Природно-математички факултот Радна заједница заједничких послова

HOBYCAA						
Ор г. јед.	Број	ADRAD	BREAHOST			
6663	9/241					

UNIVERZITET U NOVOM SADU prirodnomatematički fakultet

INSTITUT ZA FIZIKU

Emilijan Mohora

Određivanje temperature elektrona u pozitivnom stubu tinjavog pražnjenja metodom elektrostatičke sonde

- diplomski rad -

NOVI SAD, 1994.

Najtoplije bih se zahvalio Mr Zoranu Mijatoviću na velikoj pomoći oko ekperimentalnog dela rada i rešavanju mnogih problema koji su se svakodnevno pojavljivalu u toku izrade rada.

Zahvalio bih se Dr Radomiru Kobilarovu na ponudenoj temi diplomskog rada , pomoći i podršci u toku izrade rada.

SADRŽAJ

•	U	vod2
•	1.	Poreklo naelektrisanih čestica u gasu41.1. Ekscitacija u gasu41.2. Jonizacija u gasu61.3. Procesi zahvata i razmene elektrona91.4. Ostali procesi nastajanja naelektrisanja101.5. Procesi nestajanja naelektrisanja10
•	2.	Plazma11
•	3.	Nesamostalno pražnjenje
•	4.	Samostalno pražnjenje
•	5.	Tinjavo pražnjenje
		 5.1. Fizičke karakteristike oblasti tinjavog pražnjenja
•	6.	Pozitivan stub
		6.1. Radijalna raspodela naelektrisanja 29 6.2. Temperatura elektrona 31 6.3. Aksijala komponenta električnog polja 34
•	7. tin	Određivanje temperature plazme pozitivnog stuba javog pražnjenja
		7.1. Elektrostatičke sonde
		7.2. Sondni materjali
		7.3. Teorija jednostruke elektrostatičke sonde
		7.4. Dvostruke sonde

• 8.	Eksperiment
	8.1. Aparatura merenja
	8.2. Merenje i rezultati merenja
	8.3. Obrada rezultata
	8.4. Poređenje rezultata teorije i eksperimenta
	8.5. Analiza rezultata
• Z	aključak55
• L	iteratura

. . **,**

2

UVOD

Osnovni zadatak ovog diplomskog rada je određivanje temperature elektrona plazme pozitivnog stuba tinjavog pražnjenja. Temperatura elektrona biće određena indirektno metodom dvostruke elektrostatičke sonde po L. Schoot [3].

Tinjavo pražnjenje biće uspostavljano u atmosferi tri gasa i to : argona, helijuma i azota. Merenja će se vršiti na različitim pritiscima radnog gasa u intervalu od (40 - 500)Pa

Koriščenje različitih gasova ima za cilj konstatovanje da li vrasta gasa utiče na upotrebljivost metode merenja. Merenja na različitim pritiscima omogućava utvrdivanje opsega korektnog rada aparature.

Eksperimentalni rezultati biće upoređivani su sa razultatima koje daje teorija difuznog režima pozitivnog stuba izložene u ref. [2].

Ovaj rad sadrži uvod, osam poglavlja, zaključak i spisak korišćene literature.

U prvih četiri poglavlja izložena je analiza ekscitacionih procesa, jonizacionih procesa, nesamostalnog i samostalnog pražnjenja kroz gas.

U petom poglavlju analizira se tinjavo pražnjenje kao jedna vrsta samostalnog pražnjenja.

U šestom poglavlju izložena je teorija pozitivnog stuba, fizički najinteresantnije oblasti tinjavog pražnjenja.

U sedmom poglavlju data je metoda merenja jednostrukom elektrostatičkom sondom.[5] Metoda dvostruke elektrostatike sonde je posebno izložena.

U osmom poglavlju izložen je opis aparature, način merenja, rezultati merenja i njihova analiza.

,

1. POREKLO NAELEKTRISANIH ČESTICA U GASU

,

Pod normalnim uslovima na Zemlji gasovi sadrže mali broj naelektrisanih čestica. Naelektrisane čestice se javljaju zahvaljujući ultaljubičastom zračenju Sunca, kosmičkom zračenju i radioaktivnom zračenju okoline. Ova zračenja u gasu produkuju jonizacione procese. Rezultat toga je da u atmosferskom vazduhu nastaje samo 10 jonskih parova po kubnom santimetru što je procentualono zanemarljivo u odnosu na neutralne čestice. Porastom intenziteta ovog zračenja raste i procentualni udeo naelektrisanih čestica.

Zagrevanje gasa do visokih temperatura može biti način za dobijanje veće količine naelektrisanih čestica. Na visokim temperaturama usled velike brzine haotičnog kretanja molekula (atoma) gasa dolazi do intenzivnih sudarnih procesa koji rezultuju stavaranjem naelektrisanih česticama u gasu. Takođe postoje mnogobrojni drugi procesi dobijanja naelektrisanih čestica u gasu i oni najznačajniji biće pobrojani u daljem tekstu.

Procesi nastajanja naelektrisanih čestica u gasu praćeni su procesima nestajanja naelektrisanih čestica kroz procese rekombinacije, difuzije u slučaju toka struje kao i neutralizacijom na elektrodama. Između procesa nastajanja i nestajanja naelektrisanih čestica se pod odredjenim uslovima uspostavlja dinamička ravnoteža. Kao rezultat ove ravnoteže u gasu uvek postoji odredjena koncentracija naelektrisanih čestica oba znaka. Koncentracija podrazumeva broj čestica određene vrste u jedinici zapremine.

U tekstu koji sledi biće navedeni najvažniji procesi nastajanja i nestajanja naelektrisanja ali pre toga treba pomenuti ekscitaciju.

1.1. Ekcitacija u gasu

Ekscitacija je proces pri kome jedan kvantiran sistem (atom , jon , molekul) prilikom sudara sa nekom česticom ili interagujući sa kvantima zračenja , prima energiju i prelazi u stanje sa većom unutrašnjom energijom.

Da bi kvant zračenja ili neka čestica pri interakciji sa atomom ili molekulom gasa mogla da izazove ekscitaciju mora da ima energiju koja je jednaka ili veća od energije ekscitacije atoma ili molekula sa kojim interaguje:

4

$$E_{h\nu, \text{čestica}} \ge eV_{ex}$$
 (1)

 V_{ex} - potencijal ekscitacije

Do ekscitacije kvantiranog sistema može doći na tri naćina:

- sudarom sa elektronima
- sudarom sa jonima i atomima
- apsorcijom kvanta zračenja

Ekscitacija sudarom sa elektronima Dešava se pri neelastičnim sudarima elektron atom. Pri takvim sudarima mora biti očuvan impuls i moment impulsa sistema elektron - atom. Promena impulsa sistema elektron - atom u odnosu na zajednički centar mase mora biti jednak promeni impulsa atoma koji se pobuđuje. U slućaju da elektron ima energiju jednaku energiji pobudjenja sudar mora da se desi pod takvim uglom da elektron posle sudara ostane sa nultom energijom. Ovaj slučaj je malo verovatan, za $E = E_{ex}^{-1}$ je jedanak nuli. Sa povećanjem energije raste i verovatnoća i elektron odnosi višak energije. Na slici 1. prikazana je kriva preseka² za pobudjenje nekih energetskih nivoa helijuma.

Slika 1. Zavisnost preseka ekscitacije od energije elektrona za pojedine nivoe helijuma

Ekscitacija sudarom sa atomima i jonima Kritični potencijal za ekscitaciju atoma sudarima sa jonima i atomima zbog nedostaktka osetljive aparature nije moguće precizno izmeriti. Određeni su ekscitacioni preseci za energije koje su daleko iznad kritične energije u funkciji energije upadnih jona i atoma. Maksimum preseka je istog reda veličine kao odgovarajući maksimum za elektronske sudare. Treba još istaći da kada je brzina kretanja jona u odnosu na atom mala u poređenju sa brzinom kretanja atomskih elektrona i to onih perifernih tada će elektroni imati dovoljno vremena da se preraspodele i vrate ekscitacionu energiju jonu. Verovatnoća za ovaj proces raste što su joni sporiji, tako da presek za jonizaciju raste kako raste brzina jona i dostiže maksimum u kada su brzine

¹energija ekscitacije

²Mera interakcije elektrona ubrzanih električnim poljem sa neutralnim česticama gasa (pri čemu dolazi do ekscitacije ili jonizacije) je efektivan presek za sudare. Definiše se kao srednji broj sudara čestice projektila sa molekulima gasa na jediničnom putu. U praksi se koristi presek obračunat na jednu česticu koji ima dimenzuju površine.

' vezanih elektrona i jona približne.

Slika 2.Ekscitacioni presek za atome helijuma kao funkcija njihove energije.Cifre koje se pojavljuju su talasne dužine zračenja u angstremima pri vraćanju iz pobuđenog stanja u 2^1s i 2^3p stanje

Ekscitacija apsorcijom kvanta zračenja Kvanti zračenja niske energije se elastično rasejavaju prolazeći kroz gas. Povećanjem energije uočava se jaka apsorcija na rezonantnoj energiji gasa. Apsorcija je ograničena na veoma uzak energijski interval, koji odgovara širini rezonantne linije. Presek za apsorciju usrednjen po širini rezonantne linije može biti veoma velik, za Hg iznosi približno $10^{13}cm^2$ za rezonatnu liniju od 257.7nm.

1.2. Jonizacija u gasu

Jonizacija je proces otkidanja elektrona , najčešće iz valetne ljuske posle čega prvobitno nautralan atom postaje pozitivan jon. Do jonizacije može doći na sledeći način:

- Jonizacija apsorcijom kvanta zračenja
- Jonizacija sudarom
- Termalana jonizacija

Jonizacija apsorcijom kvanta zračenja,

odvija se po sledećoj šemi:

$$h\nu + A \implies A^+ + e$$
 (2)

Minimalna energija koju foton mora da ima pri interakciji sa atomom da bi izazvao jonizaciju mora biti jednaka energiji jonizacije posmatranog atoma.

.

.

$$h\nu = eU_i \tag{3}$$

Ovoj energiji odgovara talasna dužina :

$$\lambda_0 = \frac{1235}{U_i[V]} \ [nm] \tag{4}$$

Za cezijum koji od svih elemenata ima najnižu energiju jonizacije koja iznosi3.83eVgranična talasna dužina iznosi $\lambda_0 = 318 \ nm$. Eksperimentalno merenje varovatnoće fotojonizacije prikazano je na*slici* 3.

Slika 3. Eksperimentalno merena verovatnoća jonizacije zračenjem cezijuma dobijeni na temperaturi od182C i 230C odnosno dva različita pritiska.

Na graničnoj talasnoj dužini od 318*nm* krive verovatnoće imaju maksimum, medjutim, jonizacija se dešava i na većim talasnim dužinama.Ovo govori da do jonizacije dolazi ne samo iz osnovnog stanje već i sa nekih drugih nivoa.

U jonizovanim gasovima, značajna je jonizacija zračenjem koje nastaje u samom gasu prilikom spontane deekscitacije pobuđenih atoma. Spoljašnje zračenje neigra praktično nikakvu ulogu. Ako se pak, jonizovan gas osvetljava laserskom svetlošću energije jednake energiji pobudjenja nekog nivoa tada može doći do pobudjenja tog nivoa spoljnjim zračenjem.

Jonizacija sudarom Jonizacija sudarom može se dogoditi:

- u sudaru sa elektronom
- u sudaru sa pozitivnim jonima
- u sudaru sa pobuđenim atomima
- u sudaru sa neutralnih atomima (termalna jonizacija)

Jonizacija sudarom sa elektronima,

odvija se po sledećoj šemi:

$$e + A \implies A^+ + 2e \tag{5}$$

Elektron u sudaru sa atomom gasa mora da ima energiju koja je veća od energije jonizacije. Elektron sa manjom energijom ne može izvršiti jonizaciju. Energija jonizacije je tačno odredjena veličina za dati gas. Kriva verovatnoče jonizacije oštro raste prelaskom energije preko vrednosti jonizacionog praga.(skoro linearno slika4.) Mera verovatnoće je jonizaciona efikasnost. Definiše se kao broj jonskih parova koje jedan upadni elektron proizvede po cm puta na 133.3Pa i 0C. Jonizaciona efikasnost je brojno jednaka preseku za jonizaciju q_i .

Slika 4. Merene vrednosti jonizacione efikasnosti s_e u funkciji energije elektrona za različite gasove na 0C i 133.3Pa

Jonizacija sudarom sa pozitivnim jonima, odvija se po sledećoj šemi:

$$A^+ + A \implies 2A^+ + e \tag{6}$$

Pozitivni joni velike brzine sudarajući se sa neutralnim gasom izazivaju jonizaciju. Energija tih jona leži u intervalu 10^3 do $10^4 eV$. Merenjem efikasnosti jonizacije jonima ustanovljeno je, da je ta efikasnost mnogo manja od odgovarajućih vrednosti za elektrone. Joni, što važi i za atome šema (6) zbog njihove velike mase , malih relativnih brzina , niskih energija veoma su neefikasni u jonizovanju gasa. Javlja se efekat (pomenuto kod ekscitacije) da spori jon energiju koju je predao atomu preraspodelom perifernih elektrona dobije nazad, čime je njegova jonizaciona efikasnost smanjena. Ovo je jedno od objašnjenja zašto veliki broj sudara ne dovodi do jonizacije.

Slika 5. Efikasnost jonizacije jona kao funkcije energije jona na 0Ci 133.3Pa

Jonizacija sudarom sa pobuđenim atomima,

odvija se po sledećoj šemi:

$$A^{-} + e \implies A^{+} + 2e \tag{7}$$

Pri pražnjenu kroz gas pri velikim gustinama struje jonizovan gas sadrži znatan broj pobuđenih atoma . Jonizacioni presek tih atoma u sudaru sa elektronima je veći od preseka nepobuđenih atoma. Ako se uzme kao primer, vodonik "presek za n = 2 je 16 puta veći od vodonika u osnovnom stanju n = 1.

Termalna jonizacija, odvija se po sledećoj šemi:

...

$$A + A \implies A^+ + A + e \tag{8}$$

Zagrevanjem gasa do visokih temperatura atomi gasa dobijaju dovoljnu energiju da u njihovim medjusobnim sudarima dodje do jonizacije. Za svaku temperaturu uspostavlja se ravnotežno stanje. Ravnotežno stanje karakteriše stepen jonizcije. Stepen jonizacije je odnos broja jona i ukupnog broja teških čestica u gasu (jona i neutralnih čestica).

$$\alpha = \frac{n_+}{n_+ + n_0} \tag{9}$$

 n_0 - koncentracija neutralnih čestica

U slučaju potpune jonizacije stepen jonizacije je jednak jedinici.

Slika 5. Vrednost stepena termalne jonizacije za pojedine gasove u funkciji njihove temperature

Poslednja zavisnost pokazuje da je stepen jonizacije i pri visokim temperaturama veoma mali.

1.3. Procesi zahvata i razmene elektrona

Atomi pojedinih gasova imaju osobinu da u svoj elektronski omotač ugrade jedan prekobrojan elektron. Ti gasovi se nazivaju elektronegativnim (kiseonik, freon). Zahvat se može desiti po nekoj od sledećih šema:

$$A + e \implies A^- + h\nu \tag{10}$$

$$A + e \implies A^- + e \tag{11}$$

U procesima razmene, elektron iz valentnog sloja jednog atoma prelazi na drugi atom koji je jednostruko ili dvostruko jonizovan. Izmena naelektrisanja je rezonantna ako su čestice koje učestvuju u ovim procesima identične, u suprotnom su nerezonatne.

$$A^{++} + B \implies A^{+} + B^{+} \tag{12}$$

Ova pojava je nepoželjna pri pražnjenju kroz gas jer smanjuje koncentraciju elektrona potrebnih za multiplikaciju naelektrisanja, potrebih za održavanje prežnjenja.

1.4. Ostali procesi nastajanja naelektrisanja

Pri posmatranju pražnjenja kroz gasove moramo uzeti u obzir procese koji se dešavaju na elektrodama. U tim procesima takođe nastaju naelektrisane čestice.

- Fotoelektronska emisija
- Sekundarna emisija jonima
- Termoelektronska emisija
- Emisija pod dejstvom polja

Mehanizme nastanka naelektrisanih čestica ovim procesima nećemo ovde razmatrati. Razmatranje gore navedenih procesa prestavlja digresiju u odnosu na cilj izlaganja ovog rada.

1.5. Procesi nestajanja naelektrisanja

Svi dosada navedeni procesi nastajanja naelektrisanja u gasu imaju svoje inver zne. Ovi procesi se odvijaju po šemama (2), (5), (6), (7) (8) samo u inverznom smeru. Konačno stanje gasa dobijase uspostavljanjem ravnotaže izmedju ovih procesa.Pomenuće se samo radijativna i ternerna rekombinacija koje su od većeg značaja za dobijanje plazme u labaratoriskim uslovima.

$$A^+ + e \implies A + h\nu \tag{13}$$

$$A^+ + e + e \implies A + e \tag{14}$$

U kristalnom stanju srednja energija čestice je reda $10^{-2}eV$ što govori da su položaji čestica u kristalnom stanju potpuno fiksirani i da se njihovo kretanje svodi samo na oscilovanje oko ravnotežnog položaja.

U tečnosti molekuli imaju srednju energiju reda $10^{-1}eV$. Molekularne sile su još uvek izražene ali kretanje molekula je ipak neuredjenije posmatrajući kristale. Molekuli se silama organizuju unutar labavo vezanih "grozdova", koji se pri dovodjenju energije raspadaju.

Gas je daleko najneuredjenije stanje. Sile koje se ovde javljaju se ispoljavaju samo u momentima međusobnih sudara. Izmedju ovih sudara imamo slobodno kretanje čestica. Srednja energija čestica je reda 1eV.Dovodeći energiju takvom gasu dolazimo do srednje energije po čestici od 10eV. Imamo stanje gasa sa velikom srednjom energijom po čestici i takvo stanje gasa možemo poistovetiti sa novim agregatnim stanjem , plazmom. (gasnom

Ovako visoka srednja energija po ćestici nam govori da se one veoma brzo, haotično kreću. Njihovi sudarni procesi su intenzivni i rezultuju jonizacionim produktima, pozitivnim jonima i elektronima kao i ekscitovanim atomima i molekulima. Uporedo sa jonizacijom gasa odvija se proces rekombinacije. Izmedju procesa jonizacije i rekombinacije uspostavlja se dinamička ravnoteža. U ravnotežnom stanju u svakoj jedinici zapremine u jedinici vremena broj aktova jonizacije je jednak broju rekombinacionih, tako da se koncentracija jonizovanih atoma ne menja sa vremenom. Prelaz iz stanja

gasa u stanje plazme je prelaz izvesnog procenta neutralnih atoma u jonizovano stanje. Stalna koncentracija jonizovanih čestica u plazmi i postojanje znatnog elektromagnetnog (mikroskopskog) polja čini ga drugačijim od običnog gasa, elektromagnetno polje se veoma brzo enja od tačke do tačke kao i u vremenu. Ovo polje Lorentz-ovom silom deluje na kretanje naelektrisanih čestica u plazmi.Ovo polje u isto vreme zavisi od položaja i brzina svih naelektrisanih čestica. Posredstvom elektromagnetnog polja koje potiče od svih čestica plazme zajedno, svaka naelektrisana čestica interaguje sa ostalima. Predhodno opisana interakcija naziva se kolektivna. Kolektivna interakcija nije specifična samo za gasnu plazmu, ovakva interakcija ispoljava se kod skupa nukleona u jezgru, atoma jedne kristalne rešetke. Ono što je pak karakteristično za gasnu plazmu je to, da je kod nje kolektivna interakcija prouzrokovana Coulomb -ovim silama. Ova interakcija se javlja još i u metalima samo što je fizička situacija komlikovanija.

Plazma ja dakle, sistem sastavljen delom od naelektrisanih , delom neutralih čestica ali pod uslovom da fizičkim ponašanjem tog sistema dominira kolektivna interakcija uslovljena elektromagnetnim poljem koje potiče od svih prisutnih čestica.

U zemaljskim uslovima plazma predstavlja redku formu postojanja materije (munja, severna svetlost, jonsfera). Nasuprot tome u vasioni je to dominatno stanje materije (90% materije je u stanju plazme).

U labaratoriskim uslovima je praktično neizvodljivo formiranje plazme termalnom jonizacijom. Jonizacija gasa se dobija drugim mehanizmima,(pojedini od njih su nabrojani u predhodnom poglavlju).

3. NESAMOSTALNO PRAŽNJENJE

U staklenoj cevi u kojoj se nalazi gas teči će električna struja izmedju dve elektrode ako izmedju njih postoji razlika potencijala i ako u gasu imämo naelektrisane čestice. Naelektrisane čestice u ovoj cevi stvaraju se uticajem spoljnjeg jonizatora. U takvoj situaciji promenom napona izmedju elektroda može se snimiti zavisnot struje kroz gas od napona na elektrodama.

Slika 6. Šema uređaja za snimanje volt - amperske karakteristike gasnog pražnjenja

Slika 7. Volt - amperska karakteristika nesamostalnog pražnjenja

Na volt - amperskoj karakteristici (karakteristika je snimana na niskim pritiscima) mogu se primetiti tri oblasti. U prvoj oblasti T_1 struja linearno raste sa naponom ali brzo dostiže zasićenje (I_0). To je oblast važenja Ohm - ovog zakona. Pri tako malim naponima samo mali broj jona i elektrona nastalih pod dejstvom jonizatora dospeju do elektroda , dok se ostatak rekombinuje. Porastom napona smanjuje se procenat jona koji se rekombinuju na elektrodama. Na odredjenom naponu ovaj procenat jednak je nuli. Struja u ovoj prvoj oblasti dostiže zasićenje. Ovo je prva Townsend - ova oblast.

Dalje povećanje napona ne može da izazove porast struje ali naelektrisanja između dva sudara dobijaju sve veću energiju. Ovo je druga Townsend - ova oblast.

Dalji povećanjem električnog polja ulazimo u treću Townsend - ovu oblast.Pri ovim intenzitetima električnog polja naelektrisane čestice imaju takvu energiju da počinju neelastični sudari. Broj naelektrisanih čestica raste preko broja koji je određen spoljnim jonizatorom. Počinje multiplikacija naelektrisanja. Jačina struje naglo raste.

3.1. Procesi multiplikacije naelektrisanja

Za kvantitativno karakterisanje multiplikacionih procesa koriste se tri Townsend ova koeficijenta multiplikacije.

Prvi Townsend - ov koeficijent α - koeficijent definiše se kao broj jonskih parova koje obrazuje jedan elektron prešavši jedinični put u pravcu anode. Realna putanja elektrona je cik - cak linija čija ukupna dužina pri pomeranju elektrona za jedinicu dužine znatno duža. Ovaj koeficijent je karakteristističan za dati gas.

$$\alpha = p A e^{-\frac{B}{E}}$$
(15)

A -je broj sudara elektrona/na jediničnom putu B - prozvod preseka q_i i potencijala jonizacije

Prvi Townsend - ov koeficijent zavisi od pritiska i intenziteta elektrčnog polja.

Posmatrajmo kretanje naelektrisanih čestica izmedju elektroda. Orjentišimo x osu od katode ka anodi. Sa n(x) - označimo broj elektrona koji u jedinici vremena prolaze kroz jediničnu površinu, normalnu na x osu, na mestu sa apcisom x. Na osi sa apcisom x + dx ovaj broj će se povećati na :

$$dn = \alpha n(x) dx \tag{16}$$

Rešenje ove diferencijalne jednačine je :

$$n(x) = n(0) e^{\alpha x} \tag{17}$$

n(0) - je ukupan broj elektrona koji polaze sa jedinice površine katode. Na jedinicu površine anode stigne

$$n(d) = n(0)e^{\circ d} \tag{18}$$

elektrona što znači da ovaj proces multiplikacije naelektrisanja dovodi do formiranja

$$n(0) \ (e^{\alpha d} \ - \ 1) \tag{19}$$

elektron - jonskih parova.

Nastali pozitivni joni kreću se prema katodi ubrzavajući se u polju. U prvobitnoj teoriji Townsend - ovog pražnjenja postojao je koeficijent β ili drugi Townsend - ov koeficijent. Ovaj koeficijent je karakterisao broj elektron - jonskih parova koje stvara pozitivan jon na jediničnom putu ka katodi. Eksperimenti su pokazali da je ovaj koeficijenat zanemarljiv. Na putu do katode pozitivni joni trpe uglavnom elastične sudare.

Na kraju svog puta pozitivni joni udaraju u katodu. Tek svaki stoti ili pak hiljaditi jon izbija iz katode elektron. Ovaj proces sekundarne emisije elektrona karakteriše*treći Townsend - ov koeficijent* ili γ - koeficijent.Broj pozitivnih jona dat je *jed.*(19). Broj sekundarnih elektrona emitovanih sa katode usled sekundarne emisije je

$$\gamma n(0)(e^{\alpha d} - 1) \tag{20}$$

^{*} Tako da je ukupan broj elektrona emitovanih sa katode u jedinici vremena sa jedinice površine :

11

$$n_k = \gamma n(0)(e^{\alpha d} - 1) + n_0$$
(21)

 n_0 - je broj elektrona emitovanih u jedinici vremena sa jedinice površine usled spoljašnjeg zračenja . Poslednju jednačinu re vsimo po n(0) i unesemo to u jed.(17), pa dobijamo broj elektrona koji stiž u na anodu kao :

 $n(d) = \frac{n_0 e^{\alpha d}}{1 - \gamma (e^{\alpha d} - 1)}$ (22)

Da je pražnjenje pod ovim uslovima nesamostalno vidi se po tome što kada bi $n_0=0$ prolaz struje se prekida i imamó da je $n_d=0$

3.2. Prelaz ka samostalnom pražnjenju

Dok su parametri pražnjenja u jednoj od tri Townsend - ovih oblasti uklanjanje spoljašnjeg jonizatora izazvao bi se prekid toka struje. Povećanjem nasuprot toga napona na elektrodama preko granice treće Townsend - ove oblasti izaziva nagli porast struje. Nagli porast struje prevodi režim rada iz nesamostalno u samostalni tok struje. Kada se to desi, struja nastavlja da teče i posle uklanjanja spoljašnjeg izvora jonizacije. Uslov probija dobijamo iz jed.(22):

$$\gamma(e^{\alpha d} - 1) = 1 \tag{23}$$

Posmatrajući uslov (23) možemo izvući fizički smisao ovog proboja. Faktor $e^{\alpha d}$ pradstavlja j jona koje na putu od katode do anode stvori jedan elektron. Taj faktor pomnožen sa γ je broj novih elektrona koje ti joni izbiju sa katode. Taj broj treba da bude jedan, što znači da uslov proboja zahteva da svaki elektron koji podje sa katode u multiplikacionim procesima obezbedi stvaranje novog elektrona na katodi.

Sam prelaz ka samostalnom pražnjenju , proboj, vezan je za odredjenu vrednost napona.Taj napon nazivamo napon proboja. Napon proboja dat je izrazom :

$$U_p = \frac{B p d}{\ln[\frac{A}{\ln(1+\frac{1}{2})} pd]}$$
(24)

Posmatrajući poslednji izraz nameće se zavisnost napona proboja od proizvoda pd - pritiska i rastojanja između elektroda. Činjenica da napon proboja zavisi od proizvoda

pd predstavlja Pašenov zakon.

Slika 8. Kriva zavisnosti napona probija od proizvoda pd

Na osnovu kriva naslici8. može se zaključiti da za svaki gas ili smešu gasova, za odredjen dijametar cevi postoji proizvod pritiska gasa u cevi i rastojanja elektroda u cevi za koji je napon proboja minimalan. To možemo shvatiti ako uzmemo da je proizvod pd proporcionalan ukupnom broju atoma u gasu izmedju elektroda; tada za mali broj atoma multiplikacija je slaba zbog malog broja sudara koje pretrpi elektron na svom putu ka anodi. U slučaju velikog broja atoma elektron ima na raspolaganju mali slobodan put između dva sudara na kojima treba da se ubrza što neuspeva i gubi jonizacionu sposobnost. Između ove dve krajnosti postoji jedna optimalna situacija i ona odgovara minimumima na krivama naslici8. Tada jedan elektron uspeva da u procesima multiplikacije produkuje dovoljno jonskih parova da se još jedan elektron u γ - procesima emituje sa katode.

4. SAMOSTALNO PRAŽNJENJE

Po postizanju napona proboja pražnjenje kroz gas prelazi iz režima nesamostalnog u režim samostalnog pražnjenja. Koja će vrsta pražnjenja da se uspostavi to zavisi od sledećih faktora :

- vrste gasa
- pritiska gasa
- električnog otpora spoljnjeg kola
- materjala od koga je elektroda
- rastojanja izmedju elektroda

• dijametra cevi

• temperature gasa

Slika 9. Volt - amperska karakteristika samostalnog pražnjenja

Prelaz iz oblasti nesamostalnog u oblast samostalnog pražnjenja je veoma neodređen. Dešava se u trenutku kada struja dostigne vrednost od $10^{-5}A$. Oblast prelaza odgovara subnormalnom tinjavom pražnjenju. Daljim povećanjem struje prelazi se u oblast tinjavog pražnjenja $(10^{-5} - 10^{-2})A$. Oblast tinjavog pražnjenja se karakteriše kostantnom vrednošću napona izmedju elektroda. Daljim povećanjem struje prelazi se u oblast lučnog pražnjenja. Struje su reda $10^{-1}A$. Vidi se da pri lučnom pražnjenju napon opada sa povećanjem struje.

4.1. Radna tačka samostalnog pražnjenja kroz gas

Radna tačka pražnjenja (vrednost napona'i struje) se odredjuje iz preseka otporne prave sa radnom (pod radnom se podrazumeva volt- amperska karakteristika). Posmatra cemo situaciju za dve vrednosti otpora soljnjeg kola i kostantan napon izvora U_b .

Za dati napon U_b izvora i veći otpor R_2 , otporna prava će presecati radnu u tački A. Ova tačka odgovara normalnom tinjavom pražnjenju.

U slučaju manjeg spoljašnjeg otpora R_1 otporna preseca radnu u tri tačke ; B, C, DPražnjenje će se stabilisati u tački B ako se do te vrednosti struje došlo postepenim smanjivanjem otpora spoljnjeg kola.

Slika 10. Određivanje radne tačke pražnjenja

Ako iniciramo pražnjenja dodirivanjem elektroda, pražnjenje će se stabilisati u tački D. Ako se struja smanji do tačke E kada je napon na cevi U i pad napona RI pojavi će se razlika napona $+ \Delta U$ usled koje će se struja u kolu povećati i pražnjenje vratiti u tačku D. U slučaju da se struja poveća pojavljuje se negativna razlika napona i struja se smanjuje do vrednosti koja odgovara tački D. Ova tačka je, dakle stabilna. U opštem

$$\frac{dU}{dI} < R \tag{25}$$

Stabilne su one tačke preseka karakteristike pražnjenja i otporne prave u kojima je nagib karakteristike manji od otporne prave.

5. TINJAVO PRAŽNJENJE

5.1. Uvod

Tinjavim pražnjenjem naziva se pražnjenje u kome se elektroni emituju iz katode pod dejstvom bombardovanja čestica i svetlosnih kvanata iz gasa. Termalni efekti su odsutni ili bar nisu neophodni za održavanje pražnjenja. Uspostavlja se na nižim pritiscima (10 - 1000)Pa. Otpor spoljašnjeg kola je velik. Ovo pražnjenje karakteriše veliki katodni pad potencijala koji je reda 100V.

Tinjavo pražnjenje se karakteriše nizom svetlih i tamnih oblasti u blizini katode tako da izgleda kao da katoda tinja. Po tom efektu je ovo pražnjenje dobilo ime. Postoji niz različitih vrsta tinjavog pražnjenja čiji se izgled menja u zavisnosti od prirode gasa, pritiska i dimenzije suda kao i dimenzija, vrste i materjala elektroda (neke vrste tinjavog pražnjenja biće pobrojani u daljem tekstu).

Slika 11. Prostora raspodela svetlih i tamnih zona, električnog polja E, napona V, koncentracije elektrona n^- i pozitivnih jona n^+

Naslici 11. je prikazan raspored svetlih i tamnih zona pri tinjavom pražnjenju. Uz katodu imamo uzak taman prostor, Astonov taman prostor. Do Astonov tamnog prostora ide tanak i relativno svetao sloj katodnog svetla. Po završetku katodnog svetla nastavlja se katodni taman prostor. Kraj ovog sloja predstavlja oštru granicu posle koje počinje sloj negativnog svetla. Kraj ovog sloja koji je neodredjen predstavlja takodjer neodredjen početak Faradejevog tamnog prostora. Idući dalje ka anodi imamo pozitivan stub koji svetli uniformno ili je pak izbrazdan svetlim i tamnim prugama koje se zovu strijacije. Na pozitivnom kraju imamo ponekad anodni taman prostor posle koga u pravcu anode sledi anodno svetlo. Uvećini slučajeva od svih pomenutih slojeva vidljiva su samo tri i to negativno svetlo, Fradejev taman prostor i pozitivan stub.

Aksijalne dužine oblasti koje idu uz katodu zavise od pritiska gasa³. Katodne oblasti ne menjaju svoje aksijalne dužine pri promeni rastojanja imeđu elektroda ali to dovodi do kontrakcije dužine pozitivnog stuba. To smanjenje ide dotle da pražnjenja može biti i bez pozitivnog stuba.

Stavimo li ravnu katodu u sferni balon i počnemo je obrtati u odnosu na fiksiranu anodu negativne zone će se obrtati kao da su pričvršćene za nju, dok će pozitivan sub popunjavati preostali deo prostora izmedju Faradejevog tamnog prostora i anode. Iz

³Pre nego što su uvedeni merači vakuma bila je praksa meriti dužine katodnih oblast i iz njihove kontracije ili pak izduženja određivan je potpritisak

ovoga se zaključuje da je kretanje naelektrisanih čestica u negativnim zonama usmereno u pravcu polja dok je kretanje u pozitivnom stubu haoti venog tipa.

Uticaj prečnika cevi za pražnjenje na katodne oblasti je mali , dok se taj uticaj na pozitivan stub ne može zanemariti.

5.2. Fizičke karakteristike oblasti tinjavog pražnjenja

Astonov taman prostor Prvi taman prostor uz samu katodu, razlog zašto je taman je u tome što elektroni izbijeni nekim od γ procesa iz katode nisu u mogućnosti da dobiju dovoljnu energiju za ekscitaciju na tako kratkom putu. Polje koje vlada uz samu katodu je jako i odredjeno je prostornim pozitivnim naelektrisanjem koje se formira u katodnom tamnom prostoru (pogledati prostornu raspodelu pozitivnih jona naslici11.). Na kraju puta u Astonovom tamnom prostoru elektroni imaju energiju reda (5-10eV). Ovaj sloj je vidljiv u čistim inertnim gasovima kod kojih je ekscitacioni potencijal visok.

Katodni svetleći sloj Elektronu ulazeći u ovu oblast imaju energiju koja je rada maksimuma preseka za eksitaciju. Ta energija nije mnogo veća od jonizacione i zato je jonizacija redka pojava. To govori da u ovoj oblasti nemamo procese multiplikacije naelektrisanja već samo ekscitacije. Pošto različiti nivoi imaju različite energije ekscitacije, struktura svetljenja ovog sloja je takva da spektralne linije sa nižim potencijalom svetleće bliže katodi a one sa većim dalje od katode ka kraju ovog sloja .

Katodni taman prostor Elektroni koji ulaze u ovaj sloj ubrzavajući se u električnom polju sada imaju dovoljnu energiju da proces multiplikacije naelektrisanja započne. To se i dešava, u ovoj oblasti preovladavaju α - procesi. Intenzivni multiplikacioni procesi rezultuju velikom koncentracijom pozitivnih jona koji predstavljaju prostorno naelektrisanje. Pozitivni joni bivaju privučeni od strane katode gde u γ - procesima izbijaju elektrone iz nje. Ova oblast je važna za tinjavo pražnjenja jer u njoj se jonizacijom stvaraju naelektrisanja koji su potrebna za održanje pražnjenja. Elektroni ove oblasti bliži anodi postepeno smanjuju svoju energiju zbog jonizacionih procesa na svom putu.

Negativno svetljenje Ovaj sloj počinje na mestu gde ponovo dolazi do ekscitacije atoma gasa. Elektrone gasa koji ulaze u ovu oblast možemo podeliti u dve grupe : one koji su proizvedeni na katodi ili blizu nje i imaju veliku brzinu (nisu imali gubitke u sudarima u tamnom prostoru). Druga , veća grupa elektrona koji su izvršili mnogo neelastičnih sudara stvoreni su u tamnom prostoru i zbog toga su spori. Pošto je energija sporih elektrona manja od jonizacionog maksimuma ali je na ekscitacionom maksimumu praseka, dešavaju se pomenuti ekscitacioni procesi. Po izvršenim ekscitacionim procesima energija elektrona postaje toliko mala da je moguća rekombinacija sa pozitivnim jonima. Sa povećanjem rastojanja od granice ove oblasti bliže katodi intenzitet svetlosti opada jer u tom delu ima malo brzih elektrona. Električno polje opada duž ove oblasti da bi sa početkom rasta polja počeo Faradejev taman prostor. Treba još pomenuti prvu grupu elektrona koji ulaze u ovu oblast, njihova energija je dovoljna za jonizaciju i oni obezbedjuju odredjenu koncentraciju pozitivnih jona koji odlaze na katodu i izbijaju nove elektrone. Ti procesi se po koncentraciji pozitivnih jona nemogu porediti sa procesima u tamnom katodnom prostoru.

19

Faradejev taman prostor Predstavlja neku vrstu "granice" između oblasti u cevi duž koje se elektroni kreću usmereno (u katodnim oblastima) i haotično (u pozitivnom stubu). Prelaz od negativnog svetla ka Faradejevom tamnom prostoru je postepen i ne može da se napravi oštra granica izmedju ovih oblasti. Faradejev taman prostor je samo relativno taman⁴ jer njega esvetljavaju ostale oblasti. U ovoj prelaznoj oblasti ka pozitivnom stubu nemamo ni jonizacije ni ekscitacije. Do nih dolazi preko radijativne pobude, zračenja koje dolazi iz negativnog svetla. Treba napomenuti i radijaciju metastabilnih atoma u slabim sudarnim procesima. Duž ove oblasto dolazi do ubrzanja elektrona i to ubrzanje je definisao Thomson u referenci koja je napomenuta u fusnoti. Kada elektroni dostignu energiju koja je reda maksimuma ekscitacionog preseka gasa u cevi počinje pozitivan stub.

Pozitivan stub Nelektrisane čestice se u ovoj oblasti kreću haotično. U uniformnom pozitivnom stubu aksijalna komponenta električnog polja je kostantna u svakoj tački. Intenzitet električnog polja zbog jednakosti prostorne koncentracije pozitivnih jona i elektrona (slučaj jednostruke jonizacije) je mali. Električno polje je za nekoliko redova veličine manje nego što je u negativnim oblastima , što i uslovljava haotično kretanje čestica. Pozitivan stub se nalazi u stanju plazme. Elektroni su glavni nosioci električne struje zbog svoje veće pokretljivosti. Elektroni u pozitivnom stubu difunduju ka zidovima cevi. Rezultat nagomilavanja negativnog naelektrisanja na zidovim cevi je uspostavljanje radijalnog električnog polja. Jonizacija koja postoji u pozitivnom stubu nije rezultat usmerenog kretanja elektrona već haotičnog. Ovo navodi na zaključak da su te brzine velike. U uslovima koji vladaju u pozitivnom stubu brzina haotičnog kretanja je mnogo veća od usmerene brzine.[1]

Plazma pozitivnog stuba je male gustine. Osnovni proces jonizacije gasa u pozitivnom stubu je jonizacija sudarom i to sudarom elektrona sa neutralnim atomom. Rekombinacioni proces je radijativni (najveća je verovatnoća za ovaj proces). Ovo zra vcenje koje je razultat rekombinacije ima dovoljno energije da izvrši dalju jonizaciju zračenjem ali zbog mele gustine plazme koja je reda veličine $(10^{14}-10^{17})m^{-3}$ eno napu vsta poz tivan stub u vidu rekombinacionog zračenja. Ovaj proces ima uticaja na termodinamičku izotermnost plazme. Plazma nije izotermna , temperature elektrona i pozitivnih jona se razlikuju, delom iz razloga neinverznosti procesa nastajanja i nestajanja naelektrisanja delom zbog velike razlike u masi izdu elektrona i pozitivnih jona. ⁵ Temperatura elektrona je reda $10^4 K$, dok je temperatura jona i neutrala približno jednaka sobnoj.[5]

Anodno svetljenje U blizini anode elektroni bivaju privučeni a joni odbijeni (stvara se negativno prostornoi naelektrisanje) i to stvara anodni pad potencijala. Elektroni koji izlaze iz pozitivnog stuba bivaju privučeni i ubrzani i posle proleska kroz anodni taman prostor dobijaju dovoljnu energiju da ekscituju atome gasa u blizini anode stvarajući anodnu svetleću oblast.

Treba naglasiti da je za održavanje tinjavog pražnjenja od najvećeg znač aja prostor oko katode. Taj prostor odredjuje električne karakteristike pražnjenja. U tom delu imamo glavnu produkciju elektrona koji u multiplikacionim procesima stvaraju jone oni

⁴K. G. Emeleus and O. S. Duffendack, Phys. rev., 47, 460, 1935.

J. J. Thomson and G P. Thomson, "Conduction throught Gases," Vol 2, pp. 358 - 362

⁵Manja masa elektrona omogućava mu da primi veću energiju od jona u istom električnom polju. Ova razlika u masi sudarne procese elektrona i jona čini neefikasnim u pogledu prenosa energije sa bržih elektrona na jone

u γ - procesima na katodi stvaraju elektrone i krug se zatvara. Pozitivan stub nije bitan za održavanje samog pražnjenja ali je interesantan zbog svojih fizičkih karakteristika. Ovaj rad biće okrenut jednom parametru plazme pozitivnog stuba, temperaturi elektrona.

5.3. Pojedine vrste tinjavog pražnjenja

Subnormalno, normalno i abnormalno tinjavo pražnjenje Posmatra se pražnjenje u gasu pri pritisku 133.3Pa između dve ravne elektrode, pozitivan stub je izostao, katodni pad potencijala u funkciji struje dat je na slici 12.

Slika 12. Potencijali održavanja tri glavne vrste tinjavog pražnjenja. V_n - je katodni pad normalnog tinjavog pražnjenja.

U opsegu struja $(10^{-5} - 10^{-2})A$ pad napona je stalan. Gustina struje na katodi u tom opsegu ostaje kostantna. To je oblast normalnog tinjavog pražnjenja.

Kada se struja smanji do te mere da prečnik katodne površine pražnjenja postane jednak širini tamnog katodnog prostora, dolazi do povećanja katodnog pada. Površina katode pražnjenja se smanjila zato što više elektrona difunduje radijalno ka zidovima cevi nego što učestvuje u pražnjenju. Gustina struje sa katode se smanjila i da bi se pražnjenje održalo stacionarnim potreban je veliki katodni pad.⁶ Ovo je oblast subnormalnog pražnjenja.

Kada cela površina učestvuje u pražnjenju, porast struje može se dobiti jedino porastom gustine struje. Ovaj problem ponovo rešava povećanje katodnog pada. U ovoj oblasti male promene katodnog pada vezane su za veliku promenu struje. Ovo je oblast *abnormalnog tinjavog pražnjenja*.

Suženo tinjavo pražnjenje Radijus cevi nema skoro uticaja na katodni pad potencijala ukoliko je pritisak gasa u cevi visok, odnosno ako je radijus cevi veći od srednje

21

⁶Sa velikim katodnim padom manji broj elektrona sada ima veću energiju, njihovi multiplikacioni procesi su snažni i svaki elektron stvori toliko jonizacionih produkata elektronai jona da se u γ procesima pojavi još jedan elektron na katodi.

slobodne putanje elektrona.⁷ U slučaju da srednja slobodna putanja elektrona približna radijusu cevi tada katodni potencijal raste.

Slika 13. Katodni pad suženog pražnjenja u funkciji Rp - redukovanog radijusa (R = 1)

Takvo pražnjenje u vazduhu nije lako održati ispod Rp manje od 2 10^{-2} , osim pri vrlo visokim naponima. Uslučaju visokih napona brzi elektroni izbijaju iz katode x-zrake koji zajedno sa brzim pozitivnim jonima izbijaju elektrone iz katode i održavaju pražnjenje.

 $Tinjavo \ pražnjenje \ na \ visokom \ pritisku$ Tinjavo pražnjenje se može dobiti na atmosferkom i većem pritisku. Povećanjem pritiska sužavaju se negativne zone tako da je na jednoj atmosferi Faradejev taman prostor jedva vidljiv. Ono što karakteriše ovo pražnjenje je visoka temperatura gasa u oblasti katodnog pada , temperatura je oko 1000C. Da bi se sprečilo prelaženje tinjavog pražnjenja u lučno neophodno je hladiti katodu.⁸[1]

Difuzno pražnjenje Posmatramo slučaj kada katoda nije prosta provoda površina, već se sastoji od tankog sloja izolatorskog ili poluprovodničkog materjala. ⁹ Pražnjenje koje se tada razvija je bez tamnog katodnog prostora postoje samo : negativno svetlo, Faradejev taman prostor i pozitivan stub. Katodni pad pri ovakvom pražnjenju za retke i molekularne gasove je oko deset puta manji nego u slučaju normalnog tinjavog pražnjenja. Reda je oko 40V a gustina struje difuznog pražnjenja je cko 1000 puta veća .(ovo važi za pritiske reda $10^{-2} - 10^{-1}mmHg$) Katodni pad za katodu CsO - Cs je samo 37V u prisustvu gasa neona.¹⁰ Odsustvo katodnog pada objašnjenoje emisijom polja . Pozitivni joni se apsorbuju na površini izolatorskih čestica i polje koje na taj način nastaje u kristalima dovoljno je veliko za izvlačenje elektrona iz katode. Trošenje katode je intenzivno i to sprečava korišenje ove pojave. [1]

1 1 .

⁷Razdaljina koju elektron pređe između dva sudara je srednja slobodna putanja i ona je obrnuto proporcionalna sa pritiskom $\lambda \approx 1/p$ [1]

⁸Tinjavo pražnjenje se može razlikovati od lučnog po tome što je potencijal tinjavog pražnjenja mnogo veći i što u spektru tinjavog pražnjenja imamo linije gasa u kom se vrši pražnjenje dok u spektru luka imamo metalne pare katodnog materjala

⁹primer katode od aluminijuma prevučene sa Al_2O_3

¹⁰A. v. Engel and M. Steenbeck, "Elektrische Gasentladungen, ihre Physik u. Technik", vol 2, p. 103.

5.3. Oblast katodnog pada potencijala

Za održanje tinjavog pražnjenja od presudnog su značaja oblasti u blizini katode. Zato ovoj oblasti treba posvetiti pažnju. U tekstu koji sledi biće analiziran katodni pad potencijala.

Katodni pad normalnog tinjavog pražnjenja zavisi od kombinacije gasa i koriščenog materjala katode. Katodni pad se kreće od vrednosti 64V za kalijumske katode u atmosferi argona pa do 640V za platinu u ugljen dioksidu. U *tabeli 1.* sumirane su vrednosti katodnog pada za pojedine kombinacije katodnih materjala i gasova kroz koje se vrši pražnjenje.

Tabela 1.

Vrednosti katodnog pada za pojedine kombinacije katodnih materjala i gasova u kojima se vrši pražnjenje

katode	vazduh	He	H_2	N_2	CO_2	Ne	Ar
Al	229	140	170	120	180		100
С			240				
Cd	266	167	200	160	213		119
Fe	269	150	250	150	215		165
Mo				115			
Pb	207	177	223	172	210		124
Pt	277	165	276	152	216	475	131
W				125			
K	180	59	94	68	170	460	64

* A. v. Engel and M. Steenbeck, "Elektrische Gasentladungen, ihre Physik u. Technik", vol 2, p. 103. J. J. Thomson and G. P. Thomson, "Conduction of Electricity through Gases," Vol 2, pp. 331-332

Predpostavlja se da u katodnoj oblasti električno polje opada linearno sa apcisom koja je orjentisana od katode ka anodi. Ovu tvrdnju potvrđuju i eksperimenti.

slika 14. Promena električnog polja u blizini katode

23

lli

Jednačina linearne aproksimacije intenziteta električnog polja u blizini katode je oblika:

$$E(x) = E_0 \left(\frac{x}{d_k} - 1\right)$$
 (26)

 E_0 - vrednost električnog polja uz samu katodu

 d_k - je rastojanje na kome je električno polje jednako nuli.

Prva Maxwell- ova jednačina glasi

$$div\vec{E} = \frac{1}{\epsilon_0}\rho \tag{27}$$

posmatramo jednodimenzioni slučaj

$$\rho = \epsilon_0 \, \frac{dE}{dx} = \epsilon_0 \, \frac{E_0}{d_k} \tag{28}$$

Gustina struje jona koji padaju na katodu je

$$(j_i)_k = n_i \ e \ \bar{u}_i = \rho \ b_i \ E_0$$
 (29)

 b_i - je koeficijent jonske pokretljivosti $\bar{u_i}$ - je srednja brzina jona Gustina struje elektrona sa katode je tada :

$$(j_e)_k = \gamma (j_i)_k = \gamma \rho b_i E_0$$
(30)

Pošto svaki jon izbije γ - elektrona vrednost ukupne gustine struje je

$$j = (j_i)_k + (j_e)_k = (1 + \gamma) \rho \, b_i \, E_0 \tag{31}$$

Uposlednju jednačinu zamenimo jed. (28)

$$j = (1 + \gamma) \frac{\epsilon_0 E_0^2 b_i}{d_k}$$
(32)

Zahvaljujući linearnoj aproksimaciji katodnog pada potencijala vrednost električnog polja E_0 možemo izraziti preko katodnog pada potencijala. Pretpostavljamo da je

$$x = d_k \qquad U = U_k$$
$$U_k = \int_0^{d_k} -E \, dx = E_0 \, \int_0^{d_k} \left(1 - \frac{x}{d_k}\right) \, dx \tag{33}$$

Rezultat integraljenja daje

I.

$$U_k = \frac{E_0 d_k}{2} \tag{34}$$

Transformacijom poslednjeg izraza, izraz za E_0 zamenjujemo u jed. (31)

$$j = (1 + \gamma) \frac{4 \epsilon_0 U_k^2 b_i}{d_k^3}$$
(35)

. .

Iz poslednje jednačine potrebno je eliminisati d_k . Polazimo od uslova proboja koji je transformisan

$$\ln\left(1 + \frac{1}{\gamma}\right) = \int_0^{d_k} \alpha \, dx \tag{36}$$

Zamenom jednačina (15), (26) u poslednju

$$\ln(1 + \frac{1}{\gamma}) = A p \int_0^{d_k} exp - \left[\frac{B p}{E_0(1 - \frac{x}{d_k})}\right]$$
(37)

Da bi pojednostavili poslednji integral uvodimo smenu :

$$\frac{B p}{E_0(1 - \frac{x}{d_k})} = \frac{1}{y}$$
$$dx = -\frac{B p d_k}{E_0} dy$$

Uvrstimo supstituciju :

$$\ln(1 + \frac{1}{\gamma}) = \frac{A B p^2 d_k}{E_0} \int_0^{\frac{E_0}{B_p}} \exp(-\frac{1}{y}) dy$$
(38)

Vrednosti integrala u izrazu *(37)* su tablične [2] i zavise od granica integrala

$$\int_{0}^{z} \exp^{-\frac{1}{y}} dy = S(z)$$
 (39)

Može se napisati

$$\ln(1 + \frac{1}{\gamma}) = \frac{A B p^2 d_k^2}{2 U_k} S(\frac{2 U_k}{b p d_k})$$
(40)

Vrednost aksijalnog rastojanja na kome je polje jednako nuli može se izraziti iz *jed. (35)*

$$d_k = \frac{4 \epsilon_0 U_k^2 b_i}{j} (1 + \frac{1}{\gamma})^{\frac{1}{3}}$$
(41)

Zamenom u jed. (41) u (40)

$$\frac{(C_1 \ U_k)^{\frac{1}{3}}}{(C_2 \ j)^{\frac{2}{3}}} \ S[[(C_1 \ U_k)(C_2 \ j)]^{\frac{1}{3}}] = 1$$
(42)

vrednosti C_1 i C_2 su date kao

!

1

$$C_{1} = \frac{2A}{B \ln(1 + \frac{1}{\gamma})}$$

$$C_{2} = \frac{1 + \frac{1}{\gamma}}{\epsilon_{0} A B^{2} p^{2} (b_{i} p)(1 + \gamma)}$$
(43)

ş i fi

0 F
25
49

Zavisnost $C_1 U_k$ od $C_2 j$ prikazana je na *slici*15.

Slika 15. Zavisnost C_1U_k od C_2j

Kriva na slici 15. je univerzalna i može se primeniti na sve slučajeve. Deo krive AB odgovara uslovima abnormalnog tinjavog pražnjenja, pri povećanju gustine struje poveća se i katodni pad napona. Tačka B odgovara normalnom tinjavom pražnjenju, pri kome je katodni pad napona kostantan i kod koga se pri promeni jačine struje nemenja gustina struje. Poslednji efekat o kostantnosti gustine struje bez obzira na jačinu struje nije još objašnjen jedino se zna da se sa povećanjem gustine povešina pražnjenja katode povećava. Deo krive BC' odgovara slučaju subnormalnog zračenja, kada je anoda udaljena i postoji pozitivan stub. Dok kriva BC'' odgovara slučaju kada je anoda blizu i napon na cevi je jednak katodnom padu potencijala.

Normalno katodno pražnjenje je okarakterisano minimumom ove krive.(slika15.)

$$C_1 U_k = 6$$
$$C_2 j = 0.67$$

Koristeći ove vrednosti mogu se dobiti vrednosti katodnog pada potencijala, dužine katodnog pada i gustine struje u ovoj oblasti.

Katodni pad potencijala normalnog pražnjenja je

$$(U_k)_n = \frac{3 B \ln(1 + \frac{1}{\gamma})}{A}$$
 (44)

Gustina struje

$$j_n = \frac{0.67 \epsilon_0 A B^2 p^2 (b_1 p)(1 + \gamma)}{\ln(1 + \frac{1}{2})}$$
(45)

Pošto je pokretljivost jona obrnuto proporcionalna pritisku iz poslednjeg izraza sledi da je

$$(\frac{j}{p^2})_n = const. \tag{46}$$

Vrednosti struje katodnog pada date su u tabeli 2.

ŀ

Tabéla 2.

katoda	vazduh	Ar	lle	N_2	H_2
Al	330				90
Fe	· · · · · · · · · · · · · · · · · · ·	160	2.2	400	72
Pt		150	5	380	90
Au	240				64

 j/p^2 struja katodnog pada $[\mu A/cm^2mm^2Hg]$ na sobnoj temperaturi

Koristeći jednačine (34), (42), (43) dobija se izraz za dužinu katodnog pada potencijala

$$(d_k)_n = \left(\frac{36}{0.67}\right)^{\frac{1}{3}} \frac{\ln(1 + \frac{1}{\gamma})}{A p}$$
(47)

Odavde sledi da je

$$(d_k p)^n = const \tag{48}$$

Sa povećanjem pritiska oblast katodnog pada se sužava.

Tabela 3.

Dužina katodnog pada normalnog tinjavog pražnjenja $d_n p = C[cm \ mmHg]$

katoda	vazduh	Ar	H_2	He	N_2
Al	0.25	0.29	0.72	1.32	0.31
Fe	0.52	0.33	0.9	1.3	0.42
Mg			0.61	1.45	0.35
Pt			1.0		

* A. v. Engel and M. Steenbeck, "Elektrische Gasentlandungen, ihre Phyisik u. Technik," Vol.2, p. 104.

Slaganje rezultata teorije sa eksperimentalnim je prihvatljivo [5]

1

·27

li

^{*} A. v. Engel and M. Steenbeck, "Elektrische Gasentlandungen, ihre Physik u, Technik", Vol 2, p. 104.

6. POZITIVAN STUB

Osnovne uvodne informacije o pozitivnom stubu date su u poglavlju 5.2. Treba ponoviti da pozitivan stub nije neophodan za održavanje pražnjenja ali je on fizički interesantan kao labaratorijski izvor plazme niske koncentracije i temperature reda $10^4 K$.

Stub je obično uniforman, što se vidi iz kostantnosti aksijalnog gradijenta potencijala ili kostantne srednje energije elektrona u bilo kojoj tački stuba[1]. Zračenje koje je emitovano iz pozitivnog stuba je istog intenziteta ili je u posebnim uslovi ma pozitivan stub podeljen na svetlije i tamnije oblasti koje se nadovezuju , gde se svetlije oblasti nazivaju strijacije.

U razmatranju procesa koji se dešavaju u pozitivnom stubu ograničićemo se na :

- retke i molekularne gasove, izuzev elektronegativnih
- pritiske (10 1000) Pa
- radijus cevi (1-10)cm
- jačine struja u opsegu $(10^{-4} 1)A^{11}$

Posmatrajući pozitivan stub ograničavamo se na sledeću situaciju u cevi za pražnjenje :

- srdnji slobodan put elektrona je manji od radijusa cevi $\lambda_e~<<~R$
- električno polje ima takvu vrednost da broj stvorenih elektrona i jona u sekundi pokriva njihov gubitak
- jonizacija se vrši samo u sudarima brzih elektrona i molekula gasa
- gubitak a je uzrokovan ambipolarnom difuzijom , oticanjem elektrona ka anodi i kretanjem pozitivnih jona ka katodi
- elektroni i joni kreću se istom brzinom radijalno prema zidovima
- koncentracije naelektrisanja je na osi cevi velika dok je na zidovima cevi nula (rekombinacija se vrši na zidovima cevi)
- Koncentracija pozitivnih jona i elektrona je ista
- Struju u pozitivnom stubu nose elektroni
- iz Faradejevog stuba imamo priliv elektrona
- iz anodne oblasti imamo priliv pozitivnih jona

-28

¹¹Misli se na jačine struja u kolu za održavanje pražnjenja u cevi

Pri analiziranju pozitivnog stuba prvo će biti izvedena radijalna raspodela koncentracije naelektrisanja izjednačavanjem brzine jonizacije i gubitak koncentracije naelektrisanja putem ambipolarne difuzije. Potom ce biti izračunata temperatura elektrona potrebna za održavanje brzine jonizacije. Na kraju aksijalna jačina polja koja je nužna da bi se postigla ova temperatura elektrona i nadoknadili energetski gubici.

6.1. Radijalna raspodela naelektrisanja

Radijalnu raspodelu naelektrisanja dobićemo izjednačavanjem brzine jonizacije i gubitka naelektrisanja putem ambipolarne difuzije. Polazimo od uslova koji vladaju u gasu

$$\lambda_e << R \tag{49}$$

$$n^+ \approx n^- = n \tag{50}$$

$$\frac{dn^+}{dt} \approx \frac{dn^-}{dt} = \frac{dn}{dt} \tag{51}$$

slika 16. Presek pozitivnog stuba tinjavog prežnjenja

Sa slike16. vidi se da broj jonskih parova koji ulaze radijalno u element zapremine dr nije jednak broju jonskih parova koji izlaze iz elementa zapremine dr. Broj jonskih parova koji ulaze u element zapremine dr radijelno po jedinici dužine cilindra je :

$$\left(\frac{dn}{dt}\right)_r = -2 \pi r D_a \left(\frac{dn}{dr}\right)_r \tag{52}$$

d.

11

Broj koji napušta element zapremine

$$(\frac{dn}{dt})_{r+dr} = -2\pi (r + dr) D_a (\frac{dn}{dr})_{r+dr}$$
(53)

 D_a - je koeficijenat ambipolarne difuzije¹² i dat je u zavisnosti pokretljivosti jona i elektrona (b_i, b_e) i koeficijenata difuzije elektrona i jona (D_e, D_i) kao :

$$D_{a} = \frac{b_{i} D_{e} + b_{e} D_{i}}{b_{i} + b_{e}}$$
(54)

1

Na samoj osi cevi imamo odsustvo rekombinacije

$$\left(\frac{dn}{dt}\right)_{r=0} = 0 \tag{55}$$

rekombinaciju se dešava samo na zidovima cevi. Promena koncentracije sa vremenom treba da raste sa pomeranjem od ose cevi gde je nula (uslovno) ka zidovima cevi. Broj jonskih parova koji izlaze iz jediničnog cilindra je veći od broja koji u njega ulaze. Razlika između ovih koncentracija je :

$$d\nu = -2 \pi D_a \left(\frac{dn}{dr}\right)_r - 2 \pi \left(r + dr\right) D_a \left(\frac{dn}{dr}\right)_{r+dr}$$
(56)

Može se pisati:

$$d\nu = 2 \pi r D_a \left[\frac{1}{r} \frac{dn}{dr} - \frac{dn^2}{dr^2} \right] dr$$
 (57)

Gubitak treba da se nadoknadi jonizacijom u sloju dr. Neka svaki elektron izvrši z jonizacionih sudara :

$$d\nu = 2 \pi r z n dr \tag{58}$$

Izjednačavanjem poslednja dva izraza dobija se :

$$\frac{dn^2}{dr^2} + \frac{1}{r}\frac{dn}{dr} + \frac{z}{D_a}n = 0$$
 (59)

Rešenje ove diferencijalne jednačine je Beselova funkcija nultog reda. Njen realni argument je :

$$\frac{n_r}{n_0} = I_0 \left[r \sqrt{\frac{z}{D_a}} \right] = I_0 (x)$$
(60)

į.

, I

¹²U realnom gasu postoje dve vrste naelektrisanih čestica elektroni i pozitivni joni. Elektroni su znatno manje mase. Ako je jonizovan gas stvoren električnim pražnjenjem kraz gas u staklenoj cevi, zbog mnogo brže difuzije elektrona zidovi cevi se brzo naelektrišu negativno, zbog čega se javlja radijalno električno polje. Ovo polje ubrzava jone u radijalnom pravcu. Brzina transporta jona i elektrona je ista. Koeficijenat ambipolarne difuzje karakteriše kretanje naelektrisanih čestica u takvoj situaciji.

Beselova funkcija je oscilujuća funkcija sa promenljivom periodom oscilovanja.

Slika 17. Beselova funkcija prve vrste nultog reda¹³

 n_0 - je koncentracija jona na osi cevi n_r - radijalna koncentracija

Posmatrajući sliku 17. vidi se da je za r = 0 vrednost Beselove funkcije

 $I_0(x = 0) = 1$

Vidi se da je

$$I_0(x = 2.405) = 0$$

Poslednja vrednost vezuje se za uslove na zidu cevi gde imamo rekombinaciju. Odavde zaključujemo da važi :

$$R\sqrt{\frac{\nu_i}{D_a}} = 2.405 \tag{61}$$

R - je poluprečnik cevi

Jednačina predstavlja uslov ravnoteže plazme pozitivnog stuba za slučaj difuznog režima (pritisci u intervalu (10 - 1000)Pa). Iz poslednjih izraza za r = R zaključuje se da je koncentracija elektrona na zidovima nulta. Koncentracija naelektrisanja u pozitivnom stubu menja se sa rastojanjem od ose cevi radijalno ka zidovima po približno paraboličnom zakonu. Vrednosti Beselove funkcije x > 2.405 nemaju fizičkog smisla.

6.2. Temperatura elektrona

U cilju nalaženja izraza za temperaturu elektrona polazi ce se od izraza za ravnotežu plazme pozitivnog stuba, jed.(61). Vrednost temperature figuriše u izrazu za frekvenciju jonizacije i koeficijentu ambipolarne difuzije.

Iz praktičnih razlika temperaturu elektrona je potrebno izraziti kao funkciju :

• potencijala jonizacije

¹³Kriva preuzeta iz W. E. Byerly, "Fourier Series and Spherical Harmonics", Ginn and Company, Boston, 1893.

31

ŧ. ŧ.

- pritiska gasa
- poluprečnika cevi za pražnjenje

Radi ostvarenja predhodno postavljenog cilja uvode se izvesne aproksimacije:[5]

• Temperatura elektrona je mnogo veća od temperature jona. Kochicijent ambipolarne difuzije transformacijom jed(54):

$$D_{a} = D_{i} + \frac{b_{i}}{b_{e}} D_{e} = b_{i} \left(\frac{D_{i}}{b_{i}} + \frac{D_{e}}{b_{e}} \right)$$
(62)

U poslednji izraz uvrstimo Einstein -ov izraz koji povezuje koeficijen te difuzije i koeficijen te pokretljivosti jona :

$$\frac{D_{e,i}}{b_{e,i}} = \frac{k T_{e,i}}{e} \tag{63}$$

Na kraju izraz za koeficijent ambipolatne difuzije glasi :

$$D_a = b_i \, \frac{k}{e} \, T_e \tag{64}$$

• frekvencija jonizacije je

$$\nu_i = n_a \, \bar{v_e} \, \bar{\sigma_i} \tag{65}$$

 $\bar{\sigma_i}$ - je linearna aproksimacija preseka za jonizaciju data je izrazom

$$\bar{\sigma}_i = K \left[U_i + \frac{2 k T_e}{e} \right] exp\left[-\frac{e U_i}{k T_e} \right]$$
(66)

K - je koeficijent nagiba prave krive preseka u blizini granice jonizacije $E \ge E_i$ slika 4.

 U_i - je potencijal jonizacije osnovnog stanja

Linerano usrednjena brzina elektrona Maxwell - ove raspodele je

$$\bar{v_e} = \sqrt{\frac{8 \ k \ T_e}{\pi \ m_e}} \tag{67}$$

• Ako pokretljivost jona izrazimo kao pokretljivost na jediničnom pritisku i pritiska gasa

$$b_i = \frac{b_{i0}}{p} \tag{68}$$

• Koncentraciju elektrona u osnovnom stanju izražavamo pomoću koncentracije na jediničnom pritisku

$$n_a = n_{a0} p \tag{69}$$

Uvrste se sve navedene aproksimacije u jednačinu ravnoteže plazme pozitivnog stuba i dobija se

$$R^{2} \frac{n_{a0} p \sqrt{\frac{8 k T_{e}}{\pi m_{e}}} K \left[U_{i} + \frac{2 k T_{e}}{e}\right] exp\left[-\frac{e U_{i}}{k T_{e}}\right]}{b_{i0} \frac{k T_{e}}{p_{e}}} = 2.405^{2}$$
(70)

Uvede se smena

$$\frac{e \ U_i}{k \ T_e} = X$$

Zamenom u jed.(70)

$$R^{2} p^{2} \left[\frac{n_{a0} \sqrt{\frac{8 e U_{i}}{\pi m_{e}}} K}{b_{i0} (2.405)^{2}} \right] = \frac{exp(X)}{\sqrt{X} \left(1 + \frac{2}{X}\right)}$$
(71)

odnosno

$$R^{2} p^{2} C^{2} = \frac{exp(X)}{\sqrt{X} \left(1 + \frac{2}{X}\right)}$$
(72)

gde je

$$C^{2} = \left[\frac{n_{a0}\sqrt{\frac{8 e U_{i}}{\pi m_{e}}} K}{b_{i0}(2.405)^{2}}\right] \left[\frac{A V s^{2} P a}{kg m^{-3}}\right]$$

Vrednosti kostante C za pojedine gasove date su u tabeli4.

Tabela 4.

Vrednosti kostante C za određene gasove

Gas	He	Ne	A	Hg	N ₂	H_2
$\left[C\left[\frac{AVs^2P_a}{kgm^{-3}}\right] \right]$	3.910^{-3}	5.910^{-3}	5.310^{-2}	1.110^{-1}	3.510^{-2}	1.3510^{-2}

* A. v. Engel and M. Steenbeck, "Elektrische Gasentladungen, ihre Physik u. Technik,"vol. 2,p. 86.

Jednačina(72) je transcedentna. Temperatura elektrona se ne može eksplicitno izraziti kao funkcija drugih veličina. Za različite vrednosti X - sa nalaze se vrednosti proizvoda $R^2 \ C^2 \ p^2$ i crta se univerzalna zavisnost T_e/U_i od $R^2 \ C^2 \ p^2$. Ova zavisnost je data na *slici*18.

Slika 18. Teoretska zavisnost T_e / U_i od vrednosti C R p

Rezultati koje daje ova teorija za merene vrednosti pritiska i poluprečnika cevi uz poznavanje potencijala jonizacije za posmatrani gas su relativno dobri i slažu se sa eksperimentalnim i pored uvedenih aproksimacija. Tu pre svega treba navesti aproksimaciju da se jonizacija elektronskim sudarima dešava sa atomima koji su osnovnom stanju što je veoma gruba aproksimacija.

Teorija predhodno izneta nevaži ni za niske ni za visoke pritiske. U slučaju niskih pritisaka oseća se uticaj sloja prostornog naelektrisanja sa zidova cevi. Pri visokim pritiscima pozitivan stub se sužava i ne popunjava cev.

Pri visokim temperaturama merenje je otežano zbog pojave efekta elektronegativnosti. Na visokim temperaturama procenat elektronegativnih molekula je nemože se zanemariti. U tim nepoželjnim procesima u kojima se gube elektroni, oni se vezuju za nečistoće kojih ima u cevi, kiseonik iz preostalog vazduha.

6.3. Aksijalna komponenta električnog polja

Aksijalna komponenta električnog polja dobija se iz pretpostavke da se snaga oslobodjena tokom struje kroz gas gubi na jonizaciju. Ovo je samo delimično tačno zato što se jedan deo snage gubi u vidu rezonatnog zračenja koje zbog male koncentracije plazme napušta pozitivan stub kao i na druge procese. Ravnoteža oslobođene i utrošene energije se može izraziti kao :

$$j E_z = \nu_i n_e e U_i \tag{73}$$

.

Pošto je gustina struje

$$j = e n_e (b_e + b_j) E_z$$
 (74)

Slika 19. Zavisnost E_z/p od Rp za različite gasove

Koristeći uslov (61), uslov stabilnosti pozitivnojeg stuba dobija se za aksijalno polje

$$E_{z} = \frac{2.405}{R} \sqrt{\frac{D_{a} \nu_{i}}{b_{e} + b_{i}}}$$
(75)

Eksperimentalno dobijene vrednosti E_z/p od R p za difuzni režim date su na slici19.

,

7. ODREDIVANJE TEMPERATURE ELEKTRONA PLAZME POZITIVNOG STUBA

Temparatura elektrona plazme pozitivnog stuba tinjavog pražnjenja u ovom radu određivaće se pomoću elektrostatičkih sondi. Biće korišćena metoda dvostruke sonde. U tekstu koji sledi biće pomenuta metoda jednostruke sonde koja u mnogome objašnjava metodu dvostruke sonde.

1

||

7.1. Elektrostatičke sonde

Elektrostatička sonda je elektroda malih dimenzija koja se direktno unosi u plazmu pozitivnog stuba, dovodi na određeni potencijal U_p u odnosu na jednu od elektroda između kojih je ostvareno pražnjenje. Uzavisnosti od od sondnog potencijala U_p kroz električno kolo teče određena struja I_p^{14} . Menjanjem U_p može se snimiti zavisnost $I_p(U_p)$ - volt - amperska karakteristika. Ovako dobijena volt - amperska karakteristika koristi se u dijagnostici plazme.

Slika 20. Karakteristična volt - amperska kriva merenja jednostrukom sondom

7.2. Sondni materjali

Materijal od koga je napravljena sonda mora biti otporan na visoku temperaturu, hemijske reakcije koje će se u toku rada desiti na njenoj površini, kao i efekat spaterovanja ¹⁵. Materijal sonde mora biti takve prirode da efekat sekundarne emisije pod uticajem elektrona, fotona i brzih metastabilnih atoma bude minimalan. U slučaju " toplih " i gustih plazmi koriste se materijali kao što su molibden, volfram i tantal. U slučaju plazmi niže koncentracije i temperature koriste se nikal, platina . U donjoj tabeli date su neke karakteristike materijala koje se koriste.

36

¹⁴p - "probe" engl.
¹⁵Dislokacija površinskih atoma bombardovanjem sonde visoko energetskim česticama

Tabela 5.

atom	atom. težina	$gustina[g/cm^3]$	tačka toplj. C°	intenz, sputerov [a/cm ³ h]
Al	27	2.699	660.1	
Fe	55.9	7.87	1535	1.07
Ni	58.7	8.9	1453	2.31
Mo	96.0	10.21	2610	2.4
Ta	181.0	16.6	2010	3.9
W	183.9	19.4	3305	7.4
Pt	195.2	21.45	1760	1.1
			1109	15.8

Pojedine karakteristike važnih sondnih materjala

* M. v. Ardenne, Tabellen zur angewandten Physik, VEB Deutscher Verlag der Wissenschaften, Berlin, 1962,p. 689

Treba naglasiti da velićina spaterovanja data u prethodnoj tabeli može biti korišenja samo za grubu procenu uticaja tog efekta na rad sonde.

7.3. Teorija jednostruke elektrostatičke sonde

Pri analizi procesa koji se dešavaju u blizini sonde koja je zamočena u plazmi pozitivnog stuba potrebno je uvesti niz aproksimacija na kojima se bazira teorija. Mnoge aproksimacije su iste kao postavljene pri analiziranju pozitivnog stuba. One će biti ponovljene zbog celine analize;

- plazma je bekonačna¹⁶, homogena i kvazineutralna u odsustvu sonde
- elektroni i joni imaju Maxwell ovu raspodelu brzina
- temperatura elektrona $T_e >> T_i$ od temperature jona
- srednji slobodni put elektrona i jona je veći od dimenzija sonde zamočene u plazmu
- koncentracija neutralnih čestica je velika u poređenju sa koncentracijom naelektrisanih čestica
- u sudarnim procesima elektroni jonizuju atome samo iz osnovnog stanja
- elektronegativnost minimalna

37

і, **ІШ**І

¹⁶U odnosu na dimenzije sonde plazma je beskonačna

- udari naelektrisanih čestica po površini sonde rezultuju absorcijom naelektrisanja a ne reakcijom čestice koja udara sa materjalom sonde[2]
- između prostora u plazmi u kojoj se oseća uticaj potencijala sonde i prostora ukome sa taj uticaj neoseća postoji oštra granica

Snimanje volt - amperske karakteristike vrši se električnim kolom na slici21

Slika 21. Električno kolo za snimanje volt - amperske karakteristike metodom jednostruke sonde

Potencijal sonde u odnosu na anodu menja se potenciometrom P i ampermetrom se meri jačina struje koja teče kroz kolo.

Pretpostavimo da je sonda umočena u plazmu na mestu gde je potencijal plazme Up

Slika 22. Sloj pozitivnog prostornog naelektrisanja u blizini sonde

Elektroni plazme kao pokretljiviji vrlo brzo sondu naelektrišu negativno. Negativno naelektrisanje odbija elektrone i stvara pozitivno prostorno naektrisanje debljine d, odnosno pad potencijala koje opada sa rastojanjem od sonde da bi na granici sa plazmom polje bilo jednako nuli. Ka sondi teče jonska struja. Joni koji dospeju do sonde uspevaju to samo zbog svojih termalnih brzina. Struja jona koja pada na jedinicu površine FF', slika22. u jedinici vremena je

$$j^{+} = \frac{1}{4} n^{+} \bar{v^{+}}$$
(76)

Gustini ove jonske struje odgovara AB deo krive slica20.

38

Nadjeno je da je poslednji izraz približno tačan u slučajevima kada je $d \ll \lambda_{e,i}$ i kada je sonda dovoljno negativno naelektrisana. [1]

Povećanjem napona sonde, tako da sonda postane pozitivna u odnosu na jednu od elektroda cevi za pražnjenje, na nju počinju pristizati elektroni. Elektroni koji se kreću ka sondi imaju energiju

$$\frac{m_e v^2}{2} \ge e \left(U_p - U_s \right) \tag{77}$$

Iz Maxwell - ove raspodele broj elektrona sa brzinama u intervalu [v, v + dv] je

$$dn_{v} = \frac{n_{e} v}{\sqrt{\pi} v_{v}} e^{-v^{2}/v_{v}^{2}} dv$$
(78)

Ukupan broj elektrona koji padaju na površinu FF'

$$N_{e} = \int_{2\epsilon U/m}^{\infty} \frac{n_{e} v}{\sqrt{\pi} v_{v}} e^{-v^{2}/v_{v}^{2}} dv = \frac{1}{4} n_{e} \bar{v} e^{-e U/k T_{e}}$$
(79)

Gde je $U = U_p - U_s$.

Gustina struje elektrona na sondu je tada

$$j_e = N_e e = \frac{1}{4} n_e e \bar{v} e^{-e U/kT_e} = j_h e^{e U/kT_e}$$
(80)

 j_h - je struja prouzrokovana haotičnim, termalnim kretanjem elektrona plazme. Logaritmovanjem izraza

$$\ln j_e = \ln j_h - \frac{e U}{k T_e} \tag{81}$$

Odavde sledi

$$\frac{\ln j_s}{dU_s} = \frac{e}{k T_e} \tag{82}$$

Pošto je potencijal plazme na mestu gde se nalazi sonda kostantan tada je $dU = -dU_s$. Poslednji izraz omogućava izračunavanje temperature elektrona. Tekst koji predhodi teoretski postavlja metodu indirektnog izračunavanja temperature elektrona metodom jednostruke sonde. Deo karakteristike C D' slike20. koristi se za ovu dijagnostiku.

Nastavimo li da pratimo karakteristiku sa slike20., dalje od tačke D' u smeru pozitivnog napona dolazi se do tačke D. Ta tačka odgovara jednakosti potencijala sonde i potencijala plazme.

$$(U_s)_d = U_p \tag{83}$$

Na tom potencijalu nema prostornog naelektrisanja oko sonde i na sondu pada haotična struja elektrona.

$$(j_s)_d = j_h = e n_e \sqrt{\frac{4 k T_e}{\pi m_e}}$$
 (84)

Merenjem ove struje daje mogučnost određivanja koncentracije elektrona u plazmi.

Sonda ne daje dobre rezultate za temperaturu jona. Posle primene iste metode izračunavanja na donji deo karakteristike (*slika*20.) dobijaju se vrednosti koje su više nego što je stvarna temperatura jona.

$$j_j = \frac{1}{4} e n_j \sqrt{\frac{8 k I_e}{\pi m_j}}$$
(85)

Kada se poveća nagativna vrednost potencijala dalje od tačke A struja sonde naglo poraste. Razlog tome je činjenica da se tada sonda ponaša kao katoda pražnjenja. Kroz nju počne da teče celokupna struja pražnjenja. Usled bombardovanja jonima temperatura sonde poraste naglo da dolazi do razaranja sonde. Za potencijal koji je viši od tačke E sonda preuzima ulogu anode i struja naglo poraste. Dovoljno je da U_s bude veći od U_p za svega nekoliko volti pa da sonda pređe u režim anode. [5]

U cilju odvajanja električnog kola sonde od kola za pražnjenje koristi se metoda dvostruke sonde.

7.4. Dvostruke sonde

Pojava da sonda za određene vrednosti napona postaje anoda ili katoda pražnjenja, kada velika struja usmerena na sondu može da je razori iznudilo je potrebu za odvajanjem strujnog kola sonde od kola za pražnjene. Došlo se do dvostruke sonde.

Dvostruka sonda sastoji se od dve jednake elektrode (sonde) koje su na rastojanju od nekoliko santimetara zamočene u plazmu.

Slika 23. Šema električnog kola dvostruke sonde

Razmatranje problema dvostruke zasniva se na pretpostavkama koje su date u predhodnom poglavlju. Jedna od pretpostavki je da se elektroni brže kreću od jona. Samo ovaj uslov daje pravo da se prepostavi, da ubrzo po uspostavljanju pražnjenja obe elektrode (sonde) postaju negatino nelektrisane. Teorija još prepostavlja da su obe sonde istih dimenzija. Kada je potencijalna razlika između sondi jednaka nuli tada kroz kolo ne teče struja. Do pojave toka struje može da dođe samo u slučaju potencijalne razlike u plazmi, asimetrije sondi ili asimetrije graničnog sloja između dela u kome se oseća uticaj potencijala sondi i dela u kome sonde nemaju uticaj.

Kada je $U = U_1 - U_2$ pozitivno odnosno U_1 je manje negativno nego U_2 . U takvoj situaciji elektroni više pristižu na sondu 1 nego na sondu2. U takvoj situaciji nastaje tok jonske struje od sonde 2 ka sondi 1.

40

Slika 24. Volt - amperska karakteristika dvostruke sonde snimane u vazduhu na 50Pa i $U_{AK} = 1182V$

Kada je U >> 0, druga sonda postaje još negativnija dok je sonda 1 i dalje negativna ali ne dovoljno da prikupi dovoljno elektrona koji bi poništili jonsku struju sonde 2. Struja druga sonda predstavlja jonsku struju saturacije i prikazana je na *slici*24. sa i_{2+} Za vrednost negativne razlike potencijala kada je U << 0 imamo istu pojavu jonske saturacije, samo sada na sondi 1. Struja u kolu ne može nikada biti veća od jonske struje saturacije, svaka struja elektrona totalnog sistema uvek je balansirana istom strujom jona. Ovaj način merenja struje u zavisnosti od potencijalne razlike između sondi neutiče na režim pražnjenja i to je dobra osobina ove metode. Ovde treba navesti da zbog negativnosto obe sonde elektroni koje sonde prikupljaju pripadaju krajevima Maxwell ove raspodele(brzi elektroni).

U cilju dobijanja kvantitativne volt - amperske zavisnosti dvostruke sonde definišu se sledeče struje

 i_{1+}, i_{2+} - struje saturacije prve i druge sonde

 i_{1-}, i_{2-} - struje prve i druge sonde

Uslovi u kolu dvostruke sonde su takvi da važi ;

$$\dot{i}_{1+} + \dot{i}_{2+} - \dot{i}_{1-} - \dot{i}_{2-} = 0 \tag{86}$$

Struja u kolu

$$i_{2+} - i_{2-} - (i_{1+} - i_{1+}) = 2 I$$
(87)

Koristeći poslednje dve jednačine dobija se

$$I = i_{1-} - i_{1+} = i_{2+} - i_{2-} \tag{88}$$

Struja elektrona koja pada na sondu 1 je

$$i_{1-} = A_1 j_h e^{\frac{e U_1}{k T_e}}$$
(89)

Uvrstimo li ovo u jed.(88)

$$I + i_{1+} = A_1 j_h e^{\frac{e U_1}{k T_e}} = A_1 j_h e^{\frac{e (U + U_2)}{k T_e}}$$
(90)

$$I + i_{1+} = \frac{A_1}{A_2} i_{2-} e^{\frac{e U}{k T_e}}$$
(91)

Uvrstimo li jed.(91) u (88)

$$\frac{I + i_{1+}}{i_{2+} - I} = \frac{A_1}{A_2} e^{\frac{e U}{k T_e}}$$
(92)

Pretpostavka ove teorije dvostruke sonde, je da su sonde uvek dovoljno negativne da sakupe postoječu struju zasičenja jona. Vrednost te struje može se proceniti ekstrapolacijon dela krive u kojem vrednost jačine struje saturira. Uzimajući u razmatranje jed(88) uz sada pomenut uslov da struje saturacije ne zavise od razlike potencijala može se pisati

$$\frac{dI}{dU} = \frac{di_{1-}}{dU} = -\frac{di_{2-}}{dU}$$
(93)

$$A_{1} j_{h} e^{\frac{e}{k} \frac{U_{1}}{T_{e}}} \frac{e}{k T_{e}} \frac{dU_{1}}{dU} + A_{2} j_{h} e^{\frac{e}{k} \frac{U_{2}}{T_{e}}} \frac{e}{k T_{e}} \frac{dU_{2}}{dU} = 0$$
(94)

Na početku ovog poglavlja dato je

$$U = U_1 - U_2$$

Dalje se dobija

$$\frac{dU_1}{dU} - \frac{dU_2}{dU} = 1 \tag{95}$$

۲.

Zamenom u jed(94)

$$A_1 e^{\frac{e}{k} \frac{U_1}{T_e}} \frac{dU_1}{dU} + A_2 e^{\frac{e}{k} \frac{U_2}{T_e}} [\frac{dU_1}{dU} - 1] = 0$$
(96)

Za U = 0 $U_1 = U_2$ Predhodni izraz tada postaje

$$\left(\frac{dU_1}{dU}\right)_{U=0} = \frac{A_2}{A_1 + A_2} \tag{97}$$

Koristeći poslednji jednačinu jed(93) postaje

$$\left(\frac{dI}{dU}\right)_{U=0} = \frac{A_1 A_2}{A_1 + A_2} j_h \frac{e}{k T_e} e^{\frac{e U_1}{k T_e}}$$
(98)

$$j_+ = j_h \, e^{\frac{e \, U_1}{k \, T_e}} \tag{99}$$

$$\left(\frac{dI}{dU}\right)_{U=0} = \frac{e}{k T_e} j_+ \frac{A_1 A_2}{A_1 + A_2}$$

$$i_{1+} = A_1 j_+$$

$$i_{2+} = A_2 j_+$$
(100)

 A_1 , A_2 - površina prve odnosno druge sonde

Uvrstimo vrednosti jačina struja saturacija u poslednji izraz

i. |

$$\left(\frac{dI}{dU}\right)_{U=0} = \frac{e}{k T_e} \frac{i_{1+} i_{2+}}{i_{1+} + i_{2+}}$$
(101)

Poslednji izraz pruža mogućnost da se iz struje zasićenja jona i nagiba karakteristike izračuna temperatura elektrona što je cilj ovog rada. Ekstrapoliranje krive u cilju dobijanja vrednosti jonske struje saturacije unosi veliku grešku u rezultat i to unosi "relativnost" u rezultat merenja.[4]

1

8. EKSPERIMENT

Cilj eksperimenta je određivanje temperature elektrona metodom dvostruke elektrostatičke sonde. Tinjavo pražnjenje je uspostavljano na različitim pritiscima u intervalu od (40 - 500)Pa. U cevi su se na različitim pritiscima nalazila tri gasa argon, helijum i azot.

8.1 Aparatura merenja

Tinjavo pražnjenje sa uspostavlja u staklenoj cevi dužine 37cm. Spoljni prečnik cevi je 2.3cm. Debljina stakla je 0.1cm. Cev sa jedne svoje strane ima dva ispusta, jedan u blizini katode drugi u blizini anode. Ispusti su vezani na gasni sistem. Duž cevi je zatopljeno petnaest elektroda. Za snimanje volt - amperske karakteristike koriščene su dve13. i14. brojano od katode(u *šemi 24.* nacrtane su samo one elektrode koje su korišćene). Rastojanje između elektroda - sondi je $(0.83 \pm 0.01)mm$

Aparatura se sastoji iz električnog kola i gasnog sistema. Električno kolo se sastoji od kola za uspostavljenje tinjavog pražnjenja u cevi i i kola za snimanje volt - amperske karakteristike.

Električno kolo za napajanje cevi za pražnjenje Električno kolo je vezano preko autotransformatora na mrežni napon od 220V. Autotransformator omogućava promenu ulaznog neizmeničnog napona. Autotransformator je vezan na primar visokonaponskog ispravljača. Jačina jednosmerne struje dobijena iz visokonaponskog ispravljača ograničena je otporom od $82k\Omega$ koji je redno vezan u kolo. Struja u kolu meri se digitalnim miliampermetrom redno vezanim. Napon u kolu meri se digitalnim volmetrom koji je paralelno vezan između katode i anode. Naponi su kolu su reda 1kV. Promenom ulaznog napona izaziva se promena napona između katode i anode i na određenoj vrednosti potencijalne razlike između katode i anode dolazi do proboja u gasu i uspostavljanja tinjavog pražnjenja. Naponi koji održavaju tinjavo pražnjenje za svaki pritisak i gas posebno su navedeni u tabelama sa rezultatima.

Električno kolo za snimanje volt - amperske karakteristike Razlika potencijala između sondi se uspostavlja pomoću električnog kola koje se sastoji od izvora jednosmernog napona, potenciometra i voltmentra paraleno vezanog između sondi. Voltmetar meri razliku potencijala između sondi. Sonde su od volframa. Debljina sondi je $(1 \pm 0.1)mm$. Ampermetar meri jačinu struje u kolu i vezan je redno. Promenom potencijala između sondi izaziva se promena struje u kolu što je i cilj merenja, snimanje volt - amperske karakteristike.

43

Gasni sistem Gasni sistem slika25. služi za kontrolu vrednosti i uspostavljenje niskih pritisaka u cevi za pražnjenje. Sistem radi u protočnom režimu Sastoji se od vakum pumpe, igličastog i reducir ventila, boce sa radnim gasom i vakummetra. Vakum pumpa evakuiše sistem do niskih pritisaka reda 10Pa. Igličastim ventilom se pušta radni gas u sistem i reguliše protok. Igličast ventil vezan je preko reducir ventila sa bocom u kojoj je radni gas pod visokim pritiskom. Promenom vrednosti protoka gasa kroz sistem menja se pritisak u cevi za pražnjenje.

8.2. Merenje i rezultati merenja

Metoda merenja temperature elektrona plazme pozitivnog stuba pomoću elektrostatičkih sondi je indirektna metoda. Promenom potencijalne razlike između sondi izazivamo promenu jačine struje u kolu za snimanje volt - amperske karakteristike. Rezultat merenja je dakle, volt - amperska karakteristika koja daljom analizom omogućava nalaženje temperature elektrona. Promenom razlike potencijala između sondi merene su vrednosti jačine struje za svaki od tri nabrojana gasa, i to na različitim pritiscima. Rezultati merenja su tabelarno sređeni u tabeli 6. ; 7. ; i 8. Rezultati su grafićki predstavljeni na Slici 26. pod a), b), c), d) -helijum ; e), f),-azot i g), h), i) - argon.

Slika 25. Šema aparature

44

	ſ <u></u>				
	gas	Ar	Ar	Ar	
	pritisak[Pa]	50	100	150	
	$U_{AK}[V]$	786	110	940	
	U[V]	$I[\mu A$	$] I[\mu A$	$I I [\mu A]$	
	90	10.3		5.8	
	85	9.9		5.5	-
	80	9.5		5.4	-†
	75	9.2		5.1	-+
	70	8.8		4.9	-+
	65	8.4	5.7	4.7	\dashv
	60	8.0	5.3	4.4	╢
	55	7.6	5.0	4.2	╢
	50	7.2	4.7	3.9	-
	45	6.7	4.4	3.6	-#
	40	6.3	4.1	3.2	╢
	35	5.8	3.7	2.6	╢
	30	5.2	3.2	1.8	╢
	25	4.4	2.3	0.9	╢
ĺ	20	3.2	1.3	0	╢
	15	1.7	-0.4	-1.0	╢
l	12	0.5		-1.5	╢
	10	-0.3	-0.8	-1.8	Ħ
	7	-1.5	1	-1.9	╢
	5	-2.1	-1.5	-2.1	H
	0	-3.2	-2.0	-2.4	H
	-5	-3.7	-2.5	-2.7	H
	-10	-4.2	-2.8	-2.9	H
	-15	-4.7	-3.2	-3.2	1
	-20	-5.2	-3.5	-3.4	
	-25	-5.6	-3.8	-3.6	
	-30	-6.0	-4.1	-3.8	
	-35	-6.4	-4.4	-4.0	
	-40	-6.8	-4.7	-4.2	
	-45	-7.2	-5.0	-4.5	
	-50	-7.6	-5.3	-4.6	
	-55	-8.0	-5.5	-4.9	
	-60	-8.3	-5.8	-5.1	

Tabela 6.

Rezultati snimanje volt - amperske karakteristike metodom dvostruke sonde u atmosferi argona pri različitim pritiscima

45

1

!

۹i

gas	N ₂	N ₂
pritisak [Pa]	40	50
$U_{AK}[V]$. 1094	1204
U[V]	$I[\mu A]$	$I[\mu A]$
90	6.2	
80	5.8	
70	5.4	4.0
65		3.8
60	4.9	3.6
55	4.6	3.4
50	4.4	3.1
45	4.1	2.8
40	3.6	2.3
35	3.1	1.7
30	2.3	0.9
25	1.3	0.2
20	0.4	-0.7
10	-1.9	-1.8
5	-2.4	-2.0
0	-2.8	-2.3
-5	-3.1	-2.4
-10	-3.3	-2.6
-15	-3.6	-2.8
-20	-3.9	-3.0
-25	-4.1	-3.2
-30	-4.3	-3.3
-35	-4.5	-3.5
-40	-4.7	-3.7
-50	-4.7	-4.0
-60	-5.6	-4.3

Tabela 7.

Rezultati snimanja volt - amperske karakteristike metodom dvostruke sonde u atmosferi azota pri različite pritiske

gas	He	He	He	He
pritisak [Pa]	50,	100	200	500
$U_{AK}[V]$	780	800	809	880
U[V]	$I[\mu A]$	$I[\mu A]$	$I[\mu A]$	$I[\mu A]$
60	6.1	11.6	11.6	15.4
55	5.75	10.8		
50	5.5	10.2	10.8	13.8
45	5.2	9.4	10.2	13
40	4.8	8.7	9.6	12.5
35	4.3	7.9	8.9	11.4
30	3.6	7	8	10.3
25	2.7	6.0	6.8	8.6
20	1.5	4.3	5.1	6.2
15	0.15	2.3	2.9	3.0
10	-1.3	-0.1	0.1	-1
5	-2.5	-2.8	-2.9	-4.7
0	-3.1	-4.2	-5	-6.4
-5	-3.5	-5	-6.0	-7.25
-10	-3.9	-5.6	-6.8	-8
-15	-4.2	-6.2	-7.5	-8.75
-20	-4.6	-6.7	-8.2	-9.4
-25	-4.9	-7.2	-8.8	-10.1
-30	-5.3	-7.7	-9.5	-10.8
-35	-5.5	-8.2	-10.1	-11.4
-40	-5.9	-8.6	-10.8	-12
-50	-6.5	-9.4	-12	-13.2
-60	-7.2	-10.2	-13.1	-14.4

Tabela 8.

Rezultati snimanja volt - amperske karakteristike metodom dvostruke sonde u atmosferi helijuma pri različitim pritiscima

• |t ||1

1:

I

, _____

Slika 26. a) - i) Volt-amperske karakteristike snimane u He, N2, i Ar.

,

52

n n 🗎 🛋

Na predhodnim stranama dati su rezultati merenja u tabelarnom i grafičkom obliku. Kao primer, analiziraće se volt - amperska karakteristika dvostruke sonde snimana u helijumu na pritisku od 50Pa. Analizom krajnje jednačine jed(101) teorije dvostruke sonde zaključuje se, da nalaženjem vrednosti struje saturacije jona i nagiba dela krive (CA, slika27.) temperatura elektrona se može lako proceniti.

$$\left(\frac{dI}{dU}\right)_{U=0} = \frac{e}{k T_e} \frac{i_{1+} i_{2+}}{i_{1+} + i_{2+}}$$
(102)

Slika 27. Volt - amperska zavisnost dvostruke sonde snimane u u atmosferi helijuma na pritisku od 50Pa pri razlici potencijala između sondi od 780V

Nalaženje vrednosti jonske saturacione struje vrši se ekstrapolacijom delova volt - amperske karakteristike (slika27.) označenih sa $A \ B$ i $C \ D$. Ta dva dela karakteristike odgovaraju jonskim saturacionim strujama. To su

$$i_{1+} = 4\mu A$$
$$i_{2+} = 3\mu A$$

53

i

Nagib dela karakteristik
e $C\ A$ u kome se jačina struje linearno menja sa promenom potencijala između sondi iznosi

$$\frac{\Delta I}{\Delta U} = \frac{7}{29} \left[\frac{\mu A}{V}\right]$$

Zamenom vrednosti skinutih sa karakteristike u jed(103) dobijamo za vrednost temperature

$$T_e = \frac{e}{k} \frac{\Delta U}{\Delta I} \frac{i_{1+}i_{2+}}{i_{1+} + i_{2+}}$$
$$T_e(K) = \frac{1.602 \ 10^{-19}[C]}{1.3806 \ 10^{-23}[JK^{-1}]} \frac{29[V]}{7 \ 10^{-6}[A]} \frac{4 \ 10^{-6} \ 3 \ 10^{-6}[A^2]}{4 \ 10^{-6}[A] + 3 \ 10^{-6}[A]} = 82414.63 \ K$$

Ekstrapolacija jonske struje saturacije može biti otežana odstupanjem volt - amperske karakteristike od linearne zavisnosti u delu AB i CD. Iz tog razloga ekstrapolacija se vrši više puta i rezultati statistički tretiraju nalaženjem srednje vrednosti i mogućeg intervala rasipanja rezultata. Vrednost temperature elektrona tako dobijene za helijum na pritisku od 50Pa je

$$T_{\epsilon} = (85860 \pm 3440) K$$

Ponavljanjem postupka dobijaju se vrednosti za ostale gasove na različitim pritiscima. Rezultati su dati u *Tabeli*9.

Tabela 9.

Eksperimentalno dobijene vrednosti temperature elektrona za helijum , argon i azot na različitim pritiscima dobijeni metodom dvostruke sonde

Gas	pritisak [Pa]	temp. elektrona $[K]$
$H\epsilon$	50	85860 ± 3440
He	100	66600 ± 1180
He	200	58990 ± 2070
He	500	56380 ± 500
N_2	40	75200 ± 870
N_2	50	75330 ± 1060
Ar	50	59890 ± 1540
Ar	100	66150 ± 3110
Ar	150	87640 ± 500

8.4. Poređenje rezultata teorije i eksperimenta

Postavlja se pitanje u kom su odnosu rezultati eksperimentalnih merenja sa teorijskim predviđanjem. Pritisci na kojima su vršena merenja nalaze se u intervalu (40 - 500)Pa. Srednji slobodni put elektrona je manji od radijusa cevi što navodi na zaključak da se pozitivan stub nalazi u difuznom režimu. Prisutna ja ambipolarna difuzija naelektrisanja ka zidovima cevi i naelektrisanje je radijalno raspodeljeno po Besselov -ovoj funkciji. Na osnovu pretpostavke da je brzina jonizacije jednaka gubitku naelektrisanja ambipolarnom difuzijom izvedena je jednačina ravnotežé plazme pozitivnog stuba jcd(61.). Na osnovu ove jednačine uz određene aproksimacije nađena je zavisnost $\frac{T_e}{U_i}$, temperature elektrona u imeniocu potencijala jonizacije od proizvoda $R \ p \ C \ (slika18)$. U_i - je potencijal jonizacije u voltima ,R - je poluprečnik u cm, p - je pritisak u mmHg, C - je kostanta čije vrednosti za argon , helijum i azot postoje u tabeli 4... Poznavanje ovih parametara omogućava procenjivanje temperature elektrona.

Tabela 10.

Vrednosti potencijala jonizacije za argon, helijum i azot

Gas	He	N_2	Ar
$U_i[V]$	24.587	14.534	15.759

Ionization Potentials and Ionization Limits Derived from The Analyses of Optical Spectra NSRDS - NBS 34, Nat. Stand. ref data ser.,Nat Bur. stand.(U. S. 34, 1970)

Za helijum $C = 3.9 \ 10^{-3} [\frac{A \ V s^2 \ P a}{kg \ m^{-3}}], p = 0.375 mm Hg, R = 1.1 cm$

Slika 28. Zavisnost T_e/U_i od RCp za određen interval vrednosti, sa grafika se vidi da vrednost za $CRp = 1.608 \ 10^{-3}$ na x osi daje za $T_e/U_i = 2950[K/V]$

55

i . II

Proizvod iznosi

$$C R p = 1.608 \ 10^{-3}$$

Unošenjem ove vrednosti u zavisnost na gornjoj slici nalazi se

$$\frac{T_e}{U_i} = 2950 \frac{K}{V}$$

Potencijal jonizacije za helijum je

$$U_i = 24.587V$$

Tako da je temperatura elektrona

$$T_{e} = 72500K$$

Greška merenja pri očitavanju vrednosti sa zavisnosti na slici28. iznosi

$$\Delta T_e = 1230K$$

Postupak određivanja teorijske temperature je ponovljen za ostale gasove na različitim pritiscima i rezultati su dati u *Tabeli* 11.

Tabela 11.

Vrednosti temeperature elektrona koje predviđa teorija zasnovana na jednačini ravnoteže plazme pozitivnog stuba u difuznom režimu

gas	pritisak [Pa]	$T_e^{teor}[K]$	$\Delta T_e[\%]$
He	50	72500 ± 1230	18.5
He	100	49200 ± 1230	35
He	200	40600 ± 1230	45
He	500	31850 ± 1230	77
N_2	40	20350 ± 730	270
N_2	50	19650 ± 730	285
Ar	50	19700 ± 790	204
Ar	100	17350 ± 790	280
Ar	150	14980 ± 790	485

8.5. Analiza rezultata

Najmanje odstupanje rezultata merenja temperature elektrona od rezultata teorije je pri mernjima u atmosferi helijuma. Za helijim na pritisku od 50Pa dobijaja se rezultat merenja koji se za samo 18 procenata razlikuje od rezultata predviđenog teorijom. Odstupanja od teorije pri merenju u atmosferj argona i azota su prilična.

56

-

Dimenzije oblasti dejstva sonde i rezultati merenja Veoma brzo po uspostavljanju pražnjenja u cevi zbog veće brzine haotičnog kretanja elektroni naelektrišu obe sonde negativno. Oko obe elektrode nastaje pad potencijala koji je najveći u blizini same sonde , radijalno opada udaljavanjem od nje i na rastojanju d opada na nulu. Na tom rastojanju prestaje polje dejstva sonde i počinje prostor u kome sonda nema nikakav uticaj. Ovaj prelaz nije fizički determinisan. Kada je oblast dejstva sonde manja od srednjeg slobodnog puta tada se dobijaju rezultati koji za, jonsku struju saturacije na primer, zavise samo od koncentracije jona n^+ i temperatre jona T_+ . Struja jona koja pada na površinu sonde data je jed(76.). Kada to nije slučaj ulaskom u oblast dejstva sondi joni na svom putu dožive određen broj jonizujućih sudara čime izazivaju multiplikaciju gustine struje jona koja pada na sonde. Proširenje oblasti dejstva prati porast razlike potencijala između sondi. Ovaj efekat utiče na rezultate merenja tako što umesto definisane struje saturacije struja raste sa promenom razlike potencijala između sondi.

Asimetrija volt- amperskih karakteristika Ono što je odmah uočljivo posmatranjem bilo koje volt - amperske zavisnosi našeg merenja je asimetrija oblika krive i vrednosti jačine saturacionih struja. Asimetrija se uvek javlja i u ozbiljnijim merenjima [3].Jedan od uzroka ove asimetrije je nejednakost dimenzija oblasti dejstva sondi oko jedne i druge sonde. Postojanje asimetrije po pitanju nejednakosti zapremine dejstva potencijala sondi, postojanje gradijenta potencijala u plazmi ili nejednakosti dimenzija sondi utiče na rezultate merenja. Asimetruja se najbolje zapaža na volt - amperskim karakteristikama našeg merenja po tome što i kada je razlika potencijala između sondi jednaka nuli u kolu je prisutna struja određene jačine. Analizom volt - amperskih karakteristika uočava se prisustvo struje "asimetrije " na svakoj . Sa porastom pritiska struja "asimetrije" raste što je prikazano na *slici 29.*. Zajedno sa rastom jačine struje "asimetrije" raste i relativno odstupanje rezultata merenja od teorijskih rezultata.

Slika 29. Zavisnost jačine struje "asimetrije" od promene pritiska u cevi za pražnjenje

57

|

Ova struja se pojavljuje i zbog postojanja razlike potencijala u plazmi u okolini sondi.

Debljina sonde i rezultati Na rezultate merenja utiče debljina sonde [1]. Optimalni uslovi za merenje su kada je debljina sonde manja od srednjeg slobodnog puta elektrona ili jona. Uzmimo primer merenja navedenih u ovom radu. Srednji slobodni put je recipročno proporcionalan pritisku koji vlada u gasu [1]

Tabela 12.

Vrednosti približnog srednjeg slobodnog puta elektrona u zavisnosti od pritiska

pritisak[Pa]	50	100	200	500
$\lambda_e[mm]$	2.66	1.3	0.66	0.266

Debljine sondi koje su koriščene u merenjima su $d = (1 \mp 0.01)mm$. Poređenjem rezultata uslov da je sonda manja od srednjeg slobodnog puta ispoštovan je samo u intervalu pritisaka (40-100)Pa. Ako se uporedi ova konstatacija sa rezultatima merenja (slika30.) uspostavlja se očita korelacija.

Slika 30. Zavisnost približne vrednosti srednjeg slobodnog puta od pritiska u cevi za pražnjenje i zavisnost ralativnog ostupanja rezultata merenja od teorijskih rezultata od pritiska

Dok je uslov ispoštovan dobijaju se rezultati koji za oko 40 procenata odstupaju od teorijom predviđenih rezultata. Razlog za ova odstupanja leži u tome što ako je debljina sonde veća od srednjeg slobodnog puta elektrona tada sabrani joni(misli se i na elektrone i pozitivne jone) dolaze iz zapremine plazme koja je veča od zapremine koja bi odgovara površini sonde i rastojanju d. Ivica koja deli oblasti dejsta i odsustva dejstva potencijala sonde postaje razmazana. Rezultati koji se mere na visokim pritiscima (visokim u odnosu na 50Pa) su nedefinisani tada je srednji slobodni put manji od dimenzija sonde, što se

58

Ľ

vidi u rezultatu merenja na pritisku od 500Pa koji odstupa za 77 procenata od rezultata koje predviđa teorija.

Sakupljeni elektroni Metoda dvostruke sonde radi u režimu u kojem su obe sonde zbog veče brzine elektrona negativno naelektrisane. Jedna od njih je u saturaciji i njena negativnost je veća nego one druge koja sakuplja elektrone. Koji su to elektroni. Elektroni koji su apsorbovani, su brzi elektroni , elektroni iz repa Maxwell - ove raspodele brzina. Broj njih koji se sakupi je mali. Uopšte struje koje se mere metodom dvostruke sonde su manje nego struje koje se mere metodom jednostruke sonde. Mala gustina struje i njihova pripadnost repu raspodele navodi na zaključak da iz plazme ovom metodom teško je doći do reprezentativnog uzorka elektrona. Broj brzih elektrona na višim pritiscima kada temperaura pada se smanjuje. Metoda dvostruke sonde radi u uslovima ravnoteže jonske i elektronske struje. Kada je broj brzih elektrona smanjen usled pada temperatre elektrona na pritiscinma reda $10^2 Pa$ ravnoteža u kolu je narušena što se očituje u tačnosti rezultata. [4]

Maxwell - ova raspodela brzina elektrona Odstupanje vrednosti temperature elektrona pri merenju u atmosferi argona su veliki. Merenja su ponavljana u istoj konfiguraciji električnog kola i na istim pritiscima. Aparatura je time isljučena kao uzrok ovako velikih odstupanja. Razlog za dobijene rezultate leži u prirodi argona. Argon, što je veoma verovatno, ima osobinu da se raspodela brzina njegovih elektrona razlikuje od Maxwell - ove. U stacionarnom stanju u argonu ima malo elektrona visoke energije.[1] Samo odstupanje od Maxwell - ove raspodele brzine elektrona dovodi u pitanje smisao dobijenih rezultata.

Elektronegativnost Sondna merenja na višem (500*Pa*) pritisku moraju uzeti u obzir pojavu elektronegativnosti u merenju. Kiseonik iz vazduha koji se kao nečistoća nalazi u cevi u procesima zahvata elektrona smanjuje koncentraciju brzih elektrona u plazmi. To je veliki problem jer nastali negativni joni kiseonika vezuju se sa pozitivnim jonima, rekombinuju i time smanjuju koncentraciju elektrona u plazmi. [1]

59

||

U ovom radu su dati rezultati indirektnog određivanja temperature elektrona u plazmi pozitivnog stuba tinjavog pražnjenja metodom dvostruke sonde po [2].

U okviru eksperimentalnog rada određene su temperature elektrona za radni gas helijum na pritiscima (50, 100, 200, 500)Pa, za azot na pritiscima (40, 50)Pa i argon (50, 100, 150)Pa. Rezultati merenja dati su u *tabeli 9*.

Dobijeni rezultati su upoređeni sa teoretskim predviđanjem za difuzni režim rada pozitivnog stuba [2]. Relativna odstupanja se'kreću u intervalu od 18% - za helijum na pritisku 50Pa do 450% - za argon na pritisku 150Pa. Rezultati poređenja eksperimentalnih rezultata sa rezultatima teorije dati su *tabeli 11*.

Odstupanja koja su navedena javljaju se delom zbog aparature , delom prirode gasa.

Rezultati merenja i njihova analiza dozvoljavaju da se zaključi da kada srednji slobodni put elektrona postane manji od prečnika sonde tada rezultati merenja odstupaju od teorijskih vrednosti van granica greške merenja. Metoda merenja dvostrukom elektrostatičkom sondom u atmosferi helijuma i našom aparaturom iznad pritisaka od 133.3*Pa* nisu korektna.

Asimetrija volt - amperskih karakteristika merenja navodi nas na zaključak da oblasti dejstva potencijala sondi nisu iste ili da one nisu idealno istih dimenzija. Ova asimetrija utiče na rezultate merenja. Porastom pritisaka radnog gasa asimetrija se povećava što je dato na slici29.. Uticaj asimetrije pri merenju našom aparaturom u atmosferi helijuma može se tolerisati do pritisaka od 133.3*Pa*.

Ovom metodom ne mogu se indirektno odrediti temperature elektrona za sve gasove. Gasovi čiji elektroni u formiranoj plazmi pozitivnog stuba tinjavog pražnjenja imaju raspodelu brzina koja nije Maxwell - ova, ne mogu se korektno tretirati ovom metodom. Dobijeni rezultati ovih merenja su nedefinisani. Takav je slučaj sa argonom [1] i to objašnjava relativno odstupanje temperature eksperimenta od teorije za 450%. Pretpostavljamo da su odstupanja koja se javljaju kod azota iste prirode mada u literaturi nije nađena potvrda pretpostavke.

Metodom dvostruke sonde, zbog postojanja prostornog naelektrisanja oko obe, na sonde padaju samo brzi elektroni . Ovo ograničava interval pritisaka u kojima se merenjem dobijaju korektni rezultati. Merenja i analiza rezultata su pokazali da su merenja do 133.3*Pa* prihvatljiva.

Metoda obrade volt - amperskih karakteristika unosi grešku merenja koja se kreće od 1% – 5%. Greške date u tabeli \mathcal{I} .

Na osnovu svih rezultata eksperimentalnog rada i njihove analize može se zaključiti da metodom dvostruke sonde koristeći opisanu aparaturu indirektno određivanje temperature moguće je korektno obaviti do pritiska 133.3 *Pa* i to za gasove čije su brzine elektrona raspodeljene po Maxwell - ovoj raspodeli. Merenja na višim pritiscima i sa ostalim gasovima daju rezultate koji su nedefinisani.

60

h

. 🔝

Ľ

LITERATURA

[1] A. von Engel,"Ionized Gases", Oxford At The Clarendon Press, 1965. prevod ,Naučna knjiga, Beograd 1970.

[2] James Dillon Cobine, "Gaseous Conductore Theory and Engenering Aplications ", Dover Publications Ins New York ,1958.str. 205 - 245

[3] L. Schoot ,"Electrical Probes ," u knjizi W. Lochate Holtereven , "Plasma Diagnostics ", Nort Holand Publishing Company , Amsterdam 1968. str. 668 - 731

[4] Frencis F. Chen ,"Duble Probes", u knjizi Richard H. Huddlestone and Stendley L. Leonard ,"Plasma Diagnostic", Acadamic Press, New Yourk 1965. str. 178 - 173

[5] Jaroslav Labat, "Fizika jonizovanih gasova", Fizički fakultet "Beograd 1991.

[6] Božidar S. Milić,"Osnove fizike gasne plazme", Građevinska knjiga, Beograd , 1989. str. 1 - 19 i 320 - 326

61

₩ I : NO 1.00