UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET INSTITUT ZA FIZIKU

Природно-математички факултет Радна заједница заједничких послова

$fl_{\mu} \cdot \cdots \cdot$:	13.	XII.	1982
Ор ј.д.	όμ.)	0.96.	-51	BREAMOCI
03	413/6			

MR DRAGOLJUB MIRJANIĆ

ANALIZA DIELEKTRIČNIH OSOBINA MOLEKULARNIH KRISTALA I FEROELEKTRIKA

- Doktorska disertacija -

Novi Sad,1983.

Ova teza je uradjena u laboratoriju za teorijsku fiziku Instituta za fiziku Prirodno-matematičkog fakulteta u Novom Sadu.

Koristim priliku da na ovom mjestu zahvalim mentoru ove teze prof.dr MARIU ŠKRINJARU na nesebičnoj pomoći i pokazanom razumjevanju u toku rada.

Posebno se zahvaljujem prof.dr BRATISLAVU TOŠIĆU koji mi je još od diplomskog i magistarskog rada pa sve do danas puno pomagao i time mnogo doprinijeo da se ova teza uspješno završi.

Za korisne sugestije i diskusiju u toku rada puno hvala docentu dr DARKI KAPORU i asistentu JOVANU ŠETRAJČIĆU.

Tehničku pomoć u izradi ove disertacije pružila je Klasan Janja na čemu joj se puno zahvaljujem.

Autor

Sadržaj

UVOD

I GLAVA: KINEMATIČKA INTERAKCIJA EKSITONA I NJENE POSLEDICE

- 1. O optičkim pobudjenjima u molekularnim kristalima 1
- 2. Kinematički nivoi u teoriji eksitona 12
- 3. Kinematički efekti pri visokim koncentracijama 25

II GLAVA: EFEKTI EKSITON-FONON INTERAKCIJE

- 4. Uticaj fonona na širenje eksitonskih linija.. 94

III GLAVA: OPTIČKE KARAKTERISTIKE (FEROELEKTRIČNIH MATERIJA

	1. O feroelektricima	99
	2. Efektivni hamiltonijan feroelektrika 1	06
	3. Dielektrična konstanta feroelektrika male	
	koncentracije 1 4. Analiza feroelektričnih modova pri visokim	11
	koncentracijama 1:	17
ZAKLJUČAK	<	24
REFERENCE	3	27

UVOD

Cilj ove disertacije je analiza nekih do sada nedovoljno razjašnjenih fenomena u molekularnim kristalima i feroelektričnim materijalima (višestruki pikovi u koeficijentu apsorpcije, anomalno širenje linija, meki modovi u feroelektricima itd.). U molekularnim kristalima ispituju se prvenstveno optičke pojave dok se u feroelektricima uglavnom istražuju termodinamičke osobine sistema feroelektričnih pobudjenja. Optičke i feroelektrične pojave su naizgled dosta različite medjusobno, pa bi se moglo postaviti pitanje zbog čega se dve raznorodne oblasti analiziraju u okviru jedne disertacije. Radi se o tome da je kinematika optičkih i feroelektričnih pobudjenja ista, a napred pomenuti nerazjašnjeni fenomeni ovdje se uglavnom objašnjavaju prisustvom kinematičke interakcije, pa se otuda molekularni kristali i feroelektrići ovdje paralelno tretiraju.

Kao što je poznato kinematička interakcija nastaje usled razlike u komutacionim relacijama za spinske (Pauli) i Bose operatore. Ukoliko se spinski hamiltonijan reprezentuje Bose operatorima u njemu se pojavljuju multibozonske interakcije koje u principu mogu da doveđu do nekih dodatnih pobudjenja u sistemu.

U ovoj disertaciji osnovna pažnja biće posvećena ulozi ovi dodatnih pobudjenja u različitim procesima koji se odigravaju u kristalu i njihov uticaj na dielektrične osobine kristala, kao što su prelamanje i apsorpcija svjetlosti u molekularnim kristalima i permeabilnost feroelektrika, odnosno pojava različitih modova u feroelektricima koji definišu fazne prelaze u njima. Ovo bi u kratkim crtama bio osnovni cilj istraživanja u okviru ove disertacije. Pored ovoga kao glavnog nešto prostora je posvećeno eksiton-fonon interakciji i nekim njenim posledicama i to u prvom redu Bose kondenzacija eksitona i uticaju kondenzata na emisione i apsorpcione osobine kristala.

IGLAVA

KINEMATIČKA INTERAKCIJA EKSITONA I NJENE POSLEDICE

1. O OPTIČKIM POBUDJENJIMA U MOLEKULARNIM KRISTALIMA

Frenkelovi eksitoni su optička pobudjenja koja nastaju u molekularnim kristalima pod djelovanjem svjetlosti. Ako se molekularni kristali izlože elektromagnetnom zračenju oni apsorbuju u ultraljubičastoj i vidljivoj oblasti talasnih dužina. Apsorbovani kvant svjetlosti, u molekuli na jednom čvoru kristalne rešetke, prebaci elektron iz osnovnog u neko pobudjeno stanje. Usled interakcije molekula i translacione simetrije kristala ovako nastalo pobudjenje na jednoj molekuli, prenosi se na sve ostale molekula (analogno prenosu mehaničkih oscilacija u nizu molekula ili atoma), pa se može tretirati kao pobudjenje kristala u cjelini. Ove optičke ekscitacije nazivaju se i eksitonima malog radijusa s obzirom da je radijus pobudjenog elektrona i nastale šupljine na jednoj molekuli znatno manji od konstante kristalne rešetke.

Osnove teorije eksitona postavili su Frenkel 1931.g. /1,2/ i Peierls 1932.g./3/ u okviru teorije optičkih osobina kristala. Teorija se razvijala sa osnovnim zadatkom da objasni mjenjanje energetskih stanja molekula prilikom ozračavanja kristala i svojstava tih kristala u odnosu na medjudjelovanje sa elektromagnetnim zračenjem. Sada ćemo ukratko istaknuti osnovne specifičnosti molekularnih kristala sa stanovišta medjudjelovanja.

Tipični molekularni kristali su formirani od aromatičnih molekula antracena, naftacena, pentacena, naftalina i benzola. U odnosu na ostale tipove kristala odlikuju se izrazito slabom energijom vezivanja što pokazuju eksperimentalno odredjene, niske temperature topljenja i male toplote sublimacije. Molekule u molekularnim kristalima povezane su van der Waalsovim silama, pa je interakcija medju molekulima znatno manja od interakcije izmedju podsistema molekule. Ova činjenica omogućava da se podje od pretpostavke da su optičke osobine molekularnih kristala uglavnom odredjene osobinama izolovanih molekula i da se medjudjelovanje može smatrati perturbacijom.

Razmatranje eksitonskih stanja provodi se na modelu kristala izdjeljenog na elementarne ćelije unutar kojih se nalazi jedna ili više molekula. Za molekule se pretpostavlja da pri pobudjivanju kristala mogu preći iz osnovnog (f=0) u jedno od pobudjenih stanja (f=f₀) (dvonivoska energetska šema) ili u F(f=1,2,3...F) pobudjenih stanja (multinivoska energetska šema). Indeksom f označen je skup kvantnih brojeva koji karakteriše dato stanje molekule. Svakako da je relativno najjednostavnije razmatranje jednomolekularne elementarne ćelije u dvonivoskoj energetskoj šemi. Ovaj model je opravdan u slučaju kada je pobudjeno stanje molekule energetski dovoljno daleko od ostalih mogućih stanja.

Frenkel je u svojim radovima proučavao kristal sa jednom molekulom u elementarnoj ćeliji, dok je A.S.Davidov /4/ prvi razmatrao slučaj višemolekularne elementarne ćelije.

- 2 -

Ako se u elementarnoj ćeliji kristala nalazi d jednakih molekula i ako se sa na(d=1,2,...,6) označi položaj d-te molekule u ćeliji odredjenoj vektorom rešetke n, tada se hamiltonijan molekularnog kristala, u adijabatskoj aproksimaciji, može napisati u obliku

$$H = \sum_{\vec{n}c} H_{\vec{n}c} + \frac{1}{2} \sum_{\vec{n}c, \vec{m}\beta} V_{\vec{n}c, \vec{m}\beta}$$
(1.1)

gdje je $H_{\tilde{n}t}$ operator energije molekule na mjestu \tilde{n}_{a} , a $V_{\vec{n}_{a},\vec{m}_{b}}$ je operator medjudjelovanja molekula \tilde{n}_{a} i \tilde{m}_{b} . Za molekule se pretpostavlja da su neutralne, pa operator $V_{\vec{n}_{a}}$, \tilde{m}_{b} u prvoj aproksimaciji odredjuje dipol-dipol medjudjelovanje molekula.

$$V_{\vec{n}_{k},\vec{m}_{s}} = \frac{1}{\Gamma_{\vec{n}_{k}}^{3},\vec{m}_{s}} \left\{ \vec{d}_{\vec{n}_{k}} \cdot \vec{d}_{\vec{m}_{s}} - \frac{3}{\Gamma_{\vec{n}_{k},\vec{m}_{s}}^{2}} \left(\vec{d}_{\vec{n}_{k}} \cdot \vec{r}_{\vec{n}_{k},\vec{m}_{s}} \right) \left(\vec{d}_{\vec{m}_{s}} \cdot \vec{r}_{\vec{n}_{k},\vec{m}_{s}} \right) \right\}$$
(1.2)

gdje je $\vec{d}_{\vec{n}d}$ operator dipolnog momenta molekule $\vec{n}d$, a $\vec{r}_{\vec{n}d}$, \vec{m}_d je radijus vektor koji spaja molekule $\vec{n}d$ i $\vec{m}d$. S obzirom da se $V_{\vec{n}d}$, \vec{m}_d može smatrati smetnjom, Schrödingerova jednačina za (1.1) rješavana je računom smetnje, a takav račun se u literaturi naziva Heitler-Londonova aproksimacija /5,6/.

Ova metoda se može koristiti ako je medjudjelovanje molekula slabo i ima smisla za najniža pobudjena stanja cijelog niza molekularnih kristala /12/. Za te kristale spektar najnižih pobudjenih stanja malo se razlikuje od odgovarajućih spektara molekula u gasovitom i tečnom stanju. Postoje medjutim, molekularni kristali za koje je razlika ovih spektara bitna što se svakako može pripisati ne tako slabom medjudjelovanju molekula u kristalu. Za ovakve slučajeve Heitler-Londonova aproksimativna metoda ne daje dobre rezultate. Navešćemo još jedan takav primjer koji će kasnije biti razmatran. U molekularnim kristalima izloženim laserskim zracima stvara se relativno visoka koncentracija eksitona, a to znači da se istovremeno pobudjenje više molekula. Efekti koji se pri tome javljaju, kao posledica interakcije eksitona, ne mogu se korektno opisati Heitler-Londonovom metodom jer se u njoj uzima u obzir pobudjenje samo jedne molekule i prenošenje tog pobudjenja.

Pri razmatranju kristala sa samo jednom molekulom u elementarnoj ćeliji ($\vec{n}_d = \vec{n}$), za energiju pobudjenog stanja dobija se izraz

$$E_{f}(x) = \Delta \hat{e}_{f} + D_{\vec{n}}^{f} + L^{f}(\vec{k})$$
(1.3)

gdje je $\Delta \mathcal{E}_{f}$ razlika izmedju energija pobudjenog i osnovnog stanja molekula tj. $\Delta \mathcal{E}_{f} = \mathcal{E}_{f} - \mathcal{E}_{o}$, $D_{\vec{n}}^{f}$ je promjena energije medjudjelovanja jedne molekule sa ostalim molekulama pri njenom prelazu iz osnovnog u pobudjeno stanje i matrični elementi $L^{f}(\vec{k})$ karakteriziraju prenos pobudjenja f sa molekule \vec{n}_{d} na molekulu \vec{m} .

Kada jednom nedegenerisanom pobudjenom stanju izolovane molekule u kristalu, čija svaka elementarna ćelija ima G molekula, odgovara G zona pobudjenih stanja (G eksitonskih zona) takvo cijepanje energetskog nivoa naziva se Davidovljevo cjepanje. Ako se kristal sa jednomolekularnim ćelijama razmatra u multinivoskoj šemi, za nedegenerisana pobudjena stanja molekule dobija se F eksitonskih zona, gdje je F > 1 broj načina pobudjivanja molekula. Ovakvo cjepanje naziva se beteovsko. U istom slučaju, za kristal sa ć molekula u svakoj elementarnoj ćeliji dobija se ćF eksitonskih zona, što znači da dolazi i do Davidovljevog i do beteovskog cjepanja. U radu će biti analizirana i složenost kristalne rešetke i složenost šeme eksitonskih pobudjenja.

Za razmatranje jačeg medjudjelovanja molekula, doprinosa energiji eksitona od stanja kada se više molekula istovremeno pobudjuje, interakcije eksitona sa fononima, fotonima i sl. pogodna je metoda druge kvantizacije.

Teoriju eksitona u reprezentaciji druge kvantizacije razvio je Agranovič /5,8/ polazeći od hamiltonijana (1.1) gdje je $\vec{n} = \vec{n} d$. Za operatorske funkcije /5/ $\Psi = \sum_{\vec{n}f} \psi_{\vec{n}f} \phi_{\vec{n}f}$ operator energije kristala (1.1) u reprezentaciji druge kvantizacije ima oblik

$$H = \sum_{\vec{n}, f} \mathcal{E}_{\vec{p}} b_{\vec{n}, f}^{\dagger} b_{\vec{n}, f} + \frac{1}{2} \sum_{\vec{n}, \vec{m}} W_{\vec{n}, \vec{m}(f; g'; f, g)} \cdot b_{\vec{n}, f}^{\dagger} b_{\vec{n}, f} b_{\vec{m}, g'} b_{\vec{m}, g}$$
(1.4)

gdje sumiranje se vrši po svim vrijednostima f,g,f,g,n i m uz $n \neq m$. Operatori $b_{\vec{n}f}^{\dagger}$ i $b_{\vec{n}f}$ su Fermi operatori i zadovoljavaju dopunski uslov $\sum_{f} b_{\vec{n}f}^{\dagger} b_{\vec{n}f} = 1$, što znači da se pobudjuje jedan elektron po molekuli. Za realne molekularne funkcije $\gamma_{\vec{n}f}$ matrični elementi $W_{\vec{n}m}$ su realni i imaju sljedeća svojstva

 $W_{\vec{n}\vec{m}}(f',g';f,g) = W_{\vec{n}\vec{m}}(f,g;f',g') = W_{\vec{n}\vec{m}}(g';f';g,f); W_{\vec{n}\vec{m}} = W_{\vec{m}\vec{n}}$ (1.5) Hamiltonijan kao što je (1.4) obično se podvrgava postupcima koji treba da što veći dio interakcije uključi u energiju slobodnih kvazičestica da bi se na taj način polazni interagirajući sistem zamjenio ekvivalentnim sistemom slobodnih ili skoro slobodnih kvazičestica. Za slučaj dvonivoske energetske šeme i mali broj pobudjenih molekula u odnosu na ukupan broj molekula je u radu /8/ to uradjeno i dobijen hamiltonijan

$$H = E_{0} + \sum_{\vec{k}} E_{f}(\vec{k}) B_{\vec{k}}^{\dagger}B_{\vec{k}}. \qquad (1.6)$$

Operatori $B_{\tilde{n}f}^{+}$ i $B_{\tilde{n}f}^{-}$ su Bose-operatori uvedeni približnim relacijama:

$$B_{\tilde{n}f} = b_{\tilde{n}o}^{\dagger} b_{\tilde{n}f}, \quad B_{\tilde{n}f}^{\dagger} = b_{\tilde{n}f}^{\dagger} b_{\tilde{n}o}.$$
 (1.7)

U slučajevima kada broj zaposjednuća bozona poprima vrijednosti veće od jedan, zamjena (1.7)s obzirom na

$$\hat{N}_{\vec{n}f} = b_{\vec{n}f}^{+} b_{\vec{n}f} , \sum_{f} N_{\vec{n}f} = 1 , \sum_{\vec{n}f} N_{\vec{n}f} = GN , \sum_{f} b_{\vec{n}f}^{+} b_{\vec{n}f} = 1$$

dovodi do pojave "nefizikalnih" stanja /12,13/. Zato su za slučaj dvonivoske šeme uvedeni novi operatori kreacije i anihilacije pobudjenja /12/

$$P_{\vec{n}f}^{+} = b_{\vec{n}f}^{+} b_{\vec{n}o}, P_{\vec{n}f} = b_{\vec{n}o}^{+} b_{\vec{n}f}$$
 (1.8)

koji se nazivaju Pauli operatori i koji zadovoljavaju sledeće komutacione relacije /9,12/:

$$\begin{pmatrix} P_{\vec{n}f}, P_{\vec{n}}^{+}f' \end{pmatrix} = (1-2 P_{\vec{n}f}^{+} P_{\vec{n}f}) \delta_{\vec{n}} \delta_{\vec{n}} \delta_{\vec{n}} f'$$

$$\begin{bmatrix} P_{\vec{n}f}, P_{\vec{n}f} \end{bmatrix} = \begin{bmatrix} P_{\vec{n}f}^{+}, P_{\vec{n}f}^{+} \end{bmatrix} = 0$$

$$\text{i relacije } P_{\vec{n}f}^{2} = P_{\vec{n}f}^{+2}, P_{\vec{n}f}^{+} P_{\vec{n}f} = b_{\vec{n}f}^{+} b_{\vec{n}f}, 1-P_{\vec{n}f}^{+} P_{\vec{n}f}^{-} = b_{\vec{n}o}^{+} b_{\vec{n}o} \cdot$$

Ako se u (1.4) uvedu Pauli operatori (1.8) i izvrši sumiranje po f; g; f i g = 0,f dobije se eksitonski hamiltonijan

gdje su uvedene sljedeće oznake

$$\Delta = \Delta \mathcal{E}_{f}, \ X_{\vec{n} \ \vec{m}} = 2 \ W_{\vec{n} \ \vec{m}}(fo; of), \ Z_{\vec{n}\vec{m}} = W_{nm}(ff; oo)$$
(1.11)
$$Y_{\vec{n}\vec{m}} = W_{\vec{n}\vec{m}}(00; 00) + W_{\vec{n} \ \vec{m}}(ff; ff) - 2 \ W_{\vec{n}\vec{m}}(of; of) .$$

U (1.10) je ispušten indeks f što je uobičajeno za slučaj dvonivoske energetske šeme. Članovi proporcionalni sa P i PPP su izostavljeni, jer se pretpostavilo da kristal ima centar inverzije koji se poklapa sa centrom inverzije molekula /10/

Pauli operatori (1.8) ne zadovoljavaju ni Fermi ni Bose komutacione relacije pa se kvazičestice (u našem slučaju eksitoni) ne pokoravaju ni Fermi ni Bose statistici (8,11⁾. S obzirom da za njih nije razvijena odgovarajuća statistika ne mogu se koristiti uobičajene statističke redacije za izračunavanje fizikalnih veličina razmatranog sistema. Osim toga, komutacione reakcije za Pauli operatore (1.9) nisu invarijantne u odnosu na uobičajenu transformaciju prostorne rešetke - recipročna rešetka, čime je onemogućeno da se uzme u obzir translaciona simetrija kristala. Da bi se izbjegle ove poteškoće, bilo je potrebno naći egzaktnu bozonsku ili fermionsku reprezentaciju Pauli operatora da bi se sačuvale opšte fizikalne karakteristike polaznog sistema.

Za slučaj slabo pobudjenog kristala (kada je mala koncentracija eksitona) Pauli operatori mogu se direktno zamjeniti Bose operatorima /8/ i eksitonski hamiltonijan može se dijagonalizirati. Ovakva aproksimacija (P=B) naziva se metoda približne druge kvantizacije. U okviru ove metode članovi hamiltonijana četvrtog reda po Pauli operatorima sasvim se odbacuju, a razlika izmedju Pauli i Bose komutacionih relacija zanemaruje. Na taj način se sa sistema pauliona prelazi na sistem slobodnih bozona što je korektno ako je i polazni sistem skoro slobodan. Ova metoda daje eksitonski hamiltonijan u harmonijskoj aproksimaciji.po Bose operatorima.

Za opisivanje nelinearnih ili anharmonijskih efekata optički pobudjenja, koja se javljaju kao posledica interakcije elementarnih pobudjenja usled njihove relativno visoke koncentracije, nadjena je adekvatna metoda /12/ sa egzaktnom Bose reprezentacijom Pauli operatora

$$P_{\vec{n}} = \left[\sum_{\gamma=0}^{\infty} \frac{(-2)^{\gamma}}{(1+\gamma)!} B_{\vec{n}}^{+\gamma} B_{\vec{n}}^{\gamma}\right]^{\frac{1}{2}} B_{\vec{n}}, \quad P_{\vec{n}}^{+} = B_{\vec{n}}^{+} \left[\sum_{\gamma=0}^{\infty} \frac{(-2)^{\gamma}}{(1+\gamma)!} B_{\vec{n}}^{+\gamma} B_{\vec{n}}^{\gamma}\right]^{\frac{1}{2}}. \quad (1.12)$$

Operator broja pauliona, koji je dat sa

$$\hat{L}_{\vec{n}} = P_{\vec{n}}^{\dagger} P_{\vec{n}} = \sum_{\nu=0}^{\infty} \frac{(-2)^{\nu}}{(1+\nu)!} B_{\vec{n}}^{\dagger \nu+1} B_{\vec{n}}^{\nu+1}$$
(1.13)

za stanja sa bilo kojim brojem bozona ima vlastite vrijednosti $L_{\vec{n}}=0$, ako je taj broj paran, i $L_{\vec{n}}=1$, ako je taj broj neparan.

Ova osobina operatora L $_{\vec{n}}$ je i razlog zašto se reprezenta-

8 -

cija (1.12) naziva egzaktna, a reprezentacija $P_{\tilde{n}}=B_{\tilde{n}}$ približna jer se pri njenoj primjeni ne mogu pojaviti "nefizikalna" stanja sa $L_{\tilde{n}} > 1$.

Operatori $P_{\vec{n}}$ i $P_{\vec{n}}^{\dagger}$ dati sa (1.12) zadovoljavaju komutacione relacije (1.9), jer se do Bose reprezentacije Pauli operatora i došlo na osnovu zahtjeva da reprezentacija ispunjava (1.9) i zahtjeva da $L_{\vec{n}}$ ima vlastite vrijednosti 0 i 1. Do sada je razmatran eksitonski hamiltonijan u dvonivoskoj šemi, koja vrijedi ako se pobudjeni nivo nalazi dovoljno daleko od ostalih pobudjenih nivoa molekula.

Teorija eksitona za slučaj multinivoske šeme sa egzaktnom Bose reprezentacijom operatora kreacije i anihilacije pobudjenja na molekuli razvijena je u radu /9/. Sada u hamiltonijanu oblika (1.4) figurišu operatori \mathcal{A}_{nf} koji zadovoljavaju Fermi komutacione relacije za oba indeksa. Operatori kreacije i anihilacije pobudjenja tipa f na molekuli n uvedeni su na sledeći način

$$\mathcal{P}_{\vec{n}f} = \mathcal{A}_{\vec{n}o}^{+} \mathcal{A}_{\vec{n}f}, \qquad \mathcal{P}_{nf} = \mathcal{A}_{\vec{n}f}^{+} \mathcal{A}_{\vec{n}o} \qquad (1.14)$$

Ovi operatori nazvani kvazi- Pauli operatori, predstavljaju opštije slučaj operatora kreacije i anihilacije pobudjenja. Za njih vrijede kvazi - Pauli komutacione relacije

$$\begin{bmatrix} P_{\vec{n}f}, P_{\vec{n}\mu}^{\dagger} \end{bmatrix} = S_{\vec{m}\vec{n}} \begin{bmatrix} S_{\vec{n}\vec{n}} - (1 - \sum_{\nu=1}^{F} P_{\vec{n}\nu}^{\dagger} P_{\vec{n}\nu}) - P_{\vec{n}\mu}^{\dagger} P_{\vec{n}f} \end{bmatrix},$$

$$\begin{bmatrix} P_{\vec{n}f}, P_{\vec{n}\mu} \end{bmatrix} = \begin{bmatrix} P_{\vec{n}f}, P_{\vec{n}\mu}^{\dagger} \end{bmatrix} = 0, \quad P_{\vec{n}f}, P_{\vec{n}\mu} = P_{\vec{n}f}^{\dagger} P_{\vec{n}\mu}^{\dagger} = 0, \quad P_{\vec{n}f}, P_{\vec{n}\mu} = 0 \quad (\mu \neq f) \end{bmatrix}^{(1.15)}$$

U slučaju jednog, a ne F pobudjenih stanja, kvazi-Pauli operatori prelaze u Pauli operatore, zbog čega je i rečeno da su kvazi - Pauli operatori opštiji slučaj operatora kreacije i anihilacije pobudjenja na molekulama.

U opštem slučaju, nakon uvodjenja kvazi-Pauli operatora i poslije kanonske transformacije kojom se uklanjaju članovi linearni po operatorima \mathcal{P} , eksitonski hamiltonijan se može napisati u obliku $H_{ex}=H_2+H_3+H_4$, gdje indeksi 2,3 i 4 označavaju stepen datog člana po kvazi-Pauli operatorima. Ako se sa kvazi-Pauli operatora predje na Bose operatore relacijom

$$\mathcal{P}_{\vec{n}f} = \left(1 - \sum_{\mu \neq 0}^{F} \sum_{f=0}^{\infty} \frac{(-2)^{f}}{(1+f)!} B_{\vec{n}\mu}^{+f+1} B_{\vec{n}\mu}^{f+1}\right) \hat{\mathcal{Y}}_{\vec{n}f}^{1/2} B_{\vec{n}f}$$
(1.16)

gdje je

$$Y_{\vec{n}f} = \sum_{f=0}^{\infty} \frac{(-2)^{f}}{(1+f)!} B_{\vec{n}f}^{+f} B_{\vec{n}f}^{f} ,$$

dobija se hamiltonijan razvijen u red po Bose operatorima

$$H_2 = h_2^{(2)} + h_2^{(4)} + \dots + h_2^{(2n)}$$
 (1.17)

$$H_3 = h_3^{(3)} + h_3^{(5)} + \dots + h_3^{(3+2n)}$$
 (1.18)

$$H_{4} = h_{4}^{(4)} + h_{4}^{(6)} + \dots + h_{4}^{(4+2n)}$$
 (1.19)

Indeksi u zagradama označavaju stepen datog člana po Bose operatorima. Član $h_2^{(2)}$ je dio ukupnog eksitonskog hamiltonijana koji je identičan sa hamiltonijanom metode približne druge kvantizacije. Ostali članovi u (1.17) nazivaju se kinematička interakcija elementarnih pobudjenja i njihova pojava isključivo je posledica specifičnosti komutacionih relacija kvazi-Pauli operatora. Članovi $h_3^{(3)}$ i $h_3^{(5)}$ predstavljaju dinamičku interakciju, a preostali članovi u (1.18) i (1.19) dinamičko-kinematičku interakciju elementarnih pobudjenja.Potpuno analogna situacija je i u dvonivoskoj šemi kada se pojavljuju Pauli operatori /27,28,29/.

Korektnije opisivanje optičkih efekata u kristalima zahtijeva istraživanje sistema eksitoni + fononi + transverzalni fotoni. Pošto su fotoni i fononi bozoni, njihova interakcija sa eksitonima se na najpogodniji način uzima u obzir ako su i eksitonski operatori izraženi preko Bose operatora /5,8/. Druga glava ove disertacije biće posvećena efektima eksiton-fonon interakcije. 2. KINEMATIČKI NIVOI U TEORIJI EKSITONA

Dyson u svom fundamentalnom radu /26/ je prvi pretpostavio mogućnost postojanja kinematičkih nivoa, gdje je razmatrao problem kinematičke i dinamičke interakcije izmedju spinskih talasa u kvantnoj teoriji magnetizma. U radovima /32/ i /33/ je razmatrana kinematička interakcija spinskih talasa i uloga kinematičkih nivoa na fazne prelaze kod feromagneta.

Objašnjenje kinematičkih eksitonskih nivoa pregledno je dao Prof.B.S.Tošić u /29/, kao i u radovima /27,28,30,31/ gdje je uzeto u obzir i složenost kristalne rešetke i složenost šeme eksitonskih pobudjenja. Za analizu je korišten hamiltonijan oblika (1.10), ali bez nekonzervativnih članova hamiltonijana s obzirom da je njihov doprinos energiji sistema u odnosu na Δ -ekscitacionu energiju izolovane molekule, vrlo mali za većinu molekularnih kristala /14,22/ tj.

$$H_{ex} = \sum_{\vec{n}} \Delta P_{\vec{n}}^{\dagger} P_{\vec{n}} + \frac{1}{2} \sum_{\vec{n},\vec{m}} X_{\vec{n},\vec{m}} P_{\vec{n}}^{\dagger} P_{\vec{m}} + \frac{1}{2} \sum_{\vec{n},\vec{m}} Y_{\vec{n},\vec{m}} P_{\vec{n}}^{\dagger} P_{\vec{n}} P_{\vec{n}}^{\dagger} P_{\vec{n}}^{$$

Matrični elementi rezonantne interakcije $X_{\vec{n}\vec{m}}$ i $Y_{\vec{n}\vec{m}}$ u aproksimaciji najbližih susjeda imaju vrijednost od 0,1 do 0,01 eV, a $\Delta = \mathcal{E}_{f} - \mathcal{E}_{o} + D \sim 3$ do 5 eV.

Za razliku od problema koji je rješavan u kvantnoj teoriji magnetizma, gdje su Pauli operatori prosto zamjenjeni Bose operatorima, ovdje su Pauli operatori zamjenjeni svojim egzaktnim bozonskim reprezententima (1.12), a u beskonačnim bozonskim redovima zadržava se onoliko članova koliko to zahtjeva preciznost analize. Prvi članovi ovih redova u bozonskoj slici (P=B) reprodukuju hamiltonijan (2.1), a viši članovi iz redova (1.12) daju dopunske članove u (2.1) koji karakterišu tzv. kinematičku interakciju u sistemu. Naziv potiče od tuda što ovi dopunski članovi duguju svoj nastanak razlici izmedju bozonske i paulionske kinematike tj. razlici izmedju komutacionih relacija (1.9) i bozonskih komutacionih relacija.Poslednji član u (2.1) izražen bilo u Pauli bilo u Bose operatorima karakteriše dinamičku interakciju u sistemu, jer se on pojavljuje nezavisno od zamjene Pauli operatora bozonskim operatorima i svoje porijeklo vodi od dinamike elektronskog podsistema.

Osobine eksitonskog sistema ispitane su pomoću Greenove funkcije (GF)

$$\Gamma_{\vec{f}\vec{g}}(t) = \langle\!\langle P_{\vec{f}}(t) | P_{\vec{g}}^{+}(o) \rangle\!\rangle$$
(2.2)

koja je izražena preko Pauli operatora i u prostoru proste rešetke. Analiza rješenja za funkciju $\Gamma_{\vec{f}\vec{g}}(t)$ u različitim aproksimacijama može da pruži informaciju o osobinama neinteragirajućih eksitona i o efektima do kojih dovode kinematička i dinamička interakcija. Energija eksitona je reda 5 eV a eksito ske koncentracije proporcionalne veličini e $-\frac{E_{exc}}{\Theta}$ koja i pri najvišim temperaturama ne prelazi vrijednost 10^{-3} . Imajući to u vidu račun za $\Gamma_{\vec{f}\vec{g}}(t)$ je izveden u linearnoj aproksimaciji po eksitonskim koncentracijama.

U skladu s opštom teorijom GF /13,29/ komutacionih relacija (1.9) i forme hamiltonijana (2.1), Greenova funkcija $\int_{\tilde{fg}}$ (t) zadovoljava sljedeću jednačinu

 $i\frac{d}{dt}\varGamma_{\vec{f}}\vec{g}(t) = i\,\delta(t)\,\delta_{\vec{f}}\vec{g}\left(1-2 < P_{\vec{f}}^{\vec{f}}P_{\vec{f}} >\right) + \Lambda\,\varGamma_{\vec{f}}\vec{g}(t) + \frac{1}{2}\sum_{i}X_{\vec{f}}\vec{m}\,\varGamma_{\vec{m}}\vec{g}(t) -\sum_{\vec{n}} X_{\vec{p}\vec{n}} \ll P_{\vec{p}}(t) P_{\vec{p}}(t) P_{\vec{n}}(t) | P_{\vec{p}}(0) \gg + \sum_{\vec{n}} Y_{\vec{p}\vec{n}} \ll P_{\vec{n}}(t) P_{\vec{n}}(t) P_{\vec{p}}(t) | P_{\vec{p}}(0) \gg .$

Na osnovu aproksimativnih izraza

 $P \approx B - B^{+}BB, P^{+} \approx B^{+} - B^{+}B^{+}B, P^{+}P \approx B^{+}B - B^{+}B^{+}BB$ (2.4)

koji su navedeni u (1.12) paulionske GF iz jednačine (2.3) izražene su preko odgovarajućih bozonskih GF. Ova aproksimacija je dovoljna, ukoliko se račun vrši sa tačnošću do prvog stepena eksitonske koncentracije. Prilikom izražavanja paulionskih GF preko odgovarajućih bozonskih funkcija korištena je Wickova teorema za bozone, a operatori su sparivani i po istim i po različitim vremenima. U skladu sa ovim, poslije zamjene (2.4) u (2.2) i dekuplovanja

gdje E_o(k) označava energiju eksitona u nultoj aproksimaciji, dobija se

$$\Gamma_{\vec{f}\vec{g}}(t) = (1 - 4N_0)G_{\vec{f}\vec{g}}(t) + 2D_{\vec{f}\vec{g}}(t)G_{\vec{f}\vec{g}}(t) + O(N_0^{a})$$
(2.6)

U granicama iste ovakve aproksimacije, Pauli operatori u višim paulionskim GF iz (2.3) zamjenjeni su Bose operatorima na lijevoj strani GF, dok operator na desnoj strani izražen je u aproksimaciji (2.4). Imajući to u vidu i izraze (2.6) i (2.3) jednačina za bozonsku Greenovu funkciju $G_{\overline{fg}}(t)$ ima oblik

$$\begin{split} i \frac{d}{dt} \left[(1-4N_{o})G_{\vec{p}\cdot\vec{g}}(t) + 2 D_{\vec{p}\cdot\vec{g}}(t)G_{\vec{p}\cdot\vec{g}}^{2}(t) \right] &= i \delta(t) G_{\vec{p}\cdot\vec{g}}(1-2\langle P_{\vec{p}}^{+}P_{\vec{p}}\rangle) + \\ + \Delta \left[(1-4N_{o})G_{\vec{p}\cdot\vec{g}}(t) + 2 D_{\vec{p}\cdot\vec{g}}(t)G_{\vec{p}\cdot\vec{g}}^{2}(t) \right] + \frac{1}{2} \sum_{\vec{m}} X_{\vec{p}\cdot\vec{m}} \left[(1-4N_{o})G_{\vec{m}\cdot\vec{p}}(t) + \\ + 2 D_{\vec{m}\cdot\vec{p}}(t) G_{\vec{m}\cdot\vec{p}}^{2}(t) \right] - \sum_{\vec{m}} \left[X_{\vec{p}\cdot\vec{m}} \mathcal{N}_{o} G_{\vec{m}\cdot\vec{g}}(t) + X_{\vec{p}\cdot\vec{m}} \mathcal{N}_{\vec{m}\cdot\vec{p}} G_{\vec{p}\cdot\vec{g}}(t) - \\ - Y_{f\cdot\vec{m}} \mathcal{N}_{o} G_{f\cdot\vec{g}}(t) - Y_{\vec{p}\cdot\vec{m}} \mathcal{N}_{\vec{p}\cdot\vec{m}} G_{\vec{m}\cdot\vec{g}}(t) \right] + \sum_{\vec{m}} 2 \left[X_{\vec{p}\cdot\vec{m}} D_{\vec{p}\cdot\vec{g}}(t) - Y_{\vec{p}\cdot\vec{m}} D_{\vec{m}\cdot\vec{g}}(t) \right]^{-} (2.7) \\ \cdot G_{\vec{p}\cdot\vec{g}}(t) G_{\vec{m}\cdot\vec{g}}(t), \\ \mathcal{N}_{\vec{p}\cdot\vec{g}}^{-} &= \frac{1}{N} \sum_{\vec{k}} \left(e^{\frac{E_{o}(\vec{k})}{\Theta}} - 1 \right)^{-1} e^{i\vec{k}\cdot(\vec{p}-\vec{g})} . \end{split}$$

Nakon Fourier transformacije i korištenjem dobro poznate relacije $D_{\vec{k}}(E) = G_{\vec{k}}(-E)$ za Greenovu funkciju $G_{\vec{k}}(E)$ dobije se sljedeći izraz:

$$\begin{aligned}
G_{\vec{K}}(E) &= \frac{i}{2\pi} \cdot \frac{1+2M_{0}}{E-E_{1}(\vec{K})} \cdot \frac{1}{1-W_{\vec{K}}(E)} \quad gdje \; je: \quad (2.8) \\
E_{1}(\vec{K}) &= E_{0}(\vec{K}) + M_{(\vec{K})} \quad ; \; E_{0}(\vec{K}) = \Delta + \frac{1}{2} \times \vec{K} \\
M_{(\vec{K})} &= \frac{1}{N} \sum_{\vec{q}} \left(Y_{0} + Y_{\vec{K}-\vec{q}} - X_{\vec{K}} - X_{\vec{q}} \right) \langle B_{\vec{q}}^{\dagger} B_{\vec{q}} \rangle_{0} ; \langle B_{\vec{q}}^{\dagger} B_{\vec{q}} \rangle_{0} = \left(e^{\frac{E_{0}(\vec{K})}{\Theta}} - 1 \right)^{-1} \\
W_{\vec{K}}(E) &= \frac{4\pi_{i}}{N^{2}} \sum_{\vec{q}_{1},\vec{q}_{2}} \int_{dE_{1}}^{+\infty} dE_{2} \left[E - E_{0}(\vec{K}) - X_{\vec{K}-\vec{q}_{1}+\vec{q}_{2}} + Y_{(\vec{q}_{1},\vec{q}_{2})} \right]^{-1} \quad (2.9)
\end{aligned}$$

$G_{\overline{g_1}(E_1)} \cdot G_{\overline{g_2}(E_2)} \cdot G_{\overline{g_3}} \cdot (E_3)$; $E_3 = E - E_1 + E_2$; $\overline{g_3} = \overline{K} - \overline{g_1} + \overline{g_2}$.

Prilikom dobijanja izraza (2.8) odbačeni su svi članovi koji su proporcionalni N_0^2 i N_0G^3 , srednja vrijednost $\langle P^+P \rangle$ zamjenjena je sa No i izvršena je uobičajena aproksimacija teorije perturbacije 1+W ≈ (1-W)⁻¹. Na osnovu relacije (2.8) izvršena je analiza eksitonskih osobina. U nultoj aproksimaciji, koja odgovara kvadratnom dijelu hamiltonijana (2.1) izraženom preko Bose operatora, iz (2.8) odbačeni su svi članovi koji su proporcionalni eksitonskoj koncentraciji No i uzeto je W=0. Tako se dobije GF nulte aproksimacije

$$G_{\vec{k}}^{(0)} = \frac{i}{2\pi} \frac{1}{E - E_{0}(\vec{k}) + i\delta}; \quad \delta \to + 0.$$
 (2.10)

Pol GF u E-ravni predstavlja energiju eksitona u harmonijskoj aproksimaciji

$$E_{0}(\vec{k}) = \Delta + \frac{1}{2} X_{\vec{k}} ; \quad X_{\vec{k}} = \sum_{\vec{l}} X_{\vec{l}} e^{i\vec{k}\vec{l}}.$$
 (2.11)

Za prostu kabnu rešetku, u aproksimaciji najbližih susjeda i u oblasti malih talasnih vektora može se pisati

$$E_{o(\vec{k})} = \widetilde{\Delta} - \frac{\hbar^2 k^2}{2m^*} ; \quad m^* = \frac{\hbar^2}{\chi_{q^2}} ; \quad \widetilde{\Delta} = \Delta + 3X \quad (2.12)$$

gdje je a konstanta rešetke i X matrični element rezonantne interakcije uzet izmedju najbližih susjeda.Kao što se vidi u eksitonskom spektru postoji prag energije $\tilde{\Delta}$ i popravka koja dolazi od disperzije pobudjenja (tj. od kolektivizacije pobudjenja izolovanog molekula). Ova popravka ima oblik kinetičke energije čestica, samo što je realna masa m zamjenjena efektivnom masom m* koja u zavisnosti od X može biti pozitivna ili negativna. Ako je rezonantna interakcija privlačna tj. X<0 tada je m* > 0. Koncentracija eksitona (bozona) u nultoj aproksimaciji iznosi

$$\mathcal{N}_{o} = \langle B_{\vec{f}}^{\dagger} B_{\vec{f}}^{\dagger} \rangle_{o} = \frac{1}{N} \sum_{\vec{K}} \left(e^{\frac{\mathcal{E}_{o}(\vec{K})}{\mathcal{O}}} - 1 \right)^{-1}.$$
(2.13)

Ako se iz (2.8) zadrže svi dijelovi proporcionalni eksitonskoj koncentraciji, zatim se i dalje uzima W=O dobije se GF prve aproksimacije

$$G_{\vec{k}}^{(1)} = \frac{i}{2\pi} \frac{1+2N_0}{E-E_1(\vec{k})}$$
 (2.14)

Pol GF u E - ravni

 $E_{1(\vec{k})} = E_{o(\vec{k})} + M_{(\vec{k})}; \quad M_{(\vec{k})} = \frac{1}{N} \sum_{q} (Y_{0} + Y_{\vec{k}} - \vec{q} - X_{\vec{k}} - X_{\vec{q}}) \langle B_{\vec{q}} B_{\vec{q}} \rangle_{o}$ predstavlja energiju ekstiona u prvoj aproksimaciji.Popravka M(\vec{k}) dolazi i od kinematičke i od dinamičke interakcije eksitona, jer je proporcionalna veličinama $X_{\vec{k}}$, preko kojih se u račun uključuje kinematička interakcija i veličinama $Y_{\vec{k}}$, koje karakterišu dinamička interakcija eksitona.

Iz strukture izraza (2.8) se vidi da Greenova funkcija $G_{\vec{k}}(E)$ pored već analiziranog pola $E=E_1(\vec{k})$ može da ima i dopunske polove u E-ravni ukoliko jednačina $W_{\vec{k}}(E) =1$ ima bilo kakva rješenja po E. Ukoliko bi ova rješenja bila realna i pozitivna ili kompleksna sa pozitivnim realnim dijelom, ona bi se mogla interpretirati kao energije nekih novih pobudjenja u molekularnom kristalu, koja nastaju kao rezultat eksiton-eksiton interakcije. Eksplicitni izraz za $W_{\vec{k}}(E)$ dobija se iz (2.8) iteracionim postupkom, gdje se za polazno rješenje uzima $G_{\vec{k}}^{(O)}$ (2.10). Pošto se eksplicitna zavisnost funkcije W od energije teško nalazi, izvršena je aproksimacija koja se sastoji u zamjeni funkcija $X_{\vec{k}}$ i $Y_{\vec{k}}$ njihovim kvadratnim srednjim vrijednostima po cjelokupnom impulsnom prostoru. U ovoj veoma gruboj aproksimaciji, otpada sumiranje po impulsima za funkciju W(E), tako da se za energiju dobija rješenje

$$E_{c} = \triangle + \frac{5X - 2Y}{\sqrt{6}}$$

(2.16)

- 17 -

U istoj harmonijskoj aproksimaciji energija eksitona ima oblik

$$\overline{E_{o}(k)} = \Delta + \sqrt{1,5} X$$
 (2.17)

pa je jasno da rješenje E_c ne pred**stav**lja energiju eksitona, već energiju nekih novih pobudjenja koja su nastala usled eksiton-eksiton interakcije.

Očigledno je da ovi dopunski nivoi energije svoj nastanak duguju kinematičkoj interakciji eksitona pa se sa razlogom mogu nazvati kinematičkim nivoima, a sama pobudjenja kinematičkim ekscitacijama. Radi se o tome da se uslov $W_{\vec{k}}(E) = 1$, koji daje ove nivoe energije, pojavio zbog prisustva funkcije $\langle B_t^+ B_t B_t | B_0^+ B_0^- B_0^- \rangle_0$ proračunima za energije sistema, a ove funkcije su kinematičkog porijekla, jer dolaze usled razlike u komutacionim relacijama za Bose i Pauli operatore. S obzirom na oblik funkcije $\langle \langle B_t^+ B_t B_t | B_0^+ B_0^+ B_0^- \rangle_0$ jasno je i fizičko porijeklo kinematičkih nivoa. Oni očigledno nastaju u tročestičnim eksitonskim procesima u takvim gdje se dva eksitona fuzionišu u jedan novi, nestabilni eksiton sa od prilike dva puta većom energijom, koji se poslije izvjesnog vremena raspada na dva obična eksitona. Kvant energije koji se oslobadja u ovom procesu fuzija-raspad predstavlja kinematičko pobudjenje sistema.

Ova analiza koja predstavlja, ipak, samo grubu procjenu realne situacije pokazuje da eksitoni i kinematičke ekscitacije ne mogu istovremeno da egzistiraju.

Sada ćemo dati pregled tačnijih proračuna /27,28,31/ gdje se pokazuje da eksitoni i kinematički nivoi mogu istovremeno da egzistiraju, pri čemu je vrijeme života kinematičkih eksitacija mnogo kraće od vremena života eksitona. U radu /27/ polazi se od hamiltonijana oblika (2.1), analiza sistema vrši se GF (2.2) i koristeći istu proceduru dolazi se do izraza za Greenovu funkciju G_k (E)

$$G_{\vec{K}}(E) = \frac{i}{2\pi} \frac{1+2N_0}{(E-E\vec{K})[U_{(\vec{K},E)}+iV_{(\vec{K},E)}]}$$
(2.18)

gdje je
$$U_{(\vec{k},E)} = 1 + \frac{1+2N_0}{2N^2} \sum_{\vec{q}_1,\vec{q}_2} \frac{E - E\vec{k} + Y\vec{q}_1 - \vec{q}_2 - X\vec{k} - \vec{q}_1 + \vec{q}_2}{E + E\vec{q}_2 - E\vec{q}_1 - E\vec{k} - \vec{q}_1 + \vec{q}_2}$$

(2.19)

$$V_{(\vec{K}, E)} = -\frac{(1+2\sqrt{b})\pi}{2N^2} \sum_{\vec{g}_1, \vec{g}_2} \left(E - \mathcal{E}_{\vec{K}} + Y_{\vec{g}_1, \vec{g}_2} - X_{\vec{K}} - \vec{g}_1 + \vec{g}_2 \right) \delta(E + \mathcal{E}_{\vec{g}_2} - \mathcal{E}_{\vec{g}_1} - (2.20)) - \mathcal{E}_{\vec{K}} - \vec{g}_1 + \vec{g}_2 \right)$$

$$\mathcal{E}_{\vec{x}} = \Delta + \frac{1}{2} \, \mathbf{X}_{\vec{x}} \, . \tag{2.21}$$

Koristeći aproksimaciju najbližih susjeda, a zatim aproksimaciju efektivne mase i uvodeći nove talasne vektore $\vec{\mu}$ i $\vec{\nu}$ relacijama $\vec{q_1} - \vec{q_2} = \vec{\nu}$ i $\vec{q_1} + \vec{q_2} = 2\vec{\mu}$ funkcije U(\vec{k} ,E) i V(\vec{k} ,E) postaju

$$V_{(\vec{K},E)} = -\frac{\pi}{2N^2} \sum_{\vec{K},\vec{V}} \left[s' + 3k^2 + 2\nu^2 (1 - Y/X) - 4k\nu\cos\theta_{\vec{K}} \vec{v} \right] \delta'(s'' + (2.22) + k^2 + \nu^2 + 2\mu\nu\cos\theta_{\vec{k}} \vec{v} - 2k\nu\cos\theta_{\vec{K}} \vec{v} \right]$$

$$U_{(\vec{k},E)} = 1 + \frac{1}{2N^2} \sum_{\vec{k},\vec{y}} \frac{S' + 3k^2 + 2V^2(1 - Y/\chi) - 4kV\cos\theta_{\vec{k}}\vec{y}}{S'' + k^2 + V^2 + 2\mu V\cos\theta_{\vec{k}}\vec{y} - 2kV\cos\theta_{\vec{k}}\vec{y}}$$
(2.23)

U ovim relacijama uvedene su oznake

$$S = \frac{2m}{\hbar^2} (E - E_0 - 6X + 6Y), S'' = \frac{2m}{\hbar^2} (E - E_0); E_0 = \Delta + 3X.$$
 (2.24)

Ako se u (2.23) provede integriranje po oblasti $|\vec{\mu}|, |\vec{\nu}| \leq \mu_0$ gdje je μ_0 granični vektor prve Brillouinove zone za funkciju V(\vec{k} ,E) dobija se izraz

$$V_{(k,E)} = \frac{3}{2} \frac{E - E_3}{E_s}$$
 (2.25)

gdje je

$$E_{3} = E_{0} - 6(X - Y) + \frac{\hbar^{2} k^{2}}{2m} - \frac{\pi^{2} \mu^{2}}{2m}, \quad \xi = \frac{Y}{X} \quad (2.26)$$

$$E_{s} = \frac{4 \hbar^{2} \mu_{0} K}{\pi m}.$$

S obzirom da se bez numeričkih proračuna ne može dobiti egzaktna funkcija V(\bar{k} ,E) za sve vrijednosti talasnog vektora \bar{k} ,GF (2.18) odredjena je za dva granična slučaja, slučaj malih i slučaj velikih talasnih vektora.

U slučaju malih vrijednosti intenziteta talasnog vektora k funkcija U(k,E) računata je u aproksimaciji $|S''| \gg k^2 + y^2 + 2\mu y \cos \theta_{\mu\nu} - 2KV \cos \theta_{\mu}\bar{v}$, i dobijen rezultat

$$U_{(\vec{K},E)} = \frac{3}{2} \cdot \frac{E - E_2}{E - E_0}$$
(2.27)

$$E_2 = E_o - \frac{\hbar^2 k^2}{2m} + 2(X - Y) - \frac{2}{5}(1 - \frac{1}{5})\frac{\hbar^2 \mu_o^2}{2m}$$

Na osnovu (2.25) i (2.27) GF(2.18) može se sada napisati u obliku

$$G_{\vec{K}(E)}^{(1)} = \frac{1+2N_0}{3\pi} \cdot \frac{E_s(E-E_0)}{(E-E_1)[E^2 - (E_0 + E_3 + iE_s)E + (E_0E_3 + iE_2E_s)]} \cdot (2.28)$$

- 21 -

Polovi ove funkcije, koji za razmatrani eksitonski sistem predstavljaju energiju kinematičkih nivoa, odredjeni su iz uslova da je izraz u uglatoj zagradi jednak nuli

$$E_{I,I}^{(1)} = \frac{1}{2} \left\{ E_0 + E_3 \pm \left(\frac{1}{2} \sqrt{A^2 + B^2} + \frac{1}{2} A \right)^{1/2} + i \left[E_s \pm \left(\frac{1}{2} \sqrt{A^2 + B^2} - \frac{1}{2} A \right)^{1/2} \right] \right\} . \quad (2.29)$$

gdje je

$$A = (E_0 - E_3)^2 - E_s ; \qquad B = 4E_s \left[\frac{1}{2} (E_0 + E_3) - E_2 \right] .$$

U slučaju velikih vrijednosti intenziteta talasnog vektora \vec{k} , funkcija U(\vec{k} ,E) računata je u aproksimaciji $|S''+k^2| \ll v^2 + 2\mu v \cos \theta_{\mu\nu} - 2k\nu \cos \theta_{\mu\nu}$ i slijedi da je

$$U_{(\bar{k},E)} = \frac{3}{2} \frac{E - E_{4}}{E_{T}}$$
(2.30)

gdje je

$$E_{\rm T} = \frac{\hbar^2 \mu_0^2}{2m}$$

$$E_4 = E_0 + 6 \left(X - Y\right) + \frac{\hbar^2 \mu_0^2}{2m} \cdot \frac{1}{15} \left(28 \not \xi - 36\right) + \frac{\hbar^2 k^2}{2m} \left(2 \not \xi - 3\right) .$$

Dalje postupamo analogno kao u prethodnom slučaju i dobijamo

$$E_{I,\overline{I}}^{(2)} = \frac{E_s^2 E_4 + E_T^2 E_3}{E_s^2 + E_T^2} + i \frac{E_s E_T}{E_s^2 + E_T^2} |E_4 - E_3|.$$
(2.31)

S obzirom da se zna da je vrijeme života normalnog nivoa $\mathcal{E}_{\vec{k}}$ reda 10⁻⁸ s (singletnih eksitona antracena /5/), radi poredje-

nja, procjenjeno je vrijeme života oba kinematička nivoa. Za male vrijednosti k(k $\ll \mu_0$) procjenu vršimo na osnovu (2.26), (2.27) i (2.29). Kako je $E_s \sim \hbar \mu_o k$ slijedi da je vrijeme života oba nivoa reda $\mathcal{T} \sim 10^{-13}$ - 10^{-14} s. U slučaju velikih vrijednosti k(k $\approx \mu_o$) procjenu vršimo na osnovu (2.26),(2.30) i (2.31) što nam za X<0 i Y>0 daje vrijeme života reda $\mathcal{T} \sim 10^{-13}$ - 10^{-14} s kao i u slučaju malih vrijednosti k. Prilikom procjena vremena života korištene su tipične vrijednosti za

$$k \approx 10^{7} \text{m}^{-1}$$
; $\mu_{0} \approx 10^{9} \text{m}^{-1}$; $|X|, |Y| \approx 0.1 \div 0.01 \text{ eV}$; $E_{0} \approx (2 \div 3) \text{ eV}$;
 $|z| = |Y/X| = 0.5 \div 5$

Analogan problem za slučaj multinivoske šeme (w-nivoa) je razmatran u radu /28/, gdje je pokazano da takvi kinematički nivoi za multinivosku eksitonsku šemu postoje za sve vrijednosti talasnog vektora. Jasno je da sada u hamiltonijanu sistema figurišu pomenuti kvazi-Pauli operatori (1.14)

$$H = H_{0} + \sum_{\vec{n},\vec{n}} \Delta_{\mu\nu} \mathcal{Y}_{\mu\vec{n}} + \sum_{\vec{n},\vec{n},\vec{m}} \chi_{\mu\nu}(\vec{n},\vec{m}) \mathcal{Y}_{\mu\vec{n}} + \sum_{\vec{n},\vec{n},\vec{n}} \chi_{\mu\nu\mu\nu'\nu'}(\vec{n},\vec{m}) \cdot \mathcal{Y}_{\mu\vec{n},\vec{m}} + \sum_{\vec{n},\vec{n},\vec{n},\vec{n}} \chi_{\mu\nu\mu'\nu'}(\vec{n},\vec{m}) \cdot \mathcal{Y}_{\mu\vec{n},\vec{n}} + \sum_{\vec{n},\vec{n},\vec{n},\vec{n}} \chi_{\mu\nu\mu'\nu'}(\vec{n},\vec{m}) \cdot \mathcal{Y}_{\mu\vec{n},\vec{n}} + \sum_{\vec{n},\vec{n},\vec{n},\vec{n}} \chi_{\mu\nu\mu'\nu'}(\vec{n},\vec{m}) \cdot \mathcal{Y}_{\mu\vec{n},\vec{n}} + \sum_{\vec{n},\vec{n},\vec{n},\vec{n}} \chi_{\mu\nu\mu'\nu'}(\vec{n},\vec{n}) \cdot \mathcal{Y}_{\mu\vec{n},\vec{n}} + \sum_{\vec{n},\vec{n},\vec{n},\vec{n}} \chi_{\mu\nu\mu'\nu'}(\vec{n},\vec{n}) \cdot \mathcal{Y}_{\mu\vec{n},\vec{n}} + \sum_{\vec{n},\vec{n},\vec{n}} \chi_{\mu\nu\mu'\nu'}(\vec{n},\vec{n}) \cdot \mathcal{Y}_{\mu\vec{n},\vec{n}} + \sum_{\vec{n},\vec{n},\vec{n},\vec{n}} \chi_{\mu\nu\mu'\nu'}(\vec{n},\vec{n}) \cdot \mathcal{Y}_{\mu\nu\mu'\nu'}(\vec{n},\vec{n}) \cdot \mathcal{Y}_{\mu\nu\mu'\nu'}(\vec{n},\vec{n}) \cdot \mathcal{Y}_{\mu\nu\mu'\nu'}(\vec{n},\vec{n}) \cdot \mathcal{Y}_{\mu\nu\mu'\nu'}(\vec{n},\vec{n}) \cdot \mathcal{Y}_{\mu\nu\mu'\nu'}(\vec{n},\vec{n}) \cdot \mathcal{Y}_{\mu\nu'\mu'}(\vec{n},\vec{n}) \cdot \mathcal{Y}_{\mu\nu'\mu'}(\vec{n},\vec{n}) \cdot \mathcal{Y}_{\mu\nu'\mu'}(\vec{n},\vec{n}) \cdot \mathcal{Y}_{\mu\nu'}(\vec{n},\vec{n}) \cdot \mathcal{Y}_{\mu\nu'}(\vec{n},\vec{n}) \cdot \mathcal{Y}_{\mu\nu'}(\vec{n},\vec{n}) \cdot \mathcal{Y}_{\mu\nu'}(\vec{n},\vec{n}) \cdot \mathcal{Y}_{\mu\nu'}(\vec{n},\vec{n}) \cdot \mathcal{Y}_{\mu\nu'\mu''}(\vec{n},\vec{n}) \cdot \mathcal{Y}_{\mu\nu'}(\vec{n},\vec{n}) \cdot \mathcal{Y}_{\mu\nu'}(\vec{$$

Umjesto Pauli GF (2.2) sada je izvršena analiza koristeći kvazi Pauli GF

$$\int_{\mathcal{A}} (\vec{a}, \vec{b}, t) = \langle \langle \mathcal{Q} \vec{a}(t) | \mathcal{Q}_{\mathcal{A}}^{\dagger} \vec{b}(0) \rangle \rangle . \qquad (2.33)$$

Analiza je izvršena u potpunoj analogiji sa već prethodno razmatranom dvonivoskom eksitonskom šemom, s tim što su krajnji rezultati provedeni za tronivosku eksitonsku šemu (osnovni i dva pobudjena nivoa). Eksitonski spektar i eksitonske koncentracije u nultoj i aproksimaciji prvog reda su takodje izračunati. Korištena je oblast malih talasnih vektora i aproksimacija koja zanemaruje prostornu disperziju /46/.

U stanjima tronivoske šeme (a,b \in 1,2) primjenjena je aproksimacija $\mathcal{E}_{11}^{(o)} \approx \Delta_{11}$ i $\mathcal{E}_{22}^{(o)} \approx \Delta_{22}$ i za slučaj, npr. naftalina, moguće je uzeti $\Delta_{11}, \Delta_{22} \approx \Delta$, tako da se dobije redukovani izraz za kinematičke nivoe

$$E_{1,2}^{\kappa in} = \Delta + \frac{4}{7} \left(\check{Z} + K \right) \pm \frac{4}{7} \left(\left(\check{Z} + K \right)^2 + \beta \right)^{\frac{1}{2}}$$
(2.34)

gdje je

$$\begin{split} \tilde{Z} &= \frac{1}{8} \left(5 X_{11} + X_{22} - 4 Y_{1111} - Y_{1128} - Y_{2211} - Y_{1221} - Y_{2112} \right) \\ K &= \frac{1}{8} \left(5 X_{22} + X_{11} - 4 Y_{2222} - Y_{1122} - Y_{2211} - Y_{2112} - Y_{1221} \right) \\ S &= \frac{1}{4} \left(Y_{1211} + Y_{1222} + Y_{1112} + Y_{2218} - 2X_{12} \right) \left(Y_{2111} + Y_{2122} + Y_{1121} + Y_{2221} - 2X_{21} \right) \end{split}$$

Kada je [lŽ-K|≫|β] slijedi da je

$$E_1^{kin} = \Delta + \frac{8}{7} \ddot{Z} + \frac{2f}{7(\ddot{Z} - K)}$$
(2.35)

$$E_{2}^{kin} = \Delta + 2/7 \text{ K} + \frac{2\beta}{7(\text{K}-\tilde{Z})}$$
(2.36)

a za |Ž-K|&|f] je :

$$E_{1,2}^{kin} = \Delta + \frac{4}{7} \left(\check{Z} + K \pm \rho^{\frac{1}{2}} \right) \qquad (2.37)$$

Pri istoj aproksimaciji, za normalne eksitonske nivoe u nultoj aproksimaciji, dobije se

$$E_{1,2}^{(0)} = \Delta \pm (X_{12}X_{21})^{1/2}$$
(2.38)

Moguće je izvući generalni zaključak da energije (2.37) i (2.38) imaju isti red veličine kada je $\Delta \gg$ X,Y.

3. KINEMATIČKI EFEKTI PRI VISOKIM KONCENTRACIJAMA

Prije nego predjemo na analizu eksitonskog sistema visokih koncentracija ukratko ćemo izložiti postupak odredjivanja dielektrične konstante ($\mathcal{E}_{\alpha\beta}$) metodom GF, koga su predložili Djaložinski i Pitajevski /39/. Naime, to sada radimo pošto ćemo vršiti poredjenje dielektričnih osobina eksitonskog sistema visokih i niskih koncentracija. Osim toga, pomenuti metod bit će obilato korišten u sledećim analizama dielektričnih osobina molekularnih kristala i feroelektričnih materijala.

Osnovna ideja u radu /39/ je izjednačavanje fenomenološke vrijednosti vektorskog potencijala, dobijenog iz Maxwellovih jednačina kada je vanjska gustina naelektrisanja jednaka nuli, sa srednjom vrijednošću operatora vektorskog potencijala kada na sistem(kristal) djeluje vanjska perturbacija H_{int} koja zavisi od vremena. Ukupni hamiltonijan sistema sa vanjskom perturbacijom je H + H_{int} gdje je

 $H_{int}(t) = -\frac{1}{C} \int d\vec{r} \hat{A}_{\mathcal{L}}(\vec{r}, t) j_{\mathcal{K}}^{ext}(\vec{r}, t) ; \quad \mathcal{A} = x, y, x \quad (3.1)$

operator medjudjelovanja sistema sa vanjskim poljem (vanjskim strujama), $\hat{A}_{a}(\vec{r},t)$ je operator vektorskog potencijala nesmetanog sistema, a j^{ext}(\vec{r},t) je gustina vanjskih struja. Ako se pretpostavi da je vanjska gustina naelektrisanja jednaka nuli, kombinovanjem Maxwellovih jednačina za Fourier komponente vektora električne i magnetne indukcije, \vec{D} i \vec{B} , i vektora električnog polja \vec{E}

- 25 -

$$\vec{k} \cdot \vec{B}(\vec{k}, \omega) = 0 \qquad \vec{k} \times \vec{E}(\vec{k}, \omega) = \frac{\omega}{C} \vec{B}(\vec{k}, \omega) \qquad (3.2)$$

$$\vec{k} \cdot \vec{D}(\vec{k}, \omega) = 0 \qquad \vec{k} \times \vec{B}(\vec{k}, \omega) = -\frac{\omega}{C} \vec{D}(\vec{k}, \omega) + \frac{4\pi}{ic} \vec{f}(\vec{k}, \omega).$$
sa materijalnom jednačinom $D_{\alpha}(\vec{k}, \omega) = \mathcal{E}_{\alpha\beta}(\vec{k}, \omega) \mathcal{E}_{\beta}(\vec{k}, \omega)$
uz kalibraciju $\vec{E}(\vec{k}, \omega) = i\omega c^{-1} \vec{A}(\vec{k}, \omega)$ dobija se relacija

$$A_{\mathcal{A}}(\vec{k},\omega) = \frac{4}{c} \pi \Delta_{\mathcal{A}\mathcal{B}}^{-1}(\vec{k},\omega) j_{\mathcal{B}}(\vec{k},\omega) \qquad (3.3)$$

gdje je

gdje

S

$$\Delta_{\mathcal{A}\mathcal{B}}(\overline{k},\omega) = k^2 \delta_{\mathcal{A}\mathcal{B}} - k_{\mathcal{A}} k_{\mathcal{B}} - \frac{\omega^2}{C^2} \mathcal{E}_{\mathcal{A}\mathcal{B}}(\overline{k},\omega)$$
(3.4)

Relacija (3.3) povezuje dielektričnu konstantu sa fenomenološkim vrijednostima vektorskog potencijala. Fenomenološka veličina $A_{a}(\vec{\kappa},\omega)$ izjednačava se sa neravnotežnom srednjom vrijednošću operatora $\hat{A}_{\chi}(\vec{k},\omega)$

$$A_{d}(\vec{k},\omega) = \langle \hat{A}_{l}(\vec{k},\omega) \rangle_{ext}$$
(3.5)

gdje "ext" označava da se usrednjavanje vrši po neravnotežnom ansamblu.

Srednju vrijednost komponente $\langle \hat{A}_{\star}(\vec{k},\omega) \rangle_{ext}$ možemo izračunati iz relacije

$$\langle \hat{A}_{\mathcal{L}}(\vec{r},t) \rangle_{ext} = \int d\vec{k} d\omega \langle \hat{A}_{\mathcal{L}}(\vec{k},\omega) \rangle_{ext} e^{i\vec{k}\cdot\vec{r}-i\omega t}$$
 (3.6)
je /48,67/

$$\langle \hat{A}_{\mathcal{A}}(\vec{r},t) \rangle_{ext} = \langle \hat{S}_{(t)}^{-1} \hat{A}_{\mathcal{A}}(\vec{r},t) \hat{S}(t) \rangle \qquad (3.7)$$

S(t) je unitarna matrica oblika $\hat{S}^{t} = \hat{T} \exp\left\{\frac{t}{i\hbar} \int_{t}^{t} H_{int}(t') dt'\right\}.$

T je Dysonov hronološki operator, a H_{int} je dato sa (3.1). Ako pretpostavimo da je vanjska struja slaba, tada srednju vrijednost (3.7) možemo, izračunati u linearnoj aproksimaciji po H_{int} (aproksimacija linearne reakcije) uzimajući da je

$$\hat{S}^{\pm} \approx 1 \pm \frac{\hat{T}}{i \hbar} \int_{-\infty}^{t} H_{int}(t') dt' . \qquad (3.8)$$

Ako se nakon uvrštavanja (3.8) i (3.1) u (3.7) zadrže samo članovi linearni po j $^{ext}(\vec{r},t)$ dobija se

$$\langle \hat{A}_{\mathcal{A}}(\vec{r},t) \rangle_{ext} = \frac{i}{\hbar c} \int_{-\infty}^{t} dt_{1} \int d\vec{r}_{1} \ll \hat{A}_{\mathcal{A}}(\vec{r},t) | \hat{A}_{\mathcal{A}}(\vec{r},t_{1}) \gg j_{\mathcal{A}}^{ext}(\vec{r}_{1},t_{1})$$
(3.9)

gdje je

$$\langle \hat{A}_{\mathcal{A}}(\vec{r},t) | \hat{A}_{\mathcal{B}}(\vec{r}_{1},t_{1}) \rangle = \langle [\hat{A}_{\mathcal{A}}(\vec{r},t), \hat{A}_{\mathcal{B}}(\vec{r}_{1},t_{1})] \rangle \Theta(t-t_{1}) = L_{\mathcal{A}\mathcal{B}}(\vec{r}-\vec{r}_{1},t-t_{1}) . \quad (3.10)$$

GF elektromagnetnog polja koja za prostorno homogene sredine u stacionarnim vanjskim uslovima zavisi samo od razlike $\tilde{r} - \tilde{r_1}$ i t - t₁. Ovdje je $\theta(t-t_1)$ funkcija sa osobinom

$$\Theta(t-t_i) = \begin{cases} 1, t>t_i \\ 0, t$$

Poslije Fourier transformacija relacija (3.9) prelazi u

$$\langle \hat{A}_{\mathcal{A}}(\vec{k},\omega) \rangle_{ext} = \frac{(2\pi)^3}{\hbar c} j_{\mathcal{B}}^{ext}(\vec{k},\omega) \int d\Omega \frac{\mathcal{L}_{\mathcal{A}\mathcal{B}}(\vec{k},\Omega)}{\Omega - \omega - i\delta} . \qquad (3.11)$$

Na osnovu (3.11), (3.5) i (3.3) dobija se sledeći izraz za tenzor $\Delta_{JS}^{-1}(\bar{k},\omega)$

$$\Delta_{\mathcal{A}\mathcal{B}}^{-1}(\vec{k},\omega) = \frac{2\pi^2}{\hbar} \int d\Omega \frac{L_{\mathcal{A}\mathcal{B}}(\vec{k},\omega)}{\Omega - \omega - id^2}, \quad \delta \to +0 \quad (3.12)$$

Da bi tenzor \triangle_{ab}^{-1} (k, ω) bio gradijentno invarijantan, umjesto Greenove funkcije L_{ab} (3.10) uvodi se GF elektromagnetnog polja R_{ab} izražena preko komponenata operatora vektora električnog polja

$$R_{AB(\vec{F}-\vec{F}_{i};t-t_{i})} = \langle \hat{E}_{A}(\vec{F},t_{i}) | \hat{E}_{B}(\vec{F}_{i},t_{i}) \rangle . \qquad (3.13)$$

Pri nalaženju veze izmedju funkcija L_{AB} i R_{AB} koristimo se operatorima vektorskog potencijala i električnog polja izraženih preko operatora kreacije i anihilacije fotona /17/

$$\begin{split} \vec{A}(\vec{r},t) &= \sum_{j} \int d\vec{k} \frac{c}{2\pi} \left(\frac{\pi}{\omega \vec{k}_{j}}\right)^{1/2} \vec{l}\vec{k}_{j} \left[a\vec{k}_{j} e^{i\vec{k}\vec{r}-i\omega\vec{k}_{j}t} + a^{t}_{\vec{k}_{j}} e^{-i\vec{k}\vec{r}+i\omega\vec{k}_{j}t} \right] \\ \vec{E}(\vec{r},t) &= \sum_{j} \int d\vec{k} \frac{i}{2\pi} \left(\hbar \, \omega \vec{k}_{j} \right)^{1/2} \vec{l}\vec{k}_{j} \left[a_{\vec{k}_{j}} e^{i\vec{k}\vec{r}-i\omega\vec{k}_{j}t} + a^{t}_{\vec{k}_{j}} e^{-i\vec{k}\vec{r}+i\omega\vec{k}_{j}t} \right] \end{split}$$

Ako potražimo drugi izvod $\frac{\partial^2 L}{\partial t \partial t_1}$, koristimo osobinu funkcije $\Theta(t)$ i izvršimo Fourier transformaciju dobijamo

$$\mathcal{L}_{\mathcal{AB}}(\vec{k},\Omega) = \frac{C^2}{\Omega^2} \mathcal{R}_{\mathcal{AB}}(\vec{k},\Omega) + \frac{1}{2\pi^3} i\hbar \frac{C^2}{\Omega^2} \mathcal{O}_{\mathcal{AB}}$$
(3.14)

Uvrštavanje (3.14) u (3.12) daje

$$\overline{\Delta}_{kB}^{-1}(\vec{k},\omega) = \frac{2\pi^2}{\hbar} C^2 \int d\Omega \frac{R_{kB}(\vec{k},\omega)}{\Omega^2(\Omega-\omega-i\sigma)} - \frac{C^2}{\omega^2} \delta_{kB}, \quad \delta \to +0 \quad .$$
 (3.15)

U standardnom prilazu odredjivanja dielektrične konstante mogu se, zbog analitičnosti GF /13,70/, integralne veze odmah zamijeniti sa algebarskim. Medjutim, u slučaju kada GF imaju dopunske polove koji konačno zadiru u gornju ili donju poluravan (što je opštija pretpostavka), integrali se moraju izračunavati upotrebom teoreme o rezidiuumima. Komponente operatora električnog polja mogu se izraziti preko eksitonskih Bose operatora na sljedeći način (/5/, str.116)

$$E_{d}(\vec{r},t) = \int d\vec{k} \, S_{d}(\vec{k}) \left[B_{\vec{k}}(t) + B_{\vec{k}}^{\dagger}(t) \right] e^{i\vec{k}\cdot\vec{r}}. \tag{3.16}$$

Relacija (3.16) omogućava da se Greenova funkcija R₄₆ izrazi preko eksitonskih GF (2.5)

$$G_{(\vec{k}, \Omega)} = G_{\vec{k}}(\Omega) = \langle \langle B_{\vec{k}} / B_{\vec{k}} \rangle \rangle_{\Omega}$$
(3.17)

na sledeći način

$$R_{\chi B}(\vec{r}-\vec{t}_{i},t-t_{i}) = \int d\vec{k} S_{\chi}(\vec{k}) S_{\beta}(\vec{k}) e^{i\vec{k}(\vec{r}-\vec{r}_{i})} \left[G_{\vec{k}}(t-t_{i}) + D_{\vec{k}}(t-t_{i}) \right] . \quad (3.18)$$

Ako se u (3.18) izvrši Fourier transformacija, zatim koristi dobro poznata veza $D_{\vec{k}}(E)=G_{\vec{k}}(-E)$ i izrazi (3.4) i (3.15) dobijamo relaciju za izračunavanje dielektrične konstante preko eksitonskih GF

$$\begin{bmatrix} k^{2} \delta_{\mathcal{A}\mathcal{B}} - k_{\mathcal{A}} k_{\mathcal{B}} - \frac{\omega^{2}}{c^{2}} \mathcal{E}_{\mathcal{A}\mathcal{B}} (\vec{k}, \omega) \end{bmatrix}^{-1} = \frac{2\pi^{2}}{\hbar^{2}} c^{2} S_{\mathcal{A}} (\vec{k}) S_{\mathcal{B}} (\vec{k}) \int d\Omega$$

$$\frac{G_{\mathcal{K}}(\Omega) + G_{\mathcal{K}} (-\Omega)}{\Omega^{2} (\Omega - \omega - i\delta)} - \frac{c^{2}}{\omega^{2}} d\mathcal{A}_{\mathcal{B}} .$$

$$(3.19)$$

Na osnovu izraza (3.19) izračunaćemo dielektričnu konstantu pri malim koncentracijama eksitona a zatim izvršiti analizu eksitonskog sistema pri visokim koncentracijama eksitona i izvršiti poredjenje dobijenih rezultata.

GF (2.28) može se napisati u obliku pogodnom za izračunavanje dielektrične konstante

$$G_{\vec{k}(\mathfrak{A})}^{(1)} = \frac{i}{2\pi} \left(\frac{\chi^{(1)}}{\mathfrak{R} - \mathfrak{R}_{1}} + \frac{\Upsilon^{(7)}}{\mathfrak{R} - \mathfrak{R}_{I}} + \frac{Z^{(7)}}{\mathfrak{R} - \mathfrak{R}_{I}} \right)$$

(3.20)

gdje je

$$X^{(1)} = \frac{P^{(1)} \mathcal{Q}_{1} - Q^{(1)}}{(\mathcal{Q}_{1} - \mathcal{Q}_{I}^{(1)})(\mathcal{Q}_{I}^{(1)} - \mathcal{Q}_{1})} \quad ; \quad P^{(1)} = \frac{2(1 + 2\mathcal{N}_{s})}{3} \mathcal{Q}_{s} ; \quad Q^{(1)} = \frac{2(1 + 2\mathcal{N}_{s})}{3} \mathcal{Q}_{s} \mathcal{Q}_{s}$$

$$Y^{(1)} = \frac{Q^{(1)} - P^{(1)} \mathcal{Q}_{I}}{(\mathcal{Q}_{1} - \mathcal{Q}_{I}^{(1)})(\mathcal{Q}_{I}^{(1)} - \mathcal{Q}_{I}^{(1)})} \quad ; \quad Z^{(1)} = \frac{P^{(1)} \mathcal{Q}^{(1)} - Q^{(1)}}{(\mathcal{Q}_{1} - \mathcal{Q}_{I}^{(1)})(\mathcal{Q}_{I}^{(1)} - \mathcal{Q}_{I}^{(1)})} \quad (3.21)$$

 $\begin{aligned} &\mathcal{R}_1 = \hbar^{-1} E_1; \mathcal{R}_2 = \hbar^{-1} E_2; \mathcal{R}_3 = \hbar^{-1} E_3; \mathcal{R}_s = \hbar^{-1} E_s; \mathcal{R}_o = \hbar^{-1} E_o; F = \frac{1}{\hbar} (G|X| + 4|Y|) \\ &\text{Ako (3.20) uvrstimo u (3.19) dobijamo konačni izraz za izraču$ $navanje dielektrične konstante: \end{aligned}$

$$\begin{split} \Delta_{dA}^{-1} &= \frac{2^{\frac{37}{2}}}{\hbar^{2}} C^{2} S_{d}(\vec{k}) S_{\beta}(\vec{k}) \frac{i}{2^{\frac{37}{2}}} \left\{ \chi^{(1)} \int_{-\infty}^{+\infty} \frac{d'\mathcal{Q}}{\mathcal{Q}^{2}(\mathcal{Q} - \mathcal{W} - id')} \left(\frac{1}{\mathcal{Q} - \mathcal{Q}_{1}} - \frac{1}{\mathcal{Q} + \mathcal{Q}_{1}} \right) + \right. \\ &+ \gamma^{(1)} \int_{-\infty}^{+\infty} \frac{d'\mathcal{Q}}{\mathcal{Q}^{2}(\mathcal{Q} - \mathcal{W} - id')} \left(\frac{1}{\mathcal{Q} - \mathcal{Q}_{1}^{(1)}} - \frac{1}{\mathcal{Q} + \mathcal{Q}_{1}^{(1)}} \right) + Z_{-\infty}^{(1)} \frac{d\mathcal{Q}}{\mathcal{Q}^{2}(\mathcal{Q} - \mathcal{W} - id')} \\ &\cdot \left(\frac{1}{\mathcal{Q} - \mathcal{Q}_{1}^{\frac{37}{2}}} - \frac{1}{\mathcal{Q} + \mathcal{Q}_{1}^{\frac{37}{2}}} \right) \right\} - \frac{C^{2}}{\omega^{\frac{3}{2}}} d_{dA} \delta . \end{split}$$

$$(3.22)$$

Smatrajući da je Ω kompleksna varijabla i zatvarajući konturu u donjoj poluravni, u izotropnoj aproksimaciji $S_{d}(\vec{\kappa})S_{D}(\vec{\kappa}) = S^{2}(\vec{\kappa})S_{d,D}$ nalazimo sledeći izraz za dielektrična konstantu pri malim vrijednostima intenziteta talasnog vektora

$$\mathcal{E}_{(\vec{k}_{1},\omega)}^{-1} = \frac{2\pi^{2}\omega^{2}S^{2}(\vec{k})}{\hbar} \left\{ \frac{\chi^{(1)}\mathcal{Q}_{1}}{\omega^{2}(\omega^{2}-\mathcal{Q}_{1}^{2})}^{+} \frac{\gamma^{(1)}}{(\mathcal{Q}_{0}+F-\frac{i}{2}|\mathcal{Q}_{s}|)^{2}} \cdot \frac{1}{(\mathcal{Q}_{0}+F-\frac{j}{2}|\mathcal{Q}_{s}|)}^{+} \frac{\chi^{(1)}}{(\mathcal{Q}_{0}-\frac{j}{2}|\mathcal{Q}_{s}|)^{2}} \cdot \frac{1}{(\mathcal{Q}_{0}-\frac{j}{2}|\mathcal{Q}_{s}|)^{2}} \cdot \frac{1}{(\mathcal{Q}_{0}-\frac{j}{2}|\mathcal{Q}_{s}|)^{$$

.Za frekvencije daleko od eksiton-foton rezonancije $|\Omega_o - \omega| \gg 0$ realni i imaginarni dio dielektrične konstante mogu se napisati u obliku

$$Re \mathcal{E}_{(\vec{k},\omega)}^{(\eta)} = 1 - \frac{8 \pi^2 S^2(\vec{k}) \mathcal{R}_k \mathcal{R}_o}{3 \pi F(\mathcal{R}_o^2 - \omega^2)} \qquad (3.24)$$

$$lm \mathcal{E}_{(\vec{k},\omega)}^{(\eta)} = \frac{4 \pi^2 \omega^2 S^2(\vec{k}) / \mathcal{R}_s l}{3 \pi \mathcal{R}_o^2} \cdot \frac{e^{-\frac{|\mathcal{R}_s|^2}{2 \cdot (\mathcal{R}_o - \omega)}}}{(\mathcal{R}_o - \omega)^2} \cdot Za \text{ dielektričnu konstantu u slučaju velikih vrijednosti inten-
ziteta talasnog vektora \vec{k} koristimo već prethodno provedenu$$

aproksimaciju kod kinematičkih novoa (2.30) i za frekvencije daleko od eksiton-foton rezonancije dobijamo

$$R_{e}\mathcal{E}_{(\vec{k},\omega)}^{(t)} = 1 + \frac{2\pi^{2}S_{(\vec{k})}^{2}(\mathcal{Q}_{1}-\mathcal{Q}_{4})\cdot\mathcal{Q}_{T}}{3\hbar\mathcal{Q}_{0}^{2}\phi^{2}} \frac{(\mathcal{Q}_{0}^{3}+\mathcal{Q}_{0}\omega^{2}+\omega^{3})}{(\mathcal{Q}_{0}^{3}-\omega^{2})}$$

$$(3.25)$$

$$I_{m}\mathcal{E}_{(\vec{k},\omega)}^{(t)} = \frac{2\pi^{2}S_{(\vec{k})}^{2}(\mathcal{Q}_{3}-\mathcal{Q}_{4})\mathcal{Q}_{T}}{3\hbar\mathcal{Q}_{0}^{2}\phi^{2}} \frac{(\mathcal{Q}_{0}^{3}+\mathcal{Q}_{0}\omega^{2}+\omega^{3})}{(\mathcal{Q}_{0}^{3}-\omega^{2})}$$

Iz izraza za dielektrična konstantu (3.24) i (3.25) vidimo da postojanje kinematičke eksiton-eksiton interakcije dovodi do apsorpcije. Za male vrijednosti intenziteta talasnog vektora apsorpcija je manja nego za velike vrijednosti \vec{k} . Obično se pri razmatranju kristala u adijabatskoj aproksimaciji pretpostavlja da za sve energije $\hbar \omega \neq \hbar \Omega_o$ potpuno odsustvuje stvarna apsorpcija. Složeniji račun koji je ovdje proveden pokazuje da je gore na vedeno mišljenje u odsustvu apsorpcije za $\omega \neq \Omega_o$, nepravilno jer je bazirano na pretpostavci da eksitoni medjusobno ne interagiraju. Na kraju treba napomenuti da su ovi proračuni kompatibilni sa mišljenjem Davidova koji u /6/ str.146 tvrdi da je pretpostavljeno odsustvo apsorpcije za $\omega \neq \Omega_o$, rezultat suviše grube idealizacije.

Sada ćemo analizirati eksitonski sistem pri visokim koncentracijama.Kao što smo vidjeli u slučaju niskih koncentracija, bitne fizičke karakteristike sistema sa hamiltonijanom (2.1) mogu se dobiti analizom Greenove funkcije $\int f \tilde{f} \tilde{g}(t)$ (2.2) odnosno

$$G_{\vec{f}\vec{g}}(t) = \langle \langle B_{\vec{f}}(t) | B_{\vec{g}}(0) \rangle \rangle . \qquad (3.26)$$

Ova naša analiza zahtjeva uključivanje kompletnog bozonskog razvoja (1.12)

$$P_{\vec{n}} = \hat{F}^{1/2} B_{\vec{n}}, \quad P_{\vec{n}}^{\dagger} = B_{\vec{n}}^{\dagger} \hat{F}^{1/2}$$
(3.27)
gdje je

$$\hat{F}^{\nu_2} = \sum_{\nu=0}^{\infty} \frac{(-2)^{\nu}}{(1+\nu)!} B^{+\nu}_{\vec{n}} B^{\nu}_{\vec{n}}$$
(3.28)

Da bi se izbjegle matematičke teškoće vezane sa upotrebom egzaktne Bose reprezentacije Pauli operatora u radu /33/, u kome su raz matrani fazni prelazi feromagnetika, korištena je pomoćna GF

$$\Lambda_{\vec{f}\vec{g}}(t) = \langle\!\langle \sqrt{1 + B_{\vec{f}}^{\dagger}(t) B_{\vec{f}}(t)} P_{\vec{f}}(t) / P_{\vec{g}}(0) \sqrt{1 + B_{\vec{g}}(0) B_{\vec{g}}(0)} \rangle\!\rangle$$
(3.29)

koja se, kao što ćemo vidjeti, može izraziti preko GF G $_{\tilde{f}\tilde{g}}(t)$, a takodje povezati i sa GF ($\Gamma_{\tilde{f}\tilde{g}}(t)$.

Da bismo izračunali dielektričnu konstantu u slučaju eksitonskog sistema visokih koncentracija, polazimo od funkcije (3.29). Lako se pokazuje da funkcija (3.29) zadovoljava jednačinu

$$\begin{split} i \frac{d\Lambda_{\vec{\tau}\vec{\sigma}}(t)}{dt} &= i\delta(t) \left\langle \left[\sqrt{1 + B_{\vec{\tau}}^{\dagger}(t) B_{\vec{\tau}}(t)} P_{\vec{\tau}}(t) P_{\vec{\tau}}(t), P_{\vec{\sigma}}^{\dagger}(o) \sqrt{1 + B_{\vec{\sigma}}^{\dagger}(o) B_{\vec{\sigma}}(o)} \right] \right\rangle + \\ &+ \theta(t) \left\langle \left[\sqrt{1 + B_{\vec{\tau}}^{\dagger}(t) B_{\vec{\tau}}^{\dagger}(t)} P_{\vec{\tau}}(t), H \right], P_{\vec{\sigma}}^{\dagger}(o) \sqrt{1 + B_{\vec{\sigma}}^{\dagger}(o) B_{\vec{\sigma}}(o)} \right] \right\rangle . \end{split}$$

Ovdje treba napomenuti da je vlastita vrijednost operatorske funkcije $\hat{F}^{1/2}$ za stanja sa neparnim brojem bozona jednaka nuli, dok su vlastite vrijednosti za stanja sa parnim brojem bozona jednake $(1+2N)^{-\frac{1}{2}}$. Operatorska funkcija $\sqrt{1+B^+B}$ $\hat{F}^{-1/2}$ ima vlastite vrijednosti o ili 1 već prema tome da li su stanja sa neparnim ili parnim brojem bozona. Moguće je napisati opšti koeficijent razvoja funkcije $\hat{F}^{1/2}$ po operatorima oblika $\hat{N}(\hat{N}-1)...(\hat{N}-\nu)$ gdje je $\hat{N} = B^+B/35,36,37/.$ Ova je, pak potrebno radi prelaska na GF G $_{\vec{fg}}$ (t) koja adekvatno odražava sadržaj fizikalnih procesa u molekularnim kristalima.

Prilikom traženja komutatora $\left(\sqrt{1+B^{+}B} P,H\right)$ izostavićemo član

$$P_{\vec{n}}^{+}\left(\sqrt{1+B_{\vec{p}}^{+}B_{\vec{p}}^{-}P_{\vec{p}}^{-}P_{\vec{p}}^{-}\sqrt{1+B_{\vec{p}}^{+}B_{\vec{p}}^{-}P_{\vec{p}}^{-}}\right)\delta_{\vec{p}},\vec{m} + \left(\sqrt{1+B_{\vec{p}}^{+}B_{\vec{p}}^{-}P_{\vec{p}}^{-}\sqrt{1+B_{\vec{p}}^{+}B_{\vec{p}}^{-}P_{\vec{p}}^{-}}\right)P_{\vec{m}}\delta_{\vec{p}},\vec{n}$$

iz sledećih razloga. Operator u prvoj zagradi ima vlastite vrijednosti nula za sva bozonska stanja, dok su vlastite vrijednosti (koje su različite od nule) operatora u drugoj zagradi jednake $\sqrt{2N+2} - \sqrt{2N+1}$. Za velike vrijednosti N ova razlika se može zanemariti. Ovakva aproksimacija ima smisla samo pri veoma visokim eksitonskim koncentracijama. Osim ovoga, u (3.30) koristićemo se Tjablikovim dekuplovanjem /13/

$$\langle\!\langle P^*PP|P^*\rangle\!\rangle \approx \frac{1-6}{2} \langle\!\langle P|P^*\rangle\!\rangle$$
 (3.31)

gdje je

$$G = 1 - 2 \langle P^* P \rangle \qquad (3.32)$$

Na taj način jednačina (3.30) prelazi u

$$\begin{split} i\frac{d}{dt}\Lambda_{\vec{f}\vec{g}}(t) &= i\delta(t)\,\delta_{\vec{f},\vec{g}}\,\mathcal{K} + (\Delta + \frac{1-6}{2}\sum_{\vec{m}}Y_{\vec{f}\vec{m}})\Lambda_{\vec{f}\vec{q}}(t) + \\ &+ \frac{6}{2}\sum_{\vec{m}}X_{\vec{f}\vec{m}}\Lambda_{\vec{m}\vec{q}}(t) \end{split} \tag{3.33}$$

gdje je

$$\mathcal{K} = \left\langle \left[\sqrt{1 + B_{\vec{f}}^{\dagger}(o) B_{\vec{f}}(o)} P_{\vec{f}}(o), P_{\vec{g}}^{\dagger}(o) \sqrt{1 + B_{\vec{g}}^{\dagger}(o) B_{\vec{g}}^{\dagger}(o)} \right] \right\rangle$$
(3.34)

Prije nego što predjemo sa Greenove funkcije Λ na G, daćemo

vezu izmedju funkcija Λ i G na način kako je to uradjeno u /33/. Zaključeno je da se prelaz sa pomoćne GF Λ na "fizičku" GF Γ vrši zamjenom

$$\mathcal{K} = (1+2\langle B^*B \rangle) G$$
 (3.35)

Veza izmedju Λ i Γ može se naći na sledeći način.Na osnovu onoga što je rečeno za vlastite vrijednosti operatorske funkcije $\sqrt{1+B^+B} \hat{F}^{1/2}$ i činjenice da $\sqrt{1+B^+B}$ i $\hat{F}^{1/2}$ komutiraju dobija se da u cijelom bozonskom prostoru vrijedi relacija

$$\sqrt{1+B^{+}B} \hat{F}^{1/2} = (1+B^{+}B) \hat{F}.$$
 (3.36)

Ako (3.27), (3.28) i (3.36) uvrstimo u (3.29), i ako se koristimo relacijom $[B,B^{+\nu}] = \mathcal{V}B^{+\nu+1}$ dobijamo

$$\begin{split} \Lambda_{\vec{f}} \stackrel{*}{\vec{j}}(t) &= \sum_{\mu_{i}, \nu=0}^{\infty} \frac{(-2)^{\mu+\nu}}{(1+\mu)!(1+\nu)!} \left\{ (1+\mu)(1+\nu) \ll B_{\vec{f}}^{+\nu}(t) B_{\vec{f}}^{+\nu}(t) | B_{\vec{g}}^{+\mu+1}(0) B_{\vec{f}}^{\mu}(0) \rangle + \\ &+ (1+\nu) \ll B_{\vec{f}}^{+\nu}(t) B_{\vec{f}}^{\nu+1} | B_{\vec{g}}^{+\mu+2}(0) B_{\vec{f}}^{\mu+1}(0) \rangle + \\ &+ (1+\mu) \ll B_{\vec{f}}^{+\nu+1}(t) B_{\vec{f}}^{\nu+1}(t) | B_{\vec{g}}^{+\mu+1}(0) B_{\vec{f}}^{\mu}(0) \rangle + \\ &+ (1+\mu) \ll B_{\vec{f}}^{+\nu+1}(t) B_{\vec{f}}^{\nu+1}(t) | B_{\vec{f}}^{\mu}(0) B_{\vec{f}}^{\mu}(0) \rangle + \\ & \leq B_{\vec{f}}^{+\nu+1}(t) B_{\vec{f}}^{\mu+1}(t) | B_{\vec{f}}^{\mu+1}(t) | B_{\vec{f}}^{\mu}(0) \rangle + \\ &\leq B_{\vec{f}}^{+\nu+1}(t) B_{\vec{f}}^{\mu+1}(t) | B_{\vec{f}}^{\mu+1}(t) | B_{\vec{f}}^{\mu}(0) | B_{\vec{f}}^{\mu}(0) \rangle + \\ &\leq B_{\vec{f}}^{+\nu+1}(t) | B_{\vec{f}}^{\mu+1}(t) | B_{\vec{f}}^{\mu+1}(t) | B_{\vec{f}}^{\mu}(0) | B_{\vec{f}}^{\mu}(0) \rangle + \\ &\leq B_{\vec{f}}^{+\nu+1}(t) | B_{\vec{f}}^{\mu+1}(t) | B_{\vec{f}}^{\mu+1}$$

U (3.37) vršimo dekuplovanje primjenom Wickove teoreme za bozone na sledeći način

gdje je sa n označena srednja vrijednost <B⁺B>. Osim toga koristimo se relacijama

 $\sum_{\mu=0}^{\infty} (-2n)^{\mu} = \frac{1}{1+2n} ; \sum_{\mu=0}^{\infty} \mu(-2n)^{\mu} = -\frac{2n}{(1+2n)^2} ; \sum_{\mu=0}^{\infty} \mu^2(-2n)^{\mu} = \frac{4n^2-2n}{(1+2n)^3} .$

- 35 -

Na taj način (3.37) prelazi u

$$\Lambda_{\vec{f}\vec{g}}(t) = \bigvee G_{\vec{f}\vec{g}}(t) + 2 \bigotimes D_{\vec{f}\vec{g}}(t) G_{\vec{f}\vec{g}}^{2}(t) + O(D^{2}G^{3}).$$
(3.39)

Ovdje je

$$V = \frac{1+4n+8n^2+8n^3+4n^4}{(1+2n)^4}; \quad W = \frac{1}{(1+2n)^6}; \quad D_{\vec{f}} = \langle \langle B_{\vec{f}}^{\dagger}(t) / B_{\vec{f}}(0) \rangle \rangle. \quad (3.40)$$

Uvrštavanje (3.39) u (3.33) i Fourier transformacije

$$\begin{aligned} G_{\vec{f}}\vec{g}(t) &= \int dE \ e^{iEt} \ \frac{1}{N} \sum_{\vec{k}} G_{\vec{k}}(E) \ e^{i\vec{k}(\vec{f}-\vec{g})} \\ G_{\vec{f}}\vec{g} &= \frac{1}{N} \sum_{\vec{k}} e^{i\vec{k}(\vec{f}-\vec{g})} , \ \delta(t) = \frac{1}{2\pi} \int dE \ e^{iEt} \end{aligned} \tag{3.41}$$

dovode nas do izraza za Grenovu funkciju G $_{\widetilde{k}}(E)$

$$G_{\vec{k}}(E) = \frac{i\tilde{\gamma}_{1}}{2\pi(E-E_{\vec{k}})} - \frac{2W}{VN^{2}} \sum_{\vec{g}_{1},\vec{g}_{2}} \int_{0}^{+\infty} dE_{g} G_{\vec{g}_{1}}(E_{1}) G_{\vec{g}_{1}}(E_{2}) G_{\vec{k}} - \bar{g}_{1} + \bar{g}_{1}(E-E_{1}+E_{2})$$
(3.42)

gdje je

$$\widehat{\mathcal{I}}_{1} = \frac{\mathcal{K}}{V} = \frac{(1+2\langle B^{\dagger}B\rangle)6}{V}, \quad E_{\vec{k}} = \Delta + \frac{6}{2} X_{\vec{k}} + \frac{1-6}{2} Y_{o}. \quad (3.43)$$

Iteracijom (3.42) u aproksimacijama

$$G_{\vec{k}}(E) = \frac{i\eta}{2\pi(E - E_{\vec{k}} + i\delta)}; \quad \eta + \eta = (1 - \eta)^{-1} + O(\eta^{a})$$
(3.44)

(aproksimacija višeg reda se ne može koristiti, a da se ne uključi zanemareni član proporcionalan sa D²G³ (3.39) dobija-

$$G_{\vec{k}(E)} = \frac{i}{2\vec{v}} \frac{\mathcal{T}_1}{E - E_{\vec{k}}} \left\{ 1 - \frac{2W\mathcal{T}_1^2}{VN(2\vec{v})^2} \sum_{\vec{g_1}, \vec{g_2}} \int_{-\infty}^{\infty} \frac{(E - E_{\vec{k}}) dE_1 dE_2}{(E_1 - E_{\vec{g_1}} + i\delta)(E_2 - E_{\vec{g_2}} + i\delta)(E - E_1 + E_2 - E_{\vec{k}} - \vec{g_1} + \vec{g_2})} + i\delta \right\}.$$

Poslije integriranja po E₁ i E₂ (3.45) poprima oblik

$$\begin{split} G_{\vec{k}}(E) &= \frac{i}{2\pi} \frac{\widehat{\eta}_{1}}{(E - E\vec{k})} \frac{1}{\left[U_{(\vec{k}, E)} + i U_{(\vec{k}, E)} \right]} \end{split} \tag{3.46} \\ U_{(\vec{k}, E)} &= 1 + \frac{W \widehat{\eta}_{1}^{2}}{2 V N^{2}} \sum_{\vec{k}_{1}^{2}, \vec{k}_{2}^{2}} \frac{E - E\vec{k}}{E + E\vec{k}_{2}^{2} - E\vec{k}_{2}^{2} - E\vec{k}_{2}^{2} + \vec{k}_{2}^{2}} \tag{3.47} \\ U_{(\vec{k}, E)} &= -\frac{W \widehat{\eta}_{1}^{2}}{2 V N^{2}} \sum_{\vec{k}_{2}^{2}, \vec{k}_{2}^{2}} \left(E - E\vec{k} \right) \widehat{\partial} \left(E + E\vec{k}_{2}^{2} - E\vec{k}_{2}^{2} - E\vec{k}_{2}^{2} + \vec{k}_{2}^{2} \right) . \end{split}$$

Pri izračunavanju funkcija U i U matrične elemente rezonantne interakcije X_K zamjenićemo sa X_K = - 6|X| + |X| k²a² jer ćemo raditi u aproksimaciji pozitivne efektivne eksitonske mase (X<0). Tada za E_K (3.43) dobijamo

$$E_{\vec{k}} = E_o + \frac{\hbar^2 k^2}{2m} ; \quad E_o = \Delta - 3G' |X| + \frac{1-G'}{2} Y_o ; \quad m = \frac{\hbar^2}{G|X|a^2}$$
 (3.48)

Funkcije (3.47) mogu se izračunati za velike vrijednosti intenziteta talasnog vektora k̃. Ako primjenimo istu aproksimaciju kao u slučaju niskih koncentracija dobijamo

$$U(\bar{k}, E) = 3f(\theta) \frac{2m}{\hbar^{2}\mu^{3}k} (E - E_{1})$$

$$U(\bar{k}, E) = -\frac{3}{4} \pi f(\theta) \frac{m}{\hbar^{2}\mu_{0}k} (E - E_{\overline{k}})$$
(3.49)

gdje je

$$f(\theta) = \frac{W \hat{\gamma}^2}{2V}, \quad E_1 = E_k + \frac{1}{3f(\theta)} \frac{\hbar^2 \mu_b^2}{2m}.$$
 (3.50)

Na osnovu (3.49) GF (3.46) možemo napisati u obliku

$$G_{\mathcal{K}}(\mathcal{R}) = \frac{-i\mathcal{T}_{i}}{6\pi f(\theta)} \frac{\mathcal{R}_{T}}{(\mathcal{R}-\mathcal{R}_{\mathcal{K}})[\mathcal{R}-\mathcal{R}_{i}+i\mathcal{R}_{T}/\mathcal{Q}_{s}}(\mathcal{R}-\mathcal{R}_{\mathcal{K}})]$$
(3.51)

mo

$$Q = \hbar^{-1}E; Q_{\vec{k}} = \hbar^{-1}E_{\vec{k}}; Q_{\vec{l}} = \hbar^{-1}E_{\vec{l}}; Q_{\vec{l}} = \hbar\mu_{\vec{l}}^{*}/2m; Q_{\vec{s}} = \frac{4\hbar\mu_{\vec{l}}k}{\pi m}. \qquad (3.52)$$

Iz jednačine $\Re - \Re_1 + i \frac{\Re T}{\Omega_s} (\Re - \Re k) = 0$ sljedi dodatni, kinematič-ki eksitonski nivo

$$\hat{X}_{\vec{k}}^{(1)} = \hat{X}_{\vec{k}}^{*} + \frac{\hat{X}_{s}\hat{X}_{\tau}}{\hat{X}_{s}^{*} + \hat{X}_{\tau}^{*}} \cdot \frac{\hat{X}_{s}}{3f(\theta)} - i \frac{\hat{X}_{\tau}\hat{X}_{s}}{\hat{X}_{s}^{*} + \hat{X}_{\tau}^{*}} \frac{\hat{X}_{\tau}}{3f(\theta)} \cdot$$
(3.53)

Sada sa (3.51) prelazimo na oblik $G_{\vec{k}}(\Omega)$ pogodan za izračunavanje dielektrične konstante

$$\widehat{G}_{\vec{k}}(g) = \frac{i}{2\pi} \frac{Q}{(Q - Q_{\vec{k}})(Q - Q_{\vec{k}})} = \frac{i}{2\pi} \left(\frac{X}{Q - Q_{\vec{k}}} - \frac{Y}{Q - Q_{\vec{k}}} \right)$$
(3.54)

gdje je

$$Q = -\frac{\widehat{\gamma}_{i} \mathscr{Q}_{T}}{3f(\mathfrak{G})}, X = \frac{Q}{\mathscr{Q} - \mathscr{Q}_{\vec{k}}^{(i)}} = \widehat{\gamma} \left(1 + i \frac{\mathscr{Q}_{T}}{\mathscr{Q}_{s}}\right), Y = -X \qquad (3.55)$$

Dalji postupak izračunavanja dielektrične konstante je potpuno analogan kao u slučaju niskih koncentracija.

Ovdje za frekvencije daleko od eksiton-foton rezonancije dobijamo

$$Re \mathcal{E}_{(\vec{k},\omega)} = 1 + \frac{2\pi^2 S^2(\vec{k}) \overline{\gamma_1}}{\hbar \mathcal{R}_o^2} \cdot \frac{\mathcal{R}_o^3 + \omega^3 + \omega^2 \mathcal{R}_o}{(\mathcal{R}_o^2 - \omega^2)}$$

$$Im \mathcal{E}_{(\vec{k},\omega)} = \frac{2\pi^2 S^2_{(\vec{k})} \overline{\gamma_1} \mathcal{R}_T}{\hbar \mathcal{R}_o^2 \mathcal{R}_s} \cdot \frac{\mathcal{R}_o^3 + \omega^3 + \omega^2 \mathcal{R}_o}{(\mathcal{R}_o^2 - \omega^2)} \cdot$$

$$(3.56)$$

Prilikom analize eksitonskog sistema visokih koncentracija pojavio se samo jedan dodatni kinematički novi (3.53). U slučaju niskih koncentracija dobili smo dva nivoa. Ovo je razumljivo s obzirom da je račun za niske koncentracije izvršen tačnije nego u slučaju visokih koncentracija. Da bismo u račun uključili sve stepene eksitonskih koncentracija, morali smo da uvedemo veći broj aproksimacija i otuda je došlo do gubljenja jednog od nivoa. Za procjenu vremena života kinematičkog nivoa (3.53) potrebno je u imaginarni dio uvrstiti (3.52), (3.50), (3.43) i (3.40). Ako to uradimo dobijamo

$$\mathcal{T} = \frac{8\pi \mathcal{H}_{b}k}{3(\pi^{2}\mathcal{H}_{o}^{2} + 64k^{2})} \frac{(1+4n+8n^{2}+8n^{3}+4n^{4})^{3}\hbar \mathcal{H}_{o}^{2}}{(1+2n)^{9}m^{*}}, \quad m^{*} = \frac{\hbar^{2}}{1\times 1q^{2}}$$
(3.57)

s tim što smo σ(3.32), primjenom Wickove teoreme, dobili na sljedeći način

$$\vec{b} = 1 - 2 \langle P^{\dagger}P \rangle = 1 - 2 \langle \sum_{\nu=0}^{\infty} \frac{(-2)^{\nu}}{(1+\nu)!} B^{\dagger\nu+1} B^{\nu+1} \rangle = \frac{1}{1+2n} \quad (3.58)$$

Za $\mu_o = 10^9 \text{m}^{-1}$ i kæ $10^8 - 10^9 \text{m}^{-1}$ iz relacije (3.57) slijedi da je vrijeme života za niske koncentracije (n + 0 jer je n ~ $10^{-3} - 10^{-6}$) reda $\tau \sim 10^{-13} - 10^{-14}$ s, a za visoke koncentracije (n + 1) reda $\tau = 10^{-14} - 10^{-15}$ s. Širenje luminescentnih linija za niske koncentracije može ići da 500 cm⁻¹, aza visoke koncentracije ovo širenje je 7,1445 puta veće.

Što se tiče koeficijenta apsorpcije (3.56), on zavisi od koncentracije preko veličine $\mathcal{T}_{1}(3.43)$ koja se za n $\in(0,1)$ kreće do 3,41. Postoji vjerovanje da će pomoću impulsnih lasera biti dostignute eksitonske koncentracije bliske jedinici. Rezultati do kojih smo došli pokazuju da u tom slučaju treba očekivati širenje linija od oko 3,5 $\cdot 10^{3}$ cm⁻¹ (skoro za red veličine veće od do sada izmjerenog) i porast koeficijenta apsorpcije 3,24 puta. 4. UTICAJ KINEMATIČKIH EFEKATA NA DIELEKTRIČNE KARAKTERISTIKE MOLEKULARNIH KRISTALA

Postojeće analize apsorpcionih fenomena u kristalima su zasnovane na ideji da bazični mehanizam koji karakteriše ove fenomene je eksiton-fonon interakcija /5,6/. Nesumnjivo je da eksiton-fonon interakcija igra važnu ulogu katkad dominantnu u toku apsorpcije elektromagnetnih talasa u kristalu ali je naše mišljenje, da postoje i drugi mehanizmi koji se ne mogu zanemariti, naročito eksiton-eksiton interakcija.Uticaj eksiton-eksiton interakcije na apsorpcione osobine kristala bio je u potpunosti ignorisan i to zbog toga što su više eksitonske GF bile dekuplovane na pogrešan način (prilikom dekuplovanja bili su sparivani samo operatori koji djeluju u istom trenutku vremena i na taj način su izgubljeni svi imaginarni dijelovi GF).

U ovom paragrafu kao što je pokazano u radu /44/ vidjet ćemo da mehanizam eksiton-eksiton interakcije igra značajnu ulogu u procesima apsorpcije i refrakcije elektromagnetnih talasa u kristalu i da je njihov značaj za ove procese u svakom slučaju uporediv sa odgovarajućim značajem mehanizma eksiton-fonon interakcije. Prilikom objašnjenja kinematičkih nivoa razmatrali smo korektnost primjene metoda GF, a ta analiza je takodje bila izvršena u /27/ ali se tu ne može pretendovati na kompletnosti (efekti neodržanja eksitona bili su zanemareni, a daju bitnu promjenu rezultata dobivenih u /27/), a koeficijent apsorpcije i indeks prelamanja nisu računati.

Pošto se razmatra uloga nelinearnih optičkih efekata na apsorpcione fenomene neophodno je uzeti kompletni eksitonski hamiltonijan (1.10), s članovima koji odgovaraju kreacijⁱ i anihilaciji eksitonskih parova. Indeks prelamanja i koeficijent apsorpcije biće izračunati.

Prilikom razmatranja dielektričnih osobina eksitonskog sistema pri niskim i visokim koncentracijama nadjena je veza izmedju tenzora $\triangle_{\alpha\beta}^{-4}$ i GF elektromagnetnog polja (3.15)

$$\Delta_{\mathcal{A}\mathcal{S}}^{-1}(\vec{k},\omega) = -\frac{C^2}{\omega^2} \left[\delta_{\mathcal{A}\mathcal{B}} - i \frac{2\pi^3}{\hbar} R_{\mathcal{A}\mathcal{B}}^{(c)}(\vec{k},\omega) \right]$$
(4.1)

gdje je $\Delta_{\mathcal{A}\mathcal{B}}(\vec{k},\omega)$ dato u (3.4), a $R_{\mathcal{A}\mathcal{B}}^{(c)}(\vec{k},\omega)$ ima sledeći oblik:

$$\begin{split} R_{\mathcal{A}\mathcal{B}}^{(\mathcal{C})}(\vec{x},\omega) &= (2\mathfrak{N})^{-4} \int d\vec{p} \, d\mathcal{P} \, \mathcal{R}_{\mathcal{A}\mathcal{B}}(\vec{p},\mathcal{P}) e^{i\vec{k}\vec{p}+i\omega\mathcal{P}}; \, \vec{p}=\vec{r}-\vec{r}'; \, \mathcal{P}=t-t', \\ R_{\mathcal{A}\mathcal{B}}(\vec{r}-r';t-t') &= \mathcal{O}(t-t') \langle \hat{E}_{\mathcal{A}}(\vec{r},t) \hat{E}_{\mathcal{B}}(\vec{r}';t') - \hat{E}_{\mathcal{B}}(\vec{r}';t') \hat{E}_{\mathcal{A}}(\vec{r},t) \rangle. \\ \mathcal{O}(t-t') &= \begin{cases} 1 & ; t > t' \\ 0 & ; t < t' \end{cases} \end{split}$$
(4.17)

Sledeća faza proračuna dielektrične konstante sastoji se u nalaženju veze izmedju GF elektromagnetnog polja $R_{\alpha\beta}^{(C)}$ i eksitonskih GF. Operator električnog polja u kristalu $\hat{E}_{\alpha}(\vec{n})$ može se, kao jednočestični operator izraziti preko operatora $a_{\nu}^{+}(\vec{n})$ i $a_{\nu}(\vec{n})$ koji kreiraju, odnosno anihiliraju elektrone na čvoru m u stanju ν i to na sledeći način:

$$\hat{E}_{\mathcal{A}}(\vec{n}) = \sum_{\mathcal{V},\mathcal{V}'} \langle \mathcal{V} | \mathcal{I}_{\mathcal{A}}(\vec{n}) / \mathcal{V}' \rangle q_{\mathcal{V}}^{\dagger}(\vec{n}) q_{\mathcal{V}}(\vec{n}) ; \mathcal{V}, \mathcal{V}' \in (0, \mathcal{V}_{o}).$$

$$(4.2)$$

U ovoj formi $\exists_{\alpha(\bar{n})}$ predstavlja lokalno polje u kristalnoj ćeliji. Matrični elementi $\langle v | \exists_{\alpha} | v \rangle$ uzeti su po svojstvenim stanjima φ hamiltonijana H(ħ) izolovanog molekula, tj.

$\langle \mathcal{V} | \mathcal{I}_{\mathcal{X}(\vec{n})} | \mathcal{V} \rangle = \int dx_{\vec{n}} \mathcal{P}_{\mathcal{V}}^{*}(x_{\vec{n}}) \mathcal{I}_{\mathcal{X}(\vec{n})} \mathcal{P}_{\mathcal{V}}(x_{\vec{n}})$

i pošto su svi molekuli identični, ne zavise od indeksa čvora. Skup unutrašnjih koordinata molekula označen je sa $x_{\tilde{n}}$. Pošto se razmatra dvonivoska šema molekulskih pobudjenja, indeksi y i y? uzimaju dvije vrijednosti od kojih "o" označava osnovno, a " y_0 " pobudjeno stanje. Imajući u vidu da $\hat{H}(\hat{n})$ i $\hat{E}_*(\hat{n})$ ne komutiraju, dijagonalni matrični elementi $\langle v | \exists_* | v^* \rangle$ su ravni nuli. Takodje ćemo pretpostaviti da su funkcije γ realne. S obzirom da se Pauli operatori kreacije i anihilacije eksitona definišu kao u (1.8), razvijanje sume (4.2) dovodi do rezultata

$$\hat{E}_{\chi(\vec{n},t)} = S_{\chi} \left[P_{(\vec{n},t)} + P_{(\vec{n},t)}^{\dagger} \right]; \quad S_{\chi} = \langle 0/\exists_{\chi} | \mathcal{V}_{\delta} \rangle = \langle \mathcal{V}_{\delta} | \exists_{\chi} | o \rangle \tag{4.3}$$

$$\hat{Q}_{(\vec{n},t)} = e^{\frac{\hat{H}t}{1\hbar}} \hat{Q}_{(\vec{n})} e^{-\frac{\hat{H}t}{1\hbar}}$$

gdje H predstavlja eksitonski hamiltonijan sistema. S obzirom na (4.1⁻) i 4.3) dobijamo

$$\begin{split} R_{\mathcal{A}\mathcal{B}}(\vec{n}\cdot\vec{n}';t-t') &= S_{\mathcal{A}}S_{\mathcal{B}}\left[\Gamma_{(\vec{n}\cdot\vec{n}'};t-t')+\widetilde{\Gamma_{(\vec{n}\cdot\vec{n}'};t-t')}+\widetilde{\Gamma_{(\vec{n}\cdot\vec{n}';t-t')}}+\widetilde{\Gamma_{(\vec{n}\cdot\vec{n}';t-t')}}\right] \\ &+\widetilde{\Lambda}_{(\vec{n}\cdot\vec{n}';t-t')}\right] \\ \Gamma_{(\vec{n}\cdot\vec{n}';t-t')} &= \left\langle \left.P_{(\vec{n},t)}\right| P_{(\vec{n}',t)}^{\dagger}\right\rangle \right\rangle; \quad \widetilde{\Gamma_{(\vec{n}\cdot\vec{n}';t-t')}} &= \left\langle \left.P_{(\vec{n},t)}^{\dagger}\right| P_{(\vec{n},t)}^{\dagger}\right\rangle \right\rangle \\ \Lambda_{(\vec{n}\cdot\vec{n}';t-t')} &= \left\langle \left.P_{(\vec{n},t)}^{\dagger}\right| P_{(\vec{n},t')}^{\dagger}\right\rangle \right\rangle; \quad \widetilde{\Lambda}_{(\vec{n}\cdot\vec{n}';t-t')} &= \left\langle \left.P_{(\vec{n},t)}^{\dagger}\right| P_{(\vec{n}',t')}\right\rangle \right\rangle \end{split}^{(4)}$$

što poslije Fourier transformacija tipa:

$$F(\vec{n}-\vec{n}';t-t') = \frac{1}{N} \sum_{\vec{k}} \int d\omega F(\vec{k},\omega) e^{i\vec{k}(\vec{n}-\vec{n}') - i\omega(t-t')}$$
(4.5)

daje rezultat

$$\begin{split} R_{\mathcal{A}\mathcal{B}(\vec{k},\omega)} &= S_{\mathcal{A}}S_{\mathcal{B}}\left[\Gamma_{(\vec{k},\omega)} + \widehat{\Gamma_{(\vec{k},\omega)}} + \Lambda_{(\vec{k},\omega)} + \widehat{\Lambda_{(\vec{k},\omega)}}\right] \qquad (4.6) \\ R_{\mathcal{A}\mathcal{B}(\vec{k},\omega)}^{(c)} &= \frac{\gamma_{o}}{(2\pi)^{3}} R_{\mathcal{A}\mathcal{B}(\vec{k},\omega)} , \ \gamma_{o} = \frac{V}{N} \quad . \end{split}$$

.4)

U formulama (4.4) i (4.6), veličine $\Gamma, \tilde{\Gamma}, \Lambda$ i $\tilde{\Lambda}$ predstavljaju eksitonske GF, V je zapremina kristala i N broj molekula u kristalu. Zamjena (4.6) u (4.1) konačno daje traženu vezu izmedju eksitonskih GF i dielektrične konstante

$$\Delta_{\mathcal{A}\mathcal{B}}^{-1} = -\frac{c^{*}}{\omega^{*}} \left\{ \delta_{\mathcal{A}\mathcal{B}} - i \frac{\nabla_{\mathcal{B}} S_{\mathcal{A}} S_{\mathcal{B}}}{4\hbar} \left[\Gamma_{(\vec{k},\omega)} + \widetilde{\Gamma}_{(\vec{k},\omega)} + \Lambda_{(\vec{k},\omega)} + \widetilde{\Lambda}_{(\vec{k},\omega)} \right] \right\}.$$
(4.7)

Dalji i osnovni problem predstavlja korektan proračun eksitonskih GF.

Već smo rekli da uzimamo kompletni eksitonski hamiltonijan (1.10)

$$H = \Delta \sum_{\vec{n}} P_{\vec{n}}^{\dagger} P_{\vec{n}} + \sum_{\vec{n},\vec{m}} \chi_{\vec{n}\vec{m}} P_{\vec{n}}^{\dagger} P_{\vec{n}}^{\dagger} + \frac{1}{2} \sum_{\vec{n},\vec{m}} \gamma_{\vec{n}\vec{m}} [P_{\vec{n}}^{\dagger} P_{\vec{n}}^{\dagger} + P_{\vec{m}} P_{\vec{n}}] + \sum_{\vec{n},\vec{m}} Z_{\vec{n}\vec{m}} P_{\vec{n}}^{\dagger} P_{\vec{n}} .$$
(4.8)

pošto se razmatra uloga nelinearnih optičkih efekata. S obzirom na (4.8) i u skladu sa opštom teorijom dvovremenskih, temperaturskih GF /13,29/ za funkcije \bigwedge i \bigwedge dobija se sledeći sistem jednačina:

$$\begin{split} & i \hbar \frac{d}{dt} \Gamma_{(\vec{f} - \vec{g}_{i}, t)} - \Delta \Gamma_{(\vec{f} - \vec{g}_{i}, t)} - \sum_{\vec{m}} [X_{(\vec{f} - \vec{m})} \Gamma_{(\vec{m} - \vec{g}_{i}, t)} + Y_{(\vec{f} - \vec{m})} \Lambda_{(\vec{m} - \vec{g}_{i}, t)}]_{=} \\ &= i \hbar \delta(t) \delta_{\vec{f}} \vec{g} \left[1 - 2 \langle P_{(\vec{f}, o)}^{\dagger} P_{(\vec{f}, o)} \rangle \right] - 2 \sum_{\vec{m}} [X_{(\vec{f} - \vec{m})} \langle P_{(\vec{f}, t)}^{\dagger} P_{(\vec{f}, t)} P_{(\vec{f}, t)} | P_{(\vec{f}, o)}^{\dagger} \rangle \rangle \\ &+ Y_{(\vec{f} - \vec{m})} \langle P_{(\vec{m}, t)}^{\dagger} P_{(\vec{f}, t)}^{\dagger} P_{(\vec{f}, t)} | P_{(\vec{g}, o)}^{\dagger} \rangle - Z_{(\vec{f} - \vec{m})} \langle P_{(\vec{m}, t)}^{\dagger} P_{(\vec{n}, t)} | P_{(\vec{g}, o)}^{\dagger} \rangle \rangle \Big] \\ &= i \hbar \frac{d}{dt} \Lambda_{(\vec{f} - \vec{g}_{i}, t)} + \Delta \Lambda_{(\vec{f} - \vec{g}_{i}, t)} + \sum_{\vec{m}} [X_{(\vec{f} - \vec{m})} \Lambda_{(\vec{m} - \vec{g}_{i}, t)} + Y_{(\vec{f} - \vec{m})} \Gamma_{(\vec{m} - \vec{g}_{i}, t)}]^{2} \\ &= 2 \sum_{\vec{m}} [X_{(\vec{f} - \vec{m})} \langle P_{(\vec{m}, t)}^{\dagger} P_{(\vec{f}, t)}^{\dagger} P_{(\vec{f}, t)} | P_{(\vec{f}, t)}^{\dagger} \rangle P_{(\vec{f}, t)} \rangle P_{(\vec{f}, t)} P_{(\vec{f}, t)} P_{(\vec{f}, t)} \rangle P_{(\vec{f}, t)} P_{(\vec{f}, t)} P_{(\vec{f}, t)} \rangle \langle P_{(\vec{f}, t)} \rangle P_{(\vec{f}, t)} P_{(\vec{f}, t)} \rangle P_{(\vec{f}, t)} \rangle \langle P_{(\vec{f}, t)} P_{(\vec{f}, t)} \rangle P_{(\vec{f}, t)} \rangle \langle P_{(\vec{f}, t)} \rangle P_{(\vec{f}, t)} \rangle P_{(\vec{f}, t)} \rangle \langle P_{(\vec{f}, t)} \rangle P_{(\vec{f}, t)} \rangle P_{(\vec{f}, t)} \rangle \langle P_{(\vec{f}, t)} \rangle P_{(\vec{f}, t)} \rangle \langle P_{(\vec{f}, t)} \rangle P_{(\vec{f}, t)} \rangle \langle P_{(\vec{f}, t)} \rangle \rangle \rangle \Big]. \end{split}$$

Bitan element za dalju analizu predstavlja tretman viših paulionskih GF, koje se pojavljuju na desnoj strani jednačina sistema (4.9). Neposredno dekuplovanje viših paulionskih GF, kao na primjer u /13/ dalo bi neznatne korekcije energija elementarnih ek-

- 42 -

scitacija i beskonačna vremena života i na taj način bi uticaj nelinearnih efekata na apsorpcione fenomene bio u potpunosti ignorisan. Prema tome, dalja analiza preko Pauli operatora, koja bi dovela do konačnih vremena života, zahtjevala bi dopisivanje novog sistema jednačina za sve više paulionske GF, što bi, sa svoje strane izvanredno komplikovalo dalji račun. Daleko je prostije da se više paulionske GF izraze preko bozonskih GF, a ove dalje dekupluju striktnom primjenom Wickove teoreme. U tom cilju, Pauli operatore ćemo izraziti preko Bose operatora B⁺iB, koristeći egzaktnu bozonsku reprezentaciju za Pauli operatore (1.12) /12/ i to u aproksimaciji (2.4).

Poslije zamjene (2.4), više Paulinske GF se dekupluju po sledećoj šemi:

Treba napomenuti da su u (4.10) zanemareni svi članovi proporcionalni kvadratu koncentracije eksitona. Pošto je (2.4) aproksimativni izraz, iz računa su ispušteni i svi članovi koji sadrže produkte za više od tri GF.

Nakon zamjene (4.10) i (4.9) i prelaska u impulsni prostor pomoću Fourier transformacija tipa (4.5), sistem (4.9) postaje

$$\begin{split} &Y_{(\vec{k})}\Gamma_{(\vec{k},\omega)} + \left[\hbar\omega + W_{(\vec{k})}\right]\Lambda_{(\vec{k},\omega)} = v_{i}(\vec{k})G_{(\vec{k},\omega)} + v_{a}'(\vec{k})T_{(\vec{k},\omega)} - v_{a}'(\vec{k},\omega) \\ &[\hbar\omega - W_{(\vec{k})}]\Gamma_{(\vec{k},\omega)} - Y_{(\vec{k})}\Lambda_{(\vec{k},\omega)} = \frac{i\hbar}{2\pi}(1-2\mathcal{N}) - U_{i}(\vec{k})G_{(\vec{k},\omega)} - (4.11) \\ &- U_{2}(\vec{k}')T_{(\vec{k},\omega)} + U_{3}(\vec{k},\omega). \end{split}$$

Oznake upotrebljene u (4.11) su sledeće:

$$\begin{split} & \mathcal{W}_{(\vec{x}')} = \Delta + X_{(\vec{x})} \quad ; \quad \langle P_{(\vec{f},0)}^{*} P_{(\vec{f},0)}^{*} \rangle \approx \mathcal{N} \quad , \\ & U_{1}(\vec{x}) = \frac{2}{N} \sum_{\vec{x}} \left\{ \left[X_{(\vec{x})} + X_{(\vec{y})} - Z_{(o)} - Z_{(\vec{k}-\vec{x})} \right] \mathcal{N}_{(\vec{y})}^{*} + Y_{(\vec{y})} \quad \mathcal{M}_{(\vec{y})}^{*} \right\} , \\ & U_{2}(\vec{x}) = \frac{2}{N} \sum_{\vec{y}} \left\{ \left[Y_{(\vec{x})} + Y_{(\vec{y})} \right] \mathcal{N}_{(\vec{y})}^{*} + \left[X_{(\vec{y})} - Z_{(\vec{k}-\vec{x})} \right] \mathcal{M}_{(\vec{y})}^{*} \right\} , \\ & \mathcal{V}_{1}(\vec{x}) = \frac{2}{N} \sum_{\vec{x}} \left\{ \left[Y_{(\vec{x})} + Y_{(\vec{y})} \right] \mathcal{N}_{(\vec{y})}^{*} + \left[X_{(\vec{y})} - Z_{(\vec{k}-\vec{y})} \right] \mathcal{M}_{(\vec{y})}^{*} \right\} , \\ & \mathcal{V}_{2}(\vec{x}) = \frac{2}{N} \sum_{\vec{x}} \left\{ \left[X_{(\vec{k})} + X_{(\vec{y})} - Z_{(o)} - Z_{(\vec{k}-\vec{y})} \right] \mathcal{M}_{\vec{y}}^{*} \right\} + Y_{(\vec{y})} \mathcal{M}_{(\vec{y})}^{*} \right\} \\ & U_{3}(\vec{x}) = \frac{4}{N^{2}} \sum_{\vec{x},i,\vec{x},-\infty}^{*} \int_{0}^{\sigma} d\omega_{i} d\omega_{2} \left\{ \left[X_{(\vec{k},i)} - Z_{(\vec{k}-\vec{y})} \right] \mathcal{G}_{(\vec{x},i,\omega_{i})} \mathcal{G}_{(\vec{x},i,\omega_{i})} \mathcal{G}_{(\vec{x},i,\omega_{i})} \mathcal{G}_{(\vec{x},i,\omega_{i})} \right\} \\ & + \left[X_{(\vec{y},i)} + X_{(\vec{y},i)} - Z_{(\vec{k}-\vec{y})} - Z_{(\vec{k}-\vec{y})} \right] \mathcal{G}_{(\vec{x},i,\omega_{i})} \mathcal{T}_{(\vec{x},i,\omega_{i})} \mathcal{T}_{(\vec{x},i,\omega_{i})} \mathcal{T}_{(\vec{x},i,\omega_{i})} \mathcal{T}_{(\vec{x},i,\omega_{i})} \right\} \\ & + \left\{ Y_{(\vec{y},i)} + Y_{(\vec{y},i)} \right\} \mathcal{G}_{(\vec{x},i,\omega_{i})} \mathcal{G}_{(\vec{x},i,\omega_{i})} \mathcal{T}_{(\vec{x},i,\omega_{i})} + Y_{(\vec{x},i)} \mathcal{T}_{(\vec{x},i,\omega_{i})} \mathcal{T}_{(\vec{x},i,\omega_{i})} \mathcal{T}_{(\vec{x},i,\omega_{i})} \mathcal{T}_{(\vec{x},i,\omega_{i})} \right\} \\ \end{split}{}$$

$$\mathcal{V}_{3}(\bar{\chi},\omega) = \frac{4}{N^{2}} \sum_{\vec{q}_{1},\vec{q}_{2}} \int d\omega_{1} d\omega_{2} \left\{ Y_{(\vec{q}_{1})} G_{(\vec{q}_{1},\omega_{2})} \tilde{G}_{(\vec{q}_{2},-\omega_{3})} G_{(\vec{q}_{3},\omega_{3})} + \left[X_{(\vec{q}_{3})} + X_{(\vec{q}_{3})} + X_{(\vec{q}_{3})} + Z_{(\vec{q}_{3})} + Z_{(\vec{q}_{3})}$$

$$\begin{array}{l} & \left(\chi_{\left(\overline{g}_{1} \right)}^{2} - \mathcal{L} \left(\overline{g}_{1}^{2} - \overline{g}_{2}^{2} \right) \right) \mathcal{O} \left(\overline{g}_{1}^{2}, \omega_{1} \right) \mathcal{O} \left(\overline{g}_{2}^{2}, -\omega_{2} \right) \mathcal{I} \left(\overline{g}_{3}^{2}, \omega_{3} \right) + \\ & + \left(Y_{\left(\overline{g}_{1} \right)}^{2} + Y_{\left(\overline{g}_{2}^{2} \right)}^{2} \right) \mathcal{O} \left(\overline{g}_{1}^{2}, \omega_{1} \right) \mathcal{T} \left(\overline{g}_{2}^{2}, -\omega_{2} \right) \mathcal{T} \left(\overline{g}_{3}^{2}, \omega_{3} \right) + \left[X_{\left(\overline{g}_{1}^{2} \right)}^{2} - \mathcal{L} \left(\overline{g}_{2}^{2} \right) \right]^{2} \\ & \cdot \mathcal{T} \left(\overline{g}_{1}^{2}, \omega_{1} \right) \mathcal{T} \left(\overline{g}_{3}^{2}, -\omega_{2} \right) \mathcal{T} \left(\overline{g}_{3}^{2}, \omega_{3} \right) \right) \quad ; \quad \mathcal{L}_{3} = \overline{k} - \overline{g}_{1}^{2} + \overline{g}_{2}^{2} \quad ; \quad \omega_{3} = \omega - \omega_{1} + \omega_{2} \\ & \cdot \mathcal{L} \left(\overline{g}_{1}^{2} - \omega_{2} \right) \mathcal{T} \left(\overline{g}_{3}^{2}, \omega_{3} \right) \right) \quad ; \quad \mathcal{L}_{3} = \overline{k} - \overline{g}_{1}^{2} + \overline{g}_{2}^{2} \quad ; \quad \omega_{3} = \omega - \omega_{1} + \omega_{2} \\ & \cdot \mathcal{L} \left(\overline{g}_{1}^{2} - \omega_{2} \right) \mathcal{L} \left(\overline{g}_{2}^{2} - \omega_{3} \right) \mathcal{L} \left(\overline{g}_{3}^{2} - \omega_{3} \right) \mathcal{L} \left(\overline{g}_{3}^{$$

U daljem računu funkcije U iviz (4.12) biće izračunate u harmonijskoj aproksimaciji koja odgovara zamjeni P⁺=B⁺ i P=B u hamiltonijanu (4.8) i odbacivanju člana proporcionalnog Z. U ovoj aproksimaciji je

$$\begin{split} & \mathcal{G}_{(\vec{k},\omega)}^{(a)} = \frac{i}{2\pi} \left\{ \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{Q_{W}(\vec{k})}{Q_{(\vec{k})}} \right] \frac{1}{\omega - Q_{(\vec{k})}} + \frac{1}{2} \left[1 - \frac{Q_{W}(\vec{k})}{Q_{(\vec{k})}} \right] \frac{1}{\omega + Q_{(\vec{k})}} \right] \right\}, \\ & \tilde{\mathcal{G}}_{(\vec{k},\omega)}^{(a)} = \tilde{\mathcal{G}}_{(\vec{k},-\omega)}^{(a)} \\ & \tilde{\mathcal{T}}_{(\vec{k},\omega)}^{(a)} = \tilde{\mathcal{T}}_{(\vec{k},\omega)}^{(a)} = -\frac{i}{2\pi} \frac{Q_{Y}(\vec{k})}{2Q_{(\vec{k})}} \left[\frac{1}{\omega - Q_{(\vec{k})}} - \frac{1}{\omega + Q_{(\vec{k})}} \right]. \end{aligned}$$

$$\begin{aligned} & \mathcal{M}_{(\vec{k})}^{(a)} = \tilde{\mathcal{T}}_{(\vec{k},\omega)}^{(a)} = -\frac{i}{2\pi} \frac{Q_{Y}(\vec{k})}{2Q_{(\vec{k})}} \left[\frac{1}{\omega - Q_{(\vec{k})}} - \frac{1}{\omega + Q_{(\vec{k})}} \right]. \end{aligned}$$

$$\begin{aligned} & \mathcal{M}_{(\vec{k})}^{(a)} = \frac{1}{2} \left[-\frac{Q_{W}(\vec{k})}{Q_{(\vec{k})}} \operatorname{ctg} h_{YP} \frac{\hbar Q_{(\vec{k})}}{2k_{B}T} - 1 \right] \\ & \mathcal{M}_{(\vec{k})}^{(a)} = \tilde{\mathcal{M}}_{(\vec{k})}^{(a)} = -\frac{Q_{Y}(\vec{k})}{2Q_{(\vec{k})}} \operatorname{ctg} h_{YP} \frac{\hbar Q_{(\vec{k})}}{2k_{B}T} ; \mathcal{M}_{(\vec{k})}^{(a)} \\ & \mathcal{M}_{(\vec{k})}^{(a)} = \tilde{\mathcal{M}}_{(\vec{k})}^{(a)} = \frac{Q_{Y}(\vec{k})}{2Q_{(\vec{k})}} \operatorname{ctg} h_{YP} \frac{\hbar Q_{(\vec{k})}}{2k_{B}T} ; \mathcal{R}_{(\vec{k})T} + \frac{1}{2k_{B}T} ; \mathcal{M}_{(\vec{k})}^{(a)} \\ & \mathcal{M}_{(\vec{k})}^{(a)} = \tilde{\mathcal{M}}_{(\vec{k})}^{(a)} = \frac{1}{N} \sum_{\vec{k}} \mathcal{M}_{(\vec{k})}^{(a)} ; \mathcal{R}_{\vec{k}(\vec{k})}; \mathcal{R}_{\vec{k}(\vec{k})}; \mathcal{R}_{\vec{k}(\vec{k})}; \mathcal{R}_{\vec{k}(\vec{k})}; \mathcal{R}_{\vec{k}}^{(i)} ; \mathcal{R}_{\vec{k}}^{(i)} \\ & \mathcal{M}_{(\vec{k})}^{(a)} = \hbar^{-1} \sqrt{W_{\vec{k}}^{(a)}} ; \mathcal{R}_{\vec{k}}^{(a)} ; \mathcal{R}_{\vec{k}(\vec{k})}; \mathcal{R}_{\vec{k}(\vec{k})}; \mathcal{R}_{\vec{k}(\vec{k})}; \mathcal{R}_{\vec{k}}^{(i)} \\ & \mathcal{M}_{\vec{k}}^{(a)} = \hbar^{-1} \sqrt{W_{\vec{k}}^{(a)} - Y_{\vec{k}}^{(a)}} \\ & \mathcal{M}_{\vec{k}}^{(a)} = \frac{1}{N} \sum_{\vec{k}} \mathcal{M}_{\vec{k}}^{(a)} ; \mathcal{R}_{\vec{k}}^{(i)} ; \mathcal{R}_{\vec{k}}^{(i)} ; \mathcal{R}_{\vec{k}}^{(i)} ; \mathcal{R}_{\vec{k}}^{(i)} ; \mathcal{R}_{\vec{k}}^{(i)} \\ & \mathcal{M}_{\vec{k}}^{(i)} - \chi_{\vec{k}}^{(i)} \\ & \mathcal{M}_{\vec{k}}^{(i)} - \chi_{\vec{k}}^{(i)} ; \mathcal{R}_{\vec{k}}^{(i)} ; \mathcal{R}_{\vec{k}}^{(i)} ; \mathcal{R}_{\vec{k}}^{(i)} ; \mathcal{R}_{\vec{k}}^{(i)} ; \mathcal{R}_{\vec{k}}^{(i)} \\ & \mathcal{R}_{\vec{k}}^{(i)} + \chi_{\vec{k}}^{(i)} ; \mathcal{R}_{\vec{k}}^{(i)} ; \mathcal{R}_{\vec{k}}^{(i)}$$

Pošto je za sve realne temperature $\hbar \Omega(\vec{k}) \gg 2k_BT$, uzećemo ctg hyp $\frac{\hbar \Omega(\vec{k})}{2k_BT} \approx 1$. Konačno, ako se organičimo aproksimacijom linearnom po odnosu širine zone i energije pobudjenja izolovanog molekula, formule (4.13) se uprošćavaju i svode na

$$\begin{split} &G_{(\vec{k},\omega)}^{(o)} = \frac{i}{2\pi} \frac{1}{\omega - \mathcal{Q}_{(\vec{k})}}; \quad \widetilde{G}_{(\vec{k},\omega)}^{(o)} = G_{(\vec{k},-\omega)}^{(o)}, \\ &T_{(\vec{k},\omega)}^{(o)} = \widetilde{T}_{(\vec{k},\omega)}^{(o)} = \frac{\mathcal{Q}_{Y}(\vec{k})}{2\mathcal{Q}(\vec{k})} \left[G_{(\vec{k},\omega)}^{(o)} + \widetilde{G}_{(\vec{k},-\omega)}^{(o)} \right], \\ &\mathcal{N}_{(\vec{k})}^{(o)} = \mathcal{N}^{(o)} = \mathcal{M}^{(o)} = \widetilde{\mathcal{M}}^{(o)} = 0 \quad ; \quad \mathcal{M}_{(\vec{k})}^{(o)} = \widetilde{\mathcal{M}}_{(\vec{k})}^{(o)} = \frac{\mathcal{Q}_{Y}(\vec{k})}{2\mathcal{Q}(\vec{k})}. \end{split}$$

- 45 -

Ako se zanemari prostorna disperzija ($\vec{k} - 0$), iskoristi poznata formula $\frac{1}{\omega + i\delta} = \mathcal{P} \frac{1}{\omega} - i\pi \delta(\omega)$ i odbace realni dijelovi funkcije U₃ i v₃, rješenja sistema (4.11) mogu se napisati u sledećem obliku:

$$\Gamma_{(\omega)} = \frac{i}{2\pi} \left[\left(\frac{1}{\mu} + \frac{C_1}{\mu^2} - \frac{C_2}{\mu^2 \eta} \right) - i \left(\frac{D_1}{\mu} + \frac{D_2}{\mu \eta} \right) \right]$$

$$(4.15)$$

$$\Lambda_{(\mu)} = -\frac{i}{2\pi} \left[\frac{C_2}{\mu^2} + \frac{C_1}{\mu^2} - \frac{C_2}{\mu^2 \eta} \right] - i \left(\frac{D_2}{\mu^2} + \frac{D_2}{\mu \eta} \right) \right]$$

$$\begin{split} \Lambda(\omega) &= -\frac{i}{2\pi} 6 \mathcal{Q}_{Y} \left[\left(\frac{1+C_{3}}{\mu \eta} + \frac{C_{4}}{\mu^{2} \eta} \right) - i \left(\frac{D_{3}}{\mu \eta} + \frac{D_{4}}{\eta} \right) \right], \\ \mu &= \omega - \mathcal{Q}_{\Delta}; \ \eta = \omega + \mathcal{Q}_{\Delta}; \ \mathcal{Q}_{\Delta} = \hbar^{-1}_{\Delta}; \ \widetilde{\Gamma}(\omega) = \Gamma(-\omega); \ \widetilde{\Lambda}(\omega) = \Lambda(-\omega) \end{split}$$

Koeficijenti u (4.15) izračunati su za kristal sa prostom kubnom strukturom u aproksimaciji najbližih susjeda i u aproksimaciji malih talasnih vektora. Oni su dati sa:

$$\begin{split} C_{1} &= \frac{6}{\Re_{A}} \frac{2}{\chi_{A}} \quad ; \quad C_{2} &= \frac{36 \Re_{X} \Re_{Y}^{2}}{\Re_{A}} \left(1 - \frac{\Im_{x}}{\Im_{X}} \right); \quad C_{3} &= \frac{\Im_{X}}{\Im_{A}} \left(1 - \frac{\Im_{z}}{\Im_{X}} \right), \\ D_{1} &= \frac{\Omega^{4}}{32 \pi^{3}} \left(3 \frac{\Re_{Y}^{2}}{\Re_{X}^{2}} + \left(3 - \frac{1}{2} \Omega^{3} \right) \left(1 - \frac{\Im_{z}}{\Im_{X}} \right) - \frac{3 \Re_{Y}^{2}}{\Im_{X} \Re_{A}} \left(6 - \frac{1}{2} \Omega^{2} \right) \right), \\ D_{2} &= \frac{\Omega^{4}}{32 \pi^{3}} \frac{3 \Re_{Y}^{2}}{\Im_{X}} \left(\frac{1}{2} \Omega^{2} - 6 \right), \\ D_{3} &= \frac{\Omega^{4}}{32 \pi^{3}} \left\{ \frac{1}{2} \Omega^{2} \left[\frac{\Im_{z}}{\Im_{X}} - \frac{6 \Re_{X}}{\Im_{A}} \left(1 - \frac{\Im_{x}}{\Im_{X}} \right) + \frac{6 \Re_{Y}^{2}}{\Im_{X} \Re_{A}} + 3 \left[\frac{\Re_{Y}^{2}}{\Im_{X}} - 1 + \frac{6 \Re_{X}}{\Im_{A}} \left(1 - \frac{\Im_{x}}{\Im_{X}} \right) - \frac{6 \Re_{Y}^{2}}{\Im_{X} \Re_{A}} \right] \right\}, \\ D_{4} &= \frac{\Omega^{4}}{32 \pi^{3}} \left\{ \frac{1}{\Re_{X}} - \frac{3}{\Re_{A}} - \frac{6 \Re_{X}}{\Im_{X} \Re_{A}} - \frac{1}{4} \Omega^{2} \left[\frac{1}{6 \Re_{X}} - \frac{1}{\Re_{A}} \left(1 - \frac{\Re_{x}}{\Im_{X}} \right) \right] \right\}; \\ Q_{2} &= \left(6 \pi^{2} \right)^{\frac{1}{3}}; \quad \mathcal{R}_{R} = \pi^{-1} \mathcal{R}; \quad \mathcal{R} \in \left(X, Y, Z \right) \quad . \end{split}$$

Sada se konačno mogu izračunati dielektrična konstanta $\mathcal{E}(\omega)$, kao i indeks prelamanja n(ω) i koeficijent apsorpcije $\mathcal{X}(\omega)$ Ako se zanemari prostorna disperzija, onda je u izotropnoj aproksimaciji $\Delta_{ab}(\vec{k},\omega) = -\frac{\omega^2}{c^2} \mathcal{E}(\omega) \delta_{ab}$ i $S_a S_b = E_o^2 \delta_{ab}$, pa se kombinovanjem formula (4.7) i (4.15) dolazi do rezultata
$$\begin{split} \mathcal{E}_{(x)} &= \mathcal{R}_{(x)} + i J_{(x)} \quad ; \quad x = \frac{\omega}{\mathcal{R}_{A}} \; ; \\ \mathcal{R}_{(x)} &= \frac{(x^{2}-1)^{2}(x^{4}+\omega_{1}x^{2}+\omega_{2})}{(x^{4}+\omega_{1}x^{2}+\omega_{2})^{2}+\beta_{1}^{2}(x^{2}+1)^{2}} \quad J_{(x)} = \frac{\beta_{1}(x^{2}-1)^{3}}{(x^{4}+\omega_{1}x^{2}+\omega_{2})^{2}+\beta_{1}^{2}(x^{2}+1)^{2}} \\ \mathcal{L}_{1} &= -2 + \vartheta^{\nu} \Big[1 + \frac{C_{1}}{\mathcal{R}_{A}} - \frac{6\mathcal{R}_{Y}}{\mathcal{R}_{A}} (1 + C_{3}) \Big] \approx \forall^{2} 2 \; ; \\ \mathcal{L}_{2} &= 1 - \vartheta^{\nu} \Big[1 - \frac{C_{1}}{\mathcal{R}_{A}} - \frac{6\mathcal{R}_{Y}}{\mathcal{R}_{A}} (1 + C_{3}) + \frac{6\mathcal{R}_{Y}}{\mathcal{R}_{A}^{2}} C_{1} + \frac{C_{2}}{\mathcal{R}_{A}^{2}} \Big] \approx 1 - \vartheta^{2} \; ; \\ \mathcal{L}_{1} &= \vartheta^{\nu} \Big[D_{1} + 6\mathcal{R}_{Y} D_{4} + \frac{D_{2}}{\mathcal{R}_{A}} - 6 \; \frac{\mathcal{R}_{Y}}{\mathcal{R}_{A}} D_{3} \Big] \approx \vartheta^{\nu} \; ; \qquad \mathcal{Y} = \frac{\mathcal{E}_{0}^{2} \mathcal{R}_{0}}{\mathcal{I}_{3} \mathcal{R}} \; . \\ \text{S obzirom na vezu } n(\omega) \; i \vartheta(\omega) = \sqrt{\mathcal{E}(\omega)} \; \text{za indeks prelamanja n} \end{split}$$

i koeficijent apsorpcije 🎗 dobijeni su sledeći izrazi:

$$\begin{split} \mathcal{N}(x) &= \frac{\left| (x^2 - 1) \right|}{\sqrt{2}} \left\{ \frac{\sqrt{p_{(x)}^2 + g_{(x)}^2} + p_{(x)}^2}{p_{(x)}^2 + g_{(x)}^2} \right\}^{\frac{1}{2}} \\ \chi(x) &= \frac{\left| (x^2 - 1) \right|}{\sqrt{2}} \left\{ \frac{\sqrt{p_{(x)}^2 + g_{(x)}^2} - p_{(x)}}{p_{(x)}^2 + g_{(x)}^2} \right\}^{\frac{1}{2}} \end{split}$$
(4.18)

 $P(x) = \chi^4 + (\chi^2 - 2)\chi^2 + 1 - \chi^2; \quad g(x) = \chi^4(\chi^2 - 1)$

Procjena koeficijenata λ_1, λ_2 i β_1 je izvršena pod pretpostavkom da Ω_{i}, Ω_{r} i Ω_{z} su istog znaka i istog reda veličine.n(x) i $\chi(x)$ su predstavljeni na sl.1 za $\delta = 0, 5, 1$ i 2. Kao što se vidi eksiton-eksiton interakcija igra značajnu ulogu u procesima apsorpcije i refrakcije elektromagnetnih talasa u kristalu. Taj rezultat je zbog korektnog dekuplovanja viših eksitonskih GF (4.10). Ako se zanemari sparivanje operatora u različitom trenutku vremena (kako je do sada obično radjeno), koeficijent apsorpcije će nestati dok indeks prelamanja će se neznatno raz likovati od izraza dobijenog u harmonijskoj aproksimaciji.Numerički proračuni pokazuju da eksiton-eksiton interakcija ima snažan uticaj kod slabih dielektrika ($\delta < 1$), jer je apsorpcioni maksimum u intervalu $0 \le \omega \le \Omega_{\Delta}$. Treba naglasiti da su efekti neodržanja odredjeni funkcijom q(x) (4.18). Ako ove efekte zanemarimo tj. ako $\mathcal{R}_{\gamma} = 0$ u (4.16), tada za $\mathcal{R}_{z} \approx \mathcal{R}_{x}, q(x)$ će praktično iščeznuti i apsorpcija će biti praktično mala.

Sada da vidimo šta je sa kinematičkim nivoima u ovom slučaju kada imamo i efekte neodržanja. Ako uzmemo neodržanje u obzir tada advansirana i retardirana GF imaju polove pa je broj kinematičkih nivoa veći nego broj normalnih eksitonskih nivoa.

Medjutim, ako zanemarimo neodržanje kao što smo do sada radili, cijeli niz procesa koji mogu uticati na kreaciju kinematičkih nivoa je izgubljen.

Polazimo od sistema (4.11) gdje ćemo funkcije Г i∧ izrazit preko bozonskih Greenovih funkcija G,T,Ğ,Ť. Koristeći (2.4) i dekuplovanje (4.10) dobijamo

$$\begin{split} \Gamma_{(\vec{k}_{i}\omega)} &= (1-4N)G_{(\vec{k}_{i}\omega)} - \tilde{M} T_{(\vec{k}_{i}\omega)} - M \tilde{T}_{(\vec{k}_{i}\omega)} + \frac{2}{N^{2}} \sum_{\vec{k}_{i},\vec{k}_{s}} \int_{-\infty}^{+\infty} d\omega_{i} d\omega_{2} \left[G_{(\vec{k}_{i},\omega_{i})} \cdot G_{(\vec{k}_{i},\omega_{s})} + 2G_{(\vec{k}_{i},\omega_{s})} \tilde{T}_{(\vec{k}_{s},-\omega_{s})} T_{(\vec{k}_{s},\omega_{s})} \right]. \\ \Gamma_{(\vec{k}_{i}\omega)} &= (1-4N) T_{(\vec{k}_{i}\omega)} - MG_{(\vec{k}_{i}\omega)} - M \tilde{G}_{(\vec{k}_{i},\omega)} + \frac{2}{N^{2}} \sum_{\vec{k},\vec{k}_{s}} \int_{-\infty}^{+\infty} d\omega_{i} d\omega_{i} d\omega_{z} \left[T_{(\vec{k}_{i},\omega_{i})} \cdot \frac{1}{T_{(\vec{k}_{s},-\omega_{s})}} T_{(\vec{k}_{s},-\omega_{s})} T_{(\vec{k}_{s},-\omega_{s})} \right]. \end{split}$$

$$(4.19) \quad \tilde{T}_{(\vec{k}_{s},-\omega_{s})} T_{(\vec{k}_{s},-\omega_{s})} T_{(\vec{k}_{s},-\omega_{s})} T_{(\vec{k}_{s},-\omega_{s})} T_{(\vec{k}_{s},-\omega_{s})} J \end{split}$$

Pošto sada imamo četiri tipa bozonskih GF, sistem (4.11) je nedovoljan pa je potrebno napisati jednačine za $\Gamma_i \tilde{\Lambda}$ koje se dobiju iz (4.11) kada izvršimo zamjenu $\omega \rightarrow -\omega$. Tada imamo kompletn sistem jednačina za odredjivanje bozonske GF. Ako koristimo aproksimaciju (4.14) tada se sistem cijepa u dva nezavisna para jednačina, jedan za G i Γ , a drugi za \tilde{G} i \tilde{T} . Rešenje sistema u ovoj aproksimaciji daje

$$\begin{split} & G_{(\vec{k},\omega)} = \frac{i}{2^{\vec{\pi}}} \frac{\omega + \mathcal{Q}_{1}(\vec{k})}{[\omega^{\alpha} + \mathcal{Q}_{0}^{2}(\vec{k})]^{\left[1 - f(\vec{k},\omega)\right]}} ; \quad \overline{f}(\vec{k},\omega) = \frac{i}{2^{\vec{\pi}}} \frac{\mathcal{Q}_{2}(\vec{k})}{[\omega^{\alpha} - \mathcal{Q}_{0}^{\alpha}(\vec{k})]^{\left[1 - G(\vec{k},\omega)\right]}} \\ & \widetilde{G}_{(\vec{k},\omega)} = G_{(\vec{k},-\omega)} ; \quad \overline{f}(\vec{k},\omega) = T(\vec{k},-\omega) ; \\ & \widetilde{G}_{n}^{\alpha}(\vec{k}) = \mathcal{Q}_{1}^{\alpha}(\vec{k}) - \mathcal{Q}_{2}^{\alpha}(\vec{k}) ; \mathcal{Q}_{1}(\vec{k}) = \mathcal{Q}_{w}(\vec{k}) + \frac{1}{\hbar N} \sum_{\vec{k}} \frac{\mathcal{Q}_{v}^{\alpha}(\vec{k})}{\mathcal{Q}_{a}} \\ & \mathcal{Q}_{v}(\vec{k}) + \frac{1}{\hbar N} \sum_{\vec{k}} \frac{\left[\mathcal{Q}_{x}(\vec{k}) - \mathcal{Q}_{x}(\vec{k})\right]^{2} \mathcal{Q}_{Y}(\vec{k})}{\mathcal{Q}_{a}} \\ & \mathcal{Q}_{1}(\vec{k}) = \mathcal{Q}_{1}^{\alpha}(\vec{k}) + \frac{1}{\hbar N} \sum_{\vec{k}} \frac{\left[\mathcal{Q}_{x}(\vec{k}) - \mathcal{Q}_{x}(\vec{k})\right]^{2} \mathcal{Q}_{1}(\vec{k})}{\mathcal{Q}_{a}} \\ & \mathcal{Q}_{1}(\vec{k}) = \frac{2\pi}{i\hbar} \left\{ U_{3}^{(6)}(\vec{k},\omega) - \frac{\mathcal{Q}_{1}(\vec{k})}{\omega_{v}} \mathcal{Q}_{v}(\vec{k})} \right]^{2} \mathcal{Q}_{1}(\vec{k},\omega) - \hbar U_{4}^{(6)}(\vec{k},\omega) \left[\omega - \mathcal{Q}_{w}(\vec{k})\right] + \\ & + \frac{\mathcal{Q}_{2}(\vec{k})}{\omega + \mathcal{Q}_{v}(\vec{k})} - \left] + \hbar U_{4}^{\mu(0)}(\vec{k},\omega) \left[\mathcal{Q}_{Y}(\vec{k}) - \frac{\mathcal{Q}_{1}(\vec{k})(\omega + \mathcal{Q}_{w}(\vec{k}))\right]}{\omega + \mathcal{Q}_{1}(\vec{k})}} \right] \right\} ; \end{aligned} (4.20) \\ & \widetilde{G}_{(\vec{k},\omega)} = \frac{2\pi}{i\hbar} \left\{ U_{3}^{(6)}(\vec{k},\omega) + \frac{\omega - \mathcal{Q}_{v}(\vec{k})}{\mathcal{Q}_{u}(\vec{k})} \right]^{2} + \hbar U_{4}^{\mu(0)}(\vec{k},\omega) \left[\mathcal{Q}_{Y}(\vec{k}) - \frac{\mathcal{Q}_{1}(\vec{k})(\omega + \mathcal{Q}_{w}(\vec{k}))}{\omega + \mathcal{Q}_{u}(\vec{k})}} \right] \right\} ; \\ & U_{4}^{(6)}(\vec{k},\omega) = \frac{2\pi}{N^{2}} \sum_{\vec{k},\vec{k},\vec{k},\vec{k}} \int_{\omega}^{\omega} d\omega_{2} \left[G_{(\vec{k},i,\omega)}^{(6)} - G_{(\vec{k},i,\omega)}^{(6)} G_{(\vec{k},i,\omega)}^{(6)} + 2G_{(\vec{k},i,\omega)}^{(6)} \right] \frac{\mathcal{Q}_{1}^{(6)}}{(\vec{k}_{u},\omega_{u})} \right] . \\ & U_{4}^{(6)}(\vec{k},\omega) = \frac{2}{N^{2}} \sum_{\vec{k},\vec{k},\vec{k},\vec{k}} \int_{\omega}^{\omega} d\omega_{u} d\omega_{u} \left[T_{(\vec{k},i,\omega)}^{(6)} T_{(\vec{k},i,\omega)}^{(6)} + 2G_{(\vec{k},i,\omega)}^{(6)} + 2G_{(\vec{k},i,\omega)}^{(6)} \right] . \\ & U_{4}^{(6)}(\vec{k},\omega) \right] . \end{aligned}$$

Funkcije $U_{3}^{(\infty)}(\vec{\kappa},\omega)$ i $v_{3}^{(\omega)}(\vec{\kappa},\omega)$ se dobiju kada G,T, \tilde{G},\tilde{T} iz (4.14) zamijenimo u (4.12).

Normalne eksitonske nivoe dobijamo iz uslova $\omega^2 - \Omega_s^2(\vec{\kappa}) = 0$ koji daje jedan pol: $\omega = \Omega_{B}(\vec{\kappa})$. Kinematički nivoi definisani su sledećim uslovima:

$$\begin{aligned} 1 - f_{(\vec{x},\omega)} &= 0 \; ; \quad 1 - \tilde{b}_{(\vec{x},-\omega)} = 0 \; ; \\ 1 - f_{(\vec{x},-\omega)} = 0 \; ; \quad 1 - \tilde{b}_{(\vec{x},-\omega)} = 0 \; ; \end{aligned} \tag{4.21}$$

gdje poslednja dva izraza slijede iz advansirane Greenove funkcije Ĝ i Ť, respektivno.

Uslovi (4.21) vode do veoma komplikovanih izraza koji čak nisu pristupačni ni modernim kompjuterima, a pošto se želi dobiti kvalitativna slika kinematičkih nivoa, račun će biti izveden za $\vec{k} \rightarrow 0$. Dobijeni rezultati bit će izvršeni za veoma male talasne vektore i za prostu kubnu rešetku u aproksimaciji najbližih susjeda. Koristićemo aproksimativni izraz $\omega + \Omega_a \neq 2\Omega_a$, što znači da se ponašanje kinematičkih nivoa razmatra u okolini rezonantne frekvencije. Realni dijelovi ρ i ć bit će računati tačno za $\vec{k} \rightarrow 0$. Koristeći gore navedene aproksimacije, za frekvencije kinematičkih nivoa dobijamo

$$\begin{split} & \left(\mathcal{U}_{(6)} = \mathcal{R}_{\Delta} + \mathcal{R}_{\mathsf{X}(0)} \left[1 + 2 \frac{\mathcal{R}_{\mathsf{Y}}^{2}(\mathfrak{s})}{\mathcal{R}_{\mathsf{X}}^{2}(\mathfrak{s})} \right] - i \frac{|\mathcal{R}_{\mathsf{X}}(\mathfrak{s})|}{\mathcal{Q}_{\mathfrak{s}}} \\ & \left(\mathcal{U}_{(\widetilde{G})} = \mathcal{R}_{\Delta} + \frac{\mathcal{R}_{\mathsf{Y}}^{2}(\mathfrak{s})}{6\mathcal{R}_{\Delta}} - \frac{|\mathcal{R}_{\mathsf{X}}(\mathfrak{s})|}{\mathcal{Q}_{\mathfrak{s}}} \frac{\mathcal{R}_{\mathsf{Y}}^{2}(\mathfrak{s})}{6\mathcal{R}_{\Delta}^{2}} \\ & \left(\mathcal{U}_{(T)} = \mathcal{R}_{\Delta} + \mathcal{R}_{\mathsf{Z}}(\mathfrak{s}) - i \frac{|\mathcal{R}_{\mathsf{X}}(\mathfrak{s})|}{4\mathcal{Q}_{\mathfrak{s}}} \right]; \quad \mathcal{U}_{(\widetilde{T})} = \frac{1}{3} \mathcal{R}_{\Delta} - i \frac{|\mathcal{R}_{\mathsf{X}}(\mathfrak{s})|}{6\mathcal{Q}_{\mathfrak{s}}} \quad ; \quad \mathcal{Q}_{\mathfrak{s}} = \frac{\mathcal{A}^{4}}{32\mathcal{T}^{3}} \quad . \end{split}$$

Očigledno je da ti rezultati mogu biti korišteni za grubu procjenu kinematičkih nivoa. Vidimo da uključivanje efekata neodržanja dovodi do većeg broja kinematičkih nivoa. U ovom slučaju svakom normalnom eksitonskom nivou odgovara četiri različita tipa kinematičkih ekscitacija. Važno je navesti da svi nivoi imaju konačno vrijeme života. Veće vrijeme života imaju nivoi koji odgovaraju advansiranoj Greenovoj funkciji Ĝ. Druga interesantna činjenica je da u procesima dve sukscesivne eksitonske fuzije (opisano polom funkcije \tilde{T}), proizilaze skromne ekscitacije (realni dio frekvencije $\omega(\tilde{T})$ je skoro tri puta manji o frekvencije normalnih eksitona).

Konačno možemo procjeniti vrijeme života τ i širenje linija kinamatičkih nivoa. Za Ω_{Δ} = 8.10¹⁵Hz i $\Omega_{\chi}(0) \approx \Omega_{\gamma}(0) \approx \Omega_{Z}(0) = 10^{14}$ Hz dobivene vrijednosti su:

$$\begin{split} \widetilde{\mathcal{I}}_{(6)} &= 2, 3 \cdot 10^{-15} \quad ; \quad \widehat{\mathcal{I}}_{(\widetilde{G})} = 8, 8 \cdot 10^{-75} \quad ; \quad \widetilde{\mathcal{I}}_{(\tau)} = 9, 2 \cdot 10^{-15} \quad ; \quad \widetilde{\mathcal{I}}_{(\widetilde{\tau})} = 1, 4 \cdot 10^{-14} \text{ s} \\ \mathcal{L}_{(6)} &= 2250 \text{ cm}^{-1} \quad ; \quad \mathcal{L}_{(\widetilde{G})} = 0, 01 \text{ cm}^{-1} \quad ; \quad \mathcal{L}_{(\tau)} = 560 \text{ cm}^{-1} \quad ; \quad \mathcal{L}_{(\widetilde{\tau})} = 375 \text{ cm}^{-1} \quad . \end{split}$$

Širenja linija kinematičkih nivoa su reda 1000 cm⁻¹, što se slaže sa eksperimentalnim vrijednostima /6/.

Kao konačan zaključak ovog paragrafa možemo navesti da u kompletnu teoriju apsorpcionih fenomena treba uključiti eksiton-eksiton i eksiton-fonon interakciju, a to će biti razmatrano u sledećoj glavi ove disertacije.

II G L A V A

- 53 -

· EFEKTI EKSITON-FONON INTERAKCIJE

1. O RAZLIČITIM DEFINICIJAMA OPERATORA EKSITON-FONON INTERAKCIJE

Molekule kristalne rešetke osciluju oko svojih ravnotežnih položaja, pa se kristal, u smislu njegovih oscilatornih karakteristika, može tretirati kao sistem povezanih oscilatora. Zbog ove povezanosti jedan molekul pri svom oscilovanju trpi uticaj svih ostalih molekula koji ga okružuju i istovremeno sam utiče na njihovo oscilovanje, tako da svaki kvant oscilovanja u kristalu nosi. pečat cjelokupnog kolektiva molekula i sila koje izmedju njih djeluju. Zbog toga se u kristalima ne može govoriti o fononima kao pobudjenjima individualnih molekula već o fononima koji predstavljaju kvante oscilovanja cijelog kristala. Znači, kvantiziranjem energija normalnih oscilacija dobija se sistem kvazičesticafonona pod kojima se podrazumijevaju elementarne ekscitacije kristalne rešetke.

U realnom, optički pobudjenom kristalu javljaju se eksitoni i fononi koji interagiraju pa se ukupni operator energije kristala proširuje za operator eksiton-fonon interakcije. Do sada u literaturi postoje dva prilaza za odredjivanje operatora eksitonfonon interakcije. Prvo ćemo izložiti prilaz /6/ koji se naziva standardni (standardna definicija eksiton-fonon interakcije). Polazi se od prva dva člana eksitonskog hamiltonijana (1.10) u aproksimaciji P=B, koji je izveden za slučaj kada se sve molekule nalaze u svojim ravnotežnim položajima odredjenim vektorima rešetke n, a zatim se pretpostavi da su se molekule pomjerile tih položaja, što se matematički može prikažati na sledeći način

 $\vec{n} - \vec{n} + \vec{u}_{\vec{n}} , \quad \vec{m} - \vec{m} + \vec{u}_{\vec{m}}$

(1.1)

Pomjeranje molekula $\vec{u_n}$ i $\vec{u_m}$ na niskim temperaturama možemo smatrati kao veličine koje su mnogo manje od konstante kristalne rešetke, pa se matrični elementi dipol-dipolne interakcije mogu razviti u red po stepenima tih malih veličina. Ako sada matrične elemente vratimo u početni eksitonski hamiltonijan, on će očigledno dobiti neke dodatne članove koji upravo i karakterišu eksiton-fonon interakciju. Prelaskom u impulsni prostor, a zatim, pomjeranja molekula $\vec{u_n}$ i $\vec{u_m}$ izrazimo preko fononskih operatora /17/, operator eksiton-fonon interakcije dobija sledeći oblik:

$$\begin{aligned} H_{int} &= \frac{i}{\sqrt{N}} \sum_{\vec{k},\vec{g}} \sum_{j=1}^{3} \left(\frac{\hbar}{2M\omega_{\vec{g}j}} \right)^{\gamma_2} \left[(\vec{k} \cdot \vec{t}_{\vec{g}}) X_{\vec{k}} + (\vec{k} \cdot \vec{g}) \vec{\ell}_{\vec{g},\vec{j}} X_{\vec{k}} \cdot \vec{g} + \vec{g} \cdot \vec{\ell}_{\vec{g},\vec{j}} D_{\vec{g},\vec{j}} \right]^{\gamma_2} \\ & B_{\vec{k} \cdot \vec{g}}^{\dagger} B_{\vec{k}} \left(C_{-\vec{g},\vec{j}} + C_{\vec{g},\vec{j}}^{\dagger} \right) \end{aligned}$$
(1.2)

Pokušaji da se na bazi standardno definisane eksitonfonon interakcije (1.2) objasne neke pojave u kristalooptici povezane sa interakcijom optičkih i mehaničkih ekscitacija nisu dali dobra slaganja sa eksperimentalnim podacima. To neslaganje je najočiglednije u slučaju tzv. Urbachovog pravila /15/, koje daje zavisnost koeficijenta apsorpcije svjetlosti od temperature T za datu energiju svjetlosnog kvanta $\hbar\omega$ u eksitonskoj oblasti spektra. U radu /15/ je pokazano da za niz kristala konstanta G koja definiše širinu apsorpcione oblasti ima vrijednost oko jedinice i da praktično ne zavisi od kristalne strukture. Ako se za teorijsko odredjivanje konstante & koristi hamiltonijan (1.2), dobija se izraz /5/ čija se vrijednost kreće od 30 do 50 u zavisnosti o kojem se: kristalu radi. U radu /40/ je predložen novi prilaz eksiton-fonon interakcije. Razvijanjem matričnih elemenata i eksitonskih Bose operatora Bň i u red po malim pomjerajima molekula $ec{\mathcal{U}_{\pi}}$ dobijen je hamiltonijan Bñ eksiton-fonon interakcije u sledećem obliku (za jednofononske

procese)

$$\mathcal{H}_{int} = \frac{i}{\sqrt{N}} \sum_{\vec{k}, \vec{g}} \left(\frac{\hbar}{2M\omega_{\vec{g}}} \right)^{\nu_2} (\vec{g} \cdot \vec{\ell}_{\vec{g}}) \left[\Delta + D_o + X_{\vec{k}} + D_{\vec{g}} + X_{\vec{k}} - \vec{g} \right] B_{\vec{k}}^{\dagger} = B_{\vec{k}}$$

$$(1.3)$$

Bitna promjena u odnosu na standardno definisanje hamiltonijana eksiton-fonon interakcije je u pojavi energije pobudjenja (Δ) izolovane molekule. S obzirom da se vrijednost energije Δ za molekularne kristale kreće od 3 do 5 eV, a vrijednost matričnih elemenata dipol-dipolne interakcije od 0,01 do 0,1 eV /5/, novim prilazom povećana je konstanta eksiton-fonon interakcije. Kao fizičko opravdanje za uvodjenje energije Δ , u /40/ je naveden eksperiment /18/ kojim je pokazano da se zagrijavanjem gasa mijenja apsorpcioni spektar što se može objasniti sa (1.3), a ne može sa (1.2). Na osnovu glavnog dijela hamiltonijana (1.3) za konstantu G je dobijena vrijednost bliska jedinici, zbog čega se može zaključiti da je uključivanje energije pobudjenja izolovane molekule Δ u hamiltonijan eksiton-fonon interakcije izgleda jedini način da se Urbachovo pravilo teorijski objasni.

Autori rada /40/ su u /41/ razmatrali glavni doprinos (A) eksiton-fonon interakcije kao posledicu lokalne deformacije eksitonskog polja zbog molekularnih oscilacija što je u izvjesnom smislu blisko standardnoj definiciji hamiltonijana interakcije u aproksimaciji jake veze. Ovaj prilaz realiziran je na sledeći način.

Dio eksitonskog hamiltonijana $H_{\Delta} = \sum_{\vec{n}} \Delta B_{\vec{n}}^{\dagger} B_{\vec{n}}$ može se napisati kao $H_{\Delta} = \Delta \sum_{\vec{n},\vec{m}} \delta_{\vec{n},\vec{m}} B_{\vec{n}}^{\dagger} B_{\vec{m}}$. Poslije prelaza $\vec{n} \rightarrow \vec{n} + \vec{\mathcal{U}}_{\vec{n}} i \vec{m} \rightarrow \vec{m} + \vec{\mathcal{U}}_{\vec{n}}$ i jedino funkcija $\delta_{\vec{n}\vec{m}}$ se razvija po molekularnim pomerijama $\vec{\mathcal{U}}_{\vec{n}} i \quad \vec{\mathcal{U}}_{\vec{m}}$. Taj razvoj daje "leading term" hamiltonijana eksiton-fonon interakcije oblika

$$H_{int} = \frac{i}{\sqrt{N}} \sum_{\vec{k},\vec{g}} \Delta \left(\frac{\hbar}{2M\omega_{\vec{g}}}\right)^{1/2} \left(\vec{\ell}_{\vec{g}} \cdot \vec{g}\right) B_{\vec{k}-\vec{g}}^{\dagger} B_{\vec{g}}^{\dagger} \left(C_{-\vec{g}} + C_{g}^{\dagger}\right)$$
(1.4)

- 55 -

tj. potpuno isti kao hamiltonijan koji je korišten za objašnjenje Urbachovog pravila.

Ovakav način /41/ izvodjenja H_{int} (drugi ili novi u odnosu na standardni /6/)tačniji je od načina predloženog u /40/ s obzirom da se pri razvijanju eksitonskih operatora po pomjerajima \mathcal{I}_{σ} narušava njihova kinematika.

Možemo zaključiti da se uključivanjem u eksiton-fonon interakciju efekata lokalnih deformacija eksitonskog polja, koji su nastali usled vibracija kristalne rešetke, dobija dopunski član koji ima potreban red veličine da bi se usaglasili teorija i eksperiment (Urbachovo pravilo, širina apsorpcionih linija).

2. EKSITON-FONON INTERAKCIJA KAO UZROK BOSE-KONDENZACIJE EKSITONA

Problem superfluidnosti Wannier-Mottovih i Frenkelovih eksitona razmatran je u radovima /5,12,74,75,55,56,24,43/, koji se mogu podijeliti u dvije grupe. Prva grupa radova zasniva se na ideji da u sistemu eksitona može da dodje do Bose-Einsteinove kondenzacije (analogno kao u tečnom He⁴) i da zahvaljujući ovome dolazi do superfluidnog kretanja eksitona. Pri tome u sistemu eksitona ne može doći do prenosa mase /74/ već samo do prenosa energije ekscitacije i impulsa. U drugoj grupi radova polazi se od pretpostavke da je u eksitonskom sistemu moguće formiranje eksitonskih kaplji i da njihovim raspadom nastaju pobudjenja koja imaju osobine superfluida. Procesi Bose kondenzacije razmatraju se kao posledica eksiton-eksiton interakcije do koje dolazi pri dovoljno visokim koncentracijama eksitona.

Stvaranje eksitonskih kaplji se takodje razmatra kao posledica eksiton-eksiton interakcije usled virtuelne izmjene fonona. Za ove procese nisu potrebne visoke koncentracije eksitona, pa se interakcija izmedju samih eksitona može zanemariti.

Za razliku od superfluidnog stanja helijuma i superprovodnog stanja metala i dr. superfluidno stanje eksitona ne može trajati beskonačno dugo već je ograničeno vremenom života eksitona. U kristalima koji luminisciraju vrijeme života eksitona \mathcal{T}_e veće je od vremena uspostavljanja termodinamičke ravnoteže \mathcal{T}_c sa fononima tako da se o kolektivnim osobinama eksitona, kada se razmatra superfluidnost, može govoriti u vremenu koje je veće od \mathcal{T}_c a manje od \mathcal{T}_e . Naime, u tom vremenskom intervalu broj eksitona će biti konstantan, što je i osnovni preduslov za nastajanje kondenzata. Uzmimo npr. /5/, za singletne eksitone antracena $\tau_e = 10^{-8}$ s, a $\tau_c = 10^{-10}$ do 10^{-12} s pa se o mogućnosti Bose kondenzacije može govoriti u vremenskom intervalu $10^{-11} < \tau < 10^{-8}$'s. Zbog ovoga se Bose kondenzacija tretira kao statistička fluktuacija, a ne kao stalan proces.

Analizu superfluidnosti molekularnih kristala kao posledicu medjudjelovanja optičkih pobudjenja _{sa}fononima počećemo sa radom /43/. U njemu je pokazano da virtuelna izmjena fonona dovodi do privlačnog efektivnog eksiton-eksiton medjudjelovanja zbog čega dolazi do zahvata dva eksitona na jednom čvoru (molekuli) tj. do stvaranja eksitonskih kaplji. Raspad ovakvih konglomerata daje nove kvazičestice sa superfluidnim karakteristikama. Hamiltonijan sistema eksitoni + fononi sljedećeg je oblika

$H = \int d\vec{k} \mathcal{E}_{(\vec{k})} B_{\vec{k}}^{\dagger} B_{\vec{k}} + \int d\vec{k} h \vec{w} k \, \vec{b}_{\vec{k}} \, \vec{b}_{\vec{k}} + \int d\vec{k} \, d\vec{q} \, F(\vec{q}) B_{\vec{k}-\vec{q}}^{\dagger} B_{\vec{k}} \left(b_{-\vec{q}} + b_{\vec{q}}^{\dagger} \right). \tag{2.1}$

gdje su B_g i $b_{\vec{k}}$ eksitonski i fononski operatori respektivno, a $F_{(\vec{k})} = i \left[\hbar \Delta^2 / 2 (2\pi)^3 M_{NQ} \right]^{I_2} (\vec{j} \cdot \vec{l_2})$ što odgovara eksiton-fonon interakciji u aproksimaciji jake eksiton-fonon veze /6/. Pri tome je uzet doprinos samo najvećeg člana. Energija eksitona jednomolekularnog kristala u slučaju dvonivoske šeme izračunata je u aproksimaciji pozitivne efektivne mase /5/. Prilikom analize hamiltonijana (2.1) korišten je postupak Fröhlicha /54/, jer je hamiltonijan eksiton-fonon interakcije po svojoj matematičkoj strukturi sličan hamiltonijanu elektron-fonon interakcije u metalima. Nakon unitarne transformacije

 $H_{eg} = e^{-S} H e^{S} \approx H - [S, H] + \frac{1}{2} [S, [S, H]]$ gdje je S antihermitski operator oblika

(2.2)

 $S = \int d\vec{k} d\vec{g} \frac{F(\vec{g})}{\mathcal{E}(\vec{x}) - \mathcal{E}(\vec{x},\vec{g}) + \hbar \phi \phi} B_{\vec{k}}^{+} B_{\vec{k}} b_{\vec{g}} - c.c.$

i usrednjavanja po vakuumskom stanju fonona dobijen je efektivni hamiltonijan oblika

$$H_{eff} = \int d\vec{x} \{ \mathcal{E}_{(\vec{x})} + \mathcal{E}_{(\vec{x})} \} B_{\vec{k}}^{+} B_{\vec{k}} + \int d\vec{x}_{1} d\vec{x}_{2} d\vec{x}_{3} \cdot W_{(\vec{k}_{1}, \vec{k}_{2}, \vec{k}_{3})}$$
(2.3)
$$\cdot B_{\vec{k}_{1}}^{+} B_{\vec{k}_{3}}^{+} B_{\vec{k}_{3}} B_{\vec{k}_{1}} + \vec{k}_{2} - \vec{k}_{3} \cdot$$

korekcija eksitonske energije

$$E_{(\vec{k})} = \int d\vec{q} \frac{|F_{(\vec{q})}|^2}{\mathcal{E}(\vec{k}) - \mathcal{E}(\vec{k} - \vec{q}) + \hbar v q}$$

i efektivna eksiton-eksiton interakcija

$$W_{(\vec{k}_{1},\vec{k}_{2},\vec{k}_{3})}^{*} = -\frac{1}{2} \left| F_{(\vec{k}_{1}-\vec{k}_{3})} \right|^{2} \left[\frac{1}{\varepsilon_{(\vec{k}_{1})} - \varepsilon_{(\vec{k}_{3})} + \hbar v |\vec{k}_{1}-\vec{k}_{3}|} + \frac{1}{\varepsilon_{(\vec{k}_{1}+\vec{k}_{2}-\vec{k}_{3})} - \varepsilon_{(\vec{k}_{2})} + \hbar v |\vec{k}_{1}-\vec{k}_{3}|} \right]$$

su posledica eksiton-fonon interakcije.

Stvaranje eksitonske kaplje zamišljeno je kao sledeći proces molekula "zahvata" dva eksitona sa suprotnim impulsima. Molekularno stanje time postaje nestabilno pa dolazi do emisije dvije nove kvazičestice. Da bi se ispitao spektar ovih kvazičestica iz hamiltonijana (2.3) su izdvojeni članovi koji odgovaraju interakciji eksitona sa suprotnim impulsima, a zatim je izvršena dijagonalizacija "u-v" transformacijom $B_{\vec{k}}=d_{\vec{k}}C_{\vec{k}}+\beta_{\vec{k}}C_{-\vec{k}}^{+}$. Za spektar novih kvazičestica dobijen je izraz

$$\lambda_{(x)} = \Delta \sqrt{1 - \frac{\sin^2 x}{x^2}} , x = kr_o, r_o \approx 10^{-7} m.$$
 (2.4)

Spektar (2.4) ima osobinu superfluida, jer je za male vrijednosti impulsa linearan, a za velike vrijednosti impulsa ima tipičan rotonski minimum.

Problem o superfluidnosti u sistemu optičkih pobudjenja nije interesantan samo sa teorijske tačke gledišta, već je interesantan i za praktičnu primjenu s obzirom na ulogu koju imaju eksitoni (polaritoni) u mehanizmu prenosa energije elektronskih pobudjenja u kristalima /5/. Bose kondenzacija Frenkelovih eksitona za multinivosku eksitonsku šemu

U prethodnom slučaju /43/ ispitivan je molekularni kristal sa dvonivoskom eksitonskom šemom, a dobijeni rezultat je dovoljno interesantan da bi se slična istraživanja generalisala na realističniji slučaj multinivoske eksitonske šeme. Sledeći dio rada biće posvećen pomenutoj analizi /62/.

Ako pretpostavimo da molekule, pri pobudjivanju kristala, mogu preći iz osnovnog "o" u S=1,2,..,w pobudjenih stanja (multinivoska energetska šema), tada su eksitonski operatori kreacije i anihilacije kvazi-Pauli operatori (I 1.14) koji zadovoljavaju kvazi-Pauli komutacione relacije (I 1.15). Nakon uvodjenja kvazi-Pauli operatora za kristal sa centrom inverzije dobija se eksitonski hamiltonijan oblika

$$\begin{aligned} H_{ex} &= \sum_{\vec{n},\vec{m}} \sum_{ss'} F_{ss'}(\vec{n},\vec{m}) \ \mathcal{P}_{\vec{n}s}^{\dagger} \ \mathcal{P}_{\vec{m}\,s'} + \frac{1}{2} \sum_{\vec{n},\vec{m}} \sum_{ss'} Y_{ss'}(\vec{n},\vec{m}) \left(\mathcal{P}_{\vec{n}\,s} \ \mathcal{P}_{\vec{m}\,s'} + \mathcal{P}_{\vec{n}\,s}^{\dagger} \ \mathcal{P}_{\vec{m}\,s'}^{\dagger} \right) + \\ &+ \frac{1}{2} \sum_{\vec{n},\vec{m}} \sum_{ss',\mu\nu} Z_{ss',\mu\nu}(\vec{n},\vec{m}) \ \mathcal{P}_{\vec{n}\,s}^{\dagger} \ \mathcal{P}_{ns'} \ \mathcal{P}_{\vec{m}\,\mu}^{\dagger} \ \mathcal{P}_{\vec{m}\,\nu} \end{aligned}$$
(2.5)

gdje je

$$\begin{split} F_{ss'}(\vec{n},\vec{m}) &= \tilde{\Delta}_{ss'} \, \delta_{\vec{n}\vec{m}} + \frac{1}{2} \, \chi_{ss'}(\vec{n},\vec{m}) \\ \tilde{\Delta}_{ss'} &= \left(\mathcal{E}_s - \mathcal{E}_o \right) \, \delta_{ss'} + \sum_{\vec{m}} \left(W_{\vec{n}\vec{m}}(so;s'o) - W_{\vec{n}\vec{m}}(oo;oo) \, \delta_{ss'} \right] \\ \chi_{ss'}(\vec{n},\vec{m}) &= 2 \, W_{\vec{n}\vec{m}}(so;os') \quad ; \quad Y_{ss'}(\vec{n},\vec{m}) = W_{\vec{n}\vec{m}}(ss';oo) \\ Z_{ss'\mu\nu}(\vec{n},\vec{m}) &= W_{\vec{n}\vec{m}}(oo;oo) \, \delta_{ss'} \, \delta_{\mu\nu} + W_{\vec{n}\vec{m}}(s\mu;s'\nu) - 2 \, W_{\vec{n}\vec{m}}(o\mu;o\nu) \, \delta_{ss'} \, \delta_{\mu\nu} + W_{\vec{n}\vec{m}}(s\mu;s'\nu) - 2 \, W_{\vec{n}\vec{m}}(o\mu;o\nu) \, \delta_{ss'} \, \delta_{\mu\nu} \, \delta_{ss'} \, \delta_{\mu\nu} \, \delta_{\mu\nu$$

Ovdje je \vec{n} = \vec{n} položaj molekule \measuredangle u ćeliji odredjenoj sa vektorom rešetke \vec{n} .

Za stvaranje eksitonskih kaplji nisu potrebne visoke koncentracije eksitona, pa se interakcija izmedju samih eksitona može zanemariti. Zbog toga se hamiltonijan (2.5) može uzeti u harmonijskoj aproksimaciji po Bose operatorima. Ako se, osim toga, zanemare članovi tipa BB i B⁺B⁺ zbog njihovog malog doprinosa ukupnoj energiji eksitona /12,19/, za eksitonski hamiltonijan kristala sa jednomolekularnim elementarnim ćelijama, sa kojim ćemo razmatrati fenomen superfluidnosti optičkih pobudjenja, dobijamo

$$H_{ex} = \sum_{\vec{n},\vec{m}} \sum_{ss'} F_{ss'}(\vec{n},\vec{m}) B_{\vec{n}s}^{+} B_{\vec{m}s'} \qquad (2.6)$$

Hamiltonijan eksiton-fonon interkacije može se dobiti ako se u $F_{ss}(\vec{n},\vec{m}) = F_{ss}(\vec{n}-\vec{m})$ uzme (1.1), pa se zatim izvrši razvoj po malim pomjerajima $\vec{a}_{\vec{n}}(\vec{a})$. Ako tako dobivenu vrijednost uvrstimo u (2.6), zatim izvršimo Fourier razvoj operatora B

$$B_{\vec{n}\vec{s}} = \frac{1}{\sqrt{N}} \sum_{\vec{k}} B_{\vec{k}\vec{s}} e^{i\vec{k}\vec{n}}$$
(2.7)

i vektore pomeraja $\mathcal{A}_{\vec{n}}$ i $\mathcal{A}_{\vec{m}}$ zamjenimo odgoværajućim operatorima /17/, dobijamo hamiltonijan eksitona

$$H_{ex} = \sum_{\vec{k}} \sum_{s,s'=1}^{M} F_{ss'}(\vec{k}) B_{\vec{k}s}^{T} B_{\vec{k}s}; \quad F_{ss'}(\vec{k}) = \widetilde{\Delta}_{ss'} + \frac{1}{2} X_{ss}(\vec{k});$$

$$X_{ss'}(\vec{n},\vec{m}) = \frac{1}{N} \sum_{\vec{k}} X_{ss'}(\vec{k}) e^{i\vec{k}(\vec{n}-\vec{m})}$$

$$(2.8)$$

i hamiltonijan eksiton-fonon interakcije sledećeg oblika

$$H_{int} = \sum_{\vec{k},\vec{g}} \sum_{jss'} T_{ss'}(\vec{k},\vec{g}) B_{\vec{k}}^{\dagger} g_{ss} B_{\vec{k},s}(b_{-\vec{g}j} + b_{\vec{g}j}^{\dagger}), \qquad (2.9)$$

gdje je

$$T_{ss'}(\vec{k},\vec{q}) = i \left(\frac{\hbar}{2MNQ_{\vec{q}\vec{q}}}\right)^{1/2} \left\{ (\vec{k} \cdot \vec{\ell}_{\vec{q}\vec{q}}) F_{ss'}(\vec{k}) - [(\vec{k} - \vec{q}) \cdot \vec{\ell}_{\vec{q}\vec{q}}] F_{ss'}(\vec{k} - \vec{q}) \right\}$$
(2.10)

Opearatori $b_{\vec{x}j}$ i $b_{\vec{x}j}^{+}$ su fononski operatori, $\vec{\ell}_{\vec{x}j}$ su jedinični vektori polarizacije, $\omega_{\vec{x}j}$ su fononske frekvencije, a M je masa molekula kojih ima N u razmatranom kristalu. Ako uzmemo u obzir samo efekte interakcije eksitona sa longitudinalnim fononima $(\vec{r}, \vec{\ell}_{\vec{x}})$ koja je, kao što se vidi iz (2.10) najjača i ako uzmemo najveći član funkcije F_{ss} , $(\vec{n}) \sim \tilde{\Delta}_{ss}$, dobijamo, za razmatranja koja slede, hamiltonijan eksiton-fonon interakcije

$$H_{int} = \sum_{\vec{k},\vec{g}} \sum_{s,s'=1}^{\omega} \mathcal{T}_{\sigma\sigma'}(\vec{g}) B_{\vec{k}}^{\dagger} = \vec{g}, s B_{\vec{k}}s (b_{-\vec{g}} + b_{\vec{g}}^{\dagger}).$$
(2.11)

Ovakvo izvodjenje H_{int} je generalizacija hamiltonijana (2.1) iz rada /41/ na slučaj multinivoske šeme.

Eksitonski hamiltonijan (2.8) dijagonaliziraćemo uvodjenjem novih Bose operatora $C_{g_{\mu}}$ i $C_{g_{\mu}}^{+}$ transformacijom

$$B_{\vec{k}s} = \sum_{\mu=1}^{w} Q_{s\mu}(\vec{k}) C_{\vec{k}\mu}; \sum_{\mu=1}^{w} Q_{s\mu}(\vec{k}) O_{s'\mu}^{*}(\vec{k}) = \delta_{ss'}; \sum_{s=1}^{w} Q_{s\mu}(\vec{k}) O_{s\mu'(\vec{k})}^{*} = \delta_{\mu\mu'} \quad (2.12)$$

i dobijamo

$$H_{ex} = \sum_{\vec{k}} \sum_{\mu=1}^{\omega} E_{\mu}(\vec{k}) C_{\vec{k},\mu}^{\dagger} C_{\vec{k},\mu}$$
(2.13)

gdje su energije $E_{\mu}(\vec{\kappa})$ odredjene sistemom jednačina

$$E_{\mathcal{H}}(\vec{k}) \Theta_{\mathcal{S}\mathcal{H}}(\vec{k}) - \sum_{\mathbf{S}'=1}^{W} F_{\mathcal{S}\mathcal{S}'}(\vec{k}) \Theta_{\mathcal{S}'\mathcal{H}}(\vec{k}) = 0$$
(2.14)

dobijenih iz Heisenbergovih jednačina kretanja operatora B i C. Hamiltonijan eksiton-fonon interakcije (2.9) izražen preko novih operatora $C_{g_{\mu}}$ glasi

$$H_{int} = \sum_{\vec{x},\vec{g}} \sum_{\mathcal{A},v,i} \mathcal{Q}_{\mu\nu}(\vec{x},\vec{g}) C^{+}_{\vec{x}-\vec{g},\mu} C_{\vec{x},v} \left(b_{-\vec{g}} + b_{\vec{g}}^{\dagger} \right)$$
(2.15)

gdje je

$$\mathcal{R}_{\mu\nu(\vec{k},\vec{z})} = i \sum_{s,s'=1}^{w} \left(\frac{\hbar}{2MN\nu_{q}}\right)^{\nu_{2}} \left(\vec{z}\cdot\vec{\ell}_{\vec{z}}\right) \mathcal{O}_{s\mu}^{*}(\vec{x}\cdot\vec{z}) \mathcal{O}_{s'\nu} \widetilde{\Delta}_{ss'}$$
(2.16)

sa osobinom

$$S_{\mu\nu}(\vec{k},\vec{g}) = S_{\nu\mu}^{\mu}(\vec{k},\vec{g},-\vec{g}).$$
(2.17)

Hamiltonijani (2.13) i (2.15) odredjuju ukupni hamiltonijan sistema eksitona-optičkih pobudjenja i fonona-mehaničkih pobudjenja kristala na način kako slijedi

$$H = \sum_{\vec{k}} \sum_{\mathcal{H}=1}^{W} E_{\mathcal{H}}(\vec{k}) C_{\vec{k},\mathcal{H}}^{\dagger} C_{\vec{k},\mathcal{H}} + \sum_{\vec{q}} E_{\vec{p}}(\vec{q}) b_{\vec{q}}^{\dagger} b_{\vec{q}} + \sum_{\vec{k},\vec{q}} \sum_{\mathcal{H},\mathcal{V}=1}^{W} \mathcal{Q}_{\mathcal{H}} v(\vec{k},\vec{q}) C_{\vec{k}-\vec{q}}^{\dagger} \mu^{\mu} C_{\vec{k},\mathcal{V}} \times (b_{-\vec{q}} + b_{\vec{q}}^{\dagger}).$$

$$\times (b_{-\vec{q}} + b_{\vec{q}}^{\dagger}). \qquad (2.18)$$

 $E_f(\vec{k})$ je energija longitudinalnih fonona, $E_f(\vec{k}) = \hbar v |\vec{k}|$. Da bi smo sagledali ulogu eksiton-fonon interakcije,sa hamiltonijana (2.18) prelazimo na ekvivalentni hamiltonijan kanonskom transformacijom (2.2) kojom se Fröhlich koristio u teoriji superprovodnosti /54/. Nakon usrednjavanja ekvivalentnog hamiltonijana po fononskom vakuumu dobijamo efektivni hamiltonijan sistema koj razmatramo

$$H_{eff} = \sum_{\vec{k}} \sum_{j=1}^{M} E_{\mu}(\vec{k}) C_{\vec{k}_{j}\mu}^{\dagger} C_{\vec{k}_{j}\mu}^{\dagger} + \frac{1}{2} \sum_{\vec{k}_{1},\vec{k}_{2}} \sum_{\vec{k}_{3},\vec{k}_{3}} \sum_{j=1}^{M} S_{\mu_{4}\mu_{3}}(\vec{k}_{3},\vec{k}_{3}-\vec{k}_{1}) S_{\mu_{4}\mu_{2}}^{\dagger} (\vec{k}_{3},\vec{k}_{3}-\vec{k}_{1}) S_{\mu_{4}\mu_{2}}^{\dagger} (\vec{k}_{3},\vec{k}_{3}-\vec{k}_{1}) \times (2.19) \\ \times \left[\frac{1}{E_{\mu_{1}}(\vec{k}_{1}) - E_{\mu_{3}}(\vec{k}_{3}) + E_{\rho}(\vec{k}_{3}-\vec{k}_{1})} - \frac{1}{E_{\mu_{2}}(\vec{k}_{3}) - E_{\mu_{4}}(\vec{k}_{1}+\vec{k}_{3}-\vec{k}_{3}) + E_{\rho}(\vec{k}_{3}-\vec{k}_{1})} \right] C_{\vec{k}_{1}\mu_{r}}^{\dagger} C_{\vec{k}_{3}}^{\dagger} \mu_{2} C_{\vec{k}_{3}}^{\dagger} \mu_{3} C_{\vec{k}_{1}+\vec{k}_{3}-\vec{k}_{3},r_{1}}^{\dagger} \mu_{4} - \frac{1}{E_{\mu_{2}}(\vec{k}_{3}) - E_{\mu_{4}}(\vec{k}_{1}+\vec{k}_{3}-\vec{k}_{3}) + E_{\rho}(\vec{k}_{3}-\vec{k}_{1})} + \frac{1}{E_{\mu_{2}}(\vec{k}_{3}-\vec{k}_{3}) + E_{\rho}(\vec{k}_{3}-\vec{k}_{3}) + E_{\rho}(\vec{k}) + E_{\rho}(\vec{k}$$

Drugi član u ovom izrazu (2.19) predstavlja efektivnu eksitoneksiton interakciju uslovljenu virtuelnom izmjenom fonona. Ako iz hamiltonijana (2.19) izdvojimo članove sa $\vec{k}_1 = -\vec{k}_2, \mu_1 = \mu_2$ i $\mu_3 = \mu_4$, dobijamo

$$H = \sum_{\vec{k}} \sum_{\mu=1}^{W} E_{\mu}(\vec{k}) C_{\vec{k},\mu}^{\dagger} C_{\vec{k},\mu} + \sum_{\vec{k},\vec{q}} \sum_{c^{H},\nu=1}^{W} J_{\mu\nu}(\vec{k},\vec{q}) C_{\vec{k},\mu}^{\dagger} C_{\vec{k},\mu}^{\dagger} C_{\vec{q},\nu} C_{\vec{q},\nu} \qquad (2.20)$$

gdje je

$$J_{\mu\nu}(\vec{x},\vec{g}) = \frac{E_{f}(\vec{x}+\vec{g}) \mathcal{Q}_{\mu\nu}(\vec{g},\vec{x}+\vec{g}) \mathcal{Q}_{\mu\nu}(\vec{x},\vec{x}+\vec{g})}{\left[E_{\mu}(\vec{x}) - E_{\nu}(\vec{g})\right]^{2} - E_{f}^{2}(\vec{x}+\vec{g})}$$
(2.21)

- 63 -

Na ovaj način razmatramo procese izmedju pobudjenja sa suprotno usmjerenim impulsima jer ovi procesi mogu dovesti do formiranja eksitonskih kaplji. Da bismo našli spektar elementarnih pobudjenja koja se pojavljuju pri dezintegraciji eksitonskih kaplji, postupamo analogno Bogoljubljevoj proceduri u teoriji superfluidnosti tj. uvodimo nove Bose operatore $a_{\mu}(\vec{k})$ i $a^{+}_{\mu}(\vec{k})$ koristeći se uobičajenom kanonskom transformacijom

$$C_{\vec{k}\mu} = u_{\mu}(\vec{k}) a_{\vec{k}\mu} + \mathcal{O}_{\mu}(\vec{k}) a_{\vec{k}\mu}^{\dagger}. \qquad (2.22)$$

Funkcije $\mathcal{M}_{\mu}(\vec{\kappa})$ i $\mathcal{V}_{\mu}(\vec{\kappa})$ su realne, simetrične na zamjenu $\vec{k} \rightarrow -\vec{k}$ i povezane relacijom $\mathcal{M}^{2}_{\mu}(\vec{k}) - \mathcal{V}^{2}_{\mu}(\vec{k})=1$. Poslije transformacije (2.22) hamiltonijan (2.20) prelazi u

$$H_{red} = H_0 + H_2$$
 (2.23)

gdje je H_o energija osnovnog stanja

$$H_{0} = \frac{1}{4} \sum_{\vec{k}} \sum_{\sigma,\mu=1}^{W} \frac{\left(E_{A}(\vec{k}) - E_{A}(\vec{k})\right)^{2}}{E_{A}(\vec{k})}$$
(2.24)

Prema tome, stanja eksiton-eksiton interakcije sa virtuelnom izmjenom fonona su metastabilna. Kako je

$$H_{2} = \sum_{\vec{k}, \mu=1}^{w} \sqrt{E_{\mu}^{2}(\vec{k}) - \frac{\psi_{\mu}^{2}(\vec{k})}{t}} a_{\vec{k},\mu}^{\dagger} a_{\vec{k},\mu}^{\dagger} a_{\vec{k},\mu}, \qquad (2.25)$$

energetski spektar elementarnih pobudjenja koja nastaju usled interakcije eksitona sa fononima oblika je

$$\mathcal{E}_{\mu(\vec{k})} = \sqrt{\mathcal{E}_{\mu}^{2}(\vec{k}) - \mathcal{Y}_{\mu}^{2}(\vec{k})}$$
(2.26)

gdje je

$$\Psi_{\mu(\vec{k})} \neq \sum_{\vec{x}} \sum_{\nu=1}^{W} \frac{J_{\mu\nu}(\vec{k},\vec{g})}{\left[E_{\nu}^{2}(\vec{g}) - \Psi_{\nu}^{2}(\vec{g})\right]^{\eta_{2}}} \Psi_{\nu(\vec{g})} = 0 \quad , \qquad (2.27)$$

Rešavanje sistema (2.27), koji je sistem nelinearnih singularnih jednačina, zahtijeva aproksimati \mathbf{v} na pojednostavljenja ako želimo da nadjemo njegova analitička rješenja. Pri izračunavanju energija $E_{\mu}(\mathbf{k})$ primjenićemo aproksimaciju pozitivne efektivne mase tj. koristićemo se zakonom disperzije oblika:

$$E_{\mu}(\vec{k}) = E_{\mu}(0) + \frac{\hbar^2 k^2}{2m_{\mu}}$$
 (2.28)

Funkcije $\Theta_{\mu\nu}(\vec{k})$ koje se javljaju u $J_{\mu\nu}(\vec{k},\vec{q})$ (2.21) preko funkcija $\mathcal{R}_{\mu\nu}(\vec{k},\vec{q})$ (2.16) parne su tj. $\Theta_{\mu\nu}(\vec{k}) = \Theta_{\mu\nu}(-\vec{k})$. S obzirom da su matrični elementi $X_{\mu\nu}(\vec{k})$ uglavnom realni, uzećemo da su funkcije $\mathcal{G}_{\mu\nu}(\vec{k})$ takodje realne. Najveći doprinos ovim funkcijama daju energije $E_{\mu}(\sigma)$ pa je naša sledeća aproksimacija $\Theta_{\mu\nu}(\vec{k}) \approx \Theta_{\mu\nu}(\sigma)$ U slučaju kristala tipa antracena, naftalina i dr. koji imaju centar simetrije i po dvije jednake: molekule u svakoj elementarnoj ćeliji vrijedi da je, na osnovu /6/ i /17/ str.340, $X_{11}(\vec{k}) = X_{22}(\vec{k})$ i $\Theta_{\mu\nu}(\vec{k}) \approx \Theta_{\mu\nu}(\sigma)$. Ako još pretpostavimo da je $E_{\mu} \gg \Psi_{\mu}$ dobijamo pojednostavljen sistem jednačina (2.27)

$$\frac{Y_{\mu(\vec{k})}}{f_{\mu(\vec{k})}^{2}} + \frac{2m^{2}}{f_{\mu(\vec{k})}^{2}} \sum_{\nu=1}^{\infty} \frac{G_{\mu\nu}}{E_{\nu(0)}} \sum_{\vec{q}} \frac{Y_{\nu(\vec{q})}}{(\vec{k}-\vec{q})^{2}-(x_{0}^{2}-P_{\mu\nu}^{2})} = 0$$
(2.29)

gdje je

$$G_{\mu\nu} = \sum_{s,s'=1}^{w} \Delta_{s} \Delta_{s'} \Theta_{s\mu}(o) \Theta_{s'\mu}(o) \Theta_{s\nu}(o) \Theta_{s'\nu}(o) ; \Delta S = \mathcal{E}_{s} - \mathcal{E}_{o} , \qquad (2.30)$$

$$\kappa_{o} = \frac{2m \mathcal{V}}{\hbar} \sim \mathcal{W} \mathcal{W}^{m-1} ; P_{\mu\nu} = \frac{2m \Delta_{\mu\nu}}{\hbar^{2} \mathcal{U}_{o}} \sqrt{\frac{21}{10}} \tilde{>} 10^{9} m^{-1} ; \qquad \mu_{o} \sim \mathcal{W}^{m-1} ;$$

Kako je $\Delta_{\mu\nu} = E_{\mu}(o) - E_{\nu}(o)$ slijedi da je $P_{\mu\mu} = 0. \mu o$ je granični vektor prve Brillouinove zone za razmatrani molekularni kristal. Jednačine (2.29) možemo rješiti prelaskom u konfiguracioni prostor pomoću Fourier transformacija

$$\begin{aligned} & \left\{ \Psi_{\mu}(\vec{k}) = \int_{\ell^{\mu}}^{\Psi}(\vec{r}) e^{i\vec{k}\vec{r}} d\vec{r} \\ & \left[(\vec{k} - \vec{q})^2 - (k_0^2 - P_{\mu\nu}^2) \right]^{-1} = \int_{\ell^{\mu}\nu}^{V} V_{\mu\nu}(\vec{r}) e^{i\vec{r}(\vec{k} - \vec{q})} d\vec{r} \end{aligned}$$
(2.31)

Ovakva procedura nas dovodi do sistema homogenih algebarskih jednačina

$$\mathcal{Y}_{\mu}(\vec{r}) + L \sum_{\nu=1}^{W} \frac{G_{\mu\nu}}{E_{\nu}(0)} \bigvee_{\mu\nu}(\vec{r}) \mathcal{Y}_{\nu}(\vec{r}) = 0 \quad ; \quad L = \frac{2m^{2}V}{\hbar^{2}M} \quad . \tag{2.32}$$

Funkcije $V_{\mu\nu}(\vec{r})$, izračunate na osnovu (2.31), jednake su

$$\begin{aligned}
\bigvee_{\mu\nu}(\vec{r}) &= \frac{1}{4\Re r} \cos r \sqrt{k_o^2 - \frac{P^2}{\Lambda^4 \nu}}, \quad k_o^2 > \frac{P_{\mu\nu}^2}{\mu^4 \nu}, \quad \mu \neq \nu \\
\bigvee_{\mu\nu}(\vec{r}) &= \frac{1}{4\Re r} e^{-r\sqrt{P_{\mu\nu}^2 - k_o^2}}, \quad k_o^2 < \frac{P_{\mu\nu}^2}{\mu^4 \nu}, \quad \mu \neq \nu \\
\bigvee_{\mu\nu}(r) &= \frac{1}{4\Re r} \cos k_o r , \quad r \equiv |\vec{r}|, \quad \mu = \nu \end{aligned}$$
(2.33)

Sistem jednačina (2.32) ima netrivijalna rješenja samo kada je odgovarajuća sekularna jednačina jednaka nuli. Od svih vrijednosti r koje zadovoljavaju taj uslov u daljim proračunima koristićemo se samo najmanjom vrijednošću (zbog oblika funkcije $V_{\mu\nu}(r)$ (2.33) odnosno $J_{\mu\nu}(\vec{r})$) s obzirom da je za takvu vrijednost najvjerovatnije formiranje eksitonskih kaplji. Ako je r=R, minimalna vrijednost r tada možemo uzeti da je

$$Y_1(\vec{r}) = Y_1(r) = C_1 \delta(r-R)$$
 (2.34)

Uvrštavanjem (2.34) u (2.32)možemo odrediti ostale funkcije $\Psi_{\mu}(\vec{r})$ što nam omogućava da na osnovu (2.31) i (2.26) nadjemo sve grane pobudjenja stvorene operatorima $a^+_{\vec{k}\mu}$.

Konkretni proračuni provedeni su za tronivosku energetsku šemu.

Iz jednačine (2.14) odredjene su energije $E_{\mu}(\vec{k}), \mu = 1, 2, a$ zatim, u saglasnosti sa (2.12) funkcije $\partial_{s\mu}(\vec{k})$. Matrični elementi dipol-dipolne interakcije $\chi_{\mu\nu}(\vec{k})$ uzeti su u aproksimaciji najbližih susjeda i eksitoni sa pozitivnom efektivnom masom. Numerički proračuni su izvršeni sa podacima koji odgovaraju uobičajenim redovima veličine u optici:

 $\Delta_1 = 3,1 \text{ eV}$, $\Delta_2 = 3,84 \text{ eV}$; $V_{SS'} \sim 0,05 \div 0,07 \text{ eV}$.

Nadjeno je da sekularna jednačina sistema (2.32) ima rešenje

 $R \approx \frac{g_{1}}{2k_{o}} \sim 10^{-7} m; y_{1}y = 1/2.$ Za funkcije $\Psi_{1}(\vec{k})$ i $\Psi_{2}(\vec{k})$ dobijeni su izrazi

gdje je C proizvoljna konstanta. Uvrštavanje (2.35) u (2.26) daje sledeće disperzione relacije

$$\mathcal{E}_{1(\vec{k})} = E_{1(0)} \sqrt{1 - \frac{C^2}{E_1^{(0)}} \frac{\sin^2 kR}{(kR)^2}}$$
(2.36)

$$\mathcal{E}_{2}(\bar{x}) = E_{2}(0) \sqrt{1 - C^{2} \left(\frac{1 + LG_{11} V_{11}(R) E_{1(0)}}{LG_{1R} V_{12}(R)} \right)^{2} \frac{\sin^{2} kR}{(kR)^{2}}}$$
(2.37)

Konstantu C odredićemo tako da u oblasti malih talasnih vektora zakon disperzije (2.36) bude linearan.

Iz ovog uslova sledi da je C = $E_1(o)$, pa je

$$\mathcal{E}_{1(\vec{k})} = E_{1(0)} \sqrt{1 - \frac{\sin^2 kR}{(kR)^2}}$$
(2.38)

$$\mathcal{E}_{2}(\vec{k}) = \mathcal{E}_{2}(0) \sqrt{1 - [\mathcal{E}_{1}(0)] - \frac{1 + \mathcal{L} G_{11} V_{11}(R) + \mathcal{E}_{1}(0)}{\mathcal{L} G_{11} V_{12}(R)}} \int_{-1}^{2} \frac{\sin^{2} kR}{(kR)^{2}}$$
(2.39)
gdje je $L \sim 10^{10} \text{ eV}^{-1}$.

Odredjivanje konstante, koje je izvršeno, zasniva se na pretpostavci da energija veze para eksitona poprima kontinuirane vrijednosti dd 0 do $2E_1(\sigma)$ ($\approx 2\Delta$). Ova pretpostavka je prihvatljiva zbog toga što je mehanizam koji dovodi do vezivanja fononski, a fononi imaju kontinuiran spektar od 0 do $\hbar\omega_{\rm D}$. Ako se konstanta C traži iz uslova minimuma slobodne energije, što je uslov za stabilno stanje sistema, ona dobija takvu vrijednost da se zakoni disperzije \mathcal{E}_i i \mathcal{E}_2 redukuju na eksitonske E_1 i E_2 . Ovo, pak znači da pobudjenja koja se pojavljuju zbog dezintega cije eksitonskih kaplji nisu stabilna pobudjenja sistema i da se mogu razmatrati samo kao statistička fluktuacija.

Saglasno sa (2.38) i (2.39) jasno je da samo grana $\mathcal{E}_{1}(\vec{k})$ ima pozitivni minimum fazne brzine pa se pobudjenja te grane mogu superfluidno kretati kroz kristal. Grana $\mathcal{E}_{2}(\vec{k})$ nije definisana za sve vrijednosti talasnog vektora \vec{k} već je praktično definisana samo za k = n π/R , n=1,2,... i eksperimentalno bi se mogla verificirati oštrim linijama sličnim linijama atomskog spektra.

Znači rezultati razmatranja koje smo proveli pokazuju da se u sistemu sa dvije vrste eksitona može pojaviti samo jedna grana pobudjenja sa superfluidnim osobinama. Nedijagonalni članovi iz (2.29), koji karakterišu interakciju izmedju dvije različite vrste eksitona, ne dozvoljavaju drugu granu osim za tačno odredjene vrijednosti k.

Ako uvedemo generalisani operator struje bozonskih pobudjenja

- 68 -

$$\overline{y}(\vec{r}-\vec{r}';t-t') = \frac{\hbar}{2mi} \left[\mathcal{B}'(\vec{r};t') \nabla \vec{r} \mathcal{B}(\vec{r};t) - \mathcal{B}(r;t) \nabla \vec{r}' \quad \mathcal{B}'(\vec{r};t') \right]$$
(2.40)

i nadjemo srednju vrijednost njene Fourier komponente

$$\langle \overline{j}(\overline{k},\omega) \rangle = \frac{\hbar k}{2m} \left\{ \mathcal{J}_{\mathcal{B}^{\dagger}\mathcal{B}}(\overline{k},\omega) + \mathcal{J}_{\mathcal{B}\mathcal{B}^{\dagger}}(\overline{k},\omega) \right\}$$
$$\mathcal{J}_{\mathcal{B}^{\dagger}\mathcal{B}}(\overline{k},\omega) = \int \langle \mathcal{B}^{\dagger}(\overline{k},t') \mathcal{B}(\overline{k},t) \rangle e^{i\omega\overline{k}} d\overline{k} , \quad \overline{k} = t - t' \qquad (2.41)$$

za hamiltonijan tipa H = $\sum_{\vec{k}} \phi_{\vec{k}} B_{\vec{k}}^{\dagger} B_{\vec{k}}$ dobijamo

$$\langle \overline{j}(\overline{k},\omega) \rangle = \overline{j}(\overline{k},\theta) = \frac{\hbar k}{m} \operatorname{ctg} hyp \frac{\phi_{\overline{k}}}{\theta} \approx \frac{\hbar \overline{k}}{2m}; \theta = k_s T \approx 0$$
 (2.42)

Može se zaključiti da pravac struje pobudjenja zavisi od znaka efektivne mase pobudjenja. Efektivna masa eksitona zavisi od pravca prostiranja eksitonskih talasa, ali održava znak za isti pravac. Sa druge strane, znak efektivne mase pobudjenja $\mathcal{E}_1(\vec{k})$ zavisi od vrijednosti intenziteta talasnog vektora \vec{k} . Za vrijednost k~R⁻¹ izraz $\hbar^2 \left[\frac{\partial^2 \mathcal{E}_1(\vec{k})}{\partial^2 k^2}\right]^{-1}$ mijenja znak i to mora dovesti do izmjene pravca $\frac{M}{2}(\vec{k})$.

Ovaj efekt bi se mogao iskoristiti za eksperimentalnu potvrdu postojanja pobudjenja $\overline{\mathcal{J}}(\vec{k})$.

Analogno kao u /65/, tanki film nekog optički aktivnog materijala sa detektorom za pobudjenja na jednom kraju filma mogao bi se osvijetliti svjetlošću opadajućih talasnih dužina.

Ako u sistemu postoje pobudjenja tipa $\mathcal{E}_1(\vec{k})$, u saglasnosti sa gornjim razmatranjima, intenzitet pobudjenja registrovan sa detektorom morao bi se oštro izmijeniti u blizini $\lambda \sim 550$ nm.Na kraju, pojava vrlo oštrih pikova u eksperimentu, koji odgovaraju pobudjenjima $\mathcal{E}_2(\vec{k})$, mogla bi se takodje interpretirati kao potvrda teorijskih rezultata dobijenih u ovom razmatranju.

Interesantno je primjetiti da λ = 550 nm leži u domenu zelene svjetlosti (prema /64/ maksimum apsorpcije biljaka je u oblasti λ = 590 nm) što, sa svoje strane predstavlja jednu indirektnu potvrdu postojanja razmatranih ekscitacija.

Superfluidnost Frenkelovih eksitona u molekularnim kristalima s nekoliko podrešetki

Koristeći metod Greenovih funkcija /67/ u radu /63/ su ispitane neke posledice eksiton-fonon interakcije u molekularnim kristalima sa nekoliko podrešetki. Bose kondenzacija eksitona je takodje razmatrana u radovima /58,59/, a analogija izmedju eksiton-fonon interakcije i teorije superprovodljivosti je diskutovana u radu /56/.

Posmatramo molekularni kristal sa & molekula po jednoj ćeliji u dvonivoskoj šemi, tj. svaki molekul ima samo jedno ekscitirano stanje označeno sa f: $\omega_{a} = \mathcal{E}_{a}^{f} - \mathcal{E}_{a}^{o}$ je ekscitaciona energija ($\alpha = 1, 2, \ldots, s$), ($\beta = 1$). Elementarne ekscitacije ovog modela su Paulionske pripode, ali za male koncentracije kvazičestica, one dobivaju bozonski karakter. U ovom stanju hamiltonijan ekscitiranog kristala ima sledeći oblik /17/

$$H_{ex} = \sum_{\vec{n}} \sum_{d=1}^{8} \omega_{d} B_{\vec{n}d}^{\dagger} B_{\vec{n}d} + \sum_{\vec{n}d, \vec{m}, \vec{n}} X_{\vec{n}d, \vec{m}, \vec{n}} B_{\vec{n}d}^{\dagger} B_{\vec{n}d} \qquad (2.43)$$

 $\vec{n} = \vec{n} + \vec{\beta}_{a}$ gdje je \vec{n} vektor elementarne ćelije, a β_{a} je vektor položaja a-te molekule u jednoj ćeliji.

Totalni hamiltonijan sistema: eksitoni plus fononi /40,41/ ima sledeći oblik:

$$H_{tot} = \sum_{\vec{k}, \mu} \omega_{\mu}(\vec{k}) B_{\mu}(\vec{k}) B_{\mu}(\vec{k}) + \sum_{\vec{q}} v/\vec{q} a_{\vec{q}}^{\dagger} a_{\vec{q}}^{\dagger} + \sum_{\vec{k}, \vec{q}} \Phi_{\mu}u'(\vec{k}, \vec{q}) \cdot B_{\mu}(\vec{k}, \vec{q}) B_{\mu}'(\vec{k}) (a_{\vec{q}} + a_{\vec{q}}^{\dagger})$$

$$(2.44)$$

gdje je

$$\Phi_{\mu\mu'}(\overline{k},\overline{g}) = \frac{i}{N^{\gamma_2}} \sum_{\alpha} \left(\frac{\omega_{\alpha}^2}{2M_{\alpha}\omega_{g}^2} \right) (\overline{g},\overline{l}) \, \mathcal{U}_{\kappa\mu}^*(\overline{k},\overline{g}) \, \mathcal{U}_{\kappa\mu'}(\overline{k}) \, .$$

 M_a je masa a-te molekule, $\omega_{\vec{q}} = v |\vec{q}|$ je energija longitudinalnih fonona, $\vec{1}$ je polarizacioni vektor longitudinalne fononske grane i $a_{\vec{q}}^{\dagger}$, $a_{\vec{q}}$ su operatori kreacije i anihilacije odgovarajućih fonona.

Sada se vrši pomenuta Fröhlichova transformacija (2,2) i uvodi ideja o spajanju eksitona sa suprotnim impulsima u eksitonsku kaplju. Redukovan oblik ekvivalentnog hamiltonijana je postignut zadržavanjem samo izraza oblika

B⁺B⁺ BB:

$$H_{eg} = \sum \omega_{\mu}(\vec{\kappa}) B_{\mu}(\vec{\kappa}) B_{\mu}(\vec{\kappa}) + \sum \frac{\omega'_{\vec{\kappa}+\vec{z}} \Phi_{\mu\nu}(\vec{\kappa},\vec{\kappa}+\vec{z}) \Phi_{\mu\nu}^{\kappa}(\vec{z},\vec{\kappa}+\vec{z})}{\vec{\kappa}_{i}\vec{z}_{ij}\mu_{i}\nu(\vec{\omega}) - \omega\nu(\vec{y}) \int_{-\infty}^{z} - \omega'_{\vec{\kappa}+\vec{z}}^{\kappa}}$$
(2.45)

·
$$B^{\dagger}_{\mu}(\vec{x}) B^{\dagger}_{\mu}(-\vec{x}) B_{\nu}(-\vec{z}) B_{\nu}(\vec{z})$$
.

Vidimo iz (2.45) da se formiranje eksitonske kaplje dogadja kada je enrgija fonona $\omega_{\vec{k}+\vec{q}}^{*}$ veća nego $\Delta_{\mu\nu} = \omega_{\mu}(\vec{k}) - \omega_{\nu}(\vec{x})$ tj. veličine Davidovog cijepanja eksitonske zone, ili veličine eksitonske zone za kristal sa jednom molekulom po elementarnoj ćeliji. Energija fonona može se proceniti iz Debyeve temperature molekularnih kristala, koja je reda $10^4 - 10^5 \text{m}^{-1}$. Širina niže eksitonske zone, a isto tako kao Davydovo cijepanje može biti manje od 10^4m^{-1} (npr. u antracenu) /5,17/. Pretpostavit ćemo da uslovi za formiranje eksitonskih kaplji su ispunjeni i hamiltonijan (2.45) može biti napisan u obliku

- 71 -

$$H_{eg} = \sum_{\mu,\overline{\kappa}} \omega_{\mu}(\overline{\kappa}) B^{\dagger}_{\mu}(\overline{\kappa}) B_{\mu}(\overline{\kappa}) - \frac{1}{2} \sum_{\overline{\kappa},\overline{2}} \bigvee_{\mu,\nu} \psi(\overline{\kappa},\overline{q}) B^{\dagger}_{\mu}(\overline{\kappa}) B^{\dagger}_{\mu}(-\overline{\kappa}) B_{\nu}(-\overline{q}) B_{\nu}(\overline{q}); (2.46)$$

$$\vee > 0.$$

Da bi se odredio spektar elementarnih ekscitacija za sistem opisan hamiltonijanom (2.46) mi ćemo primjeniti metod Zubarevih GF /67/. Pošto nas zanimaju procesi kreacije kao i anihilacije eksitonske kaplje, uvodimo dva tipa bozonskih GF (I 2.5)

$$G_{\mu\nu}(\vec{x},\omega) = \langle\!\langle B_{\mu}(\vec{k}) | B_{\nu}^{\dagger}(\vec{x}) \rangle\!\rangle ; \qquad D_{\mu\nu}(\vec{x},\omega) = \langle\!\langle B_{\mu}^{\dagger}(-\vec{k}) | B_{\nu}^{\dagger}(\vec{x}) \rangle\!\rangle . \qquad (2.47)$$

Za jednačine kretanja u ω -reprezentaciji dobijemo izraze

$$\begin{aligned} \left[(\mathcal{Q} - \widetilde{\mathcal{Q}}_{\mu}(\vec{\kappa}) \right] G_{\mu\nu}(\vec{\kappa}, \omega) + \Delta_{\mu}(\vec{\kappa}) D_{\mu\nu}(\vec{\kappa}, \omega) &= \frac{i}{2\Re^{*}} \mathcal{J}_{\mu,\nu} \\ \Delta^{*}_{\mu}(\vec{\kappa}) G_{\mu\nu}(\vec{\kappa}, \omega) + \left[(\mathcal{Q} + \widetilde{\mathcal{Q}}_{\mu}(\vec{\kappa}) \right] D_{\mu\nu}(\vec{\kappa}, \omega) = 0 \quad ; \quad \mu, \nu = 1, 2, \dots, \delta^{*} \end{aligned}$$

$$(2.48)$$

gdje smo koristili definiciju "parametar koherence" /60/

$$\Delta_{\mu}(\vec{k}) = \sum_{\vec{g}, \vec{y}'} V_{\mu y'}(\vec{k}, \vec{g}) \langle B_{y'}(\vec{g}) B_{y'}(\vec{g}) \rangle$$
(2.49)

i uveli hemijski potencijal $(\tilde{\mu})$ preko relacije $\tilde{\omega}_{\mu}(\tilde{k}) = \tilde{\omega}_{\mu}(\tilde{k}) - \tilde{\mu}$. Kada doprinose proizvoda operatora sa različitim impulsima zanemarimo i kada je (2.49) dijaganalan, rešenje sistema (2.48) su dijagonalne GF

$$G_{\mu\mu}(\vec{k},\omega) = G_{\mu}(\vec{k},\omega) = \frac{i}{2\pi} \frac{\omega + \tilde{\omega}_{\mu}(\vec{k})}{\omega^2 - \tilde{\omega}_{\mu}^2(\vec{k}) + |\Delta_{\mu}(\vec{k})|^2}, \qquad (2.50)$$

$$D_{\mu\mu}(\vec{k},\omega) = D_{\mu}(\vec{k},\omega) = -\frac{i}{2\mathfrak{A}} \frac{\Delta_{\mu}(\vec{k})}{\omega^2 - \tilde{\omega}_{\mu}(\vec{k}) + |\Delta_{\mu}(\vec{k})|^2}$$
(2.51)

Energije elementarnih ekscitacija su odredjene iz polova GF

$$\mathcal{E}_{\mathcal{H}}(\vec{k}) = \sqrt{\widetilde{\omega}_{\mathcal{H}}^{2}(\vec{k})} - |\Delta_{\mathcal{H}}(\vec{k})|^{2} \quad . \tag{2.52}$$

Zaključak za μ možemo izvesti iz uslova da ekscitacioni spektar nema gep tj. $\xi_{\mu}(\omega) = 0$, koji podrazumijeva da računamo energiju od dna eksitonske zone tj.

$$\tilde{\mu} = \omega_{\mu}(0) - \Delta_{\mu} ; \quad \Delta_{\mu} = \Delta_{\mu}(0) ; \qquad (2.53)$$

gdje izbor znaka sledi iz činjenice da je efektivna interakcija atraktivna. Konačno, koristeći i aproksimaciju efektivne mase, dobijamo

$$\mathcal{E}_{\mu}(\vec{\kappa}) = \sqrt{\left(\frac{K^2}{2m_{\mu}} + \Delta_{\mu}\right)^2 - \Delta_{\mu}^2(\vec{\kappa})} \quad . \tag{2.54}$$

Za malo k̃, dobijamo fononski spektar kao u stanjima superfluidnog Bose gasa

$$\mathcal{E}_{\mu}(\vec{k}) \stackrel{\simeq}{=} \left(\frac{\Delta \mu}{m_{\mu}}\right)^{V_2} |\vec{k}| = \mathcal{V}_{\mu} |\vec{k}| \qquad (2.55)$$

gdje je v $_\mu$ brzina zvuka u sistemu elementarnih ekscitacija.

Tako zaključujemo da elementarne ekscitacije koje nastaju usled raspada eksitonske kaplje zadovoljavaju stanje superfluida. Razmatran je slučaj malih eksitonskih koncentracija gdje se može zanemariti eksitonska repulzija koja postaje važna kod visoke koncentracije eksitona i koja može dovesti do Bose - Einsteinove kondenzacije bez eksiton-fonon interakcije /5,59/. Znači efektivna eksiton-fonon interakcija usled virtuelne izmjene fonona je atraktivna i dovodi do sparivanja dva eksitona sa suprotnim impulsima u metastabilno stanje: eksitonska kaplja sa impulsom $\vec{k}_0 = 0$ (kondenzovana faza). Kao rezultat raspada kaplje, dobijamo elementarne ekscitacije sa energijom $\xi_{\mu}(\vec{k})$ koje zadovoljavaju uslov superfluidnosti. Repulzija izmedju eksitona nije razmatrana iz dva razloga:

a) kod malih koncentracija eksitona je eksiton-fonon interakcija dominantna i

b) repulzija izmedju Frenkelovih eksitona postaje važna kod rastojanja reda 10^{-9} - 10^{-10} m, dok su dimenzije eksitonske kaplje reda 10^{-7} m /38/.

Raspoloživih eksperimentalnih dokaza za postojanje kondenzovane faze u sistemu Frenkelovih eksitona još nema. Nekoliko eksperimentalnih rezultata postoji i oni favorizuju kondenzovanu fazu u sistemu eksitonskih molekula u CuCl (oštre linije u emisionom spektru) /58/.

Interesantno je ispitati dielektrične osobine molekularnih kristala kada postoji eksitonski kondenzat koji smo dobili prethodnom analizom. Tenzor dielektrične susceptibilnosti χ_{ij} ili dielektrična konstanta ε_{ij} povezuję polarizaciju kristala \vec{P} i električno polje \vec{E} u slučaju elektromagnetnog zračenja.

$$\vec{P}(\vec{k},\omega) = \mathcal{E}_{o} \chi_{(\vec{k},\omega)} \vec{E}_{(\vec{k},\omega)} = \mathcal{E}_{o} \left[\mathcal{E}_{(\vec{k},\omega)} - 1 \right] \vec{E}_{(\vec{k},\omega)} \quad . \tag{2.56}$$

Da bi se odredio \mathcal{X}_{ij} neophodno je izračunati električni dipolni moment indukovan vanjskim poljem. Koristeći vezu izmedju amplitude potencijala i amplitude električnog polja $E_0 = i\omega A_0$ možemo hamiltonijan interakcije kristala sa elektromagnetnim poljem u dipolnoj aproksimaciji izraziti preko eksitonskih operatora na sledeći način

$$H_{int} = -N^{\frac{1}{2}} \sum_{\mu=1}^{8} \left\{ \left(\mathcal{L}_{\mu}(\bar{g}) B_{\mu}^{\dagger}(\bar{g}) - \mathcal{L}_{\mu}^{\dagger}(-\bar{g}) B_{\mu}(-\bar{g}) \right\} e^{-i\omega t} + h.c. \right\}$$
(2.57)

gdje je

$$L_{\mathcal{A}}(\overline{g}) = \frac{E_o}{\omega} \sum_{\alpha=1}^{\gamma} \omega_{\alpha}(\overline{\ell} \cdot \overline{d_{\alpha}}) \mathcal{U}_{\alpha,\mu}^*(\overline{g}) ; \ \overline{\ell} \cdot \overline{g} = 0 , \qquad (2.58)$$

a $d_d = d_a^* = \langle f | \sum_i e \vec{y}_i^a | 0 \rangle$ je matrični element dipolnog momenta molekula izmedju osnovnog stanja $| 0 \rangle$ i nedegeneriranog stanja ekscitiranog stanja $| f \rangle$.

U reprezentaciji druge kvantizacije operator totalnog dipolnog momenta može se izraziti na sledeći način

$$\hat{P}_{(\vec{n})} = N^{\frac{1}{2}} \sum_{\vec{k}, \mu} \left[d_{\mu}(\vec{k}) B_{\mu}(\vec{k}) + d_{\mu}^{*}(-\vec{k}) B_{\mu}^{\dagger}(-\vec{k}) \right] e^{i\vec{k}\cdot\vec{n}}$$
(2.59)

gdje je $\vec{d}_{\mu}(\vec{k}) = \frac{4}{N_{o}} \sum_{\alpha=1}^{k} u_{\alpha\mu}(\vec{k}) \vec{d}_{\alpha}$ električni dipolni moment ćelije. Polarizacija (srednja vrijednost totalnog dipolnog momenta) može se računati na sledeći način

$$\langle \hat{\vec{P}}_{(\vec{n},t)} \rangle = \langle \hat{S}_{(t)}^{-1} \hat{\vec{\Phi}}_{(\vec{n},t)} \hat{\vec{S}}_{(t)} \rangle_{0}$$
(2.60)

gdje $\langle \cdots \rangle$ je srednja vrijednost preko ravnotežnog Gibbsovog ansambla, $\hat{\vec{\mathcal{P}}}_{(\vec{n},t)}$ je totalni dipolni moment u reprezentaciji interakcije, $\hat{S}(t)$ označava S matricu

$$\hat{S}_{(t)} = \hat{T} \exp\left\{\frac{1}{i} \int_{-\infty}^{t} \hat{W}_{(t')} dt'\right\}, \qquad (2.61)$$

a W(t ") je operator interakcije (2.57) u reprezentaciji interakcije.

U linearnoj aproksimaciji, polarizacija je data sa

$$\langle \vec{P}_{(\vec{g},\omega)} \rangle = -\frac{1}{i} \sum_{\mu=1}^{3} \left[\vec{d}_{\mu}(\vec{g}) \perp_{\mu}(\vec{g}) \mathcal{G}_{\mu}(\vec{g},\omega) - \vec{d}_{\mu}(-\vec{g}) \perp_{\mu}^{*}(-\vec{g}) \mathcal{G}_{\mu}(\vec{g},\omega) + \left(2.62 \right) \right.$$

$$+ \vec{d}_{\mu}^{*}(-\vec{g}) \perp_{\mu}(\vec{g}) \mathcal{D}_{\mu}^{*}(\vec{g},\omega) - \vec{d}_{\mu}(\vec{g}) \perp_{\mu}^{*}(\vec{g}) \mathcal{D}_{\mu}(\vec{g},\omega) \right].$$

Bozonske Greenove funkcije $G(\vec{z}, \omega)$ i $D(\vec{z}, \omega)$ bile su definisane u (2.47), dok $G^{\dagger}(\vec{z}, \omega)$ i $D^{\dagger}(\vec{z}, \omega)$ su definisane kao

- 75 -

$$G_{\mu}(\vec{z},\omega) = \langle \langle B_{\mu}(\vec{z}) \rangle \langle B_{\mu}(\vec{z}) \rangle \rangle, \quad D_{\mu}(\vec{z},\omega) = \langle \langle B_{\mu}(-\vec{z}) \rangle \langle B_{\mu}(\vec{z}) \rangle \rangle . \quad (2.63)$$

Komparirajući (2.56) sa (2.62) možemo odrediti tenzor $\mathcal{X}(q,\omega)$ ili $\mathcal{E}(q,\omega)$. Analiza izraza (2.62) za sve vrijednosti ω i \vec{q} je težak zadatak, zato ćemo uvesti neke dodatne pretpostavke koje se praktično dogadjaju. Diskutovati ćemo područje eksitonfoton rezonance, tj. $\omega z \omega_{\lambda}$ koje bi se moglo realizirati pomoću monohromatskih laserskih zraka. Zatim, biće razmatran samo kristal sa dvije identične molekule, po elementarnoj ćeliji (antracen, pentacen, naftalin itd.). Sledeći korak je bio prezentiran u prvom dijelu ove analize

tj. odredit ćemo Greenove funkcije $G^+_{\mu}(\vec{q},\omega)$ i $D^+_{\mu}(\vec{q},\omega)$ i pokazati osobine $G^+_{\mu}(\vec{k},\omega) = G_{\mu}(\vec{k},-\omega)$, $D^+_{\mu}(\vec{k},\omega) = D^-_{\mu}(\vec{k},\omega)$ koje nam pomažu da pojednostavimo izraz (2.62). U području rezonance ($\omega \sim \omega_a$), $G_{\mu}(\vec{q},\omega) \gg G_{\mu}(-\vec{q},-\omega)$ tako da je konačni rezultat

$$\langle \vec{P}(\vec{g},\omega) \rangle = -\frac{1}{i} \sum_{\mathcal{A}^{H-T}}^{2} \vec{\mathcal{A}}_{\mu} \mathcal{L}_{\mu} \mathcal{G}_{\mu} \left(\vec{g},\omega\right)$$
(2.64)

gdje je

$$G_{\mu}(\vec{k},\omega) = \frac{i}{2\Re} \frac{\bar{n}_{\mu}(\vec{k}) + 1}{\omega - \omega_{\alpha} - \varepsilon_{\mu}(\vec{k}) + im} - \frac{i}{2\Re} \frac{\bar{n}_{\mu}(\vec{k})}{\omega - \omega_{\kappa} + \varepsilon_{\mu}(\vec{k}) + im} \quad (2.65)$$

$$\bar{n}_{\mu}(\vec{k}) = \frac{1}{2} \frac{\tilde{\omega}_{\mu}(\vec{k}) - \tilde{\epsilon}_{\mu}(\vec{k})}{\tilde{\epsilon}_{\mu}(\vec{k})}; \quad (T = 0 \kappa) . \quad (2.66)$$

Nas zanima samo imaginarni dio tenzora susceptibilnosti jer je proporcionalan koeficijentu apsorpcije kristala. Razmatramo dva slučaja i to: a) jedna molekula u elementarnoj ćeliji (μ = 1; ω_{μ} = ε_{f} - ε_{o})

$$\Im_{m} \left\{ \chi_{ij}(\vec{k},\omega) \right\} = \frac{\omega_{k} d_{i} d_{j}}{\varepsilon_{\circ} V_{\circ} \omega} \left\{ \left[\vec{n}(\vec{k}) + 1 \right] \delta \left[\omega - \omega_{k} - \varepsilon_{(\vec{k})} \right] - \vec{n}(\vec{k}) \delta \left[\omega - \omega_{k} + \varepsilon_{(\vec{k})} \right] \right\}$$
(2.67)

b) dvije molekule u elementarnoj ćeliji

$$\int_{m} \left\{ \mathcal{X}_{ij}(\vec{k},\omega) \right\} = \frac{\omega_{\mathcal{L}}}{\mathcal{E}_{\circ} V_{\circ} \omega} \left\{ \left(d_{ij} + d_{2j} \right) \left\{ \left(d_{ii} + d_{2i} \right) \left[\left(\bar{n}_{i}(\vec{k}) + 1 \right) \delta(\omega - \omega_{\mathcal{L}} - \mathcal{E}_{4}(\vec{k})) - \frac{\bar{n}_{i}(\vec{k}) \delta(\omega - \omega_{\mathcal{L}} + \mathcal{E}_{1}(\vec{k})) \right] + \left(d_{ii} + d_{2i} \right) \left[\left(\bar{n}_{2}(\vec{k}) + 1 \right) \delta(\omega - \omega_{\mathcal{L}} - \mathcal{E}_{2}(\vec{k})) - \frac{\bar{n}_{2}(\vec{k}) \delta(\omega - \omega_{\mathcal{L}} + \mathcal{E}_{2}(\vec{k})) \right] + \left(d_{ii} + d_{2i} \right) \left[\left(\bar{n}_{2}(\vec{k}) + 1 \right) \delta(\omega - \omega_{\mathcal{L}} - \mathcal{E}_{2}(\vec{k})) - \frac{\bar{n}_{2}(\vec{k}) \delta(\omega - \omega_{\mathcal{L}} + \mathcal{E}_{2}(\vec{k})) \right] \right\}.$$

Vidimo da u oba stanja se dogadja apsorpcija (tj. kreacija eksitona) na energiji

$$\omega_1 = \omega_2 + \mathcal{E}_{\mu}(\vec{k}) \,. \tag{2.69}$$

Faktor $\overline{n}_{\mu}(\vec{k}) + 1$ u jednačinama (2.67) i (2.68) ukazuje da postoje spontani i stimulisani efekti.

Stimulisana emisija (tj. anihilacija eksitona) se dogadja na energiji

$$\omega_2 = \omega_1 - \mathcal{E}_{\mu(\overline{k})} \quad (2.70)$$

Rezultati u ovom dijelu ukazuju da bi indirektni dokazi mogli biti zasnovani na komparaciji emisionog i arsorpcionog spektra molekularnih kristala.

Iz izraza (2.69) i (2.70) sledi da se apsorpcija dogadja na frekvenciji $\mathcal{W}_1 = \mathcal{W}_{\mathcal{K}} + \mathcal{E}_{\mathcal{H}}(\vec{k})$, dok se stimulisana emisija dogadja na frekvenciji $\mathcal{W}_2 = \mathcal{W}_2 - \mathcal{E}_{\mathcal{H}}(\vec{k})$. Ti rezultati mogli bi se objasniti na sledeći način: kada foton interagira sa eksitonskom kapljom impulsa $\vec{k}_0 = 0$ i energije $E_o \sim 2 \omega_e$ tada se kreiraju dva eksitona sa energijama ω_e (renormalizovan preko interakcije sa fononima) i ω_e koji se raspada uz emitovanje fotona energije ω_e (stimulisana emisija). Zakoni konzervacije za eve procese su:

$E_0 = \omega_1 + \omega_2 \quad ; \quad \overline{k}_0 = 0 = \overline{k} + (-\overline{k}) \quad ; \quad \mathcal{E}_{\mu}(\overline{k}) = \mathcal{E}_{\mu}(-\overline{k})$

Vidimo da detektovanje razlike položaja izmedju apsorpcione i emisione linije $2\mathcal{E}_{\mu}(\vec{k})$ može biti eksperimentalna zapreka ove teorije. Nesreća je što nam eksperimentalne prilike nisu naklonjene. U fononskom području spektra $|\vec{k}| \approx 10^7 \div 10^8 \text{ m}^{-1}$ i sa brzinom zvuka reda $c_{\mu} \approx 10^3 \text{ ms}^3$ dobijamo da je $2\mathcal{E}_{\mu}(\vec{k}) \approx 10^{-5} \text{eV}$, koja je istog reda veličine kao i rezolucija sadašnjih optičkih instrumenata. Vidimo da je teško otkriti stimulisanu emisiju za vrijeme postojanja kondenzovane faze.

Analogno ovom razmatranju u radu /78) posmatrali smo molekularni kristal sa jednom molekulom u elementarnoj ćeliji koja ima l diskretnih energetskih nivoa (multinivoska šema): $\Delta \mathcal{E}_f = \mathcal{E}_f - \mathcal{E}_o$ (f = 1,2,...,l) gdje je \mathcal{E}_o energija osnovnog stanja i \mathcal{E}_f je energija f-tog nivoa. Isto tako je analizirana mogućnost realne egzistencije eksitonske kaplje. Na osnovu /45,61/ sledi da formiranje tih stanja je moguće pod sledećim uslovima

- a) eksiton-eksiton interakcija mora biti atraktivna
- b) eksiton-eksiton interakcija mora biti veća od širine odgovarajuće eksitonske zone.

To je moguće za vrlo uske eksitonske zone gdje je širina zone reda 10^{-21} J ili manja. Uslov a) je zadovoljen ako je energija fonona $\omega_{\vec{k}+\vec{q}}$ veća od Bethe cijepanja eksitonske zone $\beta_{\mu\nu} = E_{\mu}(\vec{k}) - E_{\nu}(\vec{q})$. Ako energiju fonona odredimo iz Debyeve temperature ($K_B T_D \sim 10^{-21} J$ za molekularne kristale) i $\beta_{\mu\nu \neq} 10^{-22} J$ (za tripletne eksitone /17/), vidimo da je taj uslov ispunjen. Eksiton-eksiton interakcija $|W| \sim (\Delta \mathcal{E}_f)^2 / 2M v^2 \sim 10^{-20} \mathcal{J} = 10^{-20} J$, tako da je i uslov b) takodje zadovoljen. Sve ostale analize su izvršene u analogiji sa pret-hodnim razmatranjem.

3. DIELEKTRIČNE OSOBINE KRISTALA U PRISUSTVU FONONA

Apsorpcione i refrakcione osobine molekularnih kristala teorijski se analiziraju pomoću tenzora dielektrične konstante. Ovaj tenzor, koji predstavlja makroskopsku karakteristiku kristala, može se izraziti preko eksitonskih ili polaritonskih GF u koje su uključene mikrofizičke osobine kristala. Procedura kojom se povezuju pomenute veličine predložili su prvi put Djalošinski i Pitajevski /39/, a detalje te procedure smo izložili u (I. 3). Na osnovu navedenog, jasno je da se korektan tretman dielektričnih osobina kristala svodi na korektno nalaženje eksitonske GF sistema u koju su uključeni svi mehanizmi relevantni za apsorpciju i refrakciju elektromagnetnih talasa u kristalu. U (I.4.) je pokazano da mehanizam eksiton-eksiton interakcije igra značajnu ulogu u procesima apsorpcije i refrakcije elektromagnetnih talasa u kristalu i da je njegov značaj za ove procese u svakom slučaju uporediv sa odgovarajućim značajem mehanizma eksiton-fonon interakcije koji je do danas smatran kao jedini relevantni mehanizam koji definiše apsorpciona svojstva kristala.

Polazeći od činjenice da eksiton-fonon i eksiton-eksiton interakcija igraju ravnopravnu ulogu u definisanju dielektričnih osobina kristala, ovdje ćemo izvršiti analizu pomenutih osobina uključujući u račun kako efekte eksiton-eksiton interakcije tako i efekte eksiton-fonon interakcije.

Radi uprošćavanja računa, hamiltonijan eksitonskog sistema biće uzet u krajnje idealizovanoj formi, tj. pretpostaviće se dvonivoska šema molekulskih pobudjenja u kristalu sa prostom kubnom rešetkom. Efekti neodržanja se ne uzimaju u obzir. S obzirom na ovakva uprošćavanja na samom startu, očigledno je da od

- 080 -

rezultata koji se dobiju ne treba očekivati više no što je to kvalitativan opis dielektričnih osobina kristala. Samo zadovoljavajući kvalitativni opis u uprošćenoj šemi mogao bi da opravda veoma glomazne račune koji bi eventualno bili izvedeni za neku od konkretnih struktura koje se pojavljuju u kristalooptičkim istraživanjima.

Hamiltonijan dvonivoske šeme za prostu kubnu strukturu može se napisati u obliku (I 2.1)

$$He = \Delta \sum_{n} P_{n}^{\dagger} P_{n} + \sum_{n} X_{n} \overline{m} P_{n}^{\dagger} P_{\overline{m}} + \sum_{\overline{n} \overline{m}} Y_{\overline{n} \overline{m}} P_{\overline{n}}^{\dagger} P_{\overline{n}} P_{\overline{n}}^{\dagger} P_{\overline{m}}$$
(3.1)

$$X \vec{n} \vec{n} = X \vec{n} \vec{m}; X \vec{n} \vec{n} = 0; Y \vec{m} \vec{n} = Y \vec{n} \vec{m}; Y \vec{n} \vec{n} = 0$$

Ostale detalje u vezi ovog hamiltonijana smo dali u (I 1.10). Hamiltonijan eksiton-fonon interakcije možemo definisati koristeći ideju lokalne deformacije elektromagnetnog polja u kristalu koju smo dali u prvom paragrafu ove glave.

U aproksimaciji linearnoj po pomjerajima, ukazana procedura nas dovodi do sledećeg hamiltonijana eksiton-fonon interakcije:

$$\begin{split} \hat{H}_{ep} &= \sum_{\vec{n}\vec{m}} \hat{\Lambda}_{\vec{n}\vec{m}} P_{\vec{n}}^{\dagger} P_{\vec{m}} + \sum_{\vec{n}\vec{m}} \hat{\Phi}_{\vec{n}\vec{m}} P_{\vec{n}}^{\dagger} P_{\vec{n}} P_{\vec{m}}^{\dagger} P_{\vec{m}} \\ \hat{\Lambda}_{\vec{n}\vec{m}} &= i N^{-3/2} \sum_{\vec{k};\vec{g}} \left(\frac{\hbar}{2M\omega_{\vec{g}}} \right)^{1/2} \vec{k} \vec{\ell}_{\vec{g}} W_{\vec{k}} \left(C_{\vec{g}} + C_{-\vec{g}}^{\dagger} \right) e^{i \vec{k} (\vec{n} - \vec{m})} (e^{i \vec{g} \cdot \vec{n}} - e^{i \vec{g} \cdot \vec{n}}) \\ \hat{\Phi}_{\vec{n}} \vec{m} &= i N^{-3/2} \sum_{\vec{k};\vec{g}} \left(-\frac{\hbar}{2M\omega_{\vec{g}}} \right)^{1/2} \vec{k} \vec{\ell}_{\vec{g}} Y_{\vec{k}} (C_{\vec{g}} + C_{-\vec{g}}^{\dagger}) e^{i \vec{k} (\vec{n} - \vec{m})} (e^{i \vec{g} \cdot \vec{n}} - e^{i \vec{g} \cdot \vec{m}}) \\ \hat{\Lambda}_{\vec{m}\vec{n}} &= \hat{\Lambda}_{\vec{n}\vec{m}} ; \hat{\Lambda}_{\vec{n}\vec{n}} = 0 ; \hat{\Phi}_{\vec{m}\vec{n}} = \hat{\Phi}_{\vec{n}\vec{m}} ; \hat{\Phi}_{\vec{n}\vec{n}} = 0 \end{split}$$
(3.2)
$$\hat{\Lambda}_{\vec{m}\vec{n}}^{\dagger} &= \hat{\Lambda}_{\vec{n}\vec{m}} ; \nabla_{\vec{k}} = \sum_{\vec{\ell}} Y_{\vec{\ell}} e^{-i \vec{k} \cdot \vec{\ell}} ; Y_{\vec{k}} = \sum_{\vec{\ell}} Y_{\vec{\ell}} e^{i \vec{k} \cdot \vec{\ell}} ; \vec{\ell} - \vec{n} - \vec{m} . \end{split}$$

U izrazima (3.2) N je broj molekula u kristalu, M je masa molekula, $\omega_{\vec{x}}$ i $l_{\vec{x}}$ su respektivno, frekvencija i polarizacioni vektor longitudinalne fononske grane, operatori $C_{\vec{x}}^+$ i $C_{\vec{x}}$ kreiraju, odnosno anihiliraju longitudinalni fonon sa kvaziimpulsom \vec{x} , v je brzina longitudinalnih zvučnih talasa u kristalu i $\vec{x} = |\vec{x}|$. Hamiltonijan interakcije (3.2) nije napisan u uobičajenoj formi, pošto u njemu eksitonski operatori djeluju u konfiguracionom prostoru, a fononski u impulsnom. Uobičajeno je da se u (3.2) sve veličine prevedu u impulsni prostor. Ovo odstupanje od uobičajene forme nije učinjeno slučajno. Radi se o tome da Fourier-likovi Pauli operatora (I.1.8) ne zadovoljavaju komutacione relacije (I.1.9) iz konfiguracionog prostora, pa se relacije (I.1.9) prilikom formiranja jednačina kretanja ne bi mogle koristiti ukoliko bi (3.2) u potpunosti bilo prevedeno u impulsni prostor.

Hamiltonijan fononskog podsistema, u kome je uzeta u obzir samo longitudinalna grana fonona ima oblik:

$$\hat{H}_{\rho} = \sum_{\vec{k}} \hbar \omega_{\vec{k}} C_{\vec{k}}^{\dagger} C_{\vec{k}}$$
(3.3)

i on predstavlja poslednji neophodni element za formulisanje totalnog hamiltonijana sistema koji sadrži optička i mehanička pobudjenja, kao i njegovu ineterakciju.

Ovaj totalni hamiltonijan je suma do sada navedenih hamiltonijana i dat je sa:

$$\hat{H} = \hat{H}_{e} + \hat{H}_{p} + \hat{H}_{ep}. \qquad (3.4)$$

Pošto je formulisan hamiltonijan sistema, dalja analiza zahtjeva nalaženje eksitonske GF (I 2.2)

$$\left[\vec{n} - \vec{m}(t) = \left\langle \left(P_{\vec{n}}(t) \right) \right| P_{\vec{m}}^{\dagger}(0) \right\rangle$$
(3.5)

ili, preciznije, njenog Fourier-lika:

 $\Gamma_{\vec{k}}(\omega) = \frac{1}{2\mathfrak{N}} \sum_{\vec{k}} \int dt \, \Gamma_{\vec{t}(t)} e^{-i\vec{k}\vec{e} + i\omega t} ; \vec{t} = \vec{n} \cdot \vec{m}$ (3.6)

Funkciju (3.5) potražićemo koristeći standardni formalizam dvovremenskih temperaturskih GF, koji je u radu do sada korišten /13/. Na osnovu ovoga formalizma, jednačina za odredjivanje funkcije (3.5) ima oblik:

$$i\hbar\frac{\partial}{\partial t}\left[\vec{n}\cdot\vec{m}(t)=i\hbar\delta(t)\delta\vec{n}\vec{m}\left(1-2\langle P_{\vec{n}}^{\dagger}P_{\vec{n}}\rangle\right)+\langle\langle (P_{\vec{n}},\hat{H})_{t}|P_{\vec{m}}^{\dagger}(o)\rangle\rangle.$$
(3.7)

GF na desnoj strani jednačine (3.7) sadrži polaznu funkciju i slijedeće više GF

gdje su a, b, c i d indeksi čvorova, a q označava impuls.

U funkcijama tipa $\langle\!\langle \vec{PPP} \! | P' \rangle\!\rangle$ se izvrši prelaz od Pauli operatora P i P⁺ na Bose operatore B i B⁺ po formulama uzetim u aproksimaciji (I 2.4).

Prilikom dekuplovanja bozonskih GF dobijenih na ovaj način striktno se primenjuje Wickova teorema za Bose operatore, ali se zanemaruju doprinosi proporcionalni koncentraciji eksitona, tako da je rezultat dekuplovanja slijedeći:

 $\ll P_{\overline{a}}^{t}(t) P_{\overline{b}}(t) P_{\overline{c}}(t) | P_{\overline{d}}^{t}(o) \gg - \ll B_{\overline{a}}^{t}(t) B_{\overline{b}}(t) B_{\overline{c}}(t) | B_{\overline{d}}(o) B_{\overline{d}}(o) \gg \\ \approx 2 D_{\overline{a}} - \overline{d}(t) G_{\overline{b}}^{t} - \overline{d}(t) G_{\overline{c}}^{t} - \overline{d}(t); D_{\overline{a}}^{t} - \overline{b}(t) = \ll B_{\overline{a}}^{t}(t) | B_{\overline{b}}(o) \gg,$

 $G\bar{a} - \bar{b}(t) = \langle \langle B\bar{a}(t) | B_{\bar{b}}^{\dagger}(o) \rangle \rangle$

(3.9)

- 83 -

Za ostale funkcije iz (3.8) se u skladu sa procedurom iz /13/ ispisuju slijedeće jednačine:

$$\begin{split} &i\hbar\frac{d}{dt} \ll P_{\overline{a}}(t)C_{\overline{g}}(t) \mid P_{\overline{b}}^{\dagger}(o) \rangle = \ll \left(P_{\overline{a}}C_{\overline{g}}, \hat{H}\right)_{t} \mid P_{\overline{b}}^{\dagger}(o) \rangle \\ &i\hbar\frac{d}{dt} \ll P_{\overline{a}}(t)C_{-\underline{g}}(t) \mid P_{\overline{b}}^{\dagger}(o) \rangle = \ll \left(P_{\overline{a}}C_{-\overline{g}}^{\dagger}, \hat{H}\right)_{t} \mid P_{\overline{b}}^{\dagger}(o) \rangle \\ &i\hbar\frac{d}{dt} \ll P_{\overline{a}}^{\dagger}(t)P_{\overline{a}}(t) P_{\overline{b}}(t)C_{\overline{g}}(t) \mid P_{\overline{b}}^{\dagger}(o) \rangle = \ll \left(P_{\overline{a}}^{\dagger}P_{\overline{a}}P_{\overline{b}}C_{\overline{g}}, \hat{H}\right)_{t} \mid P_{\overline{b}}^{\dagger}(o) \rangle \end{split}$$

 $i\hbar \frac{d}{dt} \langle\!\langle P_{a}^{\dagger} tt \rangle P_{a} tt \rangle P_{b}^{\dagger} t) C_{-q}^{\dagger} (t) | P_{b}^{\dagger} (o) \rangle\!\rangle = \langle\!\langle P_{a}^{\dagger} P_{a} P_{b} C_{-q}^{\dagger}, \hat{H}_{t} / P_{b}^{\dagger} (o) \rangle\!\rangle$. Lanac jednačina za funkciju / se zatvara na taj način što se u jednačinama (3.10) zanemare doprinosi proporcionalni produktima $C_{q} C_{-q} i C_{-q}^{\dagger} C_{-q}^{\dagger}$, takodje i sve GF koje u sebi sadrže više od četiri Pauli operatora. Poslije Fourier-transformacija tipa:

$$F_{\vec{n}} - \vec{m}(t) = N^{-1} \sum_{\vec{k}} \int d\omega F_{\vec{k}}(\omega) e^{i\vec{k}(\vec{n} - \vec{m}) - i\omega t}; P_{\vec{n}} = N^{-1} \sum_{\vec{k}} P_{\vec{k}} e^{i\vec{k}\cdot\vec{n}}$$
(3.11)

u (3.9) i (3.10), dobijeni rezultati se zamjene u jednačin u (3.7), koja je prethodno takodje transformirana pomoću (3.11). Na taj način se dolazi do konačnog izraza za eksitonsku GF $f_{\vec{k}}(\omega)$ i taj izraz je sljedeći:

$$f_{\vec{k}}(\omega) = \frac{i}{2\mathfrak{N}} \frac{1 + Q_1(\vec{k}, \omega) + Q_2(\vec{k}, \omega)}{\omega - Q(\vec{k}, \omega)}$$
(3.12)

Analitička struktura funkcija Q, Q₁ i Q₂ je veoma složena:

(3.10)

$$\begin{aligned} Q_{(\vec{k},\omega)} &= \lambda_{\vec{k}} + N^{-1} \sum_{\vec{q}} Q_{1}^{2}(\vec{k},\vec{q}) \left[\frac{1+n\vec{q}}{\omega-\lambda\vec{k}\cdot\vec{q}} + \frac{n\vec{q}}{\omega-\lambda\vec{k}\cdot\vec{q}} + \omega_{\vec{q}} \right] \\ \lambda_{\vec{k}} &= Q_{\Delta} + Q_{X}(\vec{k}) ; \ Q_{\Delta} = \vec{h}^{-1} \Delta ; \ Q_{X}(\vec{k}) = \vec{h}^{-1} X_{\vec{k}} ; \ n\vec{q} = \left(e^{\frac{\vec{h} \cdot v_{\vec{k}}}{\Theta}} - 1 \right)^{-1} \\ & (3.13) \\ \\ \partial_{\vec{k}} &= k_{\vec{B}} T ; \ a_{1}(\vec{k},\vec{q}) = \left(\frac{\vec{h}}{2M\omega_{\vec{q}}} \right)^{1/2} \left[\vec{k}\cdot\vec{l}_{\vec{q}} \cdot \lambda_{\vec{k}} - (\vec{k}\cdot\vec{q})\cdot\vec{l}_{\vec{q}} \cdot \lambda_{\vec{k}} - \vec{q} \right] \\ & (3.13) \\ \\ Q_{1}(\vec{k},\omega) &= \frac{\vartheta_{\vec{N}}}{iN^{2}} \sum_{\vec{k},\vec{q}} \left[a_{2}(\vec{k},\vec{q}_{1},\vec{q}_{2}) \int_{\vec{d}}^{d} (\omega_{1}d\omega_{\vec{k}}G_{\vec{q}},(\omega_{1})G_{\vec{q}_{\vec{q}}}(\omega_{2})G_{\vec{q}_{\vec{q}}}(\omega_{3}) + a_{3}(\vec{k},\vec{q}_{1},\vec{q}_{2},\omega) \int_{\vec{d}}^{d} (\omega_{1}d\omega_{2}G_{\vec{q}_{\vec{q}}},\vec{q}_{2},\omega) G_{\vec{k}_{\vec{q}}}(\omega_{3}) \right] \\ \\ Q_{2}(\vec{k},\vec{q}_{1},\vec{q}_{2},\omega) &= \frac{1}{4} Q_{1}(\vec{k},\vec{q}_{1}) Q_{1}(\vec{q}_{\vec{q}},\vec{q}_{2}) \\ Q_{2}(\vec{k},\omega) &= -\frac{\vartheta_{\vec{n}}}{iN^{3}} \sum_{\vec{k},\vec{k},\vec{q}} \left[a_{4}(\vec{k},\vec{q}_{1},\vec{q}_{2},\vec{q}_{3},\omega) + a_{5}(\vec{k},\vec{q}_{1},\vec{q}_{2},\vec{q}_{3},\omega) \right] . \end{aligned}$$

 $\begin{aligned} \mathcal{Q}_{4}\left(\overline{k},\overline{g}_{1},\overline{g}_{2},\overline{g}_{3}\right) &= b_{1}\left(\overline{k},\overline{g}_{1},\overline{g}_{2},\overline{g}_{3}\right) \left[\frac{b_{3}\left(\overline{k},\overline{g}_{1},\overline{g}_{2},\overline{g}_{3}\right)}{\omega - b_{2}\left(\overline{k},\overline{g}_{1},\overline{g}_{2},\overline{g}_{3}\right) - \omega_{g_{1}}} + \frac{b_{4}\left(\overline{k},\overline{g}_{1},\overline{g}_{2},\overline{g}_{3}\right) + \omega_{g_{1}}}{\omega - b_{2}\left(\overline{k},\overline{g}_{1},\overline{g}_{2},\overline{g}_{3}\right) + \omega_{g_{1}}}\right]. \end{aligned}$

$$\begin{split} b_{1}(\vec{k}_{1}\vec{q}_{1},\vec{q}_{2},\vec{q}_{3}) &= -\left(\frac{\hbar}{2M\omega_{\tilde{q}}}\right)^{V_{2}} \left[(\vec{k}-\vec{q}_{1}+\vec{q}_{2}-\vec{q}_{3})\vec{l}_{\tilde{q}_{1}}\lambda\vec{k}-\vec{q}_{1}+\vec{q}_{2}-\vec{q}_{3}-\vec{q}_{3}-\vec{q}_{3}-(\vec{q}_{1}-\vec{q}_{1}+\vec{q}_{2}-\vec{q}_{3})\vec{l}_{\tilde{q}_{1}}\lambda\vec{k}-\vec{q}_{1}+\vec{q}_{2}-\vec{q}_{3}-(\vec{q}_{1}-\vec{q}_{1}+\vec{q}_{2}-\vec{q}_{3})\vec{l}_{\tilde{q}_{1}}\lambda\vec{k}-\vec{q}_{1}+\vec{q}_{2}-\vec{q}_{3}-(\vec{q}_{1}-\vec{q}_{1}+\vec{q}_{2}-\vec{q}_{3})\vec{l}_{\tilde{q}_{1}}\lambda\vec{k}-\vec{q}_{1}+\vec{q}_{2}-\vec{q}_{3})\vec{l}_{\tilde{q}_{1}}\lambda\vec{q}_{1}(\vec{q}_{3}-\vec{q}_{2}+\vec{q}_{1})\vec{l}_{\tilde{q}_{1}}\lambda\vec{q}_{1})\vec{l}_{\tilde{q}_{2}}\vec{q}_{2}-\vec{q}_{3})\vec{l}_{\tilde{q}_{1}}\lambda\vec{q}_{1}\vec{q}_{2}-\vec{q}_{3})-\mathcal{Q}_{X}(\vec{q}_{3})\,.\\ &\mathcal{Q}_{Y}(\vec{k}) &= \hbar^{-1}Y\vec{k} \ ; \ b_{2}\left(\vec{k},\vec{q}_{1},\vec{q}_{2},\vec{q}_{3}\right) &= \lambda\vec{q}_{2}-\mathcal{Q}_{X}(\vec{k}-\vec{q}_{1}+\vec{q}_{2}-\vec{q}_{3})-\mathcal{Q}_{X}(\vec{q}_{3})\,.\\ &b_{3}\left(\vec{k},\vec{q}_{1},\vec{q}_{2},\vec{q}_{3}\right) &= \left(\frac{\hbar}{2M\omega_{\tilde{q}_{1}}}\right)^{V_{2}} \left\{\left[(\vec{k}+\vec{q}_{2}-\vec{q}_{3})\vec{l}_{\tilde{q}_{1}}\lambda\vec{k}+\vec{q}_{2}-\vec{q}_{3})\vec{l}_{\tilde{q}_{2}}-\vec{q}_{3}-(\vec{k}-q_{1}+q_{2}-q_{3})\vec{l}_{\tilde{q}_{1}}\lambda\vec{k}+\vec{q}_{2}-\vec{q}_{3})\vec{l}_{\tilde{q}_{2}}\vec{q}_{3}\right) \\ &\times \lambda\vec{k}-\vec{q}_{1}+\vec{q}_{2}-\vec{q}_{3}+(\vec{k}+\vec{q}_{2}-\vec{q}_{3})\vec{l}_{\tilde{q}_{2}},\Omega\gamma(\vec{k}+\vec{q}_{2}-\vec{q}_{3})-(\vec{k}-\vec{q}_{1}+\vec{q}_{2}-\vec{q}_{3})\vec{l}_{\tilde{q}_{2}},\Omega\gamma(\vec{k}-\vec{q}_{1}+\vec{q}_{2}-\vec{q}_{3}))\right\} \\$$

$$x (1 + n_{\vec{x}_{1}}) + \frac{1}{2} \left(\vec{g}_{2} \vec{\ell}_{\vec{x}_{1}} \lambda \vec{g}_{2} - (\vec{g}_{2} + \vec{g}_{1}) \vec{\ell}_{\vec{y}_{1}} \lambda \vec{g}_{2} + \vec{g}_{1} \right) n_{\vec{y}_{1}} \right)$$

$$b_{4} (\vec{k}, \vec{g}_{1}, \vec{g}_{2}, \vec{g}_{3}) = \left(\frac{\hbar}{2M\omega_{\vec{g}_{1}}} \right)^{1/2} \left\{ \left[(\vec{k} + \vec{g}_{2} - \vec{g}_{3}) \ell \vec{g}_{1} \lambda \vec{k} + \vec{g}_{2} - \vec{g}_{3} - (\vec{k} - \vec{g}_{1} + \vec{g}_{2} - \vec{g}_{3}) \cdot \vec{\ell}_{\vec{g}_{1}} \right] \right\}$$

$$x \lambda \vec{k} - \vec{g}_{1} + \vec{g}_{2} - \vec{g}_{3} + (\vec{k} + \vec{g}_{2} - \vec{g}_{3}) \vec{\ell}_{\vec{g}_{1}} \Omega \gamma (\vec{k} + \vec{g}_{3} - \vec{g}_{3}) - (\vec{k} - \vec{g}_{1} + \vec{g}_{2} - \vec{g}_{3}) \vec{\ell}_{\vec{g}_{1}} x$$

$$x \Omega \gamma (\vec{k} - \vec{g}_{1} + \vec{g}_{2} - \vec{g}_{3}) \right] n_{\vec{g}_{1}} + \frac{1}{2} \left[\vec{g}_{2} \vec{\ell}_{\vec{g}_{1}} \lambda \vec{g}_{2} - (\vec{g}_{2} + \vec{g}_{1}) \vec{\ell}_{\vec{g}_{1}} \lambda \vec{g}_{2} + \vec{g}_{1} \right] (1 + n_{\vec{g}_{1}}) \right]$$

$$a_{5} (\vec{k}, \vec{g}_{1}, \vec{g}_{2}, \vec{g}_{3}, \omega) = -\frac{1}{2} \left[\frac{b_{5} (\vec{k}, \vec{x}, \vec{g}_{2}, \vec{g}_{3}, \omega)}{(\omega - \lambda \vec{k} - \vec{g}_{1} - \omega_{\vec{g}_{1}})} + \frac{b_{6} (\vec{k}, \vec{g}_{1}, \vec{g}_{3}, \frac{g}{3}, \omega)}{(\omega - \lambda \vec{k} - \vec{g}_{1} + \omega_{\vec{g}_{1}})} \right] a_{1} (\vec{k}, \vec{g}_{1})$$

$$b_{5} (\vec{k} \vec{g} \vec{g} \vec{g} \vec{g} - \vec{g}_{3}, \omega) = b_{7} (\vec{k} \vec{g} \vec{g} - \vec{g}, \vec{g}) (1 + n_{7}) - 2b_{3} (\vec{k}, \vec{g}, \vec{g}, \vec{g}, \omega) x$$

- 86 -

 $= \frac{a_a(\vec{k} - \vec{g}_1, \vec{g}_2, \vec{g}_3)}{\omega - b_a(\vec{k}, \vec{g}_1, \vec{g}_2, \vec{g}_3) - \omega \vec{g}_1}$

 $b_6(\vec{k},\vec{q}_1,\vec{q}_2,\vec{q}_3,\omega) = b_7(\vec{k},\vec{q}_1,\vec{q}_2,\vec{q}_3) n_{\vec{q}_1} - 2b_4(\vec{k},\vec{q}_1,\vec{q}_2,\vec{q}_3) \times$

 $\times \frac{a_{z}(\vec{k}-\vec{g}_{1},\vec{g}_{2},\vec{g}_{3})}{\omega - b_{z}(\vec{k},\vec{g}_{1},\vec{g}_{2},\vec{g}_{3}) + \omega \vec{g}_{z}}$

 $b_{\eta}(\vec{k},\vec{g}_{1},\vec{g}_{2},\vec{g}_{3}) = \left(\frac{\hbar}{2M\omega_{\vec{g}_{1}}}\right)^{1/2} \left[(\vec{k}-\vec{g}_{1}+\vec{g}_{2}-\vec{g}_{3})\vec{l}\vec{g}_{1},\lambda\vec{k}-\vec{g}_{1}+\vec{g}_{2}-\vec{g}_{3}-(\vec{k}+\vec{g}_{2}-\vec{g}_{3})\times\right]$

 $\times \overline{lg_1} \lambda_{\overline{k}} + \overline{g_2} - \overline{g_3} + (g_3 - g_2) \overline{lg_1} \Omega_Y (\overline{g_3} - \overline{g_2}) - (\overline{g_3} - \overline{g_2} - \overline{g_1}) \overline{lg_1} \Omega_Y (\overline{g_3} - \overline{g_2} - \overline{g_1}) \Big].$

Mada je navedeni analitički izraz za funkciju \int' veoma složen, ipak je moguće da se na osnovu njega izvrše izvjesne procjene uloge eksiton-fonon i eksiton-eksiton interakcije u sistemu. Eksiton-fonon interakcija vrši pomjeranje eksitonskih nivoa (član proporcionalan a_t^2 u izrazu za Q) i ovo pomjeranje je nezavisno od efekata eksiton-eksiton interakcije. Eksitoneksiton interakcija, nezavisno od prisustva eksiton-fonon interakcije, mijenja korelator funkcije \int' (član proporcionalan a_2 u izrazu za Q₁) i može da dovede do logaritamskih singulariteta. Sve ostale popravke funkcije \int' , koje su proporcionalne a_3, a_4 i a_5 , rezultat su kombinovanog dejstva obe pomenute interakcije i, kao što se vidi, ulaze u korelator funkcije. Zbog imenilaca zavisnih od ω ove popravke mogu da dovedu do dopunskih singulariteta u funkciji \int' , koji su zbog sumiranja po kvaziimpulsima najvjerovatnije logaritamskog tipa.

Poznavanje funkcije / , kao što je naprijed rečeno, dovoljno je da se procijene refrakcione i apsorpcione osobine molekularnog kristala, jer je sa njom direktno povezan tenzor dielektrične konstante kristala. Procedura povezivanja tenzora dielektrične konstante sa eksitonskom GF detaljno je izložena ranije, pa ćemo je ovdje samo skicirati. Osnova procedure zasniva se na činjenici da je fenomenološka vrijednost vektorskog potencijala, dobijena kombinovanjem Maxwellovih jednačina sa materijalnom jednačinom sredine, jednaka srednjoj vrijednosti operatora vektorskog potencijala u kristalu, kada je ovaj perturbovan slabim spoljašnjim strujama. Izjednačavanje pomenutih veličina dovodi do veze izmedju tenzora dielektrične permeabilnosti i retardovane GF elektromagnetnog polja, koja se sastoji od vremenski uredjenih produkata komponenata operatora električnog polja. Pošto se operator električnog polja u kristalu, kao jednočestični operator, izražava preko operatora kreacije i anihilacije eksitona, GF elektromagnetnog polja se direktno izražava preko sume retardovane i avansovane eksitonske GF. Kombinovanjem relacija: tenzor dielektričnog permebilnosti-GF elektromagnetnog polja i GF elektromagnetnog polja-ekšitonske GF, dolazi se do tražene veze izmedju tenzora dielektrične konstante i eksitonskih GF, tj. do veze izmedju makro i mikroskopskih karakteristika sredine.

Ovdje ćemo navesti pomenutu vezu u slučaju kada se zanemaruje anizotropija

 $(\mathcal{E}_{ij}(\vec{k},\omega) \rightarrow \mathcal{E}(\vec{k},\omega) \delta_{ij}$; $ij \in X, Y$ gdje je $\mathcal{E}_{ij}(\vec{k},\omega)$ tenzor dielektrične konstante) i prostorna disperzija $(\vec{k}-0)$. Veza ima slijedeći oblik:

$$\frac{1}{\mathcal{E}(\omega)} = 1 + S \frac{2\Re}{i} \left[\Gamma(\omega) + \Gamma(-\omega) \right] ; S = \frac{\mathcal{E}_o^2 \widehat{\gamma}}{8 \Re \hbar} , \qquad (3.16)$$

gdje je \tilde{l}_{0} - zapremina elementarne ćelije kristala i E_{0}^{2} kvadrat matričnog elementa prijelaza u molekulu pod dejstvom lokalnog električnog polja.

Dalja analiza dielektričnih osobina kristala, zahtijeva čitav niz raznih uprošćavanja u izrazu (3.12) za GF / . Ova uprošćavanja se uglavnom svode na zanemarivanje zavisnosti pojedinih funkcija od talasnog vektora, jer sumiranje po talasnim vektorima (3.12) - (3.15) vodi na višestruko singularne integrale, čija teorija ni do danas nije u potpunosti razradjena. Otuda se uzimaju slijedeće aproksimacije:

$$a_{1,}b_{1,}-b_{7} \approx \left(\frac{\hbar\omega_{o}}{2Mv^{2}}\right)^{\frac{1}{2}} \mathcal{Q}_{\Delta}; n_{\overline{g}} \approx n_{D} = \left(e^{\frac{\hbar\omega_{D}}{\Theta}}-1\right)^{-1}$$

$$b_{3} \approx \left(\frac{\hbar\omega_{D}}{2Mv^{2}}\right)^{\frac{1}{2}} \mathcal{Q}_{\Delta}\left(1+\frac{1}{2}n_{D}\right); b_{4} \approx \frac{1}{2}\left(\frac{\hbar\omega_{D}}{2Mv^{2}}\right)^{\frac{1}{2}} (n_{D}-1)$$

$$\omega - \lambda \mp \omega_{\overline{g}} \approx \omega - b_{2} \mp \omega_{\overline{g}} \approx \omega - \mathcal{Q}_{\Delta} \mp \omega_{D}; q_{2} \approx \mathcal{Q}_{X}(o) - \mathcal{Q}_{Y}(o).$$
(3.17)

gdje je \mathcal{O}_0 - Debyeva frekvencija. Treba naglasiti da su ovdje, pored nekih očevidnih uprošćavanja, zanemarene sve "neparalelne interakcije", tj. svi članovi koji nisu proporcionalni produktu \overline{q} . $\overline{1_q}$. Takodje su \mathscr{Q}_{\times} i \mathscr{Q}_{Y} zanemareni u odnosu na \mathscr{Q}_{Δ} , koje je 50 do 100 puta veće. Što se tiče bozonskih GFG, njih bi, strogo govoreći, trebalo zamjeniti vrijednošću funkcije / u nultoj aproksimaciji po eksitoneksiton interakciji. Ova vrijednost se dobija iz (3.12) ako se uzmu $Q_1 = Q_2 = 0$. Umjesto toga, funkcije G su uzete u nultoj aproksimaciji i po eksiton-eksiton i po eksiton-fonon interakciji, tj. u obliku:

$$G = \frac{1}{\omega - \lambda} - i\Im \delta(\omega - \lambda) \quad . \tag{3.18}$$

Poslije svih navedenih uprošćavanja Greenove funkcije / dielektrična konstanta se, na osnovu relacije (3.16), može napisati u sljedećem obliku:

$$\begin{split} \mathcal{E}(\boldsymbol{\xi}) &= \mathcal{E}_{R}(\boldsymbol{\xi}) + i\mathcal{E}_{\mathfrak{I}}(\boldsymbol{\xi}) \;; \quad \boldsymbol{\xi} = \frac{\mathcal{O}}{\mathcal{Q}_{\Delta}} \\ \mathcal{E}_{R}(\boldsymbol{\xi}) &= \frac{1 + \frac{S}{\mathcal{Q}_{\Delta}} \left(\mathcal{A}_{\boldsymbol{\xi}} + \mathcal{A} - \boldsymbol{\xi}\right)}{\left[1 + \frac{S}{\mathcal{Q}_{\Delta}} \left(\mathcal{A}_{\boldsymbol{\xi}} + \mathcal{A} - \boldsymbol{\xi}\right)\right]^{2} + \left[\frac{S}{\mathcal{Q}_{\Delta}} \left(\mathcal{A}_{\boldsymbol{\xi}} + \mathcal{A} - \boldsymbol{\xi}\right)\right]^{2}} \\ \mathcal{E}_{\mathfrak{I}}(\boldsymbol{\xi}) &= \frac{\frac{S}{\mathcal{Q}_{\Delta}} \left(\mathcal{A}_{\boldsymbol{\xi}} + \mathcal{A} - \boldsymbol{\xi}\right)}{\left[1 + \frac{S}{\mathcal{Q}_{\Delta}} \left(\mathcal{A}_{\boldsymbol{\xi}} + \mathcal{A} - \boldsymbol{\xi}\right)\right]^{2} + \left[\frac{S}{\mathcal{Q}_{\Delta}} \left(\mathcal{A}_{\boldsymbol{\xi}}^{*} + \mathcal{A} - \boldsymbol{\xi}\right)\right]^{2}}{\left[1 + \frac{S}{\mathcal{Q}_{\Delta}} \left(\mathcal{A}_{\boldsymbol{\xi}}^{*} + \mathcal{A} - \boldsymbol{\xi}\right)\right]^{2} + \left[\frac{S}{\mathcal{Q}_{\Delta}} \left(\mathcal{A}_{\boldsymbol{\xi}}^{*} + \mathcal{A} - \boldsymbol{\xi}\right)\right]^{2}} \end{split}$$

$$(3.19)$$

Funkcije /3() i /() date su sa:

$$\beta_{3} = \frac{\Psi_{4}(y) \Psi_{2}(y) + \zeta_{6} \Psi_{3}(y) (\overline{y} - 1)^{4}}{\Psi_{2}^{2}(y) + \zeta_{4}^{2} \Psi_{3}^{2}(\overline{y}) (\overline{y} - 1)^{6}}$$
(3.20)
$$\beta_{3} = \frac{\zeta_{4} \Psi_{1}(\overline{y}) \Psi_{3}(\overline{y}) (\overline{y} - 1)^{3} - \zeta_{5} \Psi_{2}(\overline{y}) (\overline{y} - 1)}{\Psi_{2}^{2}(\overline{y}) + \zeta_{4}^{2} \Psi_{3}^{2}(\overline{y}) (\overline{y} - 1)^{6}}$$

gdje je:

$$\Psi_{1}(\xi) = 1 + \frac{\lambda_{2}}{\xi - 1} - \lambda_{3} \frac{\lambda_{4} + (\xi - 1)f_{4}(\theta)}{(\xi - 1)^{2} - \lambda_{4}^{2}} - \frac{\lambda_{7}f_{2}(\theta)}{(\xi - 1)(\xi - 1 - \lambda_{4})^{2}} - \frac{\lambda_{7}f_{3}(\theta)}{(\xi - 1)(\xi - 1 - \lambda_{4})^{2}}$$

 $\Psi_{2}(\mathbf{z}) = \mathbf{z}^{-1} - \mathcal{L}_{3} \frac{\mathcal{L}_{4} + (\mathbf{z} - 1)f_{4}(\mathbf{\Theta})}{(\mathbf{z} - 1)^{2} - \mathcal{L}_{1}^{2}}; \quad \Psi_{3}(\mathbf{z}) = \left[e^{\frac{\mathbf{z}}{4}(\mathbf{\Theta})(1 - \mathbf{z})} - 1\right]^{-1}$

$$\begin{aligned} \mathcal{L}_{I} &= \frac{\omega_{o}}{\Omega \Delta} \quad ; \quad \mathcal{L}_{2} &= \frac{\Omega_{X}(o) - \Omega_{Y}(o)}{\Omega \Delta} \quad ; \\ \mathcal{L}_{3} &= \frac{\hbar \omega_{o}}{2M v^{2}} \quad ; \\ \mathcal{L}_{4} &= \frac{\hbar \Omega_{A}^{4}}{4 \pi \rho v^{5}} \\ \mathcal{L}_{5} &= \frac{3 \pi \Omega_{\Delta} \left[\Omega_{X}(o) - \Omega_{Y}(o) \right]}{32 \, \Omega_{X}^{2} \left(0 \right)} \quad ; \\ \mathcal{L}_{6} &= \frac{3 \hbar \Omega_{\Delta}^{5} \left[\Omega_{X}(o) - \Omega_{Y}(o) \right]}{128 \rho v^{5} \Omega_{X}^{2} \left(0 \right)} \quad ; \\ \mathcal{L}_{7} &= \frac{\hbar \omega_{B} \left[\Omega_{X}(o) - \Omega_{Y}(o) \right]}{4M v^{2} \Omega \Delta} \end{aligned}$$

$$f_{1(\Theta)} = cth \frac{\hbar\omega_{0}}{2\Theta} ; \quad f_{2}(\Theta) = 2 + \left(e^{\frac{\hbar\omega_{0}}{\Theta}} - 1\right)^{-1} ; \quad f_{3}(\Theta) = -1 + \left(e^{\frac{\hbar\omega_{0}}{\Theta}} - 1\right)^{-1} ;$$

$$f_{4(\Theta)} = \frac{\hbar \Omega \Lambda}{\Theta},$$

i f - gustina kristala.

Na osnovu formula (3.19) - (3.21) mogu se procjeniti refrakcione i apsorpcione osobine kristala, koje su, respektivno, opisane indeksom prelamanja $n(\xi)$ i koeficijentom apsorpcije $\chi(\xi)$. Pošto je

$$n(\xi) + i \, \mathcal{U}(\xi) = \mathcal{E}^{\frac{N_2}{2}}(\xi)$$
 (3.22)

lako se dolazi do eksplicitnih izraza za n i \mathcal{X} koji su dati sa:

$$n(\xi) = \left\{ \frac{\sqrt{\mathcal{E}_{R}^{2}(\xi) + \mathcal{E}_{J}^{2}(\xi)} + \mathcal{E}_{R}(\xi)}{2} \right\}^{1/2}$$

$$(3.23)$$

$$\Re(\xi) = \left\{ \frac{\sqrt{\mathcal{E}_{R}^{2}(\xi) + \mathcal{E}_{J}^{2}(\xi)} - \mathcal{E}_{R}(\xi)}{2} \right\}^{1/2}$$

U daljem ćemo procjeniti ponašanje koeficijenta apsorpcije X , koristeći se formulama (3.19) - (3.23). Na osnovu ovih formula, funkcija X je konačna kada frekvencija $\omega \rightarrow 0$ i $\omega \rightarrow \infty$. Ona ima tri nule, i to u tačkama $\omega = \Omega_{A_1} \omega = \Omega_{A_7} \omega_p$ i tri ekstremuma, od kojih dva leže u intervalu $(\Omega_A - \omega_D, \Omega_A + \omega_p)$ a treći u oblasti $\omega < \Omega_A - \omega_D$. Šematski prikaz ponašanja koeficijenta apsorpcije dat je na sl.2.

Rezimirajući dobijene rezultate, možemo zaključiti da u procesima apsorpcije i refrakcije elektromagnetnih talasa u kristalu eksiton-eksiton i eksiton-fonon interakcija igraju ravnopravnu ulogu, pa ih prilikom analiza pomenutih procesa treba obe uzimati u obzir. Eksiton-fonon interakcija dominantna je u frekventnom intervalu ($\Re_{\Delta}-\omega_{p}, \Re_{\Delta}+\omega_{p}$) dok ponašanje u ostalom dijelu spektra uglavnom definiše eksiton-eksiton interakcija. Pojava dva pika u koeficijentu apsorpcije za je posljedica kombinovanog uticaja obe interakcije. Ako bi se zanemarila eksiton-fonon interakcija iščezao bi uski pik izmedju $\Re_{\Delta}-\omega_{p}, \Re_{\Delta}$. Ako bi se pak zanemarila eksiton-

- 93 -

eksiton interakcija, onda bi uski pik ostao, ali bi zato u oblasti $\omega_{\zeta} \mathfrak{D}_{\Delta} - \omega_{p}$ koeficijent apsorpcije praktično bio ravan $\frac{\hbar \omega_{\rm D}}{2M v^2} \ll \frac{\Omega_{\rm X}(0) - \Omega_{\rm Y}(0)}{\Omega_{\rm A}}$. Takodje treba istaći nuli, zbog da, ako se isključe efekti eksitonskog neodržanja (oni su detaljno obradjeni u (I.4) onda doprinosi od eksiton-eksiton interakcije bitno zavise od veličine i znaka metričnih elemenata X i Y. Na kraju treba istaći da se pojava nula u koeficijentu apsorpcije objašnjava činjenicom da su ovdje ispitivani samo tzv. longitudinalni eksitoni. U vezi sa ovim izvršena je detaljna diskusija u /5/ str.122 i str.145. Indeks prelamanja n ima slično ponašanje kao X , s tim što $\omega_{\langle} \mathcal{Q}_{\Delta} - \omega_{\rho}$ monotono opada. Na kraju treba u intervalu naglasiti da je ponašanje & in pri $\omega \rightarrow \infty$ isključivo definisano temperaturskim efektima, tj. ponašanjem funkcije $\varphi_{3.}$

4. UTICAJ FONONA NA ŠIRENJE EKSITONSKIH LINIJA

U ovom paragrafu pokušat ćemo teorijski objasniti anomalno širenje eksitonskih linija u molekularnim kristalima. Eksperimentalno je ustanovljeno da je to širenje reda nekoliko stotina cm⁻¹ (/6/ str.12 oko 500 cm⁻¹).

Bilo je pokušaja da se to širenje objasni kao posledica interakcije eksitona i fonona. Tako je u /6 /na bazi standardnog hamiltonijana eksiton-fonon interakcije (1.3) dobijeno da širenje eksitonskih linija može ići najviše do 10 cm⁻¹. Redefinisani hamiltonijan eksiton-fonon interakcije (1.4), koji uključuje lokalnu deformaciju elektromagnetnog polja, korišten je u radu /40 /i daje sledeći izraz za širenje eksitonskih linija

$$\mathcal{I}_{m} G_{(\vec{k})} = \frac{\pi}{N} \sum_{\vec{2}} |F_{(\vec{k}, \vec{2})}|^2 \delta [\mathcal{E}_{\vec{k}} - \mathcal{E}_{\vec{k} - \vec{2}} - \omega_{\vec{2}}]$$
(4.1)

gdje je

$$\mathcal{E}_{k} = \frac{k^{2}}{2m} ; \quad \omega_{\overline{g}} = v |\overline{g}| = vg ; \quad F(\overline{g}) \approx i \left(\frac{g}{2Mv}\right)^{1/2} ; \quad \overline{h} = 1;$$

Efektivna masa eksitona je m = $1/2Xa^2$, a uzimajući da je konstanta rešetke a = 10^{-7} cm i m $\approx m_e \approx 10^{-27}$ g dobija se

 $\mathcal{J}_m \mathcal{G}_{(\vec{k})} \approx 200 \, cm^{-1} \, . \tag{4.2}$

Treba naglasiti da su korištena stanja jake eksiton-fonon veze. Iz izloženog sledi da anomalno širenje eksitonskih linija ne može se objasniti kao širenje normalnih eksitonskih linija. Na osnovu analiza kinematičkih nivoa u prvoj glavi ove disertacije mi smo predpostavili da u širenju linija veliku ulogu imaju kinematičke interakcije samih eksitona i da se one u takvim razmatranjima moraju uzeti u obzir. Osim toga, u radovima /27,28,30,31/ takodje je pokazano da osim eksitonskih nivoa postoje i kinematički nivoi. Širina tih nivoa (bez fonona) je reda širine zone. Pa bi se eksperimentalne vrijednosti širenja eksitonskih linija prije mogle objasniti preko kinematičkih nivoa, a ne preko normalnih eksitonskih nivoa.

Sledeća analiza posvećena je pronalaženju mogućeg objašnjenja eksperimentalnih rezultata. Polazimo od rezultata dobijenih u prethodnom paragrafu. Za GF (3,5) posmatranog sistema (3.4)dobili smo izraz (3.12)

$$\Gamma_{\vec{k}}(\omega) = \frac{i}{2\pi} \frac{1 + Q_1(\vec{k},\omega) + Q_2(\vec{k},\omega)}{\omega - Q(\vec{k},\omega)}$$
(4.3)

gdje su Q,Q₁ i Q₂ dati formulama (3.13),(3.14) i (3.15) respektivno.

Koristeći aproksimativne izraze (I.2.4) možemo.GF (3.5) izraziti na sledeći način

$$\Gamma_{\vec{n}\vec{m}(t)} \approx G_{\vec{n}\vec{m}(t)} + 2D_{\vec{n}\vec{m}(t)}G_{\vec{n}\vec{m}(t)}^{2} \tag{4.4}$$

gdje je

$$\begin{split} & \Gamma_{\vec{n}\vec{m}}(t) = \langle \langle P_{\vec{n}}(t) | P_{\vec{m}}(o) \rangle \rangle \\ & G_{\vec{n}\vec{m}}(t) = \langle \langle B_{\vec{n}}(t) | B_{\vec{m}}^{\dagger}(o) \rangle \rangle \\ & D_{\vec{n}\vec{m}}(t) = \langle \langle B_{\vec{n}}^{\dagger}(o) | B_{\vec{m}}(o) \rangle \rangle \quad . \end{split}$$

$$(4.5)$$

Nakon Fourier transformacije tipa

$$f_{\vec{n}\vec{m}}(t) = \frac{1}{N} \sum_{\vec{k}} \int_{0}^{+\infty} d\omega f_{\vec{k}}(\omega) \exp(i\vec{k}(\vec{n}-\vec{m}) - i\omega t)$$

izraz (4.4) dobija oblik

$$F_{\bar{K}}(\omega) = G_{\bar{K}}(\omega) + \frac{1}{N^2} \sum_{\bar{g}_1,\bar{g}_2-\bar{f}^*} \int d\omega_1 d\omega_2 G_{\bar{g}_1}(\omega_1) G_{\bar{g}_2}(\omega_2) G_{\bar{g}_3}(\omega_3); \qquad (4.7)$$

$$\omega_3 = \omega - \omega_1 + \omega_2; \bar{g}_3 = \bar{K} - \bar{g}_1 + \bar{g}_2$$

(4.6)

Ako izraz (4.7) zamjenimo u (4.3), a pri tome integral na desnoj strani izraza (4.7) rješavamo kao u prethodnom paragrafu dobijamo aproksimativni izraz za Greenovu funkciju $G_{\overline{k}}(\omega)$

$$G_{\mathcal{K}}(\omega) = \frac{i}{2\pi} \frac{1}{\omega - \mathcal{R}_{\Delta}} \frac{\mathcal{A}(\omega) + i\mathfrak{D}(\omega)}{\mathcal{A}(\omega) + i\mathfrak{D}(\omega)}$$
(4.8)

gdje je

$$\begin{aligned} \mathcal{A}(\omega) &= \frac{3}{2} - \frac{\mathcal{R}_{x}(o) - \mathcal{Q}_{Y}(o)}{\mathcal{Q} - \mathcal{R}_{A}} - \frac{\hbar\omega_{D}\mathcal{R}_{A}^{2}}{4M\eta^{2}} \frac{1}{\omega - \mathcal{R}_{A}} \left\{ \frac{\omega_{D}}{(\omega - \mathcal{R}_{A})^{2} - \omega_{D}^{2}} + \frac{2n_{D} + 3}{(\omega - \mathcal{R}_{A} - \omega_{D})} + \frac{2n_{D} - 1}{(\omega - \mathcal{R}_{A} - \omega_{D})} + \frac{(n_{D} + 2)[\mathcal{R}_{x}(o) - \mathcal{R}_{Y}(o)]}{(\omega - \mathcal{R}_{A} - \omega_{D})^{2}} + \frac{(n_{D} - 1)[\mathcal{R}_{x}(o) - \mathcal{R}_{Y}(o)]}{(\omega - \mathcal{R}_{A} + \omega_{D})^{2}} \right\} \\ \mathcal{R}(\omega) &= \frac{3\pi}{32} \frac{(\omega - \mathcal{R}_{A})[\mathcal{R}_{x}(o) - \mathcal{R}_{Y}(o)]}{2\mathcal{R}_{x}^{2}(o)} \\ \mathcal{R}_{A} &= \frac{\Delta}{\hbar} \quad ; \mathcal{R}_{x}(o) = \frac{\chi(o)}{\hbar} \quad ; \mathcal{R}_{Y}(o) = \frac{\chi(o)}{\hbar} \quad ; \quad n_{D} = \left(e^{\frac{\hbar\omega_{D}}{k_{B}T}} - 1\right)^{-1} . \end{aligned}$$

$$(4.9)$$

Treba napomenuti da su i ovdje korištene sledeće aproksimacije: zanemarena je prostorna disperzija, svaka fononska frekvencija je zamjenjena sa Debyeovom frekvencijom ω_D , uključena je samo longitudinalna eksiton-fonon interkacija $(\vec{g} \cdot \vec{l}_{\vec{g}} \approx g_D = \omega_D/v)$, gdje je v brzina longitudinalnih fonona). Ako zanemarimo eksiton-fonon kuplovanje (zamrznut kristal) tada se eksitonska Greenove funkcije G redukuje u

$$\mathcal{G}(\omega) = \frac{i}{2\pi} \frac{1}{\omega - \mathcal{R}_{\Delta}} \frac{1}{\mathcal{K}(\omega) + i \mathcal{J}(\omega)}$$
(4.10)
$$\mathcal{K}(\omega) = \frac{3}{2} - \frac{\mathcal{Q}_{X}(0) - \mathcal{Q}_{Y}(0)}{(\omega - \mathcal{R}_{\Delta})}$$

Dodatni pol Greenove funkcije G odredjuje kinematički eksitonski nivo eksiton-fonon sistema, a dodatni pol GF g odredjuje kinematički eksitonski nivo slobodnog eksitonskog sistema. Tako, realni (ω') i imaginarni (ω'') dijelovi frekvencija kinematičkih nivoa mogu se odrediti iz sledećih jednačina:

$$\begin{aligned} \mathcal{A}(\omega'+i\omega'')+i\Im(\omega'+i\omega'') &= 0 \\ \mathcal{K}(\omega'+i\omega'')+i\Im(\omega'+i\omega'') &= 0 \end{aligned}$$
(4.11)

Rezultati, tj. energije kao i širenje kinematičkih eksitonskih nivoa za naftacen i benzol, su dati u tabeli 1. Kao što se vidi, imamo dobro slaganje sa eksperimentalnim rezultatima. Konačno, trebamo reći da rezultate dobijene na sobnim treba temperaturama uzeti sa odgovarajućom rezervom pošto teorija koja je ovdje izložena vrijedi za niske temperature (korištena je linearna aproksimacija po molekularnim pomjerajima).

Kao generalni zaključak do sada provedenih analiza u prvoj glavi ove disertacije i u ovom paragrafu možemo navesti da se u eksperimentu mjeri širenje kinematičkih nivoa.

	Naftacen	
	Kinematički nivo	širenje k.n.
Bez fonona	22 258,46 cm ⁻²	467,81 cm ⁻¹
Sa fononima T=0 ^D K	22272,21 cm ⁻¹	604,81 cm ⁻¹
Sa fononima T=300 K	22351,91 cm ⁻¹	1402,37 cm ⁻¹
	Benzol	
	Kinematički nivo	širenje k.n
Bez fonona	40426,52 cm ⁻¹	705,17 cm ⁻¹
Sa fononima T=oK	40449,51 cm ⁻¹	935,09 cm ⁻¹
Sa fononima T = 300 K	40556,51 cm ⁻¹	2005,06 cm ⁻¹
M = 1,305 ·	$10^{-22} g, v = 2 \cdot 10^{6} cm/s, \omega_{D} = 3$ $10^{15} H_{T}, Q, \omega = 152 \cdot 10^{14} H_{T}, Q_{X}$	$(3 \cdot 10^{13} Hz,$ $(0) = 3.04 \cdot 10^{14} Hz$

Tabela 1.

III GLAVA

OPTIČKE KARAKTERISTIKE FEROELEKTRIČNIH MATERIJALA

1. O FEROELEKTRICIMA

Fenomen feroelektriciteta je danas precizno definisan i predstavlja pojavu sponatane polarizacije (bez prisustva spoljašnjeg električnog polja) kod kristala, pri čemu smjer polarizacije može biti preveden u suprotni dejstvom spoljašnjeg električnog polja /81,82 /. Spontana polarizacija postoji samo u izvjesnoj oblasti temperatura, i na odredjenoj temperaturi T_c dolazi do faznog prelaza. Sa porastom temperature, kristal, iz faze koja se karakteriše prisustvom spontane polarizacije (tzv. feroelektrična faza), prelazi u paraelektričnu fazu u kojoj bez prisustva spoljašnjeg električnog polja nema polarizacije. U teoriji faznih prelaza se veličina koja postoji u jednoj fazi, a u drugoj je identički jednaka nuli, naziva parametar uredjenosti. U teoriji feroelektriciteta to je najčešće spontana polarizacija ili neka, njoj proporcionalna veličina.

U ovoj glavi ćemo analizirati dielektrične osobine feroelektrika tipa KDP (kalijum dihidrofosfat KH_2PO_4) gdje su njegove feroelektrične osobine otkrili Busch i Scherer 1938.godine. Kristal KDP je jednoosni (uniaksijalni) feroelektrik kod kojeg se ispod temperature $T_c = 122$ K javlja spontana polarizacija u pravcu z-ose. Dielektrična konstanta sledi zakon Curie-Weissa $\mathcal{E} = c/T-T_o$ sve do 250 K iznad T_c ,i važi $T_c=T_o$.

- 99 -

Osnovni podaci o strukturi kristala KDP /84/ su dobijeni difrakcijom X-zraka i neutrona (ovaj drugi metod je pogodniji za odredjivanje položaja atoma vodonika). Struktura na sobnoj temperaturi kao i projekcija strukture KDP kristala na (001) ravan je data u /66/ str.3. i 4. Četiri kiseonika čine skoro pravilan tetraedar u čijem se centru nalazi fosfor. P i K joni su naizmjenično rasporedjeni na razmaku Z/2 duž pravca paralelnih Z-osi. Izmedju kiseonika koji pripadaju susjednim tetraedrima pomjerenim jedan u odnosu na drugi za Z/4, uspostavljaju se vodonične veze /86/ . Ove vodonične veze grade ravni normalne na Z-osu.

Neutronska difrakcija pokazuje da su uvijek dva protona lokalizovana bliže jednom od tetraedara, što je u skladu i sa hemijskom formulom. Osim toga utvrdjeno je da vodonici imaju dva ravnotežna položaja duž veze, gdje rastojanje ovih ravnotežnih položaja iznosi 0,035nm,a dužina vodonične veze je 0,2533+0,007nm /84/.

Kristal KDP ima dosta izomorfnih jedinjenja koja se dobijaju zamjenom vodonika deuterijumom, ili pak K i P srodnim elementima. Ova jedinjenja mogu imati feroelektrične ili antiferoelektrične osobine /83,84/. Predstavnik antiferoelektrika ove grupe je NH₄H₂PO₄, poznat pod nazivom ADP. Karakteristika cijele ove grupe je veliki izotopski efekt. Pri zamjeni vodonika deuterijumom, neke od osobina vezanih za fazni prelaz se drastično mjenjaju. Samare /85/ je ispitivao ponašanje kristala tipa $K(H_{1-x}D_x)_2PO_4$ (x = 0,1) i kao zaključak navodi primarni značaj protonskog sistema za fazni prelaz. Nameće se zaključak da je pravi parametar uredjenosti vezan za uredjivanje protona u vezama, dok je spontana polarizacija sekundarni efekt.

-100 -

Kod KDP pravi parametar uredjenosti i spontana polarizacija imaju istu simetriju /83/ pa nema razlike u opisivanju faznih prelaza preko bilo koje od njih dvije.

Kod feroelektrika možemo u principu razlikovati dva tipa faznih prelaza, zavisno od mehanizma koji dovodi do faznog prelaza /83,87/. Prvu grupu čine tzv. fazni prelazi pomerajnog (displacive) tipa čiji je tipičan primjer fazni prelaz kod BaTiO₃ /88/. Drugu grupu čine fazni prelazi tipa "uredjeno-neuredjeno" (order-disorder), a primjer su fazni prelazi kod triglicin sulfata (TGS) i KDP. Kod pomerajnog tipa, pod uticajem anharmonijskih efekata, odredjeni optički mod oscilovanja rešetke (odredjena fononska grana) postaje nestabilan tako da mu frekvencija oscilovanja teži nuli kada k \rightarrow 0(mod se kondenzuje. Taj mod oscilovanja naziva se "soft mode" - meki mod. Kada $\omega \rightarrow 0$, kristal mijenja strukturu i atomi ostaju "zamrznuti" u položajima koji odgovaraju pomjeranjima u mekom modu, tako da novonastala struktura posjeduje dipolni moment različit od nule.

Kod prelaza tipa uredjeno-neuredjeno, sistem obično posjeduje permanentne dipolne momente koji pod dejstvom dipoldipol interakcije kao i kratkodometnih sila teže da se urede, dok se tome suprostavlja termička ekscitacija. Na višim temperaturama preovladjuje neuredjenost, a na niskim temperaturama je stabilnija faza koja se karakteriše spontanom polarizacijom /89/. U /83/ je prikazano da se ova dva granična slučaja mehanizma faznog prelaza mogu veoma dobro okarakterisati oblikom potencijala u kojem se kreću joni odgovorni za fazni prelaz u datom kristalu. Kod pomjerajnih prelaza, joni se kreću u anharmonijskom potencijalu sa jednim minimumom, dok se kod prelaza tipa uredjeno-neuredjeno joni kreću u potencijalu sa dva minimuma kao što

- 101 -

S1.3.

a - pomjerajnog tipa

b) tipa uredjeno - neuredjeno.

Po kriterijumima (vrijednost Curie-Weissove konstante, veličina entropije, itd.) KDP sigurno spada u feroelektrike sa faznim prelazom tipa uredjeno-neuredjeno iako kod njega ne postoje permanentni dipoli već do pojave dipolnih momenata dolazi kao posledica uredjivanja protona. Proširenje ideje o mekom modu na KDP /83/ je moguće ali tada meki mod tj. ekscitacije čiji zakon disperzije teži nuli kada k-0, ne predstavljaju fononi već pseudo-spinska pobudjenja. U /90/ se navodi druga mogućnost gdje se posmatraju kolektivne protonske ekscitacije kuplovane sa optičkim modom koji postaje mek, ali treba uočiti da frekvencija tog moda ne teži nuli zbog anharmonijskih efekata, već zbog interakcije sa protonima.

Zbog toga se poneki put govori da je fazni prelaz kod KDP mješovitog tipa. Bez obzira koji se pristup prihvati, bitno je uočiti suštinsku ulogu protona u samom mehanizmu faznog prelaza.

- 102 -

Kada je nastala savremena teorija pomjerajnih faznih prelaza /88/, medju istraživačima kristala KDP se pod uticajem izotopskog efekta stvaralo uverenje da u tadašnjim teorijama protonski sistem nije dobro tretiran i da bi trebalo uzeti u obzir u kinetičku energiju protona. Polazeći od eksperimentalnih podataka, Blinc je 1960. god. /91/ izneo hipotezu da sej proton unutar veze nalazi u potencijalnoj jami sa dva minimuma, a što je još bitnije da ima mogućnost da kao laka čestica tuneluje izmedju ta dva minimuma. Ako je potencijalna borijera dovoljno visoka, osnovno stanje je dvostruko degenerisano i odgovara lokalizaciji čestice u lijevoj ili desnoj strani jame. Kada proton tuneluje kroz barijeru, tunelovanje uklanja degeneraciju i od najnižeg stanja nastaje dublet koji čine dva stanja sa veoma bliskim energijama. Ostala stanja čestice imaju daleko više energije nego što je razlika energija stanja u dubletu /92/. Eksperimentalni rezultati /91,93/ ukazuju da je razmak izmedju ova dva nivoa reda veličine 200 cm⁻¹, dok se sledeći energetski nivo nalazi na 2000 cm⁻¹. U takvoj situaciji se ovaj sistem može dobro aproksimirati sistemom koji ima samo dva energetska nivoa.

Isingovim modelom /94/ se opisuje klasičan dvonivoski sistem. Obično se ova dva stanja predstavljaju svojstvenim funkcijama operatora z-projekcije spina $1/2 \rightarrow \hat{S}^{z}$. Interakcija izmedju spinova teži da ih uredi tako da svi pokazuju u istom smjeru, a ovome doprinosi i spoljašnje magnetno polje \hat{H} duž z-ose. S druge strane termička ekscitacija ima za posledicu da mijenja smjer projekcije spina. U /66/ str.11-15 pregledno je izneseno formulisanje IMTF (Izingov model u poprečnom polju). Hamiltonijan sistema je izražen na sledeći način

- 103 -
$$\begin{split} \hat{H}_{\text{prot}} &= -2T \sum_{\vec{n}} \hat{S}_{\vec{n}}^{*} - \frac{1}{2} \sum_{\vec{n},\vec{m}} \left[I_{\vec{n},\vec{m}} \hat{S}_{\vec{n}}^{z} \hat{S}_{\vec{m}}^{z} + L_{\vec{n},\vec{m}} (\hat{S}_{\vec{n}}^{*} S_{\vec{m}}^{z} + \hat{S}_{\vec{n}}^{z} \hat{S}_{\vec{m}}^{*}) + K_{\vec{n},\vec{m}} \hat{S}_{\vec{n}}^{*} \hat{S}_{\vec{m}}^{*} \right] \end{split}$$
(1.1)

gdje operatori

$$\hat{S}^{z} = \frac{1}{2} \left(\hat{a}_{L}^{+} \hat{a}_{L}^{-} - \hat{a}_{D}^{+} a_{D} \right)$$

$$\hat{S}^{x} = \frac{1}{2} \left(\hat{a}_{L}^{+} a_{D}^{-} + \hat{a}_{D}^{+} \hat{a}_{L}^{+} \right)$$

$$\hat{S}^{y} = \frac{1}{2i} \left(\hat{a}_{L}^{+} \hat{a}_{D}^{-} - \hat{a}_{D}^{+} \hat{a}_{L}^{+} \right)$$
(1.2)

zadovoljavaju sve relacije za komponente operatora spinova 1/2, a ovako definisana veličina naziva se pseudo-spin /97/. Operatori \hat{a}_{L}^{+} i \hat{a}_{D}^{+} kreiraju protone u lijevoj ili desnoj strani jame respektivno.

 $S_{\overline{n}}^{\underline{x}}$ opisuje lokalizovanje protona na jednoj od strane jame. Tačnije, on je proporcionalan razlici naseljenosti lijeve i desne strane jame. Odatle se zaključuje da je dipolni moment sistema proporcionalan $\langle S_{\overline{n}}^{\underline{x}} \rangle$. $S_{\overline{n}}^{\underline{x}}$ opisuje tunelovanje protona iz jednog u drugi ravnotežni položaj, a $S_{\overline{n}}^{\underline{x}}$ je operator gustine struje vjerovatnoće protona iz jedne strane jame u drugu. Fizički smisao pojedinih članova hamiltonijana (1.1) je sledeći: Prvi član daje razliku energija u dubletu, toka da odgovara energiji tunelovanja protona. Drugi član opisuje proton-proton interakciju u kojoj su sadržane kako kratko dometne interakcije tako i dipol-dipol interakcija /83/. Treći i četvrti član opisuju uticaj tunelovanja na uredjivanje i tunelovanje drugih protona. Kod feroelektrika tipa KDP zbog zahtjeva da sistem bude invarijantan na transformaciju ($S_{\overline{n}}^{\underline{x}} - S_{\overline{n}}^{\underline{x}}$, $S_{\overline{n}}^{\underline{x}} - S_{\overline{n}}^{\underline{x}}$) slijedi da mora biti $L_{\overline{n}\overline{n}} = 0$. $K_{\overline{n}\overline{n}}$ je mnogo manje od $L_{\overline{n}\overline{n}}$ i u aproksimaciji u kojoj je ovaj izraz izveden i njega treba zanemariti /87/. Pa se nadalje posmatra izraz

$$\hat{\mathcal{H}} = -2T \sum_{\vec{n}} \hat{S}_{\vec{n}}^{\star} - \frac{1}{2} \sum_{\vec{n},\vec{m}} I_{\vec{n}\vec{m}} \hat{S}_{\vec{n}}^{z} \hat{S}_{\vec{m}}^{z}$$
(1.3)

gdje za feroelektrično uredjenje mora da važi $I_{\vec{n}\vec{m}} > 0$ i T > 0. Nadalje se smatra da je ovaj uslov ispunjen. Dato je i objašnjenje na koji način ovaj model može da opiše fazni prelaz. Već je naglašeno da je spontana polarizacija proporcionalna srednjoj vrednosti $\langle S^Z \rangle$, tako da je $\langle S^Z \rangle$ parametar uredjenosti. Interakcija $I_{\vec{n}\vec{m}}$ teži da sistemu da minimalnu energiju na taj način što će sve spinove usmjeriti u istom smjeru, dok termičko pobudjivanje i pojava tunelovanja teže da ovu uredjenost poremete. Zavisno od toga koji od ova dva efekta prevlada, sistem je u paraelektričnom ili feroelektričnom režimu. Kvantna priroda modela se manifestuje u činjenici da i na T = OK sistem nije u potpunosti uredjen zbog efekta tunelovanja. Ovaj model može da objasni izotopski efekt , jer T zavisi od mase čestice koja tuneluje, kao i od dužine veze /83/.

Naziv modela je došao od činjenice da se S^X ponaša kao spoljašnje polje koje djeluje poprečno u odnosu na pravac duž kojeg se uredjuju spinovi. U /66/ se navodi i drugi pristup izvodjenja izraza (1.3) kao i makroskopske vrijednosti parametara hamiltonijana (1.3).

- 105 -

2. EFEKTIVNI HAMILTONIJAN FEROELEKTRIKA

Pošto ćemo u sledećim paragrafima analizirati dielektrične osobine feroelektrika tipa KDP, neophodno je da imamo efektivni hamiltonijan koji će nam biti potreban za pomenute analize. Daćemo kratak pregled formulisanja efektivnog hamiltonijana koji je izložen u /66/ str.38-57.

Kristal se smatra beskonačan i idealan, što znači da nema narušenja translacione simetrije, tada važi $I_{\vec{n}\vec{m}}=I_{\vec{n}}=I_{$

U našim analizama koristimo reprezentaciju druge kvantizacije, tačnije formalizam Pauli-operatora i metod dvovremenskih, temperaturskih zavisnih funkcija Greena. Da bi se što korektnije primjenile ove metode, neophodno je hamiltonijan (1.3) dovesti na pogodniji oblik. To se postiže izvodeći dvije unitarne transformacije hamiltonijana. U cilju dobijanja generalnih rezultata, ove transformacije su izvedene za slučaj opšteg spina S, a tek kasnije diskutovan slučaj S=1/2. Prvi korak je eliminacija člana linearnog po $S_{\tilde{T}}^{\star}$. To se postiže rotacijom koordinatnog sistema za ugao Ø koji se odredjuje iz navedenog uslova. Ugao koji se dobija već je koristio de Gennes /93/ pri svojoj konstrakciji poluklasičnog osnovnog stanja, kao Blinc i Svetina /98/ koji su taj ugao odredili iz varijacionog pristupa za nalaženje osnovnog stanja hamiltonijana (1.3).

- 106 -

Rotacija oko Y-ose za ugao Ø indukuje unitarnu transoformaciju opisanu operatorom /99/

$$\hat{U}_{1} = \exp\left[-i\phi\sum_{\vec{t}}\hat{S}_{\vec{t}}^{y}\right].$$
(2.1)

Pri ovoj transformaciji se ne mijenja spektar hamiltonijana

$$\hat{H}' = \hat{U}_1 \stackrel{A}{H} \stackrel{A}{U}_1^+ . \tag{2.2}$$

Nakon unitarne transformacije /99/ i ako se srednje vrijednosti operatora računaju po kanonskom ansamblu dobija se sledeći izraz za hamiltonijan H[']

$$\begin{aligned} H^{I} &= N\left[2TS\sin\phi - \frac{1}{2}S^{2}TI_{0}\cos^{2}\phi\right] - \cos\phi\left[2T + SI_{0}\sin\phi\right]\sum_{\vec{n}}S_{\vec{n}}^{x} + \\ &+ \left[SI_{0}\cos^{2}\phi - 2T\sin\phi\right]\sum_{\vec{n}}G_{\vec{n}} - \frac{1}{2}\sin^{2}\phi\sum_{\vec{n},\vec{m}}I_{\vec{n}\vec{m}}S_{\vec{n}}^{x}S_{\vec{m}}^{x} + \\ &+ \sin\phi\cos\phi\sum_{\vec{n},\vec{m}}I_{\vec{n}\vec{m}}G_{\vec{n}}S_{\vec{m}}^{x} - \frac{1}{2}\cos^{2}\phi\sum_{\vec{n},\vec{m}}I_{\vec{n}\vec{m}}G_{\vec{n}}G_{\vec{m}} \end{aligned}$$

 $I(\vec{a}) = \sum_{\vec{n}} I_{\vec{n},\vec{m}} e^{i\vec{x}(\vec{n}-\vec{m})}$

gje je $\hat{\mathcal{C}}_{\vec{n}} = S - \hat{S}_{\vec{n}}^{\vec{x}}$ operator koji opisuje mjeru odstupanja z-projekcije spina od njene maksimalne vrijednosti. Iz (2.2) slijedi uslov za eliminaciju člana linearnog po $S_{\vec{n}}^{\vec{x}}$.

$$\sin\phi = -\frac{2T}{SI_{(0)}} \tag{2.3}$$

gdje je

$$I_{(o)} = \sum_{\vec{n}} I_{\vec{n}\vec{m}} = \sum_{\vec{m}} I_{\vec{n}\vec{m}} = \sum_{\vec{n}-\vec{m}} I_{\vec{n}} - \vec{m} \ .$$

Da bi se jednostavnije prešlo na bozonsku reprezentaciju, na ovom mjestu hamiltonijan je izražen preko operatora /13,99/

$$S_{\vec{n}}^{\pm} = S_{\vec{n}}^{\times} \pm i S_{\vec{n}}^{\vee} . \qquad (2.4)$$

- 107 -

Smisao ovih operatora je sledeći: kada djeluju na vektore stanja $|S,m\rangle$ koji su zajednički svojstveni vektori operatora \hat{S}^{*} i \hat{S}^{*} , oni ih prevode u vektore $|S,m \pm 1\rangle$. Sada se definiše parametarr

$$\chi = \frac{T}{I_{(0)}} \tag{2.5}$$

koji će predstavljati mali parametar po kojem će se vršiti razvoj. Ideja o razvoju po malom parametru \mathbf{X} u feroelektričnoj fazi već je uspješno korišćena u perturbacionom razvoju /100,101/. Nadalje se posmatra samo oblast uredjenog stanja, i smatra se da je \mathbf{X} « 1, tako da se može zadržati samo ograničen broj članova u razvoju po \mathbf{X} . Da bi se izbjegao perturbacioni račun izvodi se još jedna unitarna transformacija sa ciljem eliminacije člana \mathbf{C} S⁴6. U /102/ je pokazano da se ova transformacija ne može izvesti egzaktno do kraja. Iz zahtjeva da se pomenuti član hamiltonijana anulira u datoj aproksimaciji, odredjena je aproksimacija po malom parametru \mathbf{X} u kojoj su izračunate energije sistema i srednje vrijednosti komponenti spina. Korištena je aproksimacija u kojoj se zanemaruju članovi reda \mathbf{X}^3 i viših stepena po \mathbf{X} .Operator unitarne transformacije ima oblik

$$\hat{U}_{2} = e \times p(-\hat{W}); \quad \hat{W} = \sum_{\vec{t}, \vec{r}} X_{\vec{t}, \vec{r}} \left(\vec{G}_{\vec{r}} S_{\vec{t}}^{+} - S_{\vec{t}}^{-} \vec{G}_{\vec{r}} \right).$$
(2.6)

Ako se u svim koeficijentima zadrže samo izrazi reda do $x^2 I_{(o)}$ dobija se

$$H''_{=} U_{2} H' U_{2}^{+} = H_{0} + \sum_{i=1}^{12} H_{i}^{-} .$$
(2.7)

Svih dvanaest članova hamiltonijana kao i komponente totalnog spina su dati u /66/ str. 46-49.,/126/. Formule (2.7) predstavljaju osnovne formule za svaki račun izveden u aproksimaciji do članova reda x^2 . Sada se gleda slučaj spina 1/2 kada se direktno mogu uvesti Pauli operatori /13,29/

$$S_{\vec{n}}^{-} = P_{\vec{n}}^{\dagger}; S_{\vec{n}}^{+} = P_{\vec{n}}; G_{\vec{n}} = P_{\vec{n}}^{\dagger} P_{\vec{n}}$$
 (2.8)

koji zadovoljavaju komutacione relacije (I 1.9)

Sada se hamiltonijan (2.7) izrazi preko Pauli operatora (2.8) i uvedu se sledeće aproksimacije: Kao prvo zanemaruju se svi izrazi koji sadrže proizvode više od četiri Pauli operatora. Razlog je taj što je energija računata u aproksimaciji linearnoj po srednjem broju Pauli operatora $\overline{N} = \langle P_{\overline{n}}^{*} P_{\overline{n}} \rangle$ a srednje vrijednosti komponenti spina u aproksimaciji kvadratnoj po \overline{N} . Ovo je regulisano linearnim (po \overline{N}) dekuplovanjem GF. U takvom dekuplovanju članovi sa više od četiri Pauli operatora ne daju doprinos. Da bi se procjenio doprinos pojedinih članova hamiltonijana, ponovo je korištena teorija perturbacija. Za neperturbovani hamiltonijan je uzeto

$$H_{1} = \frac{1}{2} I_{(0)} \sum_{\vec{n}} P_{\vec{n}} P_{\vec{n}} \simeq I_{(0)} . \qquad (2.9)$$

Nakon dovodjenja proizvoda na forme normalnih produkata, i zanemarivanja članova koji daju doprinos reda veličine $\chi^3 I_{(o)}$ i manji, izraz za hamiltonijan može se pojednostaviti

$$H_{\ell f}^{''} = H_0 + H_{2d} + H_{2m} + H_{4d} + H_{4m}$$
(2.10)

gdje je

$$H_0 = -N I_{(0)} \left(2 x^2 + \frac{1}{8} \right) \tag{2.11}$$

$$H_{2d} = \Delta \sum_{\vec{n}} P_{\vec{n}}^{\dagger} P_{\vec{n}}$$
(2.12)

$$H_{2m} = T \sum_{\vec{n},\vec{m}} X_{\vec{n},\vec{m}} P_{\vec{n}}^{\dagger} P_{\vec{m}}$$
(2.13)

$$H_{4d} = -\sum_{\vec{n},\vec{m}} Z_{\vec{n},\vec{m}} P_{\vec{n}}^{\dagger} P_{\vec{m}}^{\dagger} P_{\vec{n}} P_{\vec{m}}$$
(2.14)

$$H_{4m} = -\sum_{\vec{n},\vec{m}} \tilde{Z}_{\vec{n}} \vec{m} \tilde{\ell}_{\vec{n}} P_{\vec{n}}^{\dagger} P_{\vec{m}} P_{\vec{n}} P_{\vec{\ell}}$$
(2.15)

$$\Delta = I_{(0)} \left[\frac{1}{2} + 4x^2 + x X_{(0)} \right]$$
(2.16)

$$Z_{\vec{n}\vec{m}} = \frac{1}{2} \left[1 + 4x X_{(0)} \right] I_{\vec{n}\vec{m}} + \left[X_{(0)} + 2x \right] \sum_{\vec{e}} I_{\vec{n}\vec{e}} X_{\vec{e}\vec{m}}$$
(2.17)

$$\tilde{Z}_{\vec{n}\vec{m}} = X_{\vec{n}\vec{e}} \left[\frac{1}{2} I_{(0)} \left(X_{\vec{n}\vec{m}} + X_{\vec{m}\vec{e}} \right) + 2 I_{\vec{n}\vec{m}} \times \overline{\vec{m}\vec{e}} \right].$$
(2.18)

Ista procedura je provedena i za komponente totalnog spina. Dalje je uočeno da hamiltonijan H_{ef} (2.10) komutira sa operatorom $\hat{N}_{tot} = \sum_{n} P_n^t P_n$ koji ima smisao operatora ukupnog broja popunjenosti paulionskih kvazičestica. Na kraju je dato poredjenje dobijenih rezultata sa rezultatima koji daju druge teorije. Izraz za H_0 (2.11) je rezultat za energiju osnovnog stanja u aproksimaciji molekularnog polja /103/, a istovremeno to je izraz za energiju osnovnog stanja do članova reda X^2 i u strožijoj teoriji /100/. S druge strane A(2.16) predstavlja dio energije elementarnih ekscitacija koji ne zavisi od impulsa /100/. Uočeno je da se već iz opštih izraza vidi slaganje sa jedno stavnijim pristupima. Kao što šmo već napomenuli u prethodnim paragrafima (vidi Blinc i Žekš /83/) tenzor dielektrične konstante feroelektričnih materijala predstavlja jednu od fundamentalnih veličina za ispitivanje dinamike i termodinamike feroelektrika. Zbog toga ćemo ovdje analizirati tenzor dielektrične konstante feroelektrika pri čemu ćemo koristiti generalnu opštu relaciju iz (I 3.19) /44/

$$\Delta_{d,S}^{-1}(\vec{x},\omega) = -\frac{c^2}{\omega^2} \left\{ \delta_{d,S} - i \frac{\tilde{\gamma}_0 S_u S_{s}}{4\hbar} \left[\Gamma(\vec{x},\omega) + \tilde{\Gamma}(\vec{x},\omega) + \tilde{\Lambda}(\vec{x},\omega) + \tilde{\Lambda}(\vec{x},\omega) \right] \right\}$$
(3.1)

gdje je

$$\begin{split} &\widehat{\gamma_{o}} = \frac{V}{N} \quad ; \quad \Delta_{\mathcal{A}\mathcal{B}}(\vec{x},\omega) = k^{2} \mathcal{G}_{\mathcal{A}\mathcal{B}} - k_{\mathcal{A}} k_{\mathcal{B}} - \frac{\omega^{2}}{C^{2}} \mathcal{E}_{\mathcal{A}\mathcal{B}}(\vec{x},\omega) \; ; \quad \mathcal{A}, \mathcal{B} \in (\mathsf{x},\mathsf{y},\mathsf{z}) \\ &\Gamma_{(\vec{n}-\vec{m}\,;\,t-t')} = \langle \langle P_{(\vec{n},t)} | P_{(\vec{m},t')}^{\dagger} \rangle \rangle \; ; \; \tilde{\Gamma}_{(\vec{n}-\vec{m}\,;\,t-t')} = \langle \langle P_{(\vec{n},t)}^{\dagger} | P_{(\vec{m},t')} \rangle \rangle \\ &\Lambda_{(\vec{n}-\vec{m}\,;\,t-t')} = \langle \langle P_{(\vec{n},t)}^{\dagger} | P_{(\vec{m},t')}^{\dagger} \rangle \rangle \; ; \; \tilde{\Lambda}_{(\vec{n}-\vec{m}\,;\,t-t')} = \langle \langle P_{(\vec{n},t)} | P_{(\vec{m},t')} \rangle \rangle \end{split}$$

 $\Lambda, \Gamma, \tilde{\Gamma}$ i $\tilde{\Lambda}$ predstavljaju GF konstruisane od operatora kreacije i anihilacije feroelektričnih pobudjenja. Osim toga S_{χ} i S_{β} predstavljaju komponente vektora električnog polja, V je zapremina kristala, a N broj molekula u kristalu. U feroelektriku postoji neodržanje ali je ono slabo pa ćemo ga ovdje zanemariti. Greenove funkcije računaćemo za feroelektrik sa hamiltonijanom /111,123,126/

$$H = \sum_{\vec{n}} \Delta P_{\vec{n}}^{\dagger} P_{\vec{n}} + \sum_{\vec{n},\vec{m}} \chi_{\vec{n},\vec{m}} P_{\vec{n}}^{\dagger} P_{\vec{m}} + \sum_{\vec{n},\vec{m}} Z_{\vec{n},\vec{m}} P_{\vec{n}}^{\dagger} P_{\vec{n}} P_{\vec{m}}^{\dagger} P_{\vec{m}}$$
(3.2)

gdje je

$$\Delta \sim I_{(0)}; \ Z_{(0)} \sim -I_{(0)}; \ X_{(0)} \sim -3 \mathcal{Q}_{0}; \ I_{(0)} = \sum_{n} I_{n}(0).$$

Ovdje I karakteriše interakciju izmedju O-H-O veze, a Ω_{\circ} je energija tunelovanja (\hbar =1).

Operatori P⁺ i P kreiraju i anihiliraju elementarne ekscitacije u feroelektricima. Oni zadovoljavaju Pauli komutacione relacije (I 1.9).

Hamiltonijan (3.2) koji je izražen preko Pauli operaotora sadrži vodeće članove u odnosu na ukupan hamiltonijan koji smo razmatrali u prethodnom paragrafu.

Pošto smo zanemarili neodržanje, onda u relaciji (3.1) funkcije Λ postaju ravne nula i dolazi se do sledećeg izraza za tenzor, dielektrične konstante

$$\frac{1}{\mathcal{E}(\vec{x},\omega)} = 1 - i \frac{\mathcal{T}_0 E_0^2}{4\hbar} \left[\Gamma(\vec{x},\omega) + \Gamma(\vec{x},-\omega) \right]. \tag{3.3}$$

Rezultat (3.3) dobijen je u izotropnoj aproksimaciji

$$\mathcal{E}_{\alpha\beta} = \mathcal{E} \delta_{\alpha\beta}, \qquad S_{\alpha} S_{\beta} = E_0^2 \delta_{\alpha\beta}.$$

Funkcija $\Gamma(\vec{k},\omega)$ predstavlja Fourier lik paulionske GF

 $\langle \langle P_{\vec{n}(t)} | P_{\vec{m}(0)}^{\dagger} \rangle \rangle$ i nju možemo naći uračunavanjem kinematičkih efekata. Na ukazanoj proceduri ne ćemo se zadržavati jer je ona već više puta demonstrirana u ovoj disertaciji (I 3,4 i II3) pa ćemo navesti samo krajnji rezultat

$$\int (\vec{x}, \omega) = \frac{i}{2\pi} \frac{1 - 2N}{\omega - \mathcal{R}_{w}(\vec{x})} - \frac{U_{1}(\vec{x})G(\vec{x},\omega)}{\omega - \mathcal{R}_{w}(\vec{x})} + \frac{U_{3}(\vec{x},\omega)}{\omega - \mathcal{R}_{w}(\vec{x})}$$
(3.4)

gdje je

$$\begin{split} \Omega_{w(\vec{k})} &= \frac{\Delta + X\vec{k}}{\hbar} : \qquad \mathcal{N} = \left(\exp\left(\frac{\hbar \, \Omega_{w(\vec{k})}}{\Theta}\right) - 1 \right)^{-1} \\ U_{1(\vec{k})} &= \frac{2}{N} \sum_{\vec{q}} \left[X_{(\vec{k})} + X_{(\vec{q})} - Z_{(6)} - Z_{(\vec{k} - \vec{q})} \right] \mathcal{N}_{(\vec{q})} \end{split}$$

$$\begin{aligned} U_{3(\vec{k})} &= \frac{4}{N^2} \sum_{\vec{g}_1, \vec{g}_2} \int_{d\omega_1 d\omega_2}^{\omega} [X_{(\vec{g}_1)} - Z_{(\vec{k}} - \vec{g}_1)] G_{(\vec{g}_1, \omega_1)} G_{(\vec{g}_2, \omega_2)} G_{(\vec{g}_3, \omega_3)} \\ &= \bar{g}_3 = \vec{k} - \bar{g}_1 + \bar{g}_2 \quad ; \quad \omega_3 = \omega - \omega_1 + \omega_2 \quad . \end{aligned}$$

Ako zanemarimo prostornu disperziju (k - 0) i izvršimo niz aproksimacija kao u (I.4) i (II.3), možemo konačno pisati

$$\begin{split} f_{(\omega)} &= \frac{i}{2\pi} \left\{ \frac{1 - 2\mathcal{N}_{(0)}}{\omega - \Omega_{w}(0)} + \frac{\left[\Omega_{x(0)} - \Omega_{z(0)}\right]\left[1 - 4\mathcal{N}_{(0)}\right]}{\left[\omega - \Omega_{w}(0)\right]^{2}} - \right. \\ &\left. - i3\pi \left(\frac{1}{32} - \frac{\pi^{2}}{384}\right)\left[1 - \frac{\Omega_{z(0)}}{\Omega_{x}(0)}\right] - \frac{1}{\omega - \Omega_{w}(0)}\right\} . \end{split}$$
(3.5)

Kombinujući izraze (3.3) i (3.5) dobijamo konačan izraz za recipročnu vrijednost dielektrične konstante

$$\frac{1}{E(\omega)} = 1 + \delta^{\prime} A_{(\omega)} + i \delta^{\prime} B_{(\omega)}$$
(3.6)

gdje je

$$\mathcal{S} = \frac{70 E_0^2}{8\pi \hbar} ; \qquad \mathcal{N}_{(0)} = \left(\exp\left(\frac{\hbar \mathcal{Q}_{\Delta}}{\Theta}\right) - 1\right)^{-7}$$
(3.7)

$$A_{(\omega)} = \frac{2\Omega_{w}(0) \left[1 - 2N_{(0)}\right]}{\omega^{2} - \Omega_{w}^{2}(0)} + \frac{2\left[\Omega_{x(0)} - \Omega_{z(0)}\right] \left[1 - 4N_{(0)}\right] \left[\omega^{2} - \Omega_{w}^{2}(0)\right]}{\left[\omega^{2} - \Omega_{w}^{2}(0)\right]^{2}}$$
(3.8)

$$B_{(\omega)} = -3 \Re \left(\frac{1}{16} - \frac{\Re^2}{192}\right) \left(1 - \frac{\Re_{Z(0)}}{\Re_{X(0)}}\right) \frac{\Omega_{w(0)}}{\omega^2 - \Omega^2_{w(0)}} . \tag{3.9}$$

Koristeći se dobro poznatom relacijom n(ω) i χ (ω) = $\mathcal{E}_{(\omega)}^{\prime 2}$ kao i izrazom (3,6), za indeks prelamanja (n) i koeficijent apsorpcije (χ) pri niskim koncentracijama feroelektričnih pobudjenja dobijamo

$$N_{(\omega)} = \frac{1}{\sqrt{2}} \left[\frac{\sqrt{P_{(\omega)}^2 + q_{(\omega)}^2} + P_{(\omega)}}{p_{(\omega)}^2 + q_{(\omega)}^2} \right]^{\frac{1}{2}}$$
(3.10)

$$\mathscr{X}(\omega) = \frac{1}{\sqrt{2}} \left(\frac{\sqrt{P_{(\omega)}^{2} + Q_{(\omega)}^{2}} - \mathcal{P}(\omega)}{P_{(\omega)}^{2} + Q_{(\omega)}^{2}} \right)^{\frac{1}{2}}$$
(3.11)

gdje su p(ω) i q(ω) dati sa

$$P(\omega) = 1 + \delta^{2}A(\omega) ; \quad g_{(\omega)} = -\delta^{2}B(\omega) . \quad (3.12)$$

Vodeći računa da su koncentracije male (N(0)=0) približni izrazi za p i q mogu se napisati u obliku

$$P(\xi) = 1 + \frac{4}{(\xi^2 - 1)^2} \qquad ; \qquad Q(\xi) = \left(\frac{1}{16} - \frac{\pi^2}{192}\right) \frac{\xi_0}{\xi^2 - 1} \qquad (3.13)$$

gdje je $\xi = \frac{\omega}{\Omega_A}$.

Veličina X_{o} predstavlja odnos izmedju energije elektromagnetnog polja u jednoj ćeliji kristala $\frac{\mathcal{T}_{o}E_{o}^{2}}{8\pi}$ i energije feroelektričnih pobudjenja $\hbar \mathcal{R}_{\Delta}$.

S obzirom na formule (3.10) i (3.11) analizirat ćemo indeks prelamanja i koeficijent apsorpcije za dva ekstremna slučaja, kada je \mathcal{J}_{0} manje od jedan i \mathcal{J}_{0} veće od jedan.n(ξ) i \mathcal{X} (ξ) su predstavljeni na sl.4. za \mathcal{J}_{0} =0,5 i 2. Funkcije n i \mathcal{X} imaju vrijednost nula za $\mathcal{U} = \mathcal{Q}A$. To se može objasniti činjenicom da su uzete u obzir samo longitudinalne ekscitacije feroelektrika. Funkcija \mathcal{X} je konačna kada frekvencija $\mathcal{U} \rightarrow \mathcal{O}$ i $\mathcal{U} \rightarrow \mathcal{P}$. Za razliku od eksitonskog slučaja (sl.1) \mathcal{X} nema ekstremum u oblasti niskih frekvencija $\mathcal{U} \langle \mathcal{Q}_A$.

- 114 -

Ovaj rezultat je posledica činjenice da ovdje neodržanje nije uzeto u obzir i da matrični elementi koji karakterišu feroelektrike imaju energetski mnogo nižu vrijednost i drugačiji odnos nego kod molekularnih kristala.

4. ANALIZA FEROELEKTRIČNIH MODOVA PRI VISOKIM KONCENTRACIJAMA POBUDJENJA

U ovom paragrafu pokušat ćemo ispitati da li u feroelektricima tipa KDP postoji mogućnost pojavljivanja ("soft mode") mekog moda /83/ str.20-26. Prema Blincu i Žekšu meki mod se dobija iz uslova

$$\frac{1}{\mathcal{E}(\tilde{\omega})} = 0 \tag{4.1}$$

gdje je $\mathcal{E}(\omega)$ dielektrična konstanta sistema. Onaj pol ove jednačine (4.1) $\omega = \tilde{\omega}$ koji ima kritičnu zavisnost od temperature tj. $\omega \sim (T-T)^{\prime}$; χ >0 po definiciji je meki mod.

Frekvencija $\widetilde{\omega}$ je u opštem slučaju kompleksna veličina

 $\left(\widetilde{\omega} = Re \,\widetilde{\omega} + i J_m \widetilde{\omega} = \omega_1 + i \omega_2 ; Re |\widetilde{\omega}| = \omega_1 ; J_m |\widetilde{\omega}| = \omega_2 \right)$

pa se na osnovu uzajamnog odnosa realnog i imaginarnog dijela frekvencije mekog moda može govoriti o tome da mod ima rezonantni ili relaksacioni karakter.

Meki mod ima rezonantni karakter ako je $|\omega_1| \gg |\omega_2|$, a relaksacioni karakter ako je $|\omega_4| \ll |\omega_2|$. Neki meki modovi ne moraju obavezno biti fononskog karaktera tj. mogu se pojaviti kod feroelektričnih pobudjenja tipa uredjeno - neuredjeno (order-disorder). Imajući u vidu (4.1) potrebno je da nadjemo dielektričnu konstantu feroelektrika ali u oblasti temperatura bliskih temperaturama faznih prelaza kada su koncentracije pobudjenja visoke.

Ovakav problem razmatrali smo u eksitonskom slučaju (I.3), a isto tako u /63/ str.109-117, pa izvodjenja nećemo ponavljati već ćemo iskoristiti sledeće relacije

$$\mathcal{L}_{(\vec{k},\omega)} = \mathcal{Q}_{1}(\vec{n}) \, \mathcal{G}_{(\vec{k},\omega)} + \mathcal{Q}_{2}(\vec{n}) \, \frac{1}{N^{2}} \sum_{\vec{g}_{1},\vec{g}_{2}} \int_{-\infty}^{+\infty} d\omega_{1} d\omega_{2} \, \mathcal{G}_{(\vec{g}_{1},\omega_{1})} \mathcal{G}_{(\vec{g}_{2},\omega_{2})} \mathcal{G}_{(\vec{g}_{3},\omega_{3})} \tag{4.2}$$

gdje je

$$\Gamma_{(\vec{k},\omega)} = \frac{1}{1+2\bar{n}} L(\vec{k},\omega) \tag{4.3}$$

$$\bar{n} = \frac{1}{e^{\frac{I_{in}}{2\Theta} - 1}} \approx \frac{2\Theta}{I_{(0)}} \quad ; \qquad \frac{I_{(0)}}{2\Theta} \ll 1 \tag{4.4}$$

$$\Omega_1(\bar{n}) = \frac{1 + 4\bar{n} + 8\bar{n}^2 + 8\bar{n}^3 + 4\bar{n}^4}{(1 + 2\bar{n})^4} \tag{4.5}$$

$$\Omega_{2}(\bar{n}) = \frac{2}{(1+2\bar{n})^{6}} ; \ \bar{g}_{3} = \bar{k} - \bar{g}_{1} + \bar{g}_{2} ; \ \omega_{3} = \omega - \omega_{1} + \omega_{2} .$$
(4.6)

U relacijama (4.2) i (4.3) $L(\vec{k},\omega)$ je Fourier lik pomoćne GF

$$L_{\vec{n}\vec{m}(t)} = \langle \sqrt{1 + B_{\vec{n}(t)}^{+} B_{\vec{n}(t)} | P_{\vec{m}(0)}^{+} \sqrt{1 + B_{\vec{m}(0)}^{+} B_{\vec{m}(0)} | B_{\vec{m}(0)} \rangle \rangle, \qquad (4.7)$$

koju smo koristili prilikom ispitivanja dielektričnih osobina eksitonskog sistema pri visokim koncentracijama, a $\Gamma(\vec{x},\omega)$ je GF Pauli operatora

$$\Gamma_{(\vec{k},\omega)} = \frac{1}{2\pi} \sum_{\vec{\ell}} \int_{-\infty}^{+\infty} dt \ll P_{(\vec{n},t)} |P_{(\vec{m},0)}^{*} \gg \exp(-i\vec{k}\vec{\ell} + i\omega t); \quad (4.8)$$

$$\vec{\ell} = \vec{n} - \vec{m}$$

Osim ovih GF u izrazima se pojavljuju i bozonske GF

$$G_{(\vec{k},\omega)} = \frac{1}{2\pi} \sum_{\vec{l}} \int_{\vec{l}} dt \ll B_{(\vec{n},t)} | B_{(\vec{m},o)}^{\dagger} \gg \exp(-i\vec{k}\vec{\ell} + i\omega t) \qquad (4.9)$$

$$\vec{\ell} = \vec{n} - \vec{m}$$

Sada ćemo dati vezu izmedju srednjeg broja popunjenosti bozona (\tilde{n}) i srednjeg broja popunjenosti pauliona (\tilde{N})

$$(1-2\bar{N})(1+2\bar{n}) = 1 \quad . \tag{4.10}$$

Ova veza je dobijena u /66/ str. 110-111. polazeći od relacija (I.1.12) i aproksimacije u kojoj je to radjeno.

Koristeći harmonijsku aproksimaciju za bozonske Greenove funkcije G(\tilde{k},ω) u (4.2), tj.:

$$G_{(\vec{k},\omega)} \approx G_{(\vec{k},\omega)}^{(o)} = \frac{i}{2\pi} \frac{1}{\omega - Q_h(\vec{k})} \approx \frac{i}{2\pi} \frac{1}{\omega - Q_h}; \quad Q_h = \frac{I_{(o)}}{2\hbar}$$
(4.11)

gdje je $\Omega_{h(\vec{k})}$ frekvencija neinteragirajućih ekscitacija i zanemarujući prostornu disperziju u konačnim rezultatima, dobijamo sledeći izraz za paulionsku Greenovu funkciju $\int (\omega)$:

$$\Gamma(\omega) = \frac{i}{2\pi} \frac{1}{\omega - \alpha_{\Delta}} \left\{ \frac{\Omega_{1}(\bar{n})}{1 + 2\bar{n}} + \frac{2\pi}{i} \frac{\Omega_{2}(\bar{n})}{1 + 2\bar{n}} (\omega - \Omega_{\Delta}) \frac{1}{N^{2}} \cdot \frac{\sum_{q_{1}, q_{2}} \int d\omega_{1} d\omega_{2} G_{(\bar{q}_{1}, \omega_{1})} G_{(\bar{q}_{2}, \omega_{2})} G_{(\bar{q}_{2}, \omega_{3})} \right\}$$
(4.12)

Dielektričnu konstantu, u izotropnoj aproksimaciji, možemo izraziti preko $f(\omega)$ po istom pravilu kao i malo prije (3.3) tj.

$$\frac{1}{\mathcal{E}(\omega)} = 1 + \frac{\mathcal{T}_{\circ} E_{\circ}^{2}}{8\pi\hbar} \left[\Gamma(\omega) + \overline{\Gamma}(-\omega) \right]. \tag{4.13}$$

Nakon zamjene $\omega = \omega_1 + i\omega_2 u$ (4.13), dobijamo konačno

$$\frac{1}{\mathcal{E}(\omega)} = 1 + \frac{\tilde{\Sigma}_{0} E_{0}^{2} \mathcal{Q}_{\Delta} A(\theta)}{4 \pi \hbar (1 + 2\bar{n})^{5} (\omega_{*}^{2} - \omega_{2}^{2} - \mathcal{Q}_{\Delta}^{2})^{2} + 4 \omega_{1}^{2} \omega_{2}^{2}}{-\frac{\tilde{\Sigma}_{0} E_{0}^{2}}{4 \pi \hbar (1 + 2\bar{n})^{5}}} \cdot \left(B_{(\theta)} + \frac{2 \mathcal{Q}_{\Delta} A(\theta) \omega_{1} \omega_{2}}{(\omega_{1}^{2} - \omega_{2}^{2} - \mathcal{Q}_{\Delta}^{2})^{2} + 4 \omega_{1}^{2} \omega_{2}^{2}}\right).$$
(4.14)

gdje je

$$A_{(\theta)} = 1 + 4\bar{n} + 8\bar{n}^2 + 8\bar{n}^3 + 4\bar{n}^4 + \frac{1}{2(1+2\bar{n})^2}$$
(4.15)

$$B_{(\theta)} = \frac{3\Re}{64(1+2\bar{n})^2 \mathcal{Q}_{x(0)}}, \qquad (4.16)$$

i $\Omega_{x(0)} = \frac{X(0)}{\hbar}$ je frekvencija prenosa ekscitacija u feroelektriku.

Kao što se vidi jednačinu $\frac{1}{\mathcal{E}(\omega)} = 0$ zadovoljavaju u principu veličine ω_i i ω_i koje su funkcije temperature. Ako desnu stranu (4.14) izjednačimo sa nulom dobit ćemo vrlo komplikovan sistem algebarskih jednačina, koji se ne može riješiti bez upotrebe računara. Zato ćemo se ograničiti aproksimacijom koju ćemo zvati rezonantnom tj. pretpostavit ćemo da je

$$\left|\omega_{1}^{2}-\left(\omega_{2}^{2}+\Omega_{4}^{2}\right)\right| \ll 2\omega_{1}|\omega_{2}| \tag{4.17}$$

tada dobijamo da je

$$\omega_{1}\omega_{2} = -\frac{\Omega_{4}A(\theta)}{2B(\theta)}.$$
(4.18)

Na osnovu (4.18) i jednačine $\widehat{\mathcal{C}}_{(\omega)}^{-1}=0$ slijedi bikvadratna jednačina za ω 1

$$\omega_{1}^{4} - \left[\mathcal{R}_{\Delta}^{2} - \frac{4\pi\hbar (1 + 2\pi)^{5} \mathcal{R}_{\Delta} A(\theta)}{\sqrt[5]{6} E_{0}^{2} B^{2}(\theta)} \right] \omega_{1}^{2} - \frac{\mathcal{R}_{\Delta}^{2} A^{2}(\theta)}{4B^{2}(\theta)} = 0 \quad . \quad (4.19)$$

Prije nego što predjemo na rješavanje ove jednačine (4.19) izvršit ćemo procjenu veličina pojedinih članova

$$B_{(\theta)} \sim 10^{-12} H_z^{-1} ; \quad A_{(\theta)} \sim 1 ; \quad \Omega_\Delta \sim 5 \cdot 10^{13} H_z$$

$$(4.20)$$

$$\widetilde{\gamma}_0 \sim 10^{-24} cm^3 ; \quad E_0^2 \sim 10^{12} erg/cm^3$$

odnosno

$$\Omega_{\Delta}^{2} \sim 10^{27} H_{z}^{2} ; \frac{\Omega_{\Delta}^{2} A^{2}(\theta)}{4 B^{2}(\theta)} \sim 10^{57} H_{z}^{4}$$

$$\frac{4 \pi \hbar (1+2\pi)^{5} \Omega_{\Delta} A(\theta)}{\tilde{v}_{o} E_{o}^{2} B^{2}(\omega)} \sim 10^{26} H_{z}^{2} .$$
(4.21)

S obzirom na ukazane redove veličina, jednačinu (4.19) možemo rešavati u različitim aproksimacijama. Najgrublja bi bila da se odbaci treći član iz jednačine (4.19) i tada imamo po jedno rješenje

$$\omega_{1} = \Omega_{\Delta} - \frac{2\pi\hbar (1+2\bar{n})^{5} A(\theta)}{\widetilde{\mathcal{V}}_{o} E_{o}^{2} B_{(\theta)}^{2}}$$

$$(4.22)$$

$$\omega_2 = -\frac{A(\theta)}{2B(\theta)} \, . \tag{4.23}$$

Kao što se vidi $\omega_1 \sim 5 \cdot 10^{13}$ Hz, a ω_2 je za dva reda veličine manje, pa uslov za meki mod

$$\omega_1 + i\,\omega_2 = 0 \tag{4.24}$$

možemo svesti na

$$\omega_{1} + i\omega_{2} \approx \omega_{1} = 0 \quad . \tag{4.25}$$

- 121 -

- 122 -

Ovo poslednje s obzirom na (4.4), (4.15), (4.16),(4.20) i (4.22) daje temperaturu prelaza

$$\mathcal{Q}_{c} = 0,192 \ I_{(o)}; I_{(o)} \sim 2\hbar \Omega_{\Delta}$$

 $T_{c} = 139 \ K .$
(4.26)

Prema tome u feroelektriku postoji meki mod rezonantnog tipa

 $|\omega_1| \gg |\omega_2|$ i on daje navedenu kritičnu tempearaturu (4.26)

Možemo razmatrati i drugi granični slučaj kada je

U tom slučaju (4.27) dobijamo sledeću bikvadratnu jednačinu za $\omega_{\rm 1}$

$$\omega_{1}^{4} - \left[S_{\Delta}^{2} - \frac{\sqrt[7]{6} E_{o}^{2} S_{\Delta} A(\theta)}{4 \pi \hbar (1 + 2 \bar{n})^{5}} - \int \omega_{1}^{2} - \frac{\sqrt[7]{6} E_{o}^{4} A_{(\theta)}^{2} B_{(\theta)}^{2} S_{\Delta}^{2}}{32^{2} \pi^{4} \hbar^{4} (1 + 2 \bar{n})^{20}} = 0 \quad . \quad (4.28)$$

Ova aproksimacija je dobra kada smo u oblasti frekvencija dalekih od frekvencija feroelektričnih pobudjenja Ω_{Δ} . Sada ćemo procjeniti veličinu pojedinih članova iz (4.28)

$$\begin{aligned} & \Omega_{\Delta}^{2} \sim 10^{27} H_{z}^{2} ; \qquad \frac{\overline{10} E_{o}^{2} \Omega_{\Delta} A(0)}{4 \pi \hbar (1+2 \bar{n})^{5}} \sim 10^{26} H_{z}^{2} \\ & \frac{\overline{10}^{4} E_{o}^{8} A^{2}(0) B^{2}(0) \Omega_{\Delta}^{2}}{32^{2} \pi^{4} \hbar^{4} (1+2 \bar{n})^{20}} \sim 10^{52} H_{z}^{4} . \end{aligned}$$

$$(4.29)$$

Analogno kao kod rješavanja (4.19) izvršit ćemo istu aproksimaciju tj. odbaciti treći član iz jednačine (4.28) i dobijamo po jedno rješenje - 123 -

$$\omega_1 = \Omega_\Delta - \frac{\overline{v_0} E_0^2 A(\theta)}{8\pi\hbar (1+2\bar{n})^5}, \qquad (4.30)$$

$$\omega_2 = -\frac{\sqrt[7]{6^2} E_0^4 A(\theta) B(\theta)}{32 \pi^2 \hbar^2 (1+2\bar{n})^{10}} . \tag{4.31}$$

Vidimo da je opet $\omega_1 \gg |\omega_2|$, pa vrijedi uslov za meki mod (4.23)tj. $\omega_1 + i\omega_2 \approx \omega_1 = 0$. Na osnovu (4.4), (4.15), (4.16), (4.20) i (4.30) dobijamo da je u ovom slučaju tempearatura prelaza

$$Q = 0.121 I_{(0)}$$
; $T_c = 87 K$. (4.32)

i.

Kao zaključak analize provedene u ovom paragrafu možemo navesti da:

a) postoji meki mod u feroelektriku tipa KDP,

b) meki mod je rezonantnog tipa $|R_e \omega| \gg |\mathcal{I}_m \omega|$

c) kritična temperatura mekog moda je reda 100 K.

ZAKLJUČAK

Rezultati analiza provedenih u ovoj disertaciji mogu se rezimirati na slijedeći način:

a) Nadjen je izraz za tenzor dielektrične permeabilnosti molekularnih kristala koji se može koristiti pri bilo kakvim koncentracijama eksitona. Pri dobijanju ovog izraza u račun su uključeni i normalni i kinematički eksitonski nivoi. Analizom dobijenog izraza zaključeno je da pri danas dostignutim koncentracijama eksitona koje su $10^{-5} - 10^{-3}$ ne treba očekivati nikakve spektrakularne razlike u odnosu na slučaj iščezavajuće malih koncentracija. Ukoliko bi se dostigla koncentracija reda jedinice onda bi širenje linija i koeficijent apsorpcije postali za red veličine veći od do danas izmjerenih vrijednosti. Prema tome ovaj dio analiza tek treba da bude podvrgnut eksperimentalnoj provjeri ukoliko se konstruišu takvi laseri koji su u stanju da praktično pobude sve molekule kristala.

b) Ispitivanje uticaja kombinovanih efekata eksiton--eksiton i eksiton-fonon interakcije na koeficijent apsorpcije kristala pokazalo je da se u ovome pojavljuju dva pika, kako to slijedi i iz eksperimentalnih podataka. Jedan pik je posljedica eksiton-fonon interakcije dok drugi nastaje uslijed eksitoneksiton interakcije i pojave kinematičkih nivoa. Ovaj drugi pik je rezultat korektnijeg matematičkog tretmana eksiton-eksiton interakcije u odnosu na ono što se do danas činilo jer do sada se smatralo da se apsorpcioni pikovi pojavljuju isključivo uslijed eksiton-fonon interakcije. c) Analizirani su kinematički eksitonski nivoi u prisustvu fonona i postavljena je hipoteza da anomalno visoka širenja apsorpcionih linija koja se dobijaju u eksperimentu treba pripisati kinematičkim nivoima, a ne normalnim eksitonskim nivoima. Numerička analiza koja je izvršena za naftacen i benzol kao i poredjenje teorijskih rezultata sa eksperimentalnim izgleda da potvrdjuju pravilnost postavljene hipoteze.

d) Nadjen je tenzor dielektrične permeabilnosti za feroelektrik pri niskim i pri visokim koncentracijama feroelektričnih pobudjenja uz dužno uračunavanje kinematičkih efekata. Pokazano je da kinematička interakcija feroelektričnih pobudjenja pri niskim koncentracijama ne stvara pik u koeficijentu apsorpcije (kao što to biva kod eksitona) i to se može objasniti specifičnim odnosom matričnih elemenata koji figurišu u hamiltonijanu feroelektričnog sistema. Tenzor dielektrične permeabilnosti pri visokim koncentracijama bio je iskorišten za analizu egzistencije mekih modova u feroelektriku tipa KDP. Pokazano je da meki mod postoji, da je rezonantnog tipa i da daje temperaturu prelaza 100 K što se uklapa u eksperimentalne podatke za feroelektrike tipa KDP.

e) Analiziran je uticaj eksiton-fonon interakcije na formiranje eksitonskog kondenzata. Pokazano je da ova interakcijamehanizmom virtuelne razmjene fonona može da dovede do Bose kondenzacije optičkih pobudjenja. Stvaraju se eksitonske kaplje koje imaju superfluidni spektar. U slučaju multinivoske šeme pored superfluidnih pobudjenja pojavljuju se pobudjenja koja imaju kvazilinijski spektar. U složenoj rešetci prisustvo

- 125 -

kondenzata dovodi do specifične apsorpcije, a takodje i do stimulisane emisije. Uslovi za stimulisanu emisiju detaljno su analizirani.

Izvršene analize skopčane su uglavnom sa veoma glomaznim matematičkim izrazima pa su prilikom procjena korišćene manje ili više grube aproksimacije. U izvjesnim slučajevima teorijske procjene su u dobroj saglasnosti sa eksperimentalnim podacima pa se u ovim slučajevima i polazne pretpostavke i učinjene aproksimacije mogu smatrati opravdane. Ovo se u prvom redu odnosi na širenje eksitonskih linija, zatim na ponašanje koeficijenta apsorpcije svjetlosti i konačno na procjenu karaktera mekih modova i temperature prelaza u feroelektricima. Što se tiče problema Bose kondenzacije eksitona i rezultata koji su ovdje dobiveni, za sada ne postoje pouzdani eksperimenti koji bi dobijene terijske zaključke potvrdili ili opovrgli. U disertaciji su predloženi izvjesni eksperimenti koji bi bili u stanju da testiraju ovaj dio teorije.

Reference

- 127 -

- 1. Frenkel I., Phys.Rev., 37, 17, 1931.
- 2. Frenkel I., Phys.Rev., <u>37</u> 1276, 1931.
- 3. Peierls R., Ann. Phys., 13 (5), 905, 1932.
- 4. Davidov A.S., ZETE, <u>18</u>, 210, 1948.
- 5. Agranović V.M., Teorija eksitonov, "Nauka", Moskva 1968.
- 6. Davidov A.S., Toerija molekularnih eksitonov, Moskva 1968.
- 7. Davidov A.S., Kvantovaja mehanika, "Nauka", Moskva 1973.
- 8. Agranovič W.M., ŽETF, <u>37</u>, 430, 1959.
- Lalović D., Tošić B.S., Žakula R., Phys.Rev., <u>178</u>, 1472, 1969.
 10.Tošić B.S., FTT, <u>9</u>, 1713, 1967.
- 11.Bogoliubov, N.N., Lectures on Quantum Statistics, N.Y. 1967.
- 12.Agranovič V.M. i B.S.Tošić, ZETF, <u>53</u>, 149, 1967.
- 13.Tyablikov S.V., Metodi kvantovoj teoriji magnetizma, "Nauka", Moskva 1975.
- 14.Tošić B.S., Marinković M.M., Phys, Letters, <u>51A</u>, 127, 1975. 15.Urbach F., Phys, Rev., <u>92</u>, (1324, 1953.
- 16.Marinković M.M., Tošić B.S., Phys.Stat.Sol.(b), <u>67</u>, 435, 1975. 17.Davidov A.S., Teorija tverdogo tela, "Nauka", Moskva, 1976. 18.Isihara A., Statističeskaja fizika, Mir, Moskva 1973.
- 19.Marinković M.M., Doktorska disertacija, PMF Novi Sad 1975.
- 20.Knox R., Theory of Excitons, Mir, Moscow 1966.
- 21. Tošić B.S., Marinković M.M. i Žakula R.B., Zbornik radova
 - PMF Novi Sad br.6, 1976.
- 22.Davidov A.S., ŽETF, <u>20</u>, 760, 1950.
- 23.Hadžiahmetović D., Marinković M., Djordjević R., Tošić B., Nuovo Cimento, <u>50B</u>, 161, 1979.
- 24.Škrinjar M.J., Doktorska disertacija, PMF Novi Sad 1975. 25.Hadžiahmetović D., Doktorska disertacija, PMF Sarajevo 1978. 26.Dayson F.J., Phys.Rev. <u>102</u>, 1217, 1230, 1966.
- 27.Hadžiahmetović D., Pirić M., Tošić B.S., Phys.Stat.Sol.(b) <u>83</u>, 479.1977.

28.Pirić M., Marinković M.M., Tošić B.S., Physica <u>90A</u>, 597,1978. 29.Tošić B.S., Statistička fizika, Novi Sad, 1978.

30.Mirjanić D., Magistarski rad: Uticaj mehaničkih oscilacija na kristalooptičke fenomene, Zagreb, 1981.

31.Maksimović R.S., Škrinjar M.J., Tošić B.S., Physica <u>97A</u>,163, 1978.

32.Tošić B.S., Marinković M.M., Phys.Stat.Sol. (b) <u>76</u>,K85,1976.
33.Tošić B.S., Marinković M.M., Berar S., Phys.Stat.Sol. (b) <u>81</u>,

245, 1977.

34.Mirjanić D., Hadžiahmetović D., Phys.Lett.90A, 264,1982.

35.Kapor D., Ivić A., Phys.Stat.Sol.(b) 90B, 157, 1978.

36.Kapor D., Žakula R., Phys.Stat.Sol.(b) 97K 81, 1980.

37.Goldhirsch I., Levich G., Yakhot V., Phys.Rev. B <u>19</u>. 4780,1979.38.Stojanović S.D., Škrinjar M.J., Phys.Stat.Sol.(b), <u>84</u>, K 101,1977.

39.Dzyaloshinski I.E., Pitaevski L.P., ŽETF, <u>36</u>, 1797, 1959.

40.Kapor D.V., Stojanović S.D. Škrinjar M.J., Tošić B.S., Phys.

Stat. Sol. (b), 74, 103, 1976.

41.Stojanović S.D., Škrinjar, M.J., Tošić, B.S., Phys.Lett. <u>59A</u>(5), 396, 1976.

42.Marinković M.M.,Maksimov J.Škrbić Ž., Physica <u>80c</u>, 585, 1975. 43.Stojanović S.D., Šeterajčić J.P., Škrinjar M.J.,Tošić B.S.,

Phys.Stat.Sol., 79, 433, 1977.

44.Kozmidis-Lubarić U. F., Tošić B.S., Physica 112B, 331,1982.

45.Škrbić Ž.M., Škrinjar M.J., Kapor D.V., Phys.Stat.Sol. (b)

83, k 125, 1977.

46.Agranović V.M.,Ginzburg V.L.,Kristalooptika s učetom prostranstvenoi dispersii i teorija eksitonov, "Nauka", Moskva, 1965.
47.Kapica P.L., DAN SSSR <u>18</u>, No. 1,29,1938. ŽETF, <u>11</u>, 1, 1941., ŽETF, <u>11</u>, 581, 1941.

48.	Abrikosov A.A.,Gorkov L.P. Dialožinskii I.E.,Metodi kvan-
	tovoi teoriji v statističeskoi fiziki, Moskva 1962.
49.	Bogoliubov N.N., Izabranie trudi, Tom 2, "Naukova Dumka",
	Kiev, 1970.
50.	Landua L.D., ŽETF, <u>11</u> , 592, 1941, ŽETF, <u>14</u> , 112, 1944.
51.	Bogoliubov N.N., J. Phis., <u>9</u> , 23, 1947.
52.	Bogoliubov N.N., Nuovo Cimento, 7, 794, 1958.
53.	Nandakumaran V.M., Sihna K.P., Z.Phys. <u>B22</u> , 173, 1975.
54.	Fröhlich J., Proc. Roy. Soc., <u>A215</u> , 291, 1952.
55.	Blatt J.M., Boer K.W., Brand W., Phys. Rev., 126, 1261, 1962.
56.	Chesnut D.B., J. Chem. Phys., <u>41</u> , 472, 1964.
57.	Witkovski A., Acta phys.Polon., <u>30</u> , 431, 1966., <u>31</u> , 1, 1967.
58.	Hanamura E., Haug H., Phys.Rep., <u>33</u> , 209, 1977.
59.	Kotelnikov Yu.E., Kochelaec B.I., Phys.Stat.Sol(b), 81, 747,
	1977.
60.	Evans W.A.B., Imry Y., Nuovo Cimento, <u>63B</u> , 155, 1969.
61.	Efremov N.A., Kaminskaja E.P., FTT <u>15</u> , 3338, 1973.
62.	Hadžiahmetović D., Mirjanić D., Acta Phys.Aus. 54,211,1982.
63.	Škrinjar M.J., Kapor D.V., Mirjanić D., Physica 101B, 247,1980.
64.	Volkenstein M.V., General Biophysics, Nauka, Moscow 1978.
65.	Simpson 0., Proc.Roy.Soc. A238, 402, 1956.
66.	Kapor D.V., Doktorska disertacija, Novi Sad, 1979.
67.	Zubarev D.N., Neravnovesnaja statističeskaja termodinamika
	"Nauka", Moskva 1971.
68.	Djordjević R., Stojanović S.D., Žakula R.B.,J.Low.Temp.
	Phys. <u>6</u> , 287
69.	Žakula R.B., Lalović D.J., Phys.Stat.Sol., <u>40</u> , 235, 1970.
70.	Bonch-Bruevich V.B., Tyablikov S.V., Metod funkcii Grina

- 129 -

- v stat.Mehanike, Moskva 1961.
- 71. Trifaj M., Czes.J.Phys. <u>13</u>, 631, 1963.

- 72. Mosalenko S.A., FTT, 4, 276, 1962.
- 73. Casella R.C., Jour Appl. Phys., 34, 1703, 1963.
- 74. Keldiš L.V., Kozlov A.N., ŽETF, 54, 978, 1968.
- 75. Bocchieri, P., Seneci F., Nuovo Cimento, 18 B, 392, 1965.
- 76. Kohn W., Sherrington D., Rev. Mod. Phys., 40, 1, 1970.
- 77. Keldiš I.V., Problemi teoretičeskoj fiziki, "Nauka", Moskva, 1972.
- 78. Mirjanić D., Škrinjar M., Kapor D., Fizika V12, 302, 1980.
- 79. Stamenković S., Stojanović S.D. and Žakula R.B., Phys.Stat. Sol.(b) 80, 460, 1970.
- 80. Lalović D.I., Žakula R.B., Phys.Stat.Sol., 40, 235, 1970.
- 81. Sonin A.S., Strukov B.A., Vedenie v seqnetvelektričestvo, Visšaja škola, Moskva 1970.
- 82. Lines M.E., Glass A.M., Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford 1977.
- 83. Blinc R., Žekš B., Soft Modes in Ferroelectrics and Antiferroelectrics, NHPC, Amsterdam 1974.
- 84. Jona F., and Shirane G., Ferroelectric Crystals, Pergamon Press, Oxford 1962.
- 85. Samara G.A., Ferroel., 7, 221, 1974.
- 86. Hamilton W.C., Ibers J.A., Hydrogen Bonding in Solids, W.A. Benjamin Inc., New York 1968.
- 87. Vaks V., Vedeniv v mikroskopičeskuju teoriju segnetoelektrikov Nauka, Moskva 1973.
- 88. Cocharn W., Adv. Phys. 9, 387, 1960.
- 89. Stanley H.E., Introduction to the Phase Transitions and Critical Phenomena, Clarendon Press, Oxford 1971.
- 90. Kobayashi K., J.Phys.Soc.Japan 24, 497, 1968.

91. Blinc R., J. Phys. Chem. Solids 13, 204, 1960.

92. Landan L.D., Lifšic E.M., Kvantovaja mehanika (III izd.) Nauka, Moskva 1974.

93. de Gennes P.G., Sol.St.Commun. 1, 132,1963.

94. Huang K., Statistical Mechanics, J.Wiley, New York 1963.

95. Tokunaga M. and Matsubara T., Progr. Theor. Phys. 35, 581, 1966.

96. Tokunaga M., Progr. Theor. Phys., 36, 857, 1966.

97. Novaković L., The Pseudo-Spin Method in Magnetism and Ferroelectricity, Pergamon Press, Oxford 1975.

98. Blinc R. and Svetina S., Phys. Rev., <u>147</u>, 423, 1966.

99. Messiah A., Quantum Mechanics II, NHPC, Amsterdam 1970.

100.Pfeuty P., J.Phys. C 9, 3993, 1976.

101.Pfeuty P. and Elliott R.J., J.Phys.C 4, 2370, 1971.

102.Kapor D., Phys.Stat. Sol.(b) 74, 497, 1976.

103.Brout R., Müller and Thomas H., Sol.St.Commun.<u>4</u>, 507,1966. 104.Benepe J.W. and Reese W., Phys.Rev. B <u>3</u>, 3032, 1971. 105.Kittel C., Uvod u fiziku čvrstog stanja, Savremena admini-

stracija, Beograd 1970.

106.Landau L.D., Lifšic E.M., Statističeskaja fizika (III izd.), Nauka, Moskva 1976.

107.Ma S.K., Modern Theory of Critical Phenomena, Benjamin New York 1976.

108.Schmidt V.H., Western A.B. and Baker A.G., Phys. Rev.Lett. 37, 839, 1976.

109.Western A.B., Baker A.G., Bacon C.A. and Schmidt V.H., Phys.Rev. B 17, 4461, 1978.

110.Bastie P., Vallade M., Vettier C., Zeyen C.M., Phys.Rev.Lett. 40, 337, 1978.

111.Kapor D.V., Zbornik radova PMF, Novi Sad, 10, 249, 1980.

112. Pytte E. and Thomas H., Phys.Rev. 175, 610, 1968.

113.Vaks V.G., Zein N.E., Strukov A.B., Phys.Stat.Sol.(1) 30,801

114.Prelovšek P. and Pirc R., J.Phys. C 10, 861, 1977.

115.Prelovšek P. and Sega I., J.Phys. C 11, 2103, 1978.

116.Chabin M. and Gilleta F., Ferroel. 15,149, 1977.

- 117. Vietra S., de las Heras D. and Gonzalo J., Phys.Rev.Lett. <u>41</u>, 1822, 1978.
- 118.Mackowiak M., Stankowski J.,Žekš B. and Blinc R., Phys. Rev. <u>B19</u>, 1651, 1979.
- 119.Drell S.D., Weinstein M. and Yankielowicz, Phys. Rev. D <u>16</u>, 1769, 1977.

120. Young A.P. and Elliot R.J., J. Phys. C7, 2721, 1974.

121.Yanase A., Takeshige Y. and Suzuki M., J.Phys.Soc.Japan <u>41</u>, 1108, 1976.

122.0itmaa J. and Plischke M., J.Phys. C9,2093,1976.

123.Kapor D.V., Zbornik radova PMF Novi Sad, 9, 333, 1979.

124.Vietra S., de las Heras C. and Gonzalo J., Solid State Commun. <u>31</u>, 175, 1979.

125.Ramakrishnan V. and Tanaka T., Phys.Rev. <u>B16</u>,422,1977. 126.Kapor D.V. and Tošić B.S., Physica <u>103A</u>, 609, 1980.