zbog veće transparencije detektora za sekundarne gama zrakove "escape" pikovi igraju važniju ulogu u Ge (Li) spektroskopiji, nego u spektroskopiji NaJ scintilatora. Escape karakterističnog x-zračenja iz germanijuma koje prati fotoelektričnu apsorpciju može da bude značajno, naročito za male detektore sa relativno velikom površinom. Za gama zrake visokih energija vrlo značajna je "escape" anihilaciona radijacija, koja prati produkciju para u detektoru. Escape pikovi će se pojaviti u spektru saglasno dogadjaju u kome jedan, ili oba fotona odnose deo energije originalnog gama zraka.

 b) Procena efikasnosti detekcije Ge (Li) detektora s rasprostranjenim izvorom gama zračenja.

Za odredjivanje slabih radioaktivnosti urana i drugih izvora u mineralima preko njihove prirodne gama-aktivnosti koristi se rasprostranjeni volumni izvor. Kod konačnog izvora problem je što tačnije odredjivanje faktora samoapsorpcije fotona energije E_i u izvoru koji uključuje i faktor geometrije, te problem efikasnosti Ge (Li) detektora za rasprostranjeni izvor. U daljem će se pokazati kako se računa funkcija odziva Ge (Li) detektora za slučaj volumnog izvora gama zračenja konačne debljine, smeštenog aksijalno simetrično čelu detektora.

Konačni uranov izvor poluprečnika a i visine h je postavljen na udaljenosti D od čela Ge (Li) detektora. Poluprečnik čela je b (odračunata je n⁺ elektroda) a u središtu je relativno

- 11 -

. ..

Ge(Li) detektor sa rasprostranjenim volumnim izvorom 8-zračenja u aksijalnoj simetriji

veliko neaktivno p-jezgro (r=b_o) izvornog Ge-kristala, koje u normalnom režimu detektora funkcionira kao negativna elektroda. Pretpostavlja se:

 a) da je izvor homogen po celoj zapremini i da su spontane emisije gama-fotona izotropne;

b) izmedju izvora i čela detektora nema apsorpcije,
 niti kolimacije zračenja;

c) atenuacija fotonskog toka u izvoru uzduž puta dužine S uračunavamo linearnim koeficijentom apsorpcije $\mu_{E_{c}}$ koji se u računu uzima kao parametar (vidi sliku 5.).

Ako su navedene pretpostavke ispunjene, moguće je napisati funkciju odziva Ge (Li) detektora za slučaj izvora konačne zapremine prirodnog gama zračenja u aksijalnoj simetriji. Broj fotona energije Ei emitovanih iz spontanih gama raspada elemenata mase izvora dm, koji padaju na element površine čela detektora unutar elementa prostornog ugla $d\Omega$ u jedinici vremena, odredjuje izraz. $d^2N = e^{-\mu (E_i)S} d^2N_0$ 5.

pri čemu dN_o je broj fotona koje u sekundi emituje element mase dm u celi prostor (4 $\widehat{\mathbf{M}}$ ster), a d(dN_o) = d²N_o deo fotona emitovanih samo u prostorni ugao d $\mathbf{\Omega}$.

Ovih d²N fotona u sekundi u Ge (Li) detektoru proizvode d²n impulsa u sekundi koje doprinose spektranom vrhu u gama spektru. Iz homogenosti izvora sledi da je:

9

gde su
$$dV = \operatorname{gd} \operatorname{gd} \operatorname{gd} \operatorname{gd} \operatorname{gd} \operatorname{gd}$$
 element zapremine izvora, $d\Omega = \operatorname{sn} \operatorname{Gd} \operatorname{gd} \operatorname{gd}$
element prostornog ugla pod kojim se iz tačke P izvora "vidi"
element površine čela detektora, $\mathcal{E}(\vec{r},\vec{\Omega})$ diferencijalna efi-
kasnost detektora, koja se odnosi na emisiju fotona iz elementa
dm u infinitezimalni prostorni ugao $\operatorname{d} \Omega$ (u smeru $\vec{\Omega}$) i koji po-
gadjaju element površine čela detektora (na slici tačka T).

Integracijom jednačine (9.) sledi:

$$n = \frac{N_0}{4\bar{\mathbf{y}}\mathbf{v}} \int_{\Omega} e^{-\mu(E_i)S} \epsilon d\Omega dV \qquad 10.$$

Relaciju (10) transformišemo kako bi smo razdelili dva faktora od kojih jedan obuhvaća geometrijsko - apsorpcione karakteristike tela, a drugi karakteristike detektora. Pomnožićemo i podelićemo desnu stranu gornje jednačine sa:

$$S = \iint_{V:\Omega} e^{-\mu(Ei)S} d\Lambda dV \qquad 11.$$

tako se na desnoj strani dobija:

$$\overline{E} = \frac{\int e^{-\mu(\varepsilon_i)s} e \, d\Omega \, dV}{\int e^{-\mu(\varepsilon_i)s} \, d\Omega \, dV}$$
 12.

i tako

$$n = \frac{N_0}{4\pi v} \overline{\epsilon} S$$
 13

Geometrijsko – apsorpcioni faktor 👌 zavisi samo o geometriji problema, a ne zavisi o karakteristikama detektora. Uključujući samo apsompciju u izvoru, takav faktor izražava uticaj oblika tela naspram čelu Ge (Li) detektora. Srednjom vrednošću efikasnosti detektora karakterizirana je merna sposobnost detektora za dato telo. Jako je zavisna o diferencijalnoj efikasnosti a vrlo slabo o svojstvima i obliku tela.

Za tačkasti izvor jednačina (43.) ima drugačiji oblik, jer je za tačkasti izvor S=0, $\int_{V} dV=V$, $\int_{\Omega} \mathcal{E} d\Omega$

$$S = V \Omega$$

 $n = \frac{N \circ \Omega}{4 \pi} \overline{\epsilon}$
14.

odnosno

$$\overline{\mathcal{E}} = \frac{4\overline{\mathbf{n}}}{\underline{\mathbf{n}}} - \frac{\mathbf{n}}{\mathbf{N}_{o}}$$
 15

Ovako izveden račun za efikasnost je aproksimativan, jer $\widehat{\mathcal{E}}$ detektora za izvore konačnih debljina praktično se ne može izračunati. Trebalo bi znati tačne dimenzije osetljive zapremine, a to se nezna. Drugi problem je što je funkcija S vrlo složena i komplikovana za izračunavanje, a ni računi ne daju pouzdan rezultat.

Ge (Li) SPEKTROMETARSKI SISTEM

1. Ge (Li) spektrometar

Ge (Li) spektrometarski sistem se sastoji od sledećih delova:

Prvi element u lancu za oblikovanje signala je pretpojačavač. On se nalazi izmedju detektora i elektronike za oblikovanje i analizu impulsa. Predpojačavač se nalazi što je moguće bliže detektoru. Osnovu izlaznog signala svakog detektora čini količina naelektrisanja (Q), koja se oslobadja upadom radijacije. Kod nekih detektora (scintilatora), Q je dovoljno veliko za dobijanje naponskog signala. Kod ostalih detektora oslobodjeno naelektrisanje je tako malo da je nemoguće baratati se sa signalima, bez prethodnog pojačanja.

Treći član u spektrometarskom sistemu je linearni pojačavač. Uloga linearnog pojačavača je oblikovanje impulsa i povećanje amplitude istih. Ovaj elemenat prihvata impulse na ulazu i oblikuje ih. Faktor pojačanja se nalazi izmedju loo i 500. Na uredjaju postoji fina i gruba regulacija pojačanja. Ako produkt ulazne amplitude i pojačanja premašuje predvidjenu maksimalnu vrednost, pojačavač će dati impuls sa distorzijom sa ravnim vrhom. Linearno pojačanje će se realizovati samo za one impulse koji su niži od saturacionog nivoa. Medju elementima analizacionog sistema linearni pojačavač je sa najvećim brojem operacionih karakteristika.

Rad višekanalnog analizatora se bazira na principu pretvaranja analognog signala u odgovarajući digitalni broj. Tu funkciju u višekanalnom analizatoru vrši analog - digital konverter. Izlazne veličine ADC-a su smeštene u memoriji, koji ima toliki broj mesta, koliki je maksimalni broj kanala na koliko se snimljeni spektar može podeliti. Izbor broja kanala je odredjen: Stepenom rezolucije koje se hoće postići i ukupnim brojem impulsa, koji se može dobiti. Ako imamo veliki broj kanala, širina pojedinog kanala se može učiniti jako malom i rezultujući diskretni spektar će biti vrlo blizu kontinualnoj raspodeli. Za vernu reprezentaciju potrebno je da se distribucija ne menja drastično preko jednog kanala. Nedovoljan broj kanala kvari rezoluciju spektra, Nepotrebno veliki broj kanala uzrokuje da se mali pikovi izgube u fonu.

- 16 -

2. Osobine spektrometra

a) Efikasnost spektrometra

Odnosabroja registrovanih čestica prema ukupnom broju čestica, koje emituje izvor za isto vreme se naziva efikasnošću detektora. Ova efikasnost je odredjena sa geometrijskom efikasnošću \mathbf{g} (deo fluksa, koji pada na detektor) i sa efikasnošću detektovanja $\mathbf{\xi}$ (deo čestica, koje se pri ulazu u detektor registruju). Pri merenju gama zračenja se energija kvanata u brojaču pretvara u energiju naelektrisanih čestica, pa u efikasnost spektrometra ulazi i efikasnost pretvaranja p. Znači, u opštem slučaju je efikasnost spektrometra data sa:

$$\mathcal{E} = \mathcal{F} p \delta$$
 16.

b) Pile-up, mrtvo vreme i summing kao osobine spektrometra

Visina fotovrha, a time i efikasnost i rezolucija spektrometra može da se smanji zbog raznih efekata u detektoru ili u spektrometarskom sistemu. Ti efekti su pile-up, mrtvo vreme sistema i efekat summinga.

U svakom detektorskom sistemu postoji "malo vreme" koje treba da razdvoji dva dogadjaja da bi oni bili detektovani kao dva posebna impulsa. Ovo minimalno vreme razdvajanja se zove mrtvo vreme brojačkog sistema. Uvek postoji verovatnoća da se izgubi pravi dogadjaj, zato što se pojavljuje suviše brzo posle prethodnog dogadjaja. Gubici zbog mrtvog wemena mogu biti ozbiljni kod velike brzine brojanja. Svako merenje broja impulsa koji su prezentirani analizatoru, mora uzeti u obzir onaj gubitak u toku mrtvog vremena. Većina višekanalnih analizatora sadrži

unutrašnji sat, "živo vreme". Broj impulsa sata je mera živog vremena analizatora, tj. vremena za koji je ulaz bio otvoren. Mrtvo vreme višekanalnog analizatora sastavljeno je od dve komponente: vreme rada analog-digital konvertera i vreme potrebno za stavljenje podataka u memoriju. Kontrolno kolo analizatora držaće ulaz zatvoreno za vreme koje je jednako mrtvom vremenu. Višekanalni analizator se sam koriguje, produžava vreme merenja za mrtvo vreme. Druga pojava koja može da kvari rezoluciju spektra je pile-up (nagomilavanje). Kada je brzina brojanja velika, može doći do interferentnih pojava izmedju impulsa. Pile-up se može smanjiti tako što se širina impulsa učini što je moguće manjom. Jedan tip je "tail pile-up", sadrži superpoziciju na"rep" impulsa. Ova pojava ima značaja i kod relativno sporih brojanja impulsa. Kvari rezoluciju merenja dodavanjem krila pikovima u spektru. "Peak pile-up" pojavljuje se kada su dva impulsa dovoljno blizu, tako da ih analizacioni sistem smatra kao jedan impuls. Pojavljuje se kombinovani impuls na duploj energiji.Tako se ovaj dogadjaj gubi iz analize: Oba slučaja su prikazana na slici.

Da bi se izbegao pile-up interval posle svakog impulsa mora da bude veći od efektivne širine impulsa. Jedan metod suzbijanja pile-up-a je "pile-up rejection" - neki linearni pojačivači mogu da pregledaju oblik impulsa i eliminišu onaj impuls kod koga je distorzija, usled pile-up-a evidentna. Ovako se smanjuje uticaj pile-up-a ali ni kvantitativni gubici se ne smeju zaobići.

Efekat summinga je isto pojava, koja kvari spektar, smanjuje brojanje impulsa ispod foto-vrha. Istovremenom detekcijom dva ili više gama zraka, pojavljuje se impuls, koji se u spektru nalazi na energiji koji je zbir dvaju zraka. Zraci koji su emitovani u kaskadama detektuju se kao jedan, jer detektor ih sumira. Zraci predaju energiju u vremenskom intervalu, koji je kratak uporedjujući sa vremenom odziva detektora. Ako se pojavljuje dovoljno ovakvih događaja pik summinga će biti uočljiv u spektru.

Da bi se izbegle sve ove smetnje za merenje se koristi slab izvor zračenja, jer kod sporog brojanja efekti summinga i pile-up-a ne smetaju.

III EKSPERIMENTALNI RAD

1. Izbor materijala za kalibraciju

Materijal za kalibraciju mora da ispuni nekoliko preduslova: da se može nabaviti u velikim količinama; da ima malu specifičnu aktivnost; da ima puno gama prelaza sa dobro merenim

; da ima poznatu specifičnu aktivnost. Na raspoloženju je bio Amerchamov QCY-44, komercijalni izvor pravljen 1978. godine, zbog toga trenutno merljive aktivnosti su ⁶⁰Co i ¹³⁷Co. Pomoću njega odredjujemo specifičnu aktivnost U-fosfata. U-fosfat zadovoljava sve pretpostavke. On sadrži prirodni radioaktivni niz urana. (Slika uranovog niza je slika 7.)

U radioaktivnom nizu produkti su u ravnoteži, pa se tako može odrediti količina urana u fosfatu.

2. Eksperimentalna oprema

Eksperimentalnu opremu čini Ge (Li) spektrometar sa Ge (Li) detektorom i višekanalnim analizatorom 4096 kanala. Deo eksperimentalne opreme je nosač izvora, koji je napravljen od plastike da nebi rasejavao zračenje. Prečnik nosača je 77 mm. Snimanje je vršeno u gvozdenoj komori debljine zidova 25 cm.

3. Odredjivanje efikasnosti spektrometra sa QCY.

Pomoću poznate aktivnosti QCY-44 za ⁶⁰Co i ¹³⁷Cs, može se odrediti kriva efikasnosti u intervalu energije 662 KeV-1333 KeV.

RADIOAKTIVNI NIZ URANA

Poznajemo specifičnu aktivnost QCY-44 koja je data (8.02.1980.). Trenutnu aktivnost računamo prema formuli:

$$A_{s} = A_{os} e^{-\frac{\ln 2 \cdot t}{T_{1/2}}}$$
 17

Merena specifična aktivnost (broj impulsa u jedinici vremena i po jedinici mase), se računa kao:

$$A_s^m = \frac{N_r - N_f}{t_s m}$$
 18.

gde je Np - brojanje ispod fotopika

- Nf vrednost fona
- ts vreme merenja
- m masa uzorka

a efikasnost se računa prema formuli:

$$\mathcal{E} = \frac{A_s^m}{A_s P_r}$$
 19

gde je р broj emitovanih gama kvanata u jednom raspadu.

Rezultati merenja su prikazani u tabeli 1. i na grafikonu 1. Na grafikonu prikazano je 1n & kao funkcija od energije (E). Eksperimentalna kriva se može prikazati kao prava, jer

 ${\cal E}$ je u tom intervalu energije skoro linearna funkcija. To znamo iz drugih merenja za tačkasti izvor.

4. Odredjivanje koncentracije ²³⁸U u fosfatu

Fosfat sadrži uranov radioaktivni niz čiji članovi su u radioaktivnoj ravnoteži. Pomoću krive efikasnosti za QCY-44 i merenjem specifične aktivnosti fosfata za Bi može se izračunati specifična aktivnost urana u fosfatu. A poznavanjem te aktivnosti možemo odrediti koncentraciju ²³⁸U-a u fosfatu.

Specifična aktivnost ²¹⁴Bi računa se po formuli:

$$A_{SB_{i}} = \frac{A_{S}^{m}}{\mathcal{E} P_{S}}$$
 20.

gde je A^m_S – merena specifična aktivnost bizmuta & – vrednost efikasnosti za odgovarajuće energije, koja se uzima sa grafika za QCY-44 Pr – broj gama kvanata po raspadu.

Tako se dobije srednja vrednost specifične aktivnosti za bizmut, a to je jednako srednjoj vrednosti specifične aktivnosti urana u fosfatu, jer uran i bizmut su u radioaktivnoj ravnoteži. Za srednju vrednost specifične aktivnosti urana se dobija

$$A_{SU} = (1,49 \pm 0,11) \ \exists q/q \qquad 21.$$

Sada se može odrediti koncentracija urana u fosfatu, i to prema formulama:

$$A_{S} = \lambda N = \lambda \frac{m_{U}}{M} N_{A}$$
 22.

$$m_{U} = \frac{A_{SU}M}{\lambda N_{A}}$$
 23.

gde je M = 238

$$N_A = 6,023 \cdot 10^{23}$$

 $\lambda = 0,4919 \cdot 10^{-17}$ 1/s za T1/2 = 4,4683 \cdot 10⁹g = 1,409 \cdot 10¹⁷s

Tako je

$$m_{U} = 119,74 \cdot 10^{-6} \pm 8,84 \cdot 10^{-6}$$

Znači u jednom gramu fosfata ima 119,74 \cdot 10⁻⁶ g urana (238_U).

Rezultati merenja prikazani su u tabelama 1. 2. i na grafikonu l. Greške su računate prema formulama.

2a jednacinu br. 18. :

$$\Delta A_{S}^{m} = \pm \frac{N_{p} + N_{f}}{t_{s} \cdot m}$$

za jednačinu br. 19. :

$$\Delta \mathcal{E} = \pm \mathcal{E} \sqrt{\left(\frac{\Delta A_{5}^{t}}{A_{5}^{t}}\right)^{2} + \left(\frac{\Delta A_{5}}{A_{5}}\right)^{2}}$$

5. Odredjivanje efikasnosti spektrometra sa fosfatom

Pošto smo izračunali specifičnu aktivnost fosfata možemo odrediti krivu efikasnosti za različite debljine uzorka. Rezultati merenja prikazani su tabelarno i grafički (tabele broj 3, 4 i 5. i grafik.broj 2.). Može se zaključiti da se efikasnost povećava sa smanjivanjem debljine uzoraka.

ZAKLJUČAK

U radu je izvršena kalibracija efikasnosti Ge (Li) spektrometra sa fosfatom, kao kalibracionim materijalom. Fosfat je pogodan za kalibraciju, a i pristupačan je. Problem je jedino bio, što je komercijalni izvor QCY-44 dosta star i ima samo tri upotrebljive linije. Ipak se može nacrtati grafik efikasnosti za QCY za energetski interval izmedju 662 do 1333 KeV-i, jer znamo iz merenja za tačkaste izvore da je funkcija efikasnosti skoro linearna u tom intervalu.

Odredjena je i koncentracija urana u fosfatu. Može se zaključiti da korišćenje veštačkih djubriva uran se sve više nagomilava na zemljištu. U poslednje vreme počelo je sa izdvajanjem urana iz fosfata. Taj uran se dalje onda može koristiti kao gorivo u nuklearnim elektranama.

- 25 -

	m = 54	,390 g	d = 7,6	mm	t _s = 100	Ks		
E (KeV) N _p	Nf	8.02.1980. As <u></u> ∔ ∆ As(Bq/g)	Pg-) ۲۵ <u>+</u> ۲۵	ζε <u>∔</u> ⊾ε)·10 ³	ly E! Dlue	29.09.1983. As <u>+</u> ▲As(Bq/g)
662	35240	2047	7,28.10 ⁻¹ <u>+</u> 3%	0,851	6,103 <u>+</u> 0,036	10,83 <u>+</u> 0,33	-4,52 <u>+</u> 0,0	3 ,62·10 ⁻¹ ±0,2·10 ⁴
1173	14967	938	7,65·10 ⁻¹ <u>+</u> 3%	0,998	2,579 <u>+</u> 0,023	5,47 <u>+</u> 0,27	-5,21 <u>+</u> 0,0	
1333	12835	323	7,65·10 ⁻¹ <u>+</u> 3%	0,999	2,30 <u>4</u> 0,002	4,87 <u>+</u> 0,24	-5,32 <u>+</u> 0,09	3·10 <u>+</u> 0,23.10 3·10 ⁻¹ <u>+</u> 0,23·10 ⁺ [₹]
	E (KeV 662 1173 1333	m = 54 E (KeV) N _p 662 35240 1173 14967 1333 12835	m = 54,390 g E (KeV) N _p Nf 662 35240 2047 1173 14967 938 1333 12835 323	m = 54,390 g d = 7,6 E (KeV) N _p Nf As $\pm \Delta$ As(Bq/g) 662 35240 2047 7,28 \cdot 10 ⁻¹ \pm 3% 1173 14967 938 7,65 \cdot 10 ⁻¹ \pm 3% 1333 12835 323 7,65 \cdot 10 ⁻¹ \pm 3%	$m = 54,390 \text{ g} \qquad d = 7,6 \text{ mm}$ $E (KeV) \qquad N_{p} \qquad Nf \qquad As \pm \Delta As (Bq/g) \qquad p_{g}$ $662 \qquad 35240 \qquad 2047 \qquad 7,28 \cdot 10^{-1} \pm 3\% \qquad 0,851$ $1173 \qquad 14967 \qquad 938 \qquad 7,65 \cdot 10^{-1} \pm 3\% \qquad 0,998$ $1333 \qquad 12835 \qquad 323 \qquad 7,65 \cdot 10^{-1} \pm 3\% \qquad 0,999$	$m = 54,390 \text{ g} \qquad d = 7,6 \text{ mm} \qquad t_{s} = 100$ $E (KeV) \qquad N_{p} \qquad Nf \qquad As \pm \Delta As (Bq/g) \qquad p_{q} \qquad A = \Delta A = 0$ $662 \qquad 35240 \qquad 2047 \qquad 7,28 \cdot 10^{-1} \pm 3\% \qquad 0,851 \qquad 6,103 \pm 0,036$ $1173 \qquad 14967 \qquad 938 \qquad 7,65 \cdot 10^{-1} \pm 3\% \qquad 0,998 \qquad 2,579 \pm 0,023$ $1333 \qquad 12835 \qquad 323 \qquad 7,65 \cdot 10^{-1} \pm 3\% \qquad 0,999 \qquad 2,30 \pm 0,002$	$m = 54,390 \text{ g} \qquad d = 7,6 \text{ mm} \qquad t_{s} = 100 \text{ Ks}$ $E (KeV) \qquad N_{p} \qquad Nf \qquad \begin{array}{c} 8.02.1980. \\ As \pm \Delta As (Bq/g) \qquad p_{T} \qquad A \\ & & A \\ & & & \\ \end{array} \qquad (\underline{\varepsilon} \pm \underline{\Delta} \underline{\varepsilon}) \cdot 10^{3} \\ \hline 662 \qquad 35240 \qquad 2047 \qquad 7,28 \cdot 10^{-1} \\ \pm 3\% \qquad 0,851 \qquad 6,103 \\ \pm 0,036 \qquad 10,83 \\ \pm 0,33 \\ \hline 1173 \qquad 14967 \qquad 938 \qquad 7,65 \cdot 10^{-1} \\ \pm 3\% \qquad 0,998 \qquad 2,579 \\ \pm 0,023 \qquad 5,47 \\ \pm 0,27 \\ \hline 1333 \qquad 12835 \qquad 323 \qquad 7,65 \cdot 10^{-1} \\ \pm 3\% \qquad 0,999 \qquad 2,30 \\ \pm 0,002 \qquad 4,87 \\ \pm 0,24 \end{array}$	$m = 54,390 \text{ g} \qquad d = 7,6 \text{ mm} \qquad t_{s} = 100 \text{ Ks}$ $E (KeV) \qquad N_{p} \qquad Nf \qquad \frac{8.02.1980.}{As \pm \Delta As (Bq/g)} \qquad p_{\sigma} \qquad A^{W}_{s} \pm \Delta A^{W}_{s} \qquad (\pounds \pm \Delta \pounds) \cdot 10^{3} \qquad \& \pounds \pm \Delta \pounds \pounds \\ 662 \qquad 35240 \qquad 2047 \qquad 7,28 \cdot 10^{-1} \pm 3\% \qquad 0,851 \qquad 6,103 \pm 0,036 \qquad 10,83 \pm 0,33 \qquad -4,52 \pm 0,036 \\ 1173 \qquad 14967 \qquad 938 \qquad 7,65 \cdot 10^{-1} \pm 3\% \qquad 0,998 \qquad 2,579 \pm 0,023 \qquad 5,47 \pm 0,27 \qquad -5,21 \pm 0,086 \\ 4,7 \qquad 4,7 \\ 1333 \qquad 12835 \qquad 323 \qquad 7,65 \cdot 10^{-1} \pm 3\% \qquad 0,999 \qquad 2,30 \pm 0,082 \qquad 4,87 \pm 0,24 \qquad -5,32 \pm 0,086 \\ 4,7 \qquad 4,7 $

TABELA 1.

As - za	214 _{Bi}			
E(KeV)	$(A_{s}^{m} + A_{s}^{m}) 10^{3}$	$\varepsilon \cdot 10^3$ p [*] [*]	As <u>∔</u> ⊾As (Bq/g)	A ^{Bi} = A ^V (Bq/g)
768	0,654 <u>+</u> 0,012	9,095 <u>+</u> 0,23 4,76(7)	1,511 <u>+</u> 0,052	
934	0,328 <u>+</u> 0,010	7,521 <u>+</u> 0,20 3,07(4)	1,419 <u>+</u> 0,060	
1120	1,312 <u>+</u> 0,013	6,036 <u>+</u> 0,15_14,7(2)	1,478 <u>+</u> 0,044	1,490 <u>+</u> 0,105
123 9	0,470 <u>+</u> 0,009	5,245 <u>+</u> 0,13 5,78(7)	1,550 <u>+</u> 0,052	· · · · · · · · · · · · · · · · · · ·

TABELA 2.

E(KeV)	Np	Nf.	(A [™] <u>+</u> ∧ A [™]) · 1	0 ³ p	(ε <u>+</u> ∠ε)·10 ³
92	90789	77394	1,265 <u>+</u> 0,039	0,054	15,73 <u>+</u> 1,26
144	58518	53398	0,484 <u>+</u> 0,032	0,0039	83,34 <u>+</u> 8,26
186	85262	45148	3,788 1 0,034	0,060	42,40 <u>+</u> 3,15
242	654 9 2	28978	3,448 <u>+</u> 0,029	0,076	30,47 <u>+</u> 2,26
295	91 775	20624	6,720 <u>+</u> 0,032	0,194	23,26 <u>+</u> 1,72
352	131362	16019	10,893 <u>+</u> 0,036	0,375	19,51 <u>+</u> 1,44
609	80917	5573	7,116 <u>+</u> 0,028	0,470	10,17 <u>+</u> 0,75
768	10979	4053	0,654 <u>+</u> 0,012	0,0476	9, 23 ! 0,70
1120	16544	2654	1,312 <u>+</u> 0,013	0,147	5, 99 ! 0,44
1238	6967	1990	0,470 <u>+</u> 0,010	0,0578	5,46 <u>+</u> 0,42
1377	5168	1738	0,324+0,008	0,043	5,06 <u>+</u> 0,39
1509	3337	1866	0,140 <u>+</u> 0,007	0,023	4,09 <u>+</u> 0,36
1764	10897	548	0,977 <u>+</u> 0,010	0,161	4,07 <u>+</u> 0,30
2204,5	2793	197	0,245 1 0,005	0,051	3,23 <u>+</u> 0,25
2449	791	66	0,068 1 0,003	0,015	3,04 <u></u> \$0,26

U-fosfat m = 52,942g d. = 7,6 mm t. = 200Ks

TABELA 3.

E(KeV)	Np	Nf	$(As \underline{+} \Delta As \underline{+}) \cdot 10^3$		(٤ <u>4 ±</u> 3) اال ع
92	83930	69168	1,757 <u>+</u> 0,047	0,054	21,85 <u>+</u> 1,72
144	48378	44502	0,461 <u>+</u> 0,036	0,0039	79,39 <u>+</u> 8,53
186	70961	37396	3,996 <u>+</u> 0,039	0,060	44,73 <u>+</u> 3,33
242	54063	24437	3,527 <u>+</u> 0,033	0,076	31,13 <u>+</u> 2,32
295	75936	17266	6,984 <u>+</u> 0,036	0,194	24,18 <u>+</u> 1,79
352	108805	13374	11,360 <u>+</u> 0,042	0,375	20,35 <u>+</u> 1,50
609	67200	4735	7,436 <u>+</u> 0,032	0,470	10,63 <u>+</u> 0,79
769	9118	3413	0,679 <u>+</u> 0,013	0,0476	9,58 <u>+</u> 0,73
934	5534	2950	0,308 <u>+</u> 0,011	0,0307	6,74 <u>+</u> 0,55
1121	13812	2319	1,368 <u>+</u> 0,015	0,147	6,25 <u>+</u> 0,47
1239	5721	1691	0,480 <u>+</u> 0,010	0,0578	5,58 <u>+</u> 0,43
1510	2861	1584	0,152 <u>+</u> 0,008	0,023	4,44 <u>+</u> 0,40
1764	9017	459	1,019 <u>+</u> 0,011	0,161	4,25 <u>+</u> 0,32
2204	2264	176	0,249 <u>+</u> 0,006	0,051	3,28 <u>+</u> 0,25
2448	684	63	0,074 <u>+</u> 0,003	0,015	3,31 1 0,28

U - fosfat m = 42,002 g d = 6,0 mm t = 200 Ks

TABELA 4.

E/KeV)	Np	Nf	$(A_{s}^{m} + \Delta A_{s}^{m}) \cdot 10^{3}$	₽ ŗ	10 ³ • (عم <u>ا</u> ع)
92	62431	50544	2,37 <u>+</u> 0,067	0,054	29,47 <u>+</u> 2,33
144	31925	28980	0,587 <u>+</u> 0,049	0,0039	101,08 <u>+</u> 11,26
186	46693	24788	4,368 <u>+</u> 0,053	0,060	48,89 <u>+</u> 3,66
242	35569	15828	3,937 <u>+</u> 0,045	0,076	34,79 <u>+</u> 2,60
295	49447	11348	7,598 <u>‡</u> 0,049	0,194	26,30 <u>+</u> 1,95
352	71375	8772	12,484 <u>+</u> 0,076	0,375	22,36 <u>+</u> 1,65
609	43342	3012	8,042 <u>+</u> 0,043	0,470	11,49 <u>+</u> 0,85
769	5991	2286	0,739 <u>+</u> 0,018	0,0476	10,43 <u>+</u> 0,81
934	3675	1990	0,336 <u>+</u> 0,015	0,0307	7,35 <u>+</u> 0,63
121	8692	1474	1,439 <u>‡</u> 0,020	0,147	6,57 <u>+</u> 0,49
239	3644	1151	0,497 <u>+</u> 0,014	0,0578	5,77 <u>+</u> 0,46
1510	1732	1049	0,136 <u>+</u> 0,011	0,023	3,97 <u>+</u> 0,43
1764	5719	306	1,079 <u>+</u> 0,015	0,161	4,50 <u>+</u> 0,34
2204	1515	144	0,273 <u>+</u> 0,008	0,051	3,59 <u>+</u> 0,28
2448	453	54	0,080 1 0,004	0,015	3,59 <u>+</u> 0,32

012

Tabela 5.

LITERATURA

- 1. Glenn F. Knoll: RADIATION DETECTION AND MEASUREMENT New York Chichester Brisbane Toronto
- 2. C.M.Lederer
 V.S. Shirley: TABLE OF ISOTOPES
- 3. Dr.Lazar Marinkov: OSNOVI NUKLEARNE FIZIKE, Novi Sad, 1976.
- 4. Bikit Ištvan: DIPLOMSKI RAD, PMF Novi Sad, 1967.
- 5. Ač Ferenc: DIPLOMSKI RAD, PMF, Novi Sad, 1979.
- 6. Grujić Ž.Rade: DIPLOMSKI RAD, PMF, Novi Sad, 1977.