Природно-математички факултет

Радна заједница тово ичких послова

Пры ;;	22. 11	1979
Орг. ј~д.	(µם	Вредноет
03	10/30	

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET

FIZIKA

AČ FERENC ŠEMA RASPADA ²⁰⁷ Bi₁₂₄ - diplomski rad -

Radjen u

Laboratoriji za nuklearnu fiziku Prirodno-matematičkog fakulteta

U Novom Sadu 1979. god. Srdačno se zahvaljujem dr. Lazaru Marinkovu i

dr. Ištvanu Bikitu na datoj temi, nesebičnoj pomoći i objašnjenjima koja su mi pružili tokom rada.

Zahvaljujem se svim ostalim saradnicima laboratorije koji su mi pomogli svojim radom i sugestijama.

- SADRŽAJ
- UVOD

1.	MODELI	
	1.1 Stabilnost jezgra	2
	1.2 Elektromagnetne radijacije	5
	1.3 Unutrašnja konverzija	7
	1.4 Zakljušak	8
2.	EKSPERIMENTALNI RAD	
	2.1 Eksperimentalna oprema	9
	2.2 Pripreme za eksperiment	10
	2.3 Izvodjenje eksperimenta	11
	2.4 Izračunavanje efikasnosti i obrada podataka	12
	2.5 Energijski spektar i relativni intenziteti	
	gama prelaza jezgra 207 Pb	19
3.	ŠEMA RASPADA 207Bi 83 ¹²⁴	
	3.1 Analiza i obrada podataka	21
	3.2 Zaključak	29

UVOD

U ovom radu je izvršena analiza šeme raspada ²⁰⁷ Bi₁₂₄ (analiza je dodirivala pitanje stabilnosti jezgra i opšte osobine koje se odnose na vrstu i karakter zračenja). Rad je predstavljen u tri dela:

u prvom delu sam izneo teorijski opis pojava, činjenica koje su bile u vezi postavljene tematike. Govorio sam o modelima jezgara i o elektromagnetnim prelazima.

U drugom delu sam detaljno opisao eksperimentalni rad koji se odnosio na prikaz merenja, energija i intenziteta elektromagnetnog zračenja. U sklopu toga odredio sam i krivu efikasnosti poluprovodničkog P-I-N Ge Li detektora.

U trećem delu rada sam izneo analizu šeme raspada 207 Bi₁₂₄. Analiza je vršena na bazi poznatih teorijskih razmatranja i izmerenih rezultata.

MODELI

Stabilnost jezgra:

Do danas su u nuklearnoj fizici izdiferencirana dva nuklearna modela. Jedan od njih je model jake interakcije, gde je jezgro skup čvrsto spregnutih nukleona sa manifestovanjem kolektivnih efekata. Drugi model je model nezavisne čestice, gde se nukleoni u nekom usrednjenom potencijalu, nezavisno jedan od drugog, kreću. Predstavnik modela nezavisnih čestica je model slojeva (Shell-model).

Model slojeva:

(Cvaj model ću nešto detaljnije razmotriti jer sam ga koristio prilikom analize šeme raspada ²⁰⁷/₈₃ Bi₁₂₄). Detaljnim ispitivanjem atomskih jezgara ustanovljena je periodična promena osobina sa porastom broja nukleona. (Ova periodičnost podseća na periodične pojave kod atoma.) Ovo ukazuje na slojevitu strukturu jezgra. Model zasnovan na pretpostavci da jezgro ima slojevitu strukturu se naziva model slojeva ili Shell-model.

Prema modelu slojeva nukleoni u jezgru su razmešteni po nivoima koji obrazuju sloj. Ako u nekom sloju ima onoliko nukleona, koliko su magični brojevi, tj. 2, 8, 20, 28, 50, 82 i 126, kažemo da je sloj popunjen. Tada jezgro pored izuzetne stabilnosti poseduje i sferno simetričnu raspodelu naelektrisanja, što uslovljava

- 2 -

nultu vrednost njegovog kvadrupolnog momenta. (Kvadrupolni momenat je jednak nuli još i kad je vrednost totalnog momenta impulsa nula ili jedna polovina.)

Najprostija varijanta modela slojeva je jednočestični model slojeva. Prema ovom modelu nukleoni se kreću nezavisno u sferno simetričnom centralnom potencijalu. Najbitnija svojstva jezgra se objašnjavaju prisustvom preostalog nesparenog nukleona. Proširivanjem jednočestičnog modela nastaje kolektivni model. I to na sledeći način: daljnom popunom sloja nukleonima, povećava se deformacija jezgra i nastaje nesferno simetrična raspodela potencijala. U toku deformisanom potencijalu manifestuju se efekti kolektivnog kretanja (oni se superponiraju na već postojeće efekte jednočestičnog kretanja). Opis kolektivnog kretanja je veoma složen (zato ga neću ni iznositi), no uprave njegovim uvažavanjem rezultati kolektivnog modela su mnogo konkretniji i

Dosadašnje razmatranje upućuje na složenost jezgra i na probleme koji ukazuju na njegovu stabilnost.

Razmotrimo sad stabilnost jezgra.

Jezgra su stabilna za odredjeni odnos broja protona (Z) i neutrona (N). Najstabilnija su ona jezgra, kod kojih je odnos broja neutrona i protona jednak jedinici, tj. kad je N/Z = 1. Povećanjem brojan nukleona A (A = N + Z) odnos N/Z raste i jezgra kod kojih je $N/Z \gg 1,46$ se spontano raspadaju emisijom alfa čestica ili beta raspadom. U nuklearnoj fizici poznata su tri načina beta raspada jezgra. Obično se prikazuju sledeće tri nuklearne reakcije: Beta raspad $n = p + \beta + \overline{\gamma}$ pozitronski raspad $p = n + \beta^+ + \overline{\gamma}$ elektronski zahvat $p + e^{-} = n + \overline{\gamma}$

Razmotrimo sad detaljnije raspad realizovan elektronskim zahvatom. (Ovo činim zato što ću ovde navedene osnovne osobine koristiti u konkretnoj analizi šeme raspada ²⁰⁷/₈₃ Bi₁₂₄).

Elektronski zahvat: je proces zahvatanja elektrona iz elektronskog omotača od strane jezgra. Jezgro pre-

lazi u stabilno stanje pri čemu se broj protona promenio. Proces se ilustruje sledećom slikom:

(sa debelo izvučenim linijama sam označio osnovna stanja jezgra, a sa tankim pobudjena)

 Q_{ec} - je razlika energija mirovanja osnovnih stanja jezgara $Z + 1^{A}y \perp Z^{A}x^{i}$ naziva se Q-reakcijom. Ona je jednaka $Q_{ec} = (M_{j}(A, Z + 1) - M_{j}(A, Z)) C^{2}$ (1.0)

Proces predstavljen jednačinom je oblika: $Z + 1^{A}y + e^{\Psi} = Z^{A}x + V$

Pojava je moguća samo pri uslovu

- 4 -

$$(M_{j} (A, Z + 1) + m_{e} + \sqrt{2}) > M_{j} (A, Z)$$

ili
 $(M_{at} (A, Z + 1) + \sqrt{2}) > M_{at} (A, Z)$

- 5 -

 M_j (A, Z + 1) i M_j (A, Z) - su mase jezgara pre i posle elektronskog zahvata

- je masa zahvaćenog elektrona iz
 elektronskog omotača
- je maseni ekvivalent energije vezivanja elektrona u omotaču izražen u (ajm)

Ako novonastalo jezgro Z^Ax, ne poseduje doveljno energije za emisiju čestice, prelazi izmedju kvantiziranih stanja će se realizovati putem elektromagnetnih zračenja.

Elektromagnetne radijacije:

m.

Opěte osobine elektromagnetnog zračenja se baziraju na pojmu elektromagnetnog polja. Interakcijom elektromagnetnog polja sa naelektrisanjima i strujom u jezgru nastaju električna zračenja različitih multipolnosti (najzastupljenije električno smačenje je električno kvadrupolno zračenje). Magnetna multipolna radijacija nastaje interakcijom elektromagnetnog polja i magnetnog momenta (koji nastaje usled promene struje u jezgru i spina nukleona). Sa električnim radijacijama obrazuje polje zračenja različitih momenata impulsa i parnosti koje se naziva poljem multipola (multipolnost radijacije se odredjuje izrazom 2^{L}). Električne magnetne radijacije istog multipolnog reda izdvajamo osobinom parnosti. Operatori parnosti za električnu i magnetnu multipolnu radijaciju su:

$$P_E = (-1)^L$$

 $P_M = (-1)^{L+L}$

(1.1)

Ako je operator neparan, onda umnožak talasnih funkcija treba takodje da je neparan, tj. u prelazu se menja parnost. Parni operator traži da umnožak talasnih funkcija bude paran, obe talasne funkcije mogu biti parne ili neparne, što znači da se u prelazu ne menja parnost. Ovo objašnjenje se može prikazati i sledećom šemom:

Operator					-	Promena	parnosti	stanja			
paran	M	1.	E	2,	M	3,	E	4		NE	
noparan	E	1,	Μ	2,	E	3.	M	4		DA	

U mnogim slučajevima radijacioni prelazi nisu čista multipolna zračenja, već se javljaju kao superpozicija zračenja multipola najnižeg reda / $I_i \Rightarrow I_g$ / i slodoćeg / $I_i \Rightarrow I_g$ / + 1, to su smeše M (L) + E(L + 1) ili redje E (L) + M (L + 1). Emisija smeše E (L) + M (L + 1) je manje verovatna (verovatnoća emisije radijacije smanjuje se sa povećanjem L, grubo, kao (R/ χ)^{2L}). Zapaženo je, da je verovatnoća emisije električnih multipolnih radijacija veća od odgovarajućih magnetnih (magnetne radijacije M (L) su redukovane faktorom v/c prema električnim radijacijama).

- 6 -

Elektromagnetni prelazi se mogu ostvariti i emisijom elektrona iz atomskog omotača. Proces emisije elektrona se naziva unutrašnjom konverzijom gama zraka.

Unutrašnja konverzija:

- 7 -

Pobudjeno jezgro, prelazeći iz višeg u niže pobudjeno ili osnovno stanje izbacuje virtuelni foton (on predstavlja intermedijerno stanje) čijom absorbcijom elektron iz omotača napušta atom. Energija prelaza E & , koju bi inače odneo foton, se deli na kinetičku energiju i vezivnu energiju elektrona (da bi uopšte došlo do interakcije jezgra i orbitalnih elektrona, energija pobudjenog stanja jezgra mora biti veća od energije vezivanja elektrona).

Te = Ey = Eveze

Interna konverzija se kvalitativno definiše koeficijentom kommerzije i predstavlja odnos verovatnoća unutrašnje konverzije i emisije gama kvanta. Koeficijent konverzije zavisi od multipolnog reda zračenja, uporedjenjem njegovih teorijskih i eksperimentalnih rezultata, mogu se dobiti informacije o multipolnosti radijacionih prelaza. Zato je tačno odredjivanje koeficijenta konverzije veoma važno i ja sam prilikom izračunavanja koristio sledeći metod; metod se koristi izrazom:

 $\mathcal{L} = \frac{N_{\odot}}{N_{\odot}} \cdot \frac{N_{\odot}}{N} \cdot \mathcal{L}_{\odot}$ (1.2)

Odnosi $\frac{N_{es}}{N_{es}}$ (je odnos intenzivnosti konverzionih linija izučavanog prelaza i prelaza koji je uzet za standard) i $\frac{N_{3}e}{N_{3}s}$ (je odnos intenzivnosti gama linija izučavanog prelaza i prelaza koji je uzet za standard) se odredjuje eksperimentalno (intenziteti konverzionih linija se mere magnetnim, a redje poluprovodničkim spektrometrima, a intenziteti gama linija se mere poluprovodničkim kim GeLi detektorima ili primenom magnetne analize fotoelektrona). _s se najčešće izračunava, najpogodnije izabrati teorijski koeficijent jednog intenzivnog prelaza koji ima čistu multipolnost. No može se uzeti i njena eksperimentalna vrednost.

Zakijučak:

Ovaj kratak teorijski pregled je razmatrao veličine (tipovi i multipolnost elektromagnetnog zračenja, konverzioni koeficijent, mešani multipolni prelazi) čijim poznavanjem možemo odrediti osnovne parametre pobudjenih stanja jezgra (ti parametri su: energija, spin, parnost i poluživot pobudjenog stanja).

Mereći energije prelaza, sastavljamo šemu pobudjenih nivoa, a odredjivanjem konverzionih koeficijenata, dobijajući na taj način informacije o multipolnosti prelaza, moguće je odrediti parnost i spin svakog pobudjenog stanja.

Ja u svom diplomskom radu nisam sprovodio ovako dosledan postupak, izvršio sam samo analizu, već postojeće šeme raspada. Za to je neophodno poznavanje eksperimentalnog dela rada. Pristupimo zato njegovom opisu.

- 8 -

EKSPERIMENTALNI RAD

Tokom eksperimentalnog rada merio sam energije i relativne intenzitete pojedinih energetskih prelaza. Najpre pristupih odredjivanju energetske zavisnosti krive efikasnosti korišćenog dotektora.

Eksperimentalna oprema:

Blok šema korištene aparature je na slici 1.

Detektor je poluprovodnički GeLi detektor P-I-N tipa.

Detektor P-I-N tipa:

Detekcija čestica se vrši u zaprečnom sloju naelektrisanja. Uvećanjem zaprečnog sloja (ona se u opštem slučaju vrši inverznom polarizacijom) povećava se i efikasno dejstvo, a u služaju ovih detektora to se postiže posebnim postupkom difuzije Li u poluprovodnik P-tipa. Na taj način se izmedju P i N sloja obrazuje tzv. i-sloj, karakterisan ravnotežom donorskih i akceptorskih primesa koji dobija osobine kristala besprimesne čistoće. Prolaskom gana kvanata formiraju se elektroni i šupljine. Skupljajući se na krajevima elektroda obrazuju strujni impuls koji se na radnom otporniku pretvara u naponski signal. Nastali naponski signal se izvodi na predpojačavač. On obezbedjuje njegov transport kroz kabl, tako da se njena forma i visina ne menjaju. Da bi impuls bio merljiv, pojačava se linearnim pojačavačem, sve dok se ne podesi za analizu. Tako se dovodi na 4096 kanalni analizator gde se i registruje.

Pripreme za eksperiment:

Bitan i sastavni deo eksperimentulne opreme je nosač izvora. Sačinjen od plastike onemogućavao je neželjena rasejanja sa svog tela, a time i promene u spektru koji se snimao. Izmena izvora se lako vršila (jedino se izvor ²⁰⁷/₈₅ Bi₁₂₄ mešto teže postavljao zbog svoje glomaznosti), a obezbedjivao je i očuvanje geometrije tokom celog snimanja. Nakon postavljanja izvora na željeno mesto (u jedan udubljeni plastični deo nosača čijim pomeranjem se lako postizalo željeno rastojanje) pristupilo se regulizanju mernih uslova. Postavkom odredjenog pojačanja, odsocanjem odgovarajućeg broja kanala (sa kojim se u stvari vršilo uzdužno pomeranje spektra) obezbedjivali smo željeni merni opseg (kod poluprovodničkih brojača donja granica merljivih energija odredjena je debljinom mrtvog aloja i šumom predpojačavača, dok gornja granica postoji zbog podložnosti kristala radijacionim oštećenjima). Vreme snimanja svakog spektra je posebno odredjivano prema aktivnosti izvora radi obezbedjivanja odgovarajuće statistike. Merenje emergija linija totalne absorbcije spektra se postiže energetskom kalibracijom spektrometra. Ona se vrši snimanjem spektara standardnih izvora (to su najčešće izvori ⁵⁷Co, ¹³⁷Cs, i ⁶⁰Co). Poznavanjem energetskim vrednosti i položaja linija (položaj linije je odredjen brojnom vrednošću kanala pod njenim vrhem u spektru) odredjuje se kalibraciona prava (to je u stvari jednačina prave kroz dve tačke) čijim korišćenjem izračunavam energije nepoznatih gama zraka. Kalibraciona prava i spektar se suimaju uvek pod istim uslovima. Nakon svih ovih pripremnih postupaka se pristupa snimanju.

Izvedjenje eksperimenta:

Merenje se sastoji u obradi spektra koju daje instrument. Služeći se kalibracionom pravom izdvajaju se tražene linije i obeležavaju markerima (vecma često, to je posebno bilo izraženo kod izvora ¹⁵²Eu i ²⁰⁷Bi, postoje linije koje potiču od drugih izotopa ili zračenja sobe u kojoj se vršilo merenje). Izračunavanje površina, tj. impulsa pod vrhovima, vršilo se na višekanalnom analizatoru, direktno, očitavanjem brojnih vrednosti. Nakon analize i obrade spektra pristupa se ponovnom merenju. Merenja sam vršio na rastojanjima od 5, 10, 15 i 20 cm sa standardnim izvorima. To su izvori čije energije gama prelaza

- 11 -

poznajemo. Koristio sam sledeče radicaktivn	vne izvore:
---	-------------

241 _{Am}	•	Americijum sa energijom gama raspada od 60 KeV
133 _{Ba}		Barijum sa energijama gama raspada od 81, 276, 303,
		356 i 384 kev
137 _{Cs}		Cezium sa energijom gama raspada od 662 KeV
57 _{Co}	-	Kobalt sa energijama gama raspada od 122 i 136 KeV
60 _{Co}		Kobalt sa energijama gama raspada od 1173 i 1332 KeV
54 _{Ma}		Mangan sa energijom gama raspada od 835 KeV
22 _{Na}		Natrium sa energijama gama raspada od 511 i 1274 KeV
88,		Itrium sa energijama gama raspada od 898, 1836 i 2734 KeV
152 _{Eu}		Europium sa energijama gama raspada od 122, 245, 344,
		411. 444.779. 964. 1112 i 1408 KeV

Svi ostali podaci o korišćenim standardima , sem ¹⁵²Eu, su dati u tabeli l.

Izračunavanje efikasnosti i

obruda podataka:

Izračunavanje apsolutne

Efikasnost detekcije spektrometra je odnos broja detektovanih fotona prema ukupnom broju upadnih fotona.

Ona je povezana sa ukupnom efikasnošću na sledeći način:

- 12 -

$$\mathcal{E}_{u} = \frac{\Omega}{4\pi} \cdot \mathcal{E}_{det} = \frac{\Omega}{4\pi} \cdot \frac{N_{det}}{N_{up}}$$

gde je

 $\frac{\Omega}{4\pi}$ - geometrijska efikasnost i ona izražava činjenicu da samo odredjeni deo fluksa fotona pada na detektor

Znajući da je ukupan broj upadnih fotona • Ne (Ne je ukupan broj emitovanih fotona) za ukupnu efikasnost se dobija

$$\mathcal{E}_{u} = \frac{N \det}{N_{e}}$$
(1.3)

Ja sam se koristio izrazom 1.3. pošto je izračunavanje geometrijske efikasnosti složeno. Izraz 1.3 se može napisati u sledećem obliku:

$$\mathcal{E}_{u} = \frac{\mathcal{P}_{\ell}}{Ne}$$

gde je

P₁ → površina linije totalne absorbcije koja odgovara broju registrovanih gama kvanata u jedinici vremena

N_e - je ukupan broj emitovanih gama kvanata u jedinici vremena

Površina linije totalne absorbcije se dobija razlikom ukupne površine i površine fona linije. (Slika br. 2)

Slika 2.

kosim crtama označena površina je površina linije
horizontalnim crtama označena površina je površina fena
ukupna površina je zbir površina linije i fona

P1 = Pukupno - Pf

gde je

P_l - površina linije P_{uk}- ukupna površina linije P_f - površina fona linije

Ukupna površina se očitava sa višekanalnog analizatora (ona je u stvari broj impulsa u svakom kanalu ispod posmatrane linije i sadrži u sebi i vrednost fona). Vrednost fona se izračunava povlačanjem krive fona. Na krivi fona se za svaki kanal odredjuje broj impulsa čijim sabiranjem dobijamo ukupnu vrednost fona. U slučaju da je kriva fona prava linija (slika br. 3), tad je fon konstantan i izračunavanje fona se vrši sledećim izrazom:

$$P_{f} = \frac{P_{1} + P_{2}}{K_{1} + K_{2}} \cdot K_{v}$$

gde je

P₁ - površina fona ispred linije
P₂ - površina fona iza linije
K₁ - broj kanala preko kojeg je izračunat fon ispred linije
K₂ - broj kanala preko kojeg je izračunat fon iza linije
K_n - broj kanala ispod linije

broj impulsa

Slika 3.

Tako je površina linije data izrazom:

$$P_1 = P_u - \frac{P_1 + P_2}{K_1 + K_2} \cdot K_u$$

Izmerene vrednosti površina linija totalne absorbcije sam prikazao u tabelama 2, 3, 4 i 5.

Broj emitovanih kvanata energije E u jedinici vremena se izračunava izrazom:

 $N_{e}(E) = A_{t}(E) \cdot f(E) \cdot t(E)$

gde je

 A_t (E) - aktivnost izvora u trenutku snimanja. Izračunava se formulom $A_{t(E)} = A e^{-\ln 2 \frac{t}{T}}$ gde su A - aktivnost koju daje proizvodjač

standarda

t - proteklo vreme od ispitivanja do trenutka snimanja

T - period poluraspada

- f (E) broj emitovanih gama kvanata energije E po raspadu
- t (E) transmisioni faktor i daje korekciju za samoabsorbciju u izvoru

Dobijene vrednosti za aktivnost sam prikazao u tabelama 6 i 7. Podaci za f (E) i t (E) su dobijeni od proizvodjača standarda. Izračunate vrednosti za N_e su u tabelama 8 i 9. Tabele 7 i 9 se odnose na izvor ¹³³Ba. Podatke za taj izvor sam prikazao zasebno pošto sam merenja sa tim izvorom, na odgovarajućim rastojanjima, vršio različitih dana.

- 16 -

Izračunavanje relativne efikasnosti:

Merenja relativne efikasnosti detektora smo vršili izvorom ¹⁵²Eu (to je učinjeno zbog nepoznavanja njegove aktivnosti). Relativna efikasnost je data izrazom

$$\mathcal{E}_r = \frac{\mathcal{P}(E)}{\mathcal{L}(E)}$$

gde su

P (E) - površina linije, tj. broj registrovanih gama kvanata u jedinici vremena f (E) - relativni intenzitet linije

Veličine P (E) sam odredjivao eksperimentalno i one se nalaze u tabelama 10, 11, 12 i 13. Relativne intenzitete linija f (E) sam uzimao iz reference 8. Korišćenjem datih veličina izračunao sam relativnu efikasnost, za svaki prelaz, a potom sam izvršio normiranje na vrednosti apsolutne efikasnosti. To sam učinio na sledeći način: deljenjem vrednosti apsolutne efikasnosti sa vrednostima relativne efikasnosti za svaki prelaz ponaosob sam odredio konstantu normiranja K_n. Srednja vrednost konstanata K_n je K_{sm}. Množenjem konstante K_{sm} sa vrednostima relativne efikasnosti dobijao sam vrednosti apsolutne efikasnosti \mathcal{E}_{AP} . Vrednosti \mathcal{E}_{AP} su u granici eksperimentalne greške ležale na krivi apsolutne efikasnosti (kriva apsolutne efikasnosti je dobijena snimanjem standardnih izvora).

Izračunavanje relativne efikasnosti i postupak normiranja za rastojanja od 5, 10, 15 i20 cm sam prikazao u tabelama 14, 15, 16 i 17.

- 17 -

Vrednosti efikasnosti detektora, dobijene zaključnim izračunavanjem su u tabeli 18. Krive efikasnosti su na slici 4.

Izračunavanje greški:

Greške pri odredjivanju površine linija tražene su prema formuli:

$$P = \pm \sqrt{P_1 + K_u (1 + \frac{K_u}{K_1 + K_2}) \cdot N_f}$$

gde su

P₁ - površina linije
K_u - broj kanala ispod linije
K₁ + K₂ - broj kanala preko kojih je računat fon
N_g - srednja vrednost fona

Greške pri odredjivanju broja emitovanih kvanata su tražene sledećim formulama:

$$\Delta N_{a} = f(E) \cdot t(E) \cdot \Delta A(t)$$

gde je

△ A – je procenjena standardna devijacija.

Koristivši se odgovarajućim podacima i njihovim greškama, greške za efikasnost detektora sam računao formulama: Slika 4.

$$\Delta \xi = \pm \sqrt{(\frac{1}{N_{e}})^{2}} \cdot \Delta P_{h}^{2} + (-\frac{P_{1}}{N_{e}^{2}})^{2} \Delta N_{e}^{2}$$

$$\Delta \xi = \frac{1}{2} \kappa_{sn} (ID) 10^4 \sqrt{\left(\frac{1}{f(E)}\right)^2 \Delta P_1^2 + \left(-\frac{P_1}{f(E)^2}\right)^2 \Delta f(E)^2}$$

Gornju formulu sam koristio kod izvora čije su aktivnosti bile poznate, dok sam se sa donjom formulom služio kod izvora ¹⁵²Eu čiju aktivnost nisam poznavao.

Nakon eksperimentalnog odredjivanja krive efikasnosti pristupio sam odredjivanju energija i relativnih intenziteta gama prelaza nastalih raspadom jezgra $\frac{207}{83}Bi_{124}$.

Energijski spektar i relativni intenziteti gama prelaza jezgra ²⁰⁷82^{pb}125^t

Radijacioni gama prelazi su energija od 570, 897, 1063, 1442 i 1770 KeV. To sam utvrdio energetskom kalibracijom spektrometra. Opis energetske kalibracije spektrometra je na strani 11.

Odredjivanje relativnih intenziteta gama prelaza sam sprovodio:

1. odredjivanjem površina pod vrhovima

- 2. svodjenjem svih linija na isto vreme snimanja
- 3. korekcijom zbog promene efikasnosti brojača
- 4. relativnim izražavanjem intenziteta prelaza
- postupak odredjivanja površina pod vrhovima sam već opisao (strana 15).

- 2. spektar sam snimao na rastojanjima od 5 i 15 cm sa različitim vremenima snimanja. Radi usporedbe rezultata (merenja na 5 i 15 cm treba da daju iste vrednosti što je u granici eksperimentalnih grešaka i dobijeno) vršio sam obračun po jedinici vremena i tako izvršio svodjenje na isto vreme.
- J. Vrednosti efikasnosti detektora sam za svaku energiju odgovarajuće linije, za dato rastojanje, očitavao sa krive efikasnosti i sa njima delio izračunate površine linija (to je učinjeno zbog energetske zavisnosti efikasnosti detektora).
- 4. Relativni intenziteti linija su izraženiu u procentima u odnosu na liniju koja je najbolje definisana i unosi najmanju grešku. Normiranje sam izvršio u odnosu na liniju od 1063 KeV. (ona je jedna od najintenzivnijih). Relativni intenziteti uporedjeni sa rezultatima reference 9 su u tabeli 20. Detaljni prikaz podataka i rezultata ovog računa je u tabeli 19.

Izračunavanje greški:

Izračunavanje greški intenzivnosti gama prelaza sam vršio izrazom:

$$\Delta N_{e} = \frac{4}{\varepsilon} \sqrt{\left(\frac{1}{\varepsilon}\right)^{2}} \Delta P_{1}^{2} + \left(-\frac{P_{1}}{\varepsilon^{2}}\right)^{2} \Delta \varepsilon^{2}$$

Vrednosti dobijene ovom formulom sam koristio u izrazu:

$$\Delta N_{e}(E)^{=} \frac{1}{N_{e}(1063)} \sqrt{\left(\frac{100}{N_{e}(1063)}\right)^{2}} \Delta N_{e}(E) + \left(-\frac{N_{e}(E) \cdot 100}{N_{e}(1063)^{2}}\right)^{2} \Delta N_{e}(1063)$$

koji mi je služio za izračunavanje groški relativnih intenziteta gama prelaza.

Završetkom opisa eksperimentalnog dela rada možemo pristupiti analizi šeme raspada ²⁰⁷Bi 83 124*

22 -

Analiza i obrada podataka:

Prikaz šeme raspada je na slici 5.

Jezgro ²⁰⁷₈₃Bi₁₂₄, čiji je period poluraspada 30 godina, elektronskim zahvatom se raspada u jezgro ²⁰⁷₈₂Pb₁₂₅. Q reakcija prelaza je

$$Q = (M_{j} (\frac{207}{83}Bi_{124}) - M_{j} (\frac{207}{82}Pb_{125})) 931.48$$
$$Q = (206.978474 - 206.975898) \cdot 931.48$$

i iznosi 2.40 MeV.

Jezgro ²⁰⁷₈₂Pb₁₂₅ je jedinstvenslučaj tipičnog predstavnika jednočestičnog modela. Spin osnovnog stanja mu je 1/2 (to ukazuje da mu je kvadrupolni električni momenat jednak nuli), a iz schell--modela bi trebao biti $3p_{1/2}$, što se odlično slaže sa modelom.

Za svaki radijacioni gama prelaz san odredio vrednost konverzionog koeficijenta. Prilikom izračunavanja sam se koristio formulom 1.2. Relativne intenzitete gama linija sam izmerio (opis toka merenja je na strani 20), a intenzitete konverzionih linija sam uzeo iz reference 9. Konverzioni koeficijenat za prelaz od 570 KeV sam odredio interpolacijom, koristeći se tabličnim vrednostima konverzionih koeficijenata iz reference 10. Ovu vrednost koeficijenta sam koristio za izračunavanje konverzionih koeficijenata ostalih prelaza koje sam merio. Za njega sam se opredelio, jer je poznato da je prelaz od 570 KeV čist E2 (referenca 9). Vrednosti konverzionih koeficijenata sam priložio u tabeli 21.

Koristivši selekciona pravila momenta impulsa i zakon održanja parnosti, mogu se predvideti multipolnosti i tipovi prelaza. Razmotrimo ovaj postupak ponaosob za svaki gama prelaz.

570 KeV:

Ovaj prelaz se realizuje izmedju stanja 5/2 i 1/2". Znači gama kvant prema izbornom pravilu ima momente

 $|5/2 = 1/2| \leq 1 \leq |5/2 + 1/2|$ 2 $\leq 1 \leq 3$

2 i 3 l. Do promene parnosti ne dolazi, to znači da operator parnosti mora biti paran. On će biti paran jedino za električnu kvadrupolnu i magnetnu oktopolnu radijaciju. No, uporedjenjem teorijske i eksperimentalne vrednosti konverzionog koeficijenta ustanovio sam da je odnešeni momenat 21, što uslovljava da je prelaz izvršen isključivo elaktrično kvadrupolnom radijacijom. To, da je zračenje električno kvadrupolno zračenje, je označeno i na šemi, a to smo sad, kao što vidimo, i diskusijom potvrdili. Diskusiju sam izveo na bazi naših eksperimentalnih rezultata.

897 KeV:

Ovaj prelaz se realizuje izmedju stanja 3/2 i 1/2. Gama kvant prema izbornom pravilu ima momente

> $|3/2 - 1/2| \le 1 \le |3/2 + 1/2|$ 1 $\le 1 \le 2$

Orbitalni momenat može imati vrednosti 1 = 1,2.

Pošto su obadva stanja negativne parnosti, ne dolazi do promene parnosti, što znači da je operator parnosti paran, odakle sledi da se prelaz realizuje električno kvadrupolnim i magnetno bipolni zračenjem. Uporedjujući teorijske vrednosti konverzionih koeficijenata ($\measuredangle_{\text{teor}}$ (E2) i $\measuredangle_{\text{teor}}$ (M1)) zaključujem da je zračenje mešano multipolnog reda i daljnji zadatak je odredjivanje zastupljenosti multipolnih komponenata u mešanom prelazu.

Zastupljenost multipolnih komponenata u mešanom prelazu se definiše odnosom:

 $S^2 = \frac{N(E2)}{N(MI)}$

gde je

N & (E2) - intenzitet E2 komponente zračenja N & (M1) - intenzitet M1 komponente zračenja

- 24 -

U slučaju prelaza tipa E2 + Ml izmereni konverzioni koeficijent za i-tu ljusku ili podljusku se može izraziti kao

$$di = \frac{di(M1) + \delta^2 di(E2)}{1 + \delta^2}$$

odakle je

$$S^{2} = \frac{di(MA) - di}{di - di(E2)}$$

Za K ljusku

$$S^{2} = \frac{d\kappa(M1) - d\kappa}{d\kappa - d\kappa(E2)}$$
(1.3)

gde je

- K = eksperimentalni konverzioni koeficijent za dati
 prelaz
- ≪ (Ml) teorijski konverzioni koeficijent zračenja tipa Ml

K (E2) - Teorijski konverzioni koeficijent zračenja tipa E2

Vrednost za \mathcal{L}_{K} sam merio, a teorijske vrednosti za \mathcal{L}_{K} (M1) i \mathcal{L}_{K} (E2) sam dobijao interpolacijom, koristeći se tabličnim vrednostima konverzionih koeficijenata iz reference 10.

Koristivši formulu 1.3 za veličinu S^2 sam dobio negativnu vrednost. Negativna vrednost veličine S^2 nema smisla. Očigledno je da se eksperimentalni rezultat ne slaže sa predpostavkom da je smeša M1 + E2. Naš rezultat se medjutim u okviru eksperimentalne greške slaže sa rezultatom iz reference 9. Ovo neslaganje izmedju naših rezultata i pretpostavljene smeše M1 + E2 je posledica ili eksperimentalnih grešaka u izmerenim vrednostima relativnih konverzionih intenziteta za ovo jezgro, ili pak potiče od penetracionih efekata u M1 konverziji za ovaj prelaz. Penetracioni efekat ili efekat prodiranja jeste uticaj nuklearne strukture na proces konverzije. Veličina penetracionih matričnih elemenata primetno raste pri radijacionim prelazima koji su jako usporeni. Nadovezujući se na malopredjašnju činjenicu, pristupio sam ispitivanju zabranjenosti Ml komponente datog prelaza. Zabranjeni prelazi su malo verovatni prelazi. Verovatnoća prelaza je obrnute proporcijalna periodu poluraspada pobudjenog stanja, tj. važi da je

$$v_{1/2} = \frac{0.693}{W(s')} = \frac{6.6 \cdot 10^{-10}}{\Gamma_{y^2} (eV)}$$
 (1.4)

gde je

Fge - parcijalna širina pobudjenog stanja sa kojeg se vrši prelaz

Proma jednočestičnom modelu parcijalna širina pobudjenog stanja za prelaz Ml tipa je

$$\Gamma_{4^{e}} (M1) = 0.021 \cdot E^{-2} \qquad (1.5)$$

tj.

$$\Gamma_{4^{e}} (M1) = 0.021 \cdot (0.897)^{3}$$

$$\Gamma_{4^{e}} (M1) = 1.52 \cdot 10^{-2} \text{ eV}$$

Period poluraspada prema formuli 1.4 je

$$t_{1/2} = \frac{6.6 \cdot 10^{-16}}{1.52 \cdot 10^{-2}} = 4.34 \cdot 10^{-14} \text{ sec}$$

Period poluraspada ovog stanja je kratak (obično se uzima da su sva stanja koja žive duže od 10⁻⁹ sec izomerna tj. dugoživeća). Odatle zaključujem da je verovatnoća prelaza prilično velika.

Kao što vidimo, služeći se pretpostavkama jednočestičnog modela slojeva, nisam uspec objasniti postojanost penetracionog efekta. Zato pretpostavljam da neslaganje rezultata potiče od eksperimentalnih grešaka u izmerenim vrednostima relativnih konverzionih intenziteta za ovo jezgro.

1063 KeV:

Prelaz se realizuje izmedju stanja 13/2* i 5/2". Iz izbornog pravila sledi da je

$$|13/2 - 5/2| \leq 1 \leq |13/2 + 5/2|$$

4 <2 < 9

Gama gvanti poseduju moment 41 (pošto se verovatnoća emisije smanjuje povećanjem momenta impulsa) i pošto dolazi do promene parnosti najverovatnije zračenje je magnetno heksa dekapolno zračenje. To se vidi i iz poredjenja teorijske i eksperimentalne vrednosti konverzionog koeficijenta. Teorijsku vrednost koeficijenta d(M4) sam dobio interpolacijom, koristeći se tabličnim vrednostima konverzionih koeficijenata iz reference 10.

Stanje 13/2⁺ je izonerno, no to nije uslovilo promenu konverzionog koeficijenta, kao što bi se očekivalo na osnovu objašnjenja koje se odnosilo na postojanost penetracionog efekta.

1442 KeV:

Prelaz se realizuje izmedju stanja 7/2" i 3/2". Istovetnom analizom zaključujem da je zračenje električno kuodrupolno zvačenje.

1770 KeV:

Prelaz se realizuje izmedju stanja 7/2° i 5/2°. Istim postupkom analize zaključujem da je i ovo zračenje mešanog multipolnog reda (zračenje je smeša zračenja E2 i Ml tipa). Veličina δ^2 je 0,6, znači E2 komponenta zračenja je nešto više zastupljenije.

Analizu za svaki prelaz ponaosob sam vršio na osnovu tabele 22, koja predstavlja sredjemu celinu teorijskih i eksperimentalnih vrednosti konverzionih koeficijenata.

Izračunavanje greški:

Izraz za odredjivanje greški konverzionih koeficijenata je

$$\Delta d_{K} = \pm \sqrt{\left(\frac{1}{Nes} \cdot \frac{N_{WS}}{N_{ye}} d_{s}\right)^{2} \Delta Ne_{K}} + \left(-\frac{Ne_{K}}{Ne_{s}} \cdot \frac{N_{WS}}{N_{ge}} d_{s}\right)^{2} \Delta Ne_{s}}$$

(u ovom izrazu sam smatrao da je $\Delta \mathcal{A}_{s} = 0$).

Greška veličine δ^2 je tražena izrazom

$$\Delta \delta^2 = \pm \frac{d\kappa (E2) - d\kappa (M4)}{(d\kappa - d\kappa (E2))^2} \Delta d\kappa$$

(naravno, nju sam koristio samo kod prelaza mešanog multipolnog reda).

Zakl.jučak:

U ovom radu sam odredio krivu efikasmosti P-I-N GeLi detektora i analizirao šemu raspada ²⁰⁷Bi₁₂₄. Tokom obrade rezultata prve serije merenja, zaključili smo da je izvor ¹⁵²Eu suviše slab, te smo ponovili merenja s jačim izvorom. Rezultati su bili mnogo bolji, čak dobri, jedino se linija od 122 KeV nije usaglašavala prilikom normiranja. Odstupanje je bilo sistematsko, povećavalo se smanjenjem rastojanja izvor-detektor. Uzimajući to u obzir i vršeći analizu na samon spektrometru, zaključili smo da je u pitanju "pile-up" efekat, tzv. nasedanje impulsa. Slično odstupanje smo primetili i za liniju 2754 KeV koja potiče od izvora ⁸⁸Y, no odstupanje se lako objasnilo analizom šeme raspada Y.

29 -

Krivu efikasnosti moženo smatrati tačnim, to smo ustanovili tokom daljnjih merenja koje smo vršili radi analize šeme raspada ²⁰⁷Bi₁₂₄. Prilikom analize primenom zakona održanja parnosti i momenta impulsa objasnio sam tip i multipolnost zračenja i na taj mačin sam potvrdio ispravnost korišćene šeme raspada. Prelaz od 897 KeV nije objašnjen, mada sam ga prodiskutovao. Pri tome sam se i koristio nekim osnovnim zaključcima jednočestičnog modela slojeva, no dobijao sam protivurečne rezultate. Smatram da to proističe iz jednostavnosti modela i da on ne može u potpunosti objasniti složenost jezgra.

1.VI 1976	Obeležje	A (pia)	%	ESD %	-
241 Am	B 1519	11.16	5	1.5	
133 _{Ba}	B 2372	11.23	4,8	1.6	
137 _{Cs}	B 3435	11.36	3.7	1.3	
57 Co.	в 4595	12.10	4.4	1.5	
60 _{Co}	B 5403	10.40	1.9	0.7	
54 Mn	B 6488	10.53	3.7	1.3	
22 _{Na}	B 8351	11.12	3.7	1.3	-
⁸⁸ ¥	B 9525	11.92	5.0	1.7	-
A strate with range of the strate of the strate of the indication	CONTRACTOR OF A STREET OF A STREET		AN AGO AND AN AD A DAY AND A DAY		-

Tabela 1.

ID = 5 cm										
	E (KeV)		P2	Pf	P=P_P	P/sec	ΔP	△P/sec		
241 Am	60	1 730	966	133 104	1 597 862	1597.86	14075.51	14.07		
	81	1 845	311	283 953.5	1 561 357.5	1951.69	6676.84	8.34		
133 Ba	303		204 950	61 734.5 65 538	201 569.5	251.96	2921.59 3164.04	3.65		
	356	1 425 (34.2	83 893.5 50 306	1 341 108.5	1676.38	3663.57	4.57		
37 _{Cs}	662	629	892	33 733	596 159	1490.39	1865.56	4.66		
57 _{Co}	122	1 717	408	31 479.5	1 685 928.5	1685.92	2080.91	2.08		
60 Co	1173	969 (611	128 743	204 968 840 868	204.56 840.86	901.,79 2649.,62	2.64		
54 _{Mn}	835	397 1	249	120 415	747 834	747.83	2823.60	2.82		
22 110	511	2 811	707	129 242	2 682 465	2682.46	3679.50	3.67		
ANCA	1274	628	133	30 689	597 444	597.44	2035.19	2.03		
88 ¥	1836	29	399	484	29 415	0.90 3.67	209.60	0.03		
	2734		244	6.5	.237.5	0.02	19.83	8/2		

Tabela 2.

		ID = 1	10 cm			And and the second second second
41.	E (KeV) P2	P _f	P=P_P	P/see	A -	
Am	60 1 080 369	92 232	988 137	hot of	ΔP	∆ P/sec
33 _{Bo}	81 5 442 299	543 991.5	1 288 024.5	494.06	11 197.16	5.59
Det	303 562 787	22 742.7	234 804.3	117.40	7 534.92	3.76
	<u> </u>	19 515.5	1 547 720.5	271.76	1 503.82	0.75
7 _{Cs}	662 493 445	17 628	206.773.3	103.38	888.10	0.95
Co	122 1 098 801	32 225	475 817	594.77	1 360.44	1.70
Co	120 138 527 1173 686 835	7 183	131 344	533.28	2 232.02	1.11
Ma	1332 609 749 835 267 1-3	66 089.5	610 138 543 659.5	305.06	1 927.78	0.46
Va	511 2 079 087	13 519.5	249 581.5	124.79	1 927.68	0.96
	1274 469 386	75 703 10 532.5	2 003 384 458 853 E	1 001.69	2 771.48	1.38
	1836 <u>20 262</u> 1836 <u>25 781</u>	4 757 548 E	45 505	229.42	1 131.54	0.56
	2734 110	13,5	25 232.5	1.26	202.15	0.02

Tabela 3.

	ID = 15 cm										
	E (KeV)	P2	Pf	P=P2-Pf	P/sec	۵P	AP/sec				
241 _{Am}	60	1 035 739	105 568	930 171	232.54	11 109.48	2.77				
	81	1 771 470	182 961	1 588 509	397.12	4 117.91	1.02				
9.99	276	264 655	27 849.4	236 805.6	59.20	1 702.91	0.42				
1.93Ba	303	572 235	20 315.4	551 919.6	137.97	1 537.71	0.38				
	356	1 586 554	16 920	1 569 634	392.40	1 785.38	0.44				
	384	213 316	4 383	208 933	52.23	792.50	0.19				
137 _{Cs}	662	396 436	9 164.5	297 271.5	297.27	964.16	0.96				
57	122	1 041 131	34 894	1 006 236	251.55	2 161.06	0.54				
- 00	136	1.36 543	11 827.5	124 715.5	31.17	1 146.02	0.28				
60_	1173	694 635	72 362	622 273	155.56	1. 826.43	0.45				
CO	1332	616 137	61 183	554 954	138.73	1 793.43	0.44				
54 _{Mn}	835	262 518	14 234	248 284	62.07	976.14	0.24				
22,	511	2 084 452	58 674	2 025 778	506.44	2 298.30	0.57				
INSI.	1274	480 067	9 131	470 936	117.73	1 094	0.27				
00	898	53 153	11 257	41 846	1.04	558.62	0.01				
Y	1836	27 693	1 447.5	26 245.5	0.65	333.05					
	2734	133	39	94	0.002	38.70					

Tabela 4.

al., and a	ID = 20 cm									
	E (KeV)	P2	Pf	P=P2=Pf	P/sec	ΔP	A P/sec			
241 _{Am}	60	1 232 254	146 840	1 085 414	135.67	12 281.34	1.53			
133 _{Po}	81 276	2 140 770 317 867	297 972.5 33 671.10	1 842 797.5 284 195.9	230.34 35.52	5 183.86 1 813.42	0.64 0.22			
Ba	202 356 384	1 898 928 254 500	27 902.9 21 856.1 4 486.4	657 534.1 1 877 071.9 250 013.6	82.19 234.63 31.25	1 775.53 2 027.63 788.98	0,22 0.25 0.09			
137 _{Cs}	662	220 433	6 383	214 050	178.37	797.07	0.66			
57 _{Co}	122	1 216 416	52 275.5	1 614 140.5	201.76	2 635.57	0.32			
⁶⁰ Co	1173	850 381 749 385	99 472 81 9e7	750 908.5	93.43 83.43	2 220.07	0.27			
54 _{Mn}	835	311 694	17 536	294 158	36.76	1 053.36	0.13			
22 _{Na}	512 1274:	2 516 267 578 404	77 536 9 416.5	2 438 731 568 987.5	304,84 71,12	2 684.62	0.33			
88 _y	898 1836	58 612 28 504	7 784 1 394•5	50 828 27 109.5	0.63 0.33	462.91 262.57				

Tabela 5.

	A (ACI)	T1/2(dana) t(dana)	At(MC1)	At (raspad or) 10-4
241 _{Am}	11.1620.17	158 045 667	11.120.17	41.17 \$ 0.62
137 _{Cs}	11.3620.15	10 986.5 84.3	10.77\$0.13	39.85 \$ 0.51
57 _{Co}	12.10 0.18	270.5 682	2.10-0.01	7.80 \$ 0.05
60 _{Co}	10.4020.07	1 923.5 686	8.12 0.05	30.05 \$ 0.18
54 _{Min}	10.53 0.13	312.5 683	2.31-0.01	8.56 \$ 0.05
22 _{Na}	11.1220.14	949 687	6.7320.02	24.91 2 0.25
88 ₇	11.920.20	106.6 840	0.05 -	0.18 2 -

Tabela 6.

	ID(cm)	A(ACI)	T _{3/2} (dana)	t(dana)	At(AC1)	A _t (raspad s ⁻¹)10"
	5	11.2320.18	3942	842	9.68 \$ 0.24	35.83 ± 0.53
	10	11.23*0.18	3942	669	9.98 \$ 0.15	36.94 \$ 0.56
133Ba	35	11.23*0.18	3942	683	9.96 \$ 0.25	36.86 2 0.56
	20	11.2320.18	3942	676	9.97 ± 0.15	36.89 2 0.56

Tabela 7.

	E(KeV)	A;(s) . 10-4	2(E)	t(E)	N (E) . 10-4
241 _{Am}	60	41.17	0.353	0.989	15.37 \$ 0.21
137 _{Ca}	662	39.85	0.851	0.995	33.74 \$ 0.43
57	122	7.80	0.852	0.991	6.58 \$ 0.04
00	136	7.80	0.111	0,991	0.85 ± -
60 _{Co}	1173	30.05	0.9986	0.996	29.89 2 0.18
	1332	30.05	0.99998	0.996	29.92 2 0.18
54 _{Mn}	835	8.56	1.00	0.995	8.52 = 0.05
22	511	24.91	1.81	0.980	44.19 2 0.44
na.	1274	24.91	0.99995	0.996	24.80 0.24
	898	0.187	0.932	0.996	0.173 \$ 0.002
88 _Y	1836	0.187	0.994	0.997	0.185 * +
	2734	0.187	0.006	1	0.00112 \$ 0.00001

Tabela 8.

	ID(em)	E(KeV)	A _t (s).10 ⁻⁴	f(E)	t(E)	N.(E).10-4
	L. L. S. I	81		0.36	1	12.8920.19
		276		0.079	1	2.83 \$ 0.04
	5	303	35.83	0.204	1	7.30 \$ 0.10
		356		0.69	09994	24.57 = 0.36
		384	n na standar ann a th	0.099	1	3.54 \$ 0.05
		81	No. 14	0.36	1	13.29 \$ 0.20
		276		0.079	1	2.91 \$ 0.04
	10	303	36.94	0.204	1	7.53 ± 0.11
33 _{Ba}		356		0.69	0.994	25.33 2 0.38
		384		0.099	1	3.65 = 0.05
		81	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0.36	1	13.27 \$ 0.20
	1	276		0.079	1	2,91 \$ 0.04
	15	303	36.86	0.204	1	7.52 ± 0.11
		356		0.69	0.994	25.28 \$ 0.38
		384		0.099	1	3.64 2 0.05
		81		0.36	1	13.28 2 0.20
		276		0.079	1	2.91 \$ 0.04
	20	303	36.89	0.204	2	7.52 \$ 0.11
		356		0.69	0.994	25.30 \$ 0.38
	1.	384		0.099	1	3.65 \$ 0.05

Tabela 9.

					ID	= 5	cm							
	E(KoV)		P2		3	P_1		PmP.	Pr	Alter November (Nething of the	P/sec	Station Conferences	ΔP	A P/sec
	122	5	199	522	1	294	836.7	3	869	152.6	967.28	9	.328	2.33
	245	1	362	901		266	389	1	096	512	274.72	2	712.31	0.67
	344	3	088	388		439	395	2	648	993	662.24	10	912.77	2.72
	411	1.31.4 Set	337	315	or subscription that	154	297.5	;	183	017.5	45.75	1	996.75	0.49
	转转	an dias dias	386	543		154	493.6		232	049.4	58.01	2	010.20	C.50
152 _{Eu}	779	a an an	721	673	Hard Service	157	242.6	5	564	430.4	141.10	2	786.37	0.69
	964		630	240		110	949.9)	519	290.01	129.82	2	078.29	0.51
	1112		545	137	and and a state of the	113	149.3	5	431	987.7	107.99	2	382.13	0.89
	1408		573	431		42	431	and the spectrum	532	000	133	1	500.46	0.37

Tabela 10.

1.4						ID = 1	0	cm				
Integra street or a	E(KeV)		-	2	1	f	P	P2-1	f	P/sec	ΔP	∆ ₽/sec
	122	3	277	280	226	455	3	021	842.16	755.46	2 848	0.71
	245	1	639	412	105	608.5	ne o Chubhai	533	803.5	133.45	1 736.54	0.43
	344	1	395	o84	102	675	1	292	409	323.10	3 806.06	0.95
250	411		137	699	46	513.5		91	185.5	22.79	1 022.11	0.25
Eu	lşlşlş		162	261.	45	890	1.1	116	371	29.09	1 028.16	0.25
	779		323	854	47	160,42	1	276	693.57	69.17	1 448.82	0.36
	964		285	484	28	670.5		256	813.5	64.20	1 029.36	0.25
1	1112		238	809	27	561.5	K	211	247.5	52.81	1 032.30	0.25
	1408		268	371	7	697	******	260	674	65.16	761.64	0.19

Tabela 11.

	2		ID :	= 15 cm		en a superior	
	E(KeV)	P2	Pg	P=P2-P2	P/sec	ΔP	∆ P/sec
	122	1 678 803	120 085	1 545 001.28	386.25	2 060	0.51
	245	334 151	54 148	280 003	70	1 245.98	0.31
	344	730 228	43 987.5	686 240.5	171.56	1 585.44	0.39
	411	70 596	22 863.5	47 732.5	11.93	718.63	0.17
52	14144	83 917	22 278	61 639	15.40	719.95	0.17
Etr	779	169 460	22 229.9	147 230.07	36.80	1 003.12	0.25
	964	149 687	13 041	136 646	34.16	708.37	0.17
	1112	323 592	12 412.5	111 179.5	27.79	704.24	0.17
	1408	141 507	2 626.5	138 880.5	34.72	497.87	0,12

Tabela 12.

						ID =	20 en		1. 4 1 1 1 1 1 1 1.	
	E(KeV)	P2		Pg		P=P2	P ₂	P/sec	ΔP	A P/sec
	122	993	135	78	189	905	970	226.49	1 632	0,40
	245	199	648	32	636	167	012	41.75	966.41	0.24
	344	437	553	25	672.5	417	880.5	102.97	1 926.34	0.48
	411	42	429	13	419	29	olo	7.25	551.41	0.13
52.m	lşlşlş	50	203	13	140.5	37	062.5	9.26	553.57	0.13
	779	101	904	13	158	88	746	22,18	772.8	0.19
	964	89	659	7	511	82	148	20.53	540.79	0.13
	1112	75	055	6	860	68	195	17.04	529.95	0.13
	1408	85	122	1	318	83	804	20.95	372.15	0.09

Tabela 13.

	1	h	ID	= 5 cm		
E(KeV)	P/sec	f(E)	Er	Kn	Ken	E AP . 104
122	967.28	136	7.11	0.0035		112.36
245	274.12	35.9	7.63	0.0013		120.63
344	662.24	127.7	5.18	0.0014		81.92
411	45.73	10.7	4.27	0.0015		67.49
lalala	58.01	14.9	3.88	0.0016	0.00158	61.43
779	141.10	62.1	2.27	0.0017		35.89
964	17 .82	70	1.85	0.0017		29.29
1112	107.99	64.8	1.66	0.0016		26.32
1408	133	100	1.33	0.0016		21.01

Tabela br. 14.

			ID	= 10 cm		
E(KeV)	P/sec	f(E)	Er	Kn	Kan	E AP . 104
122	755.46	136	5.55	0.0014		67.95
245	133.45	35.9	3.71	0.0011		45.34
344	323.10	127.7	2.53	0,0012		30.86
411	22.79	10.71	2.12	0.0012		25.96
lalala	29.09	14.92	1.94	0,0012	0.00122	23.77
779	69.17	62.1	1.11	0.0012		13.57
964	64.20	70	0.91	0.0011		11.18
1112	52.81	64.8	0.81	0.0011		9.93
1408	65.16	100	0.65	0.0011		7.94

Tabela br. 15.

			ID =	15 cm		
E(KeV)	P/sec	2(E)	Er	Kn	Kan	EAP . 104
122	386.25	136	2.84	0.00134		34.93
245	70	35.9	1.94	0.00114	the second	23.97
344	171.56	127.7	1.34	0.00122		16.51
411	11.93	10.71	1.11	0.00125		13.70
444	15.40	14.92	1.03	0.00125	0.00123	12.69
779	36.80	62.1	0.59	0.00126		7-28
964	34.16	70	0.48	0,00122		6
112	27.79	64.8	0.42	0.00121		5.26
408	34.72	100	0.34	0.00123	and a second second	4.26

Tabela 16.

			ID =	20 cm		
E(KeV)	P/sec	£(E)	E r	Kn	Ken	EAP . 104
122	226.49	136	1.66	0.00183		20.96
245	41.75	35.9	1.16	0.0011	The second s	14.53
344	102.97	127.7	0.80	0,0012		10.07
411	7.25	10.71	0.67	0.0012	0.00125	8.46
444	9.26	14.92	0.62	0,0012		7.76
779	22.18	62,1	0.35	0.0013		4.46
964	20.53	70	0.29	0,0012		3.66
112	17.04	64.8	0.26	0,0012		3.28
408	20.95	100	0.20	0.0011	· · · · · · · · · · · · · · · ·	2.61

Tabela 17.

		5	10	15	20
	E (Ke	eV) E 10 ⁴	E 104	E 104	E 20 ⁴
241 _{Am}	60	11.14-1.95	34.36-0.65	16.17=0.30	9.43*0.17
133 _{Ba}	1 8	151.4122.35	48.42-0.78	29.92:0.45	17.54-0.26
152 _{Eu}	122	112.36-1.08	67.95 0.40	34.9320.21	20.96-0.12
57.	122	255.9421.74	80.95-0.56	38.18:0.26	22.09 0.21
	136	238.3721.76	76.52\$0.70	36.3320.39	20.96-0.26
152 _{Eu}	245	120.6321.70	45.34:0.64	23.97=0.35	14.53*0.21
133 _{Ba}	276	89.03*1.84	40.22-0.66	20.33-0.33	12.18-0.28
	303	81.30-1.32	36.0530.55	18.34-0.28	10.92-0.16
152 _{Eu}	344	81.92-0.88	30.86:0.32	16.5140.16	10.07-0.11
133	356	68.22-1.03	30.5420.46	15.52-0.23	9.27:0.14
E. Ha	384	63.41\$1.24	28.2620.44	14.31:0.22	8.55-0.13
152_	411	67.49±0.91	25.9620.35	13.70-0.22	8.46:0.16
Eu	444	61.43-0.75	23.77-0.29	12.69 0.17	7.76=0.13
22 _{Na}	511	60.70-0.61	22.6620.23	11.4620.11	6.83-0.06
1.37 _{Ca}	662	44.16±0.57	17.62-0.23	8.80 0.11	5.28-0.07
54 _{Mn}	835	43.17=0.13	14.63 0.05	7.28-0.02	4.34=0.01
88 _y	898	40.12:0.23	13,2430,12	6.05 0.07	3.65-0.02
152 _{Eu}	964	29.29:0.21	11,18*0,07	6.00-0.04	3.66-0.03
152 _{Eu}	1112	26.32-0.21	9.9320.07	5.26-0.04	3.28-0.03
60 _{Co}	1173	28.13-0.19	10.20-0.06	5.20-0.03	3.14-0.02
22 _{Na}	1274	24.08±0.25	9.25±0.09	4.74±0.05	2.86±0.03
60 _{Co}	1332	24.98±0.17	- 9.08:0.06	4.63*0.03	2.78-0.01
152 _{Eu}	1408	21.01-0.13	7.94=0.05	4.26:0.03	2.61-0.02
88	1836	19.79 0.14	6.87\$0.05	3.55-0.04	1.82-0.01
Y	2734	26.33 2.18	4.3420.96	2.10-0.87	0.94=0.62

Tabela 18.

	1000 C		ID = 5 cm					
E(KeV)	P ₂	Pg	Pr	P_/sec	E 104	Ne 10-4		
570	2 848 214	211 723.5	2 636 490.5	659.12 0.86	52.5*0.6	12.55-0.20		
897	36 220	33 614.5	2 605.5	0.65 0.14	34.5=0.23	0.01		
1063	1 165 158	111 334.9	1 053 823.05	263.45=0.97	29 20.21	9.08-0.09		
1442	9 056	7 602	1 454	0.36±0.09	21 20.13	0.01* -		
1770	67 553	6 151	61 402	15.35*0.17	18 20.13	0.85+0.02		
nijerinaljudici in statu or	Lance & California Caracteria		ID = 15 cm		a for some of the second s	an an ang ang ang ang ang ang ang ang an		
570	980 081	26 081	954 000	119.25-0.14	10.2-0.1	11.69-0.12		
897	10 539	9 673	866	0.10-0.04	6.0* -	0.01 -		
1063	408 092	6 534.84	401 562.16	50.19-0.09	5.4* -	9.29-0.08		
1442	2 381	1 782	599	0.07-0.02	4.2 -	0.01 -		
1770	24 100	555.97	23 544.02	2.94=0.02	3.8* -	0.77=0.01		
			Ucrednjene vro	ednosti				
		N 10-4		N	sr (n)			
570		12.120.16		131.	89-2.19			
897		0.018-0.006		0.20-0.06				
1063	+	9.1820.08		100.00-1.29				
1442	1	0.017 0.005		0.19* -				
1770	+	0.81*0.02		8.	84-0.22			

E(KeV)	IN je	N \$c	
570	131.89	131.89	De Gaza
897	0.20	0.21	
1063	100	100.23	
1442	0.19	0,21	
1770	8.84	10.55	

Tabela 20.

E(KeV)	N _{ok}		Ny	d k exp	
570	21. \$ 0.5	131.89	2.19	0.016 2 -	
897	0.06 2 0.005	0.20	0.06	0.030 2 0.010	
1063	100 \$ 0.5	100	1.29	0.100 2 0.003	
1442	0.009# 0.0001	0.19	20.05	0.0049 0.0014	
1770	0.27 \$ 0.005	8.84	\$ 0.22	0.0030 \$ 0.0001	

577ers	Sec. 10	14 04	1012	ile i
3.63	1.96	1.2.62	- finite	8

E(KeV)	k exp Lk	(E2)	Lk(M2.)	Lk(114)	52
570	0.016	0.016			
897	0.036	0.0065	0.019		e
1063	0.1004			0.097	
1442	0.0049	0.0027			-
1770	0.0030	0.002	0.003	6 •	0.6

Tabela 22.

REFERENCE

- 1. Lazar Marinkov: 2. Lazar Marinkov:
- 3. M. Mladjenović:
- 4. Bikit Ištvan:
- 5. Bikit Ištvan:
- 6. Dragoljub Pećanac:
- 7. Mirjana German:
- 8. P. Christmas:
- 9. C. M. Lederer, J. M. Hollander, I. Perlman:

10.R. S. Hager: E. C. Seltzer: OSNOVI NUKLEARNE FIZIKE, Novi Sad 1976 DOKTORSKA DISERTACIJA, Vinča-Beograd, 1963 NUKLEARNA FIZIKA I., Vinča, 1967 DOKTORSKA DISERTACIJA, Novi Sad, 1976 DIPLOMSKI RAD, PMF Novi Sad, 1976 DIPLOMSKI RAD, PMF Novi Sad, 1975 PRIVATNO SAOPŠTENJE

TABLE ISOTOPES, John Wiley sons inc New York London, Sydney, 1968

NUCLEAR DATA 14, 1, 2, 1968 .

Internal conversions tables part I: K,-L,-M Shell conversion koeficients for ± = 30 ± = 103 California Institute of Tehnology, Pasadena, California