UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA FIZIKU

ПРИМЉЕНО:	- 8 JVN 2005
ОРГАНИЗ.ЈЕД	5 P O J
0603	9/345

- DIPLOMSKI RAD -

PERMITIVNOST ULTRATANKIH MOLEKULSKIH FILMOVA

MENTOR

PROF.DR JOVAN ŠETRAJČIĆ

KANDIDAT

DEAN RISTIVOJEVIĆ

NOVI SAD, 2005. godine

Predgovor

Pored mehaničkih, električnih i magnetnih svojstava, supstancije se odlikuju i *poseb*nim optičkim osobinama. Nauka o materijalima definiše specifična elementarna pobudjenja u kondenzovanom stanju — eksitone, kao nosioce dielektričnih, optičkih (apsorpcija, disperzija svetlosti, luminescencija), fotoelektričnih i drugih karakteristika (uglavnom) molekulskih kristala.

Savremena nauka istražuje mogućnost "pojačavanja" odredjenih (potrebnih) i "prigušivanje" drugih (nepotrebnih) fizičkih osobina. U tu svrhu su posebno ispitivani niskodimenzioni kristalni sistemi (ultratanki filmovi, superrešetke,te kvantne žice i tačke).

Današnji razvoj tehnike i tehnologije omogućava pravljenje ovakvih kvantnih sistema, ekperimentalni rezultati su prisutni i merna oprema može da ih prati, ali se u domenu teorijskih razmatranja (modelovanja i analitičkog rešavanja) veoma se malo uradilo.

Najveća poteškoća je upravo u slabo i neadekvatno primenljivom matematičkom aparatu. U ovom radu se pokazuje da se metode diferencnog računa uz odgovarajuću podršku numeričkih proračuna mogu uspešno primeniti na iznalaženje zakona disperzije Frenkelovih eksitona u molekulskim filmovima sa prostom kristalnom rešetkom. Na osnovu nadjenog spektra mogućih energija eksitona, ispitan je uticaj perturbacionih parametara na permitivnost ultratankog kristalnog filma.

Ovaj diplomski rad je uradjen pod mentorstvom prof. dr Jovana Šetrajčića.

Novi Sad, 02.07.2005.

Dean Ristivojević

Sadržaj

1	Uvo	d	4
2	Eks	itoni u balku	5
	2.1	Grinove funkcije sistema	5
	2.2 _.	Zakon disperzije	8
3	Eks	itoni u tankim filmovima	10
	3.1	Model monomolekulskog filma	10
	3.2	Zakon disperzije	12
	3.3	Spektralne težine eksitonskih stanja	14
	3.4	Permitivnost molekulskih filmova	18
4	Zak	ljučak	25
5	Lite	eratura	26

.

1 Uvod

Interes za izučavanjem eksitonskog podsistema javio se zbog činjenice da su upravo eksitoni odgovorni za dielektrična, optička (apsorpcija, disperzija svetlosti, luminescencija), fotoelektrična i druga svojstva kristala. Proučavanje ponašanja eksitona u kristalnim sistemima kulminiralo je otkrićem lasera.

Poslednjih godina veoma su intenzivna teorijska istraživanja kvazidvodimenzionih eksitonskih sistema (nanostrukture), naročito tankih filmova¹, ne samo zbog fundamentalne informacije o dielektričnim osobinama materijala već i zbog njihove široke praktične primene (nanoelektronika i optoelektronika). Posebnost ovih struktura ogleda se u tome što prisustvo graničnih površina i pojava specijalnih perturbacionih uslova na tim granicama dovode do izmenjenih osobina ovih materijala i specifičnih pojava u odnosu na odgovarajuće masivne uzorke.

U ovom radu istražen je uticaj prisustva granica kristalne film-strukture na energetski spektar eksitona (eksitonski zakon disperzije). Dobijeni rezultati su iskorišćeni za analizu permitivnosti posmatranog ultratankog filma. Izvršena su poredjenja sa odgovarajućim rezultatima za idealne beskonačne kristale, da bi se na osnovu toga uočile najbitnije razlike ova dva sistema.

Pomenuta analiza vršena je korišćenjem metoda dvovremenskih temperaturski zavisnih Grinovih funkcija² koji se danas veoma često koristi u kvantnoj teoriji čvrstog stanja. Zahvaljujući ugradjenoj statistici, taj metod se uspešno primenjuje kod izračunavanja kako mikroskopskih tako i makroskopskih, ravnotežnih i neravnotežnih svojstava kristala. Primenjeni metod je odabran zbog pogodnosti koje nam nudi definicija polova Grinovih funkcija³.

Ovde je najpre vršena analiza idealnih beskonačnih kristalnih struktura sa primitivnom rešetkom, a zatim isti metod primenjen na film-strukture sa identičnom rešetkom.

³Realni delovi polova Grinovih funkcija definišu energije elementarnih ekscitacija (pobudjenja) koje se javljaju u sistemu (odakle se dobija njihov zakon disperzije), dok su imaginarni delovi proporcioni recipročnim vrednostima vremena života tih ekscitacija.

^IFilmovi predstavljaju beskonačne strukture u svim kristalnim ravnima paralelnim dvema graničnim površima, koje su normalne na jedan prioritetan pravac, duž koga je posmatrani sistem ograničen.

²Postoje i drugi metodi pomoću kojih se ovaj problem može tretirati: metod Hajzenbergovih jednačina kretanja, metod malih perturbacija, metod talasnih funkcija i sl.

$\mathbf{2}$ Eksitoni u balku

Razmatramo svojstva eksitonskog podsistema idealnog beskonačnog kubnog kristala polazeći od standardnog eksitonskog hamiltonijana koji u konfiguracionom prostoru ima oblik:

$$H = H_0 + \sum_{\vec{n}} \Delta_{\vec{n}} P_{\vec{n}}^+ P_{\vec{n}} + \sum_{\vec{n},\vec{m}} X_{\vec{n}\vec{m}} P_{\vec{n}}^+ P_{\vec{m}} + \sum_{\vec{n},\vec{m}} Y_{\vec{n}\vec{m}} P_{\vec{n}}^+ P_{\vec{n}} P_{\vec{m}}^+ P_{\vec{m}} , \qquad (2.1)$$

gde su $P_{\vec{n}}^+$ i $P_{\vec{n}}$ - kreacioni i anihilacioni operatori eksitona na čvoru \vec{n} kristalne rešetke. Veličina $\Delta_{\vec{n}}$ - predstavlja energiju eksitona lokalizovanog na čvoru \vec{n} , a veličine $X_{\vec{n},\vec{m}}$ i $Y_{\vec{n},\vec{m}}$ - su matrični elementi eksitonskog transfera sa čvora \vec{n} na čvor $\vec{m}.$

2.1Grinove funkcije sistema

Svojstva posmatranog eksitonskog sistema analiziraćemo pomoću komutatorske paulionske Grinove funkcije:

$$\Gamma_{\vec{n}\vec{m}}(t) = \langle \langle P_{\vec{n}}(t) \mid P_{\vec{m}}^+(0) \rangle \rangle = \Theta(t) \langle \left[P_{\vec{n}}(t) , P_{\vec{m}}^+(0) \right] \rangle , \qquad (2.2)$$

koja zadovoljava jednačinu kretanja:

$$i\hbar \frac{d}{dt} \Gamma_{\vec{n}\vec{m}}(t) = i\hbar \,\delta(t) \,\langle \left[P_{\vec{n}}(t) , P_{\vec{m}}^+(0) \right] \rangle + \\ + \Theta(t) \langle \left[P_{\vec{n}}(t) , H \right] P_{\vec{m}}^+(0) - P_{\vec{m}}^+(0) \left[P_{\vec{n}}(t) , H \right] \rangle \,.$$
(2.3)

Korišćenjem komutatorskih relacija za Pauli-operatore:

$$\begin{bmatrix} P_{\vec{n}}, P_{\vec{m}}^+ \end{bmatrix} = \begin{pmatrix} 1 - 2P_{\vec{n}}^+ P_{\vec{n}} \end{pmatrix} \, \delta_{\vec{n}\vec{m}} ; \quad \begin{bmatrix} P_{\vec{n}}, P_{\vec{m}} \end{bmatrix} = \begin{bmatrix} P_{\vec{n}}^+, P_{\vec{m}}^+ \end{bmatrix} = 0 ; \quad P_{\vec{n}}^2 = \begin{pmatrix} P_{\vec{n}}^+ \end{pmatrix}^2 = 0 , \quad (2.4)$$
dobijamo:

dobijamo:

$$i\hbar \frac{d}{dt} \Gamma_{\vec{n}\vec{m}}(t) = i\hbar\delta(t)\delta_{\vec{n}\vec{m}} \left(1 - 2\langle P_{\vec{n}}^+ P_{\vec{n}}\rangle\right) + F_{\vec{n}} , \qquad (2.5)$$

gde su:

$$F_{\vec{n}} = \Theta(t) \langle \left[K_{\vec{n}}, P_{\vec{m}}^+(0) \right] \rangle = \sum_{i=0}^3 F_i(\vec{n}) ; \quad K_{\vec{n}} = \left[P_{\vec{n}}(t), H \right] = \sum_{i=0}^3 K_i(\vec{n}) .$$
(2.6)

Pokazaćemo postupak izračunavanja gornjih veličina za, naprimer, i = 2 (ostali članovi sume dobijaju se analognim računanjem).

$$\begin{aligned} K_{2}(\vec{n}) &= \left[P_{\vec{n}}(t), \sum_{\vec{k}\vec{l}} X_{\vec{k}\vec{l}} P_{\vec{k}}^{+} P_{\vec{l}} \right] &= \sum_{\vec{k}\vec{l}} X_{\vec{k}\vec{l}} \left[P_{\vec{n}}, P_{\vec{k}}^{+} \right] P_{\vec{l}} = \\ &= \sum_{\vec{k}\vec{l}} X_{\vec{k}\vec{l}} \left(1 - 2P_{\vec{n}}^{+} P_{\vec{n}} \right) \delta_{\vec{n}\vec{k}} P_{\vec{l}} = \sum_{\vec{l}} X_{\vec{n}\vec{l}} \left(1 - 2P_{\vec{n}}^{+} P_{\vec{n}} \right) P_{\vec{l}} \,. \end{aligned}$$

Na osnovu toga računamo:

$$F_{2}(\vec{n}) = \Theta(t) \left\langle \left[\sum_{\vec{l}} X_{\vec{n}\vec{l}} \left(1 - 2P_{\vec{n}}^{+} P_{\vec{n}} \right) P_{\vec{l}}, P_{\vec{m}}^{+}(0) \right] \right\rangle = \sum_{\vec{l}} X_{\vec{n}\vec{l}} \Theta(t) \left(\left\langle \left[P_{\vec{l}}, P_{\vec{m}}^{+} \right] \right\rangle - 2 \left\langle \left[P_{\vec{n}}^{+} P_{\vec{n}} P_{\vec{l}}, P_{\vec{m}}^{+} \right] \right\rangle \right) = \sum_{\vec{l}} X_{\vec{n}\vec{l}} \Gamma_{\vec{l}\vec{m}}(t) - 2 \sum_{\vec{l}} X_{\vec{n}\vec{l}} T_{\vec{n}\vec{n}\vec{l}\vec{m}} ,$$

gde je $T_{\vec{n}\vec{n}\vec{l}\vec{m}}(t) = \langle \langle P_{\vec{n}}^+(t)P_{\vec{n}}(t)P_{\vec{l}}(t) | P_{\vec{m}}^+(0) \rangle \rangle$ - paulionska Grinova funkcija višeg reda. Zamenom izračunatih veličina u (2.5) konačno dobijamo jednačinu kretanja za paulionsku Grinovu funkciju:

$$i\hbar \frac{d}{dt} \Gamma_{\vec{n}\vec{m}}(t) = i\hbar\delta(t)\delta_{\vec{n}\vec{m}} \left(1 - 2\langle P_{\vec{n}}^+ P_{\vec{n}}\rangle\right) + \Delta_{\vec{n}} \Gamma_{\vec{n}\vec{m}}(t) + \sum_{\vec{l}} X_{\vec{n}\vec{l}} \Gamma_{\vec{l}\vec{m}}(t) - 2\sum_{\vec{l}} X_{\vec{n}\vec{l}} \mathcal{T}_{\vec{n}\vec{n}\vec{l}\vec{m}}(t) + 2\sum_{\vec{l}} Y_{\vec{n}\vec{l}} \mathcal{T}_{\vec{l}\vec{l}\vec{n}\vec{m}}(t) .$$

$$(2.7)$$

Osnovnu teškoću teorije eksitona predstavlja činjenica da Pauli-operatori P^+ i P nisu ni Boze ni Fermi operatori, nego nekakav hibrid jednih i drugih sa kinematikom (2.4), koja je za jedan čvor fermionska, a za različite čvorove bozonska. Za precizne analize eksitonskih sistema, koje obuhvataju efekte medjueksitonske interakcije nije dovoljno samo zameniti Pauli-operatore sa Boze-operatorima. Zbog toga se u hamiltonijanu (2.1), Paulioperatori zamenjuju svojim egzaktnim bozonskim reprezentima:

$$P = \left[\sum_{\nu=0}^{\infty} \frac{(-2)^{\nu}}{(1+\nu)!} (B^{+})^{\nu} B^{\nu}\right]^{\frac{1}{2}} B ; \quad P^{+} = B^{+} \left[\sum_{\nu=0}^{\infty} \frac{(-2)^{\nu}}{(1+\nu)!} (B^{+})^{\nu} B^{\nu}\right]^{\frac{1}{2}} ;$$
$$P^{+} P = \sum_{\nu=0}^{\infty} \frac{(-2)^{\nu}}{(1+\nu)!} (B^{+})^{\nu+1} B^{\nu+1} . \tag{2.8}$$

Paulionske Grinove funkcije iz jednačine (2.7) mogu se izraziti preko odgovarajućih bozonskih Grinovih funkcija na osnovu aproksimativnih izraza koji slede iz (2.8):

$$P \approx B - B^+ BB$$
; $P^+ \approx B^+ - B^+ B^+ B$; $P^+ P \approx B^+ B - B^+ B^+ BB$. (2.9)

Na taj način dobijamo:

$$\Gamma_{\vec{n}\vec{m}}(t) = \langle \langle P_{\vec{n}}(t) \mid P_{\vec{m}}^{+}(0) \rangle \rangle = \\
= \langle \langle B_{\vec{n}}(t) \mid B_{\vec{m}}^{+}(0) \rangle \rangle - \langle \langle B_{\vec{n}}(t) \mid B_{\vec{m}}^{+}(0) B_{\vec{m}}^{+}(0) B_{\vec{m}}(0) \rangle \rangle - (2.10) \\
- \langle \langle B_{\vec{n}}^{+}(t) B_{\vec{n}}(t) B_{\vec{n}}(t) \mid B_{\vec{m}}^{+}(0) \rangle \rangle + \langle \langle B_{\vec{n}}^{+}(t) B_{\vec{n}}(t) B_{\vec{n}}(t) \mid B_{\vec{m}}^{+}(0) B_{\vec{m}}(0) \rangle \rangle - (2.10) \\
- \langle B_{\vec{n}}^{+}(t) B_{\vec{n}}(t) B_{\vec{n}}(t) \mid B_{\vec{m}}^{+}(0) \rangle \rangle + \langle B_{\vec{n}}^{+}(t) B_{\vec{n}}(t) B_{\vec{n}}(t) \mid B_{\vec{m}}^{+}(0) B_{\vec{m}}(0) \rangle \rangle - (2.10) \\
- \langle B_{\vec{n}}^{+}(t) B_{\vec{n}}(t) B_{\vec{n}}(t) \mid B_{\vec{m}}^{+}(0) \rangle \rangle + \langle B_{\vec{n}}^{+}(t) B_{\vec{n}}(t) B_{\vec{n}}(t) B_{\vec{m}}(0) \rangle \rangle - (2.10) \\
- \langle B_{\vec{n}}^{+}(t) B_{\vec{n}}(t) B$$

Dekuplovanjem viših Grinovih funkcija pomoću poznatih Boze-komutacionih relacija:

$$\left[B_{\vec{k}}, B^{+}_{\vec{l}}\right] = \delta_{\vec{k}\vec{l}}; \quad \left[B_{\vec{k}}, B_{\vec{l}}\right] = \left[B^{+}_{\vec{k}}, B^{+}_{\vec{l}}\right] = 0, \qquad (2.11)$$

članovi u izrazu (2.10) postaju:

- prvi član
$$\langle \langle B_{\vec{n}}(t) \mid B^+_{\vec{m}}(0) \rangle \rangle = G_{\vec{n}\vec{m}}(t) ,$$
 (2.12)

gde je $G_{\vec{n}\vec{m}}(t)$ retardovana Grinova funkcija, – drugi član

$$\langle \langle B_{\vec{n}}(t) \mid B_{\vec{m}}^{+}(0)B_{\vec{m}}^{+}(0)B_{\vec{m}}(0) \rangle \rangle = \Theta(t) \langle [B_{\vec{n}}, B_{\vec{m}}^{+}B_{\vec{m}}^{-}B_{\vec{m}}] \rangle =$$
(2.13)

$$= \Theta(t) \left(\left\langle \left(\delta_{\vec{n}\vec{m}} + B_{\vec{m}}^+ B_{\vec{n}} \right) B_{\vec{m}}^+ B_{\vec{m}} \right\rangle - \left\langle B_{\vec{m}}^+ B_{\vec{m}}^+ B_{\vec{m}} B_{\vec{n}} \right\rangle \right) = 2G_{\vec{n}\vec{m}}(t) \mathcal{N}_0 ,$$

gde \mathcal{N}_0 predstavlja koncetraciju eksitona:

$$\mathcal{N}_0 = \langle B^+ B \rangle = \frac{1}{N} \sum_{\vec{k}} \left(e^{\frac{\hbar \omega_0(\vec{k})}{\theta}} - 1 \right)^{-1} , \qquad (2.14)$$

- treći član $\langle \langle B_{\vec{n}}^+(t)B_{\vec{n}}(t)|B_{\vec{n}}^+(0)\rangle \rangle = 2G_{\vec{n}\vec{m}}(t)\mathcal{N}_0$, (2.15)

- četvrti član $\langle \langle B_{\vec{n}}^+(t)B_{\vec{n}}(t)B_{\vec{n}}(t) | B_{\vec{m}}^+(0)B_{\vec{m}}^+(0)B_{\vec{m}}(0) \rangle \rangle = 2R_{\vec{n}\vec{m}}(t) G_{\vec{n}\vec{m}}^2(t) ,$ (2.16)

gde je $R_{\vec{n}\vec{m}}(t)$ avansovana Grinova funkcija:

$$R_{\vec{n}\vec{m}}(t) = \langle \langle B_{\vec{n}}^+(t) \mid B_{\vec{m}}(0) \rangle \rangle .$$
(2.17)

Kada izraze (2.12), (2.13), (2.15) i (2.16) zamenimo u izraz (2.10) dobijamo konačan izraz za paulionsku Grinovu funkciju izraženu preko bozonskih Grinovih funkcija:

$$\Gamma_{\vec{n}\vec{m}}(t) = (1 - 4 \mathcal{N}_0) G_{\vec{n}\vec{m}}(t) + 2R_{\vec{n}\vec{m}}(t) G_{\vec{n}\vec{m}}^2(t) + O(\mathcal{N}^2) .$$
(2.18)

Za paulionske Grinove funkcije višeg reda ($\mathcal{T}_{\vec{a}\vec{a}\vec{b}\vec{c}}$) na levoj strani Grinove funkcije prosto zamenimo Pauli operatore sa Boze-operatorima, a na desnoj strani se izvrši aproksimacija (2.9). Na taj način sledi:

$$\begin{aligned} \mathcal{T}_{\vec{a}\vec{a}\vec{b}\vec{c}} &= \langle \langle P_{\vec{a}}^{+}(t)P_{\vec{a}}(t)P_{\vec{b}}(t) \mid P_{\vec{c}}^{+}(0)\rangle \rangle = \langle \langle B_{\vec{a}}^{+}(t)B_{\vec{a}}(t)B_{\vec{b}}(t) \mid B_{\vec{c}}^{+}(0)\rangle \rangle - \\ &- \langle \langle B_{\vec{a}}^{+}(t)B_{\vec{a}}(t)B_{\vec{b}}(t) \mid B_{\vec{c}}^{+}(0)B_{\vec{c}}^{+}(0)B_{\vec{c}}(0)\rangle \rangle = \\ &= \mathcal{N}_{0}G_{\vec{b}\vec{c}}(t) + \mathcal{N}_{\vec{b}\vec{a}}G_{\vec{a}\vec{c}}(t) - 2R_{\vec{a}\vec{c}}(t)G_{\vec{b}\vec{c}}(t)G_{\vec{a}\vec{c}}(t) + O(\mathcal{N}_{0}^{2}) . \end{aligned}$$
(2.19)

Izraze za $\Gamma_{\vec{n}\vec{m}}$, $\mathcal{T}_{\vec{n}\vec{n}\vec{l}\vec{m}}$, $\mathcal{T}_{\vec{l}\vec{l}\vec{n}\vec{m}}$, koji su izraženi preko bozonskih Grinovih funkcija, ubacimo u jednačinu kretanja za paulionsku Grinovu funkciju (2.7):

$$i\hbar \frac{d}{dt} \left[(1 - 4 \mathcal{N}_{0}) G_{\vec{n}\vec{m}}(t) + 2R_{\vec{n}\vec{m}}(t)G_{\vec{n}\vec{m}}^{2}(t) \right] = i\hbar\delta(t)\delta_{\vec{n}\vec{m}} \left(1 - 2\langle P_{\vec{n}}^{+}P_{\vec{n}} \rangle \right) + + \Delta_{\vec{n}} \left[(1 - 4\mathcal{N}_{0})G_{\vec{n}\vec{m}}(t) + 2R_{\vec{n}\vec{m}}(t)G_{\vec{n}\vec{m}}^{2}(t) \right] + + \sum_{\vec{l}} X_{\vec{n}\vec{l}} \left[(1 - 4\mathcal{N}_{0})G_{\vec{l}\vec{m}}(t) + 2R_{\vec{l}\vec{m}}(t)G_{\vec{l}\vec{m}}^{2}(t) \right] -$$
(2.20)
$$- 2\sum_{\vec{l}} X_{\vec{n}\vec{l}} \left[\mathcal{N}_{0}G_{\vec{l}\vec{m}}(t) + \mathcal{N}_{\vec{l}\vec{n}}G_{\vec{n}\vec{m}}(t) - 2R_{\vec{n}\vec{m}}(t)G_{\vec{l}\vec{m}}(t)G_{\vec{n}\vec{m}}(t) \right] + + 2\sum_{\vec{l}} Y_{\vec{n}\vec{l}} \left[\mathcal{N}_{0}G_{\vec{n}\vec{m}}(t) + \mathcal{N}_{\vec{n}\vec{l}}G_{\vec{l}\vec{m}}(t) - 2R_{\vec{l}\vec{m}}(t)G_{\vec{n}\vec{m}}(t)G_{\vec{l}\vec{m}}(t) \right] .$$

Gornju jednačinu ćemo rešavati u najnižoj aproksimaciji:

$$\mathcal{N}_0 \approx 0$$
; $\mathcal{N}_{\vec{a}\vec{b}} \approx 0$; $P \approx B$; $P^+ \approx B^+$; $P^+P \approx B^+B$.

takodje je:

$$\langle P_{\vec{n}}^+ P_{\vec{n}} \rangle \approx \langle B_{\vec{n}}^+ B_{\vec{n}} \rangle = \mathcal{N}_0 \approx 0$$

i proizvodi Grinovih funkcija:

$$G \cdot G \approx 0$$
; $G \cdot R \approx 0$.

Dekuplovana jednačina je tadá:

$$i\hbar \frac{d}{dt}G_{\vec{n}\vec{m}}(t) = i\hbar\delta(t)\delta_{\vec{n}\vec{m}} + \Delta_{\vec{n}}G_{\vec{n}\vec{m}}(t) + \sum_{\vec{l}} X_{\vec{n}\vec{l}}G_{\vec{l}\vec{m}}(t) .$$
(2.21)

2.2 Zakon disperzije

Vršimo vremenske Furije transformacije tipa:

$$\delta(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\omega \ e^{-i\omega t} ; \quad f_{\vec{a}\vec{b}}(t) = \int_{-\infty}^{+\infty} d\omega f_{\vec{a}\vec{b}}(\omega) \ e^{-i\omega t} , \qquad (2.22)$$

nakon čega dobijamo:

$$\hbar\omega G_{\vec{n}\vec{m}}(\omega) = \frac{i\hbar}{2\pi} \delta_{\vec{n}\vec{m}} + \Delta_{\vec{n}} G_{\vec{n}\vec{m}}(\omega) + \sum_{\vec{l}} X_{\vec{n}\vec{l}} G_{\vec{l}\vec{m}}(\omega) . \qquad (2.23)$$

Korišćenjem aproksimacije najbližih suseda $(\vec{l} \rightarrow \vec{n} \pm \vec{\lambda}_i)$:

 $\vec{n} \pm \vec{\lambda}_1 = n_x \pm 1, n_y, n_z$; $\vec{n} \pm \vec{\lambda}_2 = n_x, n_y \pm 1, n_z$; $\vec{n} \pm \vec{\lambda}_3 = n_x, n_y, n_z \pm 1$, gornja jednačina prelazi u:

$$\hbar\omega G_{n_{x}n_{y}n_{z},m_{x}m_{y}m_{z}}(\omega) = \frac{i\hbar}{2\pi} \delta_{n_{x}n_{y}n_{z},m_{x}m_{y}m_{z}} + \Delta_{n_{x}n_{y}n_{z}}G_{n_{x}n_{y}n_{z},m_{x}m_{y}m_{z}}(\omega) +$$

$$+ \left[X_{n_{x}n_{y}n_{z};n_{x}+1,n_{y}n_{z}}G_{n_{x}+1,n_{y}n_{z};m_{x}m_{y}m_{z}}(\omega) + X_{n_{x}n_{y}n_{z};n_{x}-1,n_{y}n_{z}}G_{n_{x}-1,n_{y}n_{z};m_{x}m_{y}m_{z}}(\omega) +$$

$$+ X_{n_{x}n_{y}n_{z};n_{x}n_{y}+1,n_{z}}G_{n_{x}n_{y}+1,n_{z};m_{x}m_{y}m_{z}}(\omega) + X_{n_{x}n_{y}n_{z};n_{x}n_{y}-1,n_{z}}G_{n_{x}n_{y}-1,n_{z};m_{x}m_{y}m_{z}}(\omega) +$$

$$+ K_{n_{x}n_{y}n_{z};n_{x}n_{y}+1,n_{z}}G_{n_{x}n_{y}+1,n_{z};m_{x}m_{y}m_{z}}(\omega) + X_{n_{x}n_{y}n_{z};n_{x}n_{y}-1,n_{z}}G_{n_{x}n_{y}-1,n_{z};m_{x}m_{y}m_{z}}(\omega) +$$

$$= X \begin{bmatrix} X \\ x_{n_{x}n_{y}n_{z};n_{x}n_{y}+1,n_{z}} & x_{n_{x}n_{y}+1,n_{z};m_{x}m_{y}m_{z}}(\omega) + X \\ x_{n_{x}n_{y}n_{z};n_{x}n_{y}-1,n_{z}} & x_{n_{x}n_{y}-1,n_{z};m_{x}m_{y}m_{z}}(\omega) \end{bmatrix}$$

+ $X_{n_x n_y n_z; n_x n_y n_z+1} G_{n_x n_y n_z+1; m_x m_y m_z}(\omega) + X_{n_x n_y n_z; n_x n_y n_z-1} G_{n_x n_y n_z-1; m_x m_y m_z}(\omega)]$.

Pošto je u pitanju neograničen kristal koristimo potpunu prostornu Furije-transformaciju:

$$\delta_{\vec{a}\vec{b}} = \frac{1}{N} \sum_{\vec{k}} e^{i\vec{k}(\vec{a}-\vec{b})} ; \quad f_{\vec{a}\vec{b}}(\omega) = \frac{1}{N} \sum_{\vec{k}} f_{\vec{k}}(\omega) e^{i\vec{k}(\vec{a}-\vec{b})}$$
(2.25)

i uzimajući u obzir da posmatramo idealnu kubnu strukturu gde je energija eksitona na svakom čvoru ista, kao što je i transfer energije medju susedima isti:

$$\Delta_{\vec{a}} \equiv \Delta \; ; \quad X_{\vec{a}, \vec{a} \pm \vec{\lambda}_i} \equiv X_i \; ; \quad i \in \{x, y, z\} \; ,$$

jednačina (2.24) prelazi u:

$$\begin{split} &\hbar\omega\frac{1}{N}\sum_{\vec{k}}G_{\vec{k}}(\omega)\ \mathrm{e}^{i\vec{k}(\vec{n}-\vec{m})} = \frac{i\hbar}{2\pi}\frac{1}{N}\sum_{\vec{k}}\ \mathrm{e}^{i\vec{k}(\vec{n}-\vec{m})} + \Delta\frac{1}{N}\sum_{\vec{k}}G_{\vec{k}}(\omega)\ \mathrm{e}^{i\vec{k}(\vec{n}-\vec{m})} + \\ &+ \left[X_{x}\frac{1}{N}\sum_{\vec{k}}G_{\vec{k}}(\omega)\ \mathrm{e}^{i(k_{x}\vec{e}_{x}+k_{y}\vec{e}_{y}+k_{z}\vec{e}_{z})\{a_{x}[(n_{x}+1)-m_{x}]\vec{e}_{x}+a_{y}(n_{y}-m_{y})\vec{e}_{y}+a_{z}(n_{z}-m_{z})\vec{e}_{z}\}} + \\ &+ X_{x}\frac{1}{N}\sum_{\vec{k}}G_{\vec{k}}(\omega)\ \mathrm{e}^{i(k_{x}\vec{e}_{x}+k_{y}\vec{e}_{y}+k_{z}\vec{e}_{z})\{a_{x}[(n_{x}-1)-m_{x}]\vec{e}_{x}+a_{y}(n_{y}-m_{y})\vec{e}_{y}+a_{z}(n_{z}-m_{z})\vec{e}_{z}\}} + \\ &+ X_{y}\frac{1}{N}\sum_{\vec{k}}G_{\vec{k}}(\omega)\ \mathrm{e}^{i(k_{x}\vec{e}_{x}+k_{y}\vec{e}_{y}+k_{z}\vec{e}_{z})\{a_{x}(n_{x}-m_{x})\vec{e}_{x}+a_{y}[(n_{y}+1)-m_{y}]\vec{e}_{y}+a_{z}(n_{z}-m_{z})\vec{e}_{z}\}} + \\ &+ X_{y}\frac{1}{N}\sum_{\vec{k}}G_{\vec{k}}(\omega)\ \mathrm{e}^{i(k_{x}\vec{e}_{x}+k_{y}\vec{e}_{y}+k_{z}\vec{e}_{z})\{a_{x}(n_{x}-m_{x})\vec{e}_{x}+a_{y}[(n_{y}-1)-m_{y}]\vec{e}_{y}+a_{z}(n_{z}-m_{z})\vec{e}_{z}\}} + \\ &+ X_{z}\frac{1}{N}\sum_{\vec{k}}G_{\vec{k}}(\omega)\ \mathrm{e}^{i(k_{x}\vec{e}_{x}+k_{y}\vec{e}_{y}+k_{z}\vec{e}_{z})\{a_{x}(n_{x}-m_{x})\vec{e}_{x}+a_{y}(n_{y}-m_{y})\vec{e}_{y}+a_{z}[(n_{z}+1)-m_{z}]\vec{e}_{z}\}} + \\ &+ X_{z}\frac{1}{N}\sum_{\vec{k}}G_{\vec{k}}(\omega)\ \mathrm{e}^{i(k_{x}\vec{e}_{x}+k_{y}\vec{e}_{y}+k_{z}\vec{e}_{z})\{a_{x}(n_{x}-m_{x})\vec{e}_{x}+a_{y}(n_{y}-m_{y})\vec{e}_{y}+a_{z}[(n_{z}-1)-m_{z}]\vec{e}_{z}\}} \right]. \end{split}$$

Sredjivanjem gornje jednačine dobijamo:

$$\hbar\omega G_{\vec{k}}(\omega) = \frac{i\hbar}{2\pi} + \Delta G_{\vec{k}}(\omega) + 2\left[X_x \cos a_x k_x + X_y \cos a_y k_y + X_z \cos a_z k_z\right] G_{\vec{k}}(\omega) . \quad (2.27)$$

Iz ove jednačine možemo izraziti Grinovu funkciju:

$$G_{\vec{k}}(\omega) = \frac{i\hbar}{2\pi} \frac{1}{\hbar\omega - \Delta - 2\left[X_x \cos a_x k_x + X_y \cos a_y k_y + X_z \cos a_z k_z\right]}$$
(2.28)

Energiju eksitona u balku dobijamo ako izračunamo realni deo pola Grinove funkcije:

$$\hbar\omega = \Delta + 2\left[X_x \cos a_x k_x + X_y \cos a_y k_y + X_z \cos a_z k_z\right] .$$
(2.29)

Radi lakšeg poredenja sa zakonom disperzije eksitona u filmu, ovaj izraz ćemo napisati u jednostavnijoj ($X_x = X_y = X_z \equiv -|X|$; $a_x = a_y = a_z \equiv a$) i bezdimenzionoj formi:

$$\mathcal{E}_{\vec{k}} \equiv \frac{\hbar\omega - \Delta}{|X|} = \mathcal{F}_{xy} + \mathcal{G}_z , \qquad (2.30)$$

$$\mathcal{F}_{xy} = -2\left(\cos ak_x + \cos ak_y\right) ; \quad \mathcal{G}_z = -2\cos ak_z$$

Ovaj zakon disperzije prikazan je na (slika 2.1), u stručnoj literaturi, uobičajen način:

$$\mathcal{E}_{\vec{k}} = \mathcal{E}_z \left(\mathcal{F}_{xy} \right) \quad .$$

dakle u funkciji dvodimenzione (xy) veličine \mathcal{F} . Vidi se da za $ak_i \in [0, +\pi], i = x, y, z$ (prva Briluenova zona), ove veličine leže u intervalima:

$$\mathcal{F}_{xy} \in [-4, +4]; \quad \mathcal{G}_z \in [-2, +2],$$

 $\mathcal{G}_z \in [-6, +6]$

pa je $\mathcal{E}_{\vec{k}} \in [-6, +6].$

Slika 2.1: Zakon disperzije eksitona u monomolekulskom kristalu

Uočljivo je postojanje zone dozvoljenih (kontinualnih) energetskih nivoa.

3 Eksitoni u tankim filmovima

U prethodnoj glavi izračunate su energije eksitona, odnosno njihov zakon disperzije u neograničenim kristalnim strukturama. Primenjujući isti pristup ovde ćemo odrediti iste karakteristike ovih pobudjenja, ali u kristalnim film-strukturama.

Za razliku od idealnih beskonačnih struktura, realni kristali ne poseduju osobinu translacione invarijantnosti. Postojanje izvesnih graničnih uslova, jedan je od uzroka narušenja simetrije. Sistemi koji imaju dve paralelne granične površine nazivaju se filmovima. Posmatra se idealni tanki film kubne kristalne strukture, načinjen na substratu nekim tehnološkim postupkom (naparavanjem, raspršivanjem i sl.). Pojam idealni ovde se koristi u smislu nepostojanja narušenja unutrašnje kristalne strukture (bez prisustva defekata, primesa i sl.), a ne u smislu prostorne neograničenosti i nepostojanja narušenja translacione invarijantnosti relevantnih energetskih parametara sistema. Dimenzije filma su takve da je on u XY ravnima beskonačan, a u z-pravcima ima konačnu debljinu (L). Znači da ovaj film poseduje dve beskonačne granične površi paralelne XY-ravnima i to za: z = 0 i z = L

3.1 Model monomolekulskog filma

Film-struktura sa primitivnom kristalnom rešetkom (jedan molekul po elementarnoj ćeliji) sa naznačenim graničnim parametrima prikazana je na slici 3.1.

Slika 3.1: Presek modela monomolekulskog kristalnog filma u X(Y)Z ravni

Za izračunavanje eksitonskih energija u ovom filmu polazimo od jednačine (2.24) gde, zbog izmenjenih uslova na granicama posmatrane strukture, uzimamo da su perturbacione energije eksitona u graničnim ($n_z = 0$; $n_z = N$) i njima susednim ravnima ($n_z = 1$; $n_z = N - 1$):

$$\Delta_{\vec{n}} \equiv \Delta \left(1 + \epsilon_0 \delta_{n_z,0} + \epsilon_N \delta_{n_z,N}\right) ;$$

$$X_{\vec{n},\vec{n}+\vec{\lambda}_z} \equiv X_z \left(1 + x_0 \delta_{n_z,0} + x_N \delta_{n_z,N-1}\right) ;$$

$$X_{\vec{n},\vec{n}-\vec{\lambda}_z} \equiv X_z \left(1 + x_0 \delta_{n_z,1} + x_N \delta_{n_z,N}\right) .$$
(3.1)

Veličine parametara ϵ definišu promenu energije izolovanog molekula na graničnim površima, a x perturbaciju, odnosno promenu energije transfera eksitona iz prvih unutrašnjih ka graničnim površima, tj. u graničnim slojevima duž z-pravca.

Pošto su granične površi filma uzete normalno na z-pravac, indeks sloja n_z u (3.1) uzima vrednosti $n_z = 0, 1, 2, \ldots, N$, gde je $N \in [2, 20]$ kod ultratankih filmova. Indeksi n_x i n_y , koji odredjuju položaj molekula u svakom sloju mogu imati proizvoljne celobrojne vrednosti (praktično, od $-\infty$, do $+\infty$).

Zbog prostorne ograničenosti filma u z-pravcu može da se koristi samo delimična prostorna Furije-transformacija:

$$\delta_{\vec{n}\vec{m}} = \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x - m_x)} e^{ik_y a_y (n_y - m_y)} \delta_{n_z m_z};$$

$$f_{\vec{n}\vec{m}}(\omega) = \frac{1}{N_x N_y} \sum_{k_x k_y} e^{ik_x a_x (n_x - m_x)} e^{ik_y a_y (n_y - m_y)} f_{n_z m_z}(k_x, k_y, \omega).$$
(3.2)

Prilikom delimične Furije-transformacije jednačine (2.24), radi kraćeg pisanja zgodno je uvesti oznake $G_{n_z m_z}(k_x, k_y, \omega) \equiv G_{n_z m_z}$. Na taj način se dobija:

$$\begin{split} &\hbar\omega\frac{1}{N_{x}N_{y}}\sum_{k_{x}k_{y}}e^{ik_{x}a_{x}(n_{x}-m_{x})}e^{ik_{y}a_{y}(n_{y}-m_{y})}G_{n_{z}m_{z}} = \\ &= \frac{i\hbar}{2\pi}\frac{1}{N_{x}N_{y}}\sum_{k_{x}k_{y}}e^{ik_{x}a_{x}(n_{x}-m_{x})}e^{ik_{y}a_{y}(n_{y}-m_{y})}\delta_{n_{z}m_{z}} + \\ &+ \Delta\left(1+\epsilon_{0}\delta_{n_{z},0}+\epsilon_{N}\delta_{n_{z},N}\right)\frac{1}{N_{x}N_{y}}\sum_{k_{x}k_{y}}e^{ik_{x}a_{x}(n_{x}-m_{x})}e^{ik_{y}a_{y}(n_{y}-m_{y})}G_{n_{z},m_{z}} + \\ &+ X_{x}\frac{1}{N_{x}N_{y}}\sum_{k_{x}k_{y}}e^{ik_{x}a_{x}(n_{x}+1-m_{x})}e^{ik_{y}a_{y}(n_{y}-m_{y})}G_{n_{z},m_{z}} + \\ &+ X_{x}\frac{1}{N_{x}N_{y}}\sum_{k_{x}k_{y}}e^{ik_{x}a_{x}(n_{x}-1-m_{x})}e^{ik_{y}a_{y}(n_{y}-m_{y})}G_{n_{z},m_{z}} + \\ &+ X_{y}\frac{1}{N_{x}N_{y}}\sum_{k_{x}k_{y}}e^{ik_{x}a_{x}(n_{x}-1-m_{x})}e^{ik_{y}a_{y}(n_{y}-1-m_{y})}G_{n_{z},m_{z}} + \\ &+ X_{y}\frac{1}{N_{x}N_{y}}\sum_{k_{x}k_{y}}e^{ik_{x}a_{x}(n_{x}-m_{x})}e^{ik_{y}a_{y}(n_{y}-1-m_{y})}G_{n_{z},m_{z}} + \\ &+ X_{y}\frac{1}{N_{x}N_{y}}\sum_{k_{x}k_{y}}e^{ik_{x}a_{x}(n_{x}-m_{x})}e^{ik_{y}a_{y}(n_{y}-1-m_{y})}G_{n_{z},m_{z}} + \\ &+ X_{z}\left(1+x_{0}\delta_{n_{z},0}+x_{N}\delta_{n_{z},N-1}\right)\frac{1}{N_{x}N_{y}}\sum_{k_{x}k_{y}}e^{ik_{x}a_{x}(n_{x}-m_{x})}e^{ik_{y}a_{y}(n_{y}-m_{y})}G_{n_{z}-1,m_{z}} + \\ &+ X_{z}\left(1+x_{0}\delta_{n_{z},1}+x_{N}\delta_{n_{z},N}\right)\frac{1}{N_{x}N_{y}}\sum_{k_{x}k_{y}}e^{ik_{x}a_{x}(n_{x}-m_{x})}e^{ik_{y}a_{y}(n_{y}-m_{y})}G_{n_{z}-1,m_{z}} . \end{split}$$

Daljim sredjivanjem se dobija:

$$G_{n_{z}m_{z}}\left[-\frac{\hbar\omega - \Delta - 2\left(X_{x}\cos a_{x}k_{x} + X_{y}\cos a_{y}k_{y}\right)}{X_{z}} + \frac{\Delta}{X_{z}}\left(\epsilon_{0}\delta_{n_{z},0} + \epsilon_{N}\delta_{n_{z},N}\right)\right] + G_{n_{z}+1,m_{z}}\left(1 + x_{0}\delta_{n_{z},0} + x_{N}\delta_{n_{z},N-1}\right) + G_{n_{z}-1,m_{z}}\left(1 + x_{0}\delta_{n_{z},1} + x_{N}\delta_{n_{z},N}\right) = -\frac{i\hbar}{2\pi X_{z}}\delta_{n_{z},m_{z}},$$
(3.4)

a uz $X_x = X_y = X_z \equiv -|X|$ i $a_x = a_y = a_z \equiv a$:

$$\begin{aligned}
G_{n_{z}m_{z}} \left[\varrho - \frac{\Delta}{|X|} \left(\epsilon_{0} \delta_{n_{z},0} + \epsilon_{N} \delta_{n_{z},N} \right) \right] &+ \\
+ G_{n_{z}+1,m_{z}} \left(1 + x_{0} \delta_{n_{z},0} + x_{N} \delta_{n_{z},N-1} \right) &+ \\
+ G_{n_{z}-1,m_{z}} \left(1 + x_{0} \delta_{n_{z},1} + x_{N} \delta_{n_{z},N} \right) &= \frac{i\hbar}{2\pi |X|} \delta_{n_{z},m_{z}} ,
\end{aligned} \tag{3.5}$$

gde je uvedena smena:

$$\rho = \frac{\hbar\omega - \Delta}{|X|} + 2\left(\cos ak_x + \cos ak_y\right) . \tag{3.6}$$

Jednačina (3.5) predstavlja ustvari sistem od N + 1 nehomogenih algebarsko-diferencnih jednačina sa (početno-graničnim) uslovima: $G_{n_z,m_z} = 0$, za $n_z < 0$ i $n_z > N + 1$.

3.2 Zakon disperzije

U cilju nalaženja eksitonskih energija potrebni su nam polovi Grinovih funkcija, koji se dobijaju kada iste teže beskonačnosti, što znači da mora biti:

$$\mathcal{D}_{N+1} \equiv 0 , \qquad (3.7)$$

gde je determinanta sistema (3.5) data u sledećem obliku:

Uslov (3.7) rešavaćemo za slučaj perturbovanog monomolekulskog filma sa pet kristalnih ravni duž z-pravca (N = 4). Granični parametri će biti menjani u sledećim intervalima: { ϵ_0, ϵ_N } $\in [-0.3, +0.3]$ (promena energije Δ na graničnim ravnima – do 30 % i to na manje i na više), { x_0, x_N } $\in [-0.8, +2.0]$ (promena energije transfera X u graničnim slojevima – do 80 % naniže i do 200 % naviše)⁴.

⁴Energije transfera u graničnim slojevima (X) ne mogu se smanjiti više od 99,99 %, jer i u tom sličaju praktično ne postoje interakcije molekula sa graničnih i njima susednih unutar-filmskih ravni. Ukoliko bi se uzelo $\{x_0, x_N\} \leq -1$, onda bi se karakter medjumolekulske interakcije promenio (privlacna \Leftrightarrow odbojna). Ukoliko bi se uzelo $\{x_0, x_N\} \geq 2$, onda bi se jako narušio odnos velivina Δ i X, a to bi značilo da se promenio i tip molekulskog kristala u kome se formiraju Frenkelovi eksitoni i koji se ovde razmatraju.

Proračuni su, zbog nemogućnosti nalaženja analitičkog rešenja, radjeni uz pomoć programskog paketa MATHEMATICA 4.0, a grafički obradjeni pomoću COREL 9.0 i tekstualno sredjeni u MIKTEX 2e. Rezultati ovih proračuna su prikazani na slikama 3.2 i 3.3. Kao i kod odgovarajućih balk-kristalnih struktura, i ovde se na ordinatama nalaze vrednosti redukovanih energija $\mathcal{E}_{\nu}^* = \frac{\hbar\omega - \Delta}{|X|} \equiv \varrho_{\nu} - \mathcal{F}_{xy}^*; \quad \nu = 1, 2, 3 \dots, N+1;$ u zavisnosti od bezdimenzione funkcije $\mathcal{F}_{xy}^* \equiv 2 (\cos ak_x + \cos ak_y)$ na apscisama grafika.

Slika 3.2: Eksitonske energije monomolekulskog filma

Na slici 3.2 prikazane su redukovane energije eksitona petoslojnog monomolekulskog filma (punim linijama) u zavisnosti od dvodimenzione funkcije pri čemu se menja energetska perturbacija ϵ energije molekula na čvoru Δ kada se molekul nalazi na graničnim ravnima ($n_z = 0$ i $n_z = N$), tj. $\Delta_{0,N} = (1 + \epsilon_{0,N})\Delta$. Pošto je promena ovih spektara izmenom parametra ϵ_0 ista kao i izmenom ϵ_N ovde je data samo zavisnost od ϵ_N . Ostali granični perturbacioni parametri su bili stalno nepromenljivi (nulte vrednosti!) da bi se utvrdio uticaj samo posmatranog parametra.

Analizom ovih grafika može se zaključiti da se povećanjem (odnosno, smanjenjem) parametra ϵ , spektar mogućih eksitonskih energija širi i to pomeranjem ka višim (tj. ka nižim) energijama. Ovo pomeranje se dešava tako da se samo jedan energetski nivo "izbacuje" van balkovske zone (označene isprekidanim linijama). Ovaj nivo je udaljeniji od balkovske zone što je perturbacija veća, odnosno, što je parametar ϵ po apsolutnoj vrednosti veći. Ovakva izdvojena stanja su poznata pod nazivom tamovska ili lokalizovana stanja. Ono što se ovde vidi je da se ova stanja javljaju i da su ona dislocirana iz zone dozvoljenih energija eksitona u neograničenim strukturama, ali se ne može tvrditi kolika je verovatnoća njihovog nalaženja niti gde se ona mogu pojaviti. Zbog toga će ova analiza biti posebno uradjena u sledećem paragrafu.

Iz svih prikazanih grafika je uočljiva diskretnost energetskih stanja eksitona u filmovima. Za razliku od kontinualne balkovske zone ovde se može javiti onoliko energetskih nivoa koliko ima dvodimenzionih stanja, a mi smo razmatrali slučaj petoslojnog filma, dakle sa pet mogućih energetskih nivoa.

Prva (gornja) dva grafika predstavljaju moguće energije eksitona neperturbovanog monomolekulskog filma. U literaturi ovakva film-struktura naziva se idealan film. Ove strukture su zanimljive zbog toga što se tu energetski spektri elementarnih pobudjenja mogu izraziti u analitičkom obliku.

3.3 Spektralne težine eksitonskih stanja

U cilju analize prostorne raspodele eksitona, tj. verovatnoća nalaženja eksitona sa odredjenim energijama na pojedinim slojevima kristalnog filma, potrebno je izračunati spektralne težine pojedinih Grinovih funkcija. Polazi se od sistema jednačina za eksitonske Grinove funkcije, koji je sad najpogodnije predstaviti u matričnom obliku:

$$\hat{\mathcal{D}}_{N+1}\tilde{\mathcal{G}}_{N+1} = \tilde{\mathcal{K}}_{N+1} , \qquad (3.9)$$

gde su: $\hat{\mathcal{D}}_{N+1}$ – matrica koja odgovara determinanti sistema \mathcal{D}_{N+1} , a $\tilde{\mathcal{G}}_{N+1}$ i $\tilde{\mathcal{K}}_{N+1}$ – vektori Grinovih funkcija i Kronekerovih delti:

$$\tilde{\mathcal{G}}_{N+1} = \begin{pmatrix} G_{0,m_z} \\ G_{1,m_z} \\ \vdots \\ G_{n_z,m_z} \\ \vdots \\ G_{N,m_z} \end{pmatrix}; \quad \tilde{\mathcal{K}}_{N+1} = -\frac{i\hbar}{2\pi |X|} \begin{pmatrix} \delta_{0,m_z} \\ \delta_{1,m_z} \\ \vdots \\ \vdots \\ \vdots \\ \delta_{n_z,m_z} \\ \vdots \\ \delta_{N,m_z} \end{pmatrix}$$

Dejstvom inverzne matrice $\hat{\mathcal{D}}_{N+1}^{-1}$, s leve strane, na jednačinu (3.9) sledi:

$$\tilde{\mathcal{G}}_{N+1} = \hat{\mathcal{D}}_{N+1}^{-1} \tilde{\mathcal{K}}_{N+1} .$$
(3.10)

Kako se inverzna matrica može izraziti preko adjugovane, čiji su članovi D_{ik} kofaktori elementa d_{ik} direktne matrice, može se pisati:

$$G_{n_z,m_z} = \frac{1}{\mathcal{D}_{N+1}} \sum_q D_{n_z,q} K_{q,m_z} = -\frac{1}{\mathcal{D}_{N+1}} \frac{i\hbar}{2\pi |X|} \sum_q D_{n_z,q} \delta_{q,m_z} = -\frac{i\hbar}{2\pi |X|} \frac{D_{n_z,m_z}}{\mathcal{D}_{N+1}} .$$
(3.11)

Kofaktori D_{n_z,m_z} se izračunavaju na osnovu poznavanja determinante sistema D_{N+1} .

Kako su za ravnotežne procese u sistemu bitne samo dijagonalne Grinove funkcije $G_{n_z;n_z} \equiv G_{n_z}$, izračunavanje kofaktora $D_{n_z,m_z} \equiv D_{n_z}$ se znatno pojednostavljuje. Dobija se da su jednaki proizvodu dve pomoćne determinante:

$$D_{n_z} = B_{n_z} B_{N-n_z} , (3.12)$$

gde su:

$$B_{n_{x}}(\varrho) = \begin{vmatrix} \varrho - \frac{\Delta}{|X|} \epsilon_{0} & 1 + x_{0} & 0 & \cdots & 0 & 0 & 0 \\ 1 + x_{o} & \varrho & 1 & \cdots & 0 & 0 & 0 \\ 0 & 1 & \varrho & \cdots & 0 & 0 & 0 \\ 0 & 1 & \varrho & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & \varrho & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & \varrho & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & \varrho & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \varrho & 1 & 0 \\ 0 & 1 & \varrho & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \varrho & 1 & 0 \\ 0 & 0 & 0 & \cdots & 1 & \varrho & 1 + x_{N} \\ 0 & 0 & 0 & \cdots & 0 & 1 + x_{N} & \varrho - \frac{\Delta}{|X|} \epsilon_{N} \end{vmatrix}_{N-n_{z}}$$
(3.13)

s tim da je $B_0 = B_{N-N} = 1$.

U opštem slučaju, vrednost pomoćnih determinanti se može naći numerički, dok su Grinove funkcije perturbovanog filma:

$$G_{n_z} = -\frac{i\hbar}{2\pi |X|} \frac{B_{n_z} B_{N-n_z}}{\mathcal{D}_{N+1}} .$$
(3.15)

Grinove funkcije su multipolne, jer se u imeniocu nalazi polinom \mathcal{D}_{N+1} reda N+1. Stoga se mora pribeći faktorizaciji na proste polove:

$$G_{n_z} = -\frac{i\hbar}{2\pi|X|} \sum_{\nu=1}^{N+1} \frac{g_{n_z;n_z}(\rho_{\nu})}{\rho - \rho_{\nu}} .$$
(3.16)

Spektralne težine $g_{n_z;n_z}(\varrho_\nu)\equiv g_{n_z}^\nu$ se onda mogu izraziti preko:

$$g_{n_z}^{\nu} = \frac{B_{n_z}(\varrho_{\nu})B_{N-n_z}(\varrho_{\nu})}{\left.\frac{d}{d\varrho}D_{N+1}(\varrho)\right|_{\varrho=\varrho(\nu)}}.$$
(3.17)

Spektralne težine Grinovih funkcija predstavljaju kvadrat modula talasne funkcije eksitona i omogućuju odredjivanje prostorne distribucije, tj. verovatnoće nalaženja eksitona sa odredjenim energijama po slojevima kristalnog filma. To je zapravo prostorna distribucija verovatnoće pojavljivanja odredjenih energetskih stanja eksitona.

U sledećim tabelama su predstavljene vrednosti redukovanih energija i njima odgovarajućih spektralnih funkcija (prostorna raspodela verovatnoća) za petoslojni film. U slučaju perturbovanog filma, spektralne težine za date eksitonske energije se mogu naći samo numeričkim metodama. Rezultati dobijeni za razne vrednosti perturbovanih parametara filma dati su u tabelama 3.1-3.3 (pri čemu je $k_x = k_y = 0$).

Tabela 3.1 daje prostornu distribuciju verovatnoća javljanja eksitonskih energija u idealnom monomolekulskom filmu.

Redukovana relativna	$\epsilon_0 = 0.0; \ \epsilon_N = 0.0; \ x_0 = 0.0; \ x_N = 0.0$					
ENERGIJA	1. sloj	2. sloj	3. sloj	4. sloj	5. sloj	
-1.73205	0.08333	0.25000	0.33333	0.25000	0.08333	
-1.00000	0.25000	0.25000	0.00000	0.25000	0.25000	
0.00000	0.33333	0.00000	0.33333	0.00000	0.33333	
1.00000	0.25000	0.25000	0.00000	0.25000	0.25000	
1.73205	0.08333	0.25000	0.33333	0.25000	0.08333	

Tabela 3.1: Verovatnoće nalaženja eksitona u idealnom petoslojnom filmu

Iz ove tabele se uočava da se za jednu odredjenu energiju verovatnća pojavljivanja eksitona po svim slojevima jednaka jedinici, kao i da je verovatnća po jednom sloju za sve energije takodje jednaka jedinici, tj:

$$\sum_{n_z=0}^{N} g_{n_z}^{\nu} = 1 ; \qquad \sum_{\nu=1}^{N+1} g_{n_z}^{\nu} = 1 .$$
(3.18)

U tabelama 3.2 i 3.3 prikazane su prostorne verovatnoće nalaženja eksitona u petoslojnom monomolekulskom filmu i to za slučaj kada se menjaju samo parametari ϵ_0 ili ϵ_N , dok su ostali perturbacioni parametri jednaki nuli. Energije čije vrednosti se nalaze izvan balkovske zone (tj. lokalizovana eksitonska stanja), kao i najveće vrednosti verovatnoća (po slojevima filma) za te energije, su prikazani podebljanim brojevima. Povećanjem parametara ϵ_0 u intervalu od 5 do 30 % (tabele 3.2) vidi se da se i prostorna lokalizacija, tj. verovatnoća nalaženja eksitona, srazmerno povećava upravo na prvom sloju filma.

Redukovana relativna	$\epsilon_0 = 0.05; \ \epsilon_N = 0.0; \ x_0 = 0.0; \ x_N = 0.0$					
ENERGIJA	1. sloj	2. sloj	3. sloj	4. sloj	5. sloj	
-1.65635	0.01047	0.18081	0.36241	0.32709	0.11922	
-0.73601	0.03650	0.38225	0.06969	0.17975	0.33181	
0.46207	0.06128	0.25449	0.23102	0.07974	0.37347	
1.53408	0.05114	0.04807	0.31552	0.41016	0.17510	
2.89981	0.84061	0.13437	0.02136	0.00327	0.00039	
Redukovana relativna	$\epsilon_0 = 0.1; \ \epsilon_N = 0.0; \ x_0 = 0.0; \ x_N = 0.0$					
ENERGIJA	1. sloj	2. sloj	3. sloj	4. sloj	5. sloj	
-1.64075	0.00371	0.16375	0.36362	0.34191	0.12701	
-0.68389	0.01179	0.38088	0.09827	0.16222	0.34684	
0.54116	0.01596	0.31736	0.18594	0.10890	0.37184	
1.58374	0.00853	0.09961	0.35063	0.38692	0.15431	
5.20000	0.96000	0.03840	0.00154	0.00006	$2.2 \cdot 10^{-6}$	
l			*			
Redukovana		$\epsilon_0 = 0.2; \ \epsilon_N$	$= 0.0; x_0 = 0$	$0.0; x_N = 0.0$		
Redukovana relativna	1 aloi	$\epsilon_0 = 0.2; \ \epsilon_N$	$= 0.0; x_0 = 0$	0.0; $x_N = 0.0$	5 aloi	
Redukovana relativna ENERGIJA	1. sloj	$\epsilon_0 = 0.2; \ \epsilon_N$ 2. sloj	$= 0.0; x_0 = 0$ 3. sloj	0.0; $x_N = 0.0$ 4. sloj	5. sloj	
Redukovana relativna ENERGIJA -1.63052	1. sloj 0.00113	$\epsilon_0 = 0.2; \ \epsilon_N$ 2. sloj 0.15231	$= 0.0; x_0 = 0$ 3. sloj 0.36334	0.0; $x_N = 0.0$ 4. sloj 0.35115	5. sloj 0.13208	
Redukovana relativna ENERGIJA -1.63052 -0.65266	1. sloj 0.00113 0.00330	$\epsilon_0 = 0.2; \ \epsilon_N$ 2. sloj 0.15231 0.37422	$= 0.0; x_0 = 0$ 3. sloj 0.36334 0.11685	0.0; $x_N = 0.0$ 4. sloj 0.35115 0.15104 0.10205	5. sloj 0.13208 0.35459	
Redukovana relativna ENERGIJA -1.63052 -0.65266 0.58054	1. sloj 0.00113 0.00330 0.00386	$\epsilon_0 = 0.2; \ \epsilon_N$ 2. sloj 0.15231 0.37422 0.34278 2.12070	$= 0.0; x_0 = 0$ 3. sloj 0.36334 0.11685 0.16164	0.0; $x_N = 0.0$ 4. sloj 0.35115 0.15104 0.12395 0.372000	5. sloj 0.13208 0.35459 0.36777	
Redukovana relativna ENERGIJA -1.63052 -0.65266 0.58054 1.60263	1. sloj 0.00113 0.00330 0.00386 0.00171	$\epsilon_0 = 0.2; \ \epsilon_N$ 2. sloj 0.15231 0.37422 0.34278 0.12079 0.00000	$= 0.0; x_0 = 0$ 3. sloj 0.36334 0.11685 0.16164 0.35807	0.0; $x_N = 0.0$ 4. sloj 0.35115 0.15104 0.12395 0.37386 0.010=7	5. sloj 0.13208 0.35459 0.36777 0.14556	
Redukovana relativna ENERGIJA -1.63052 -0.65266 0.58054 1.60263 10.1000	1. sloj 0.00113 0.00330 0.00386 0.00171 0.99000	$\epsilon_0 = 0.2; \ \epsilon_N$ 2. sloj 0.15231 0.37422 0.34278 0.12079 0.00990	$= 0.0; x_0 = 0$ 3. sloj 0.36334 0.11685 0.16164 0.35807 0.00001	0.0; $x_N = 0.0$ 4. sloj 0.35115 0.15104 0.12395 0.37386 9.9.10 ⁻⁷	$5. sloj$ 0.13208 0.35459 0.36777 0.14556 $9.7 \cdot 10^{-9}$	
Redukovana relativna ENERGIJA -1.63052 -0.65266 0.58054 1.60263 10.1000 Redukovana relativna	1. sloj 0.00113 0.00330 0.00386 0.00171 0.99000	$\epsilon_0 = 0.2; \ \epsilon_N$ 2. sloj 0.15231 0.37422 0.34278 0.12079 0.00990 $\epsilon_0 = 0.3; \ \epsilon_N$	$= 0.0; x_0 = 0$ 3. sloj 0.36334 0.11685 0.16164 0.35807 0.00001 $= 0.0; x_0 = 0$	0.0; $x_N = 0.0$ 4. sloj 0.35115 0.15104 0.12395 0.37386 9.9.10 ⁻⁷ 0.0; $x_N = 0.0$	$\begin{array}{c} 5. \ \mathrm{sloj} \\ 0.13208 \\ 0.35459 \\ 0.36777 \\ 0.14556 \\ 9.7\cdot 10^{-9} \end{array}$	
Redukovana relativna ENERGIJA -1.63052 -0.65266 0.58054 1.60263 10.1000 Redukovana relativna ENERGIJA	1. sloj 0.00113 0.00330 0.00386 0.00171 0.99000	$\epsilon_0 = 0.2; \ \epsilon_N$ 2. sloj 0.15231 0.37422 0.34278 0.12079 0.00990 $\epsilon_0 = 0.3; \ \epsilon_N$ 2. sloj	$= 0.0; x_0 = 0$ 3. sloj 0.36334 0.11685 0.16164 0.35807 0.00001 $= 0.0; x_0 = 0$ 3. sloj	0.0; $x_N = 0.0$ 4. sloj 0.35115 0.15104 0.12395 0.37386 9.9.10 ⁻⁷ 0.0; $x_N = 0.0$ 4. sloj	5. sloj 0.13208 0.35459 0.36777 0.14556 $9.7 \cdot 10^{-9}$ 5. sloj	
Redukovana relativna ENERGIJA -1.63052 -0.65266 0.58054 1.60263 10.1000 Redukovana relativna ENERGIJA	1. sloj 0.00113 0.00330 0.00386 0.00171 0.99000 1. sloj 0.00054	$\epsilon_0 = 0.2; \ \epsilon_N$ 2. sloj 0.15231 0.37422 0.34278 0.12079 0.00990 $\epsilon_0 = 0.3; \ \epsilon_N$ 2. sloj 0.14793	$= 0.0; x_0 = 0$ 3. sloj 0.36334 0.11685 0.16164 0.35807 0.00001 $= 0.0; x_0 = 0$ 3. sloj 0.36300	0.0; $x_N = 0.0$ 4. sloj 0.35115 0.15104 0.12395 0.37386 9.9.10 ⁻⁷ 0.0; $x_N = 0.0$ 4. sloj 0.35454	$\begin{array}{c} 5. \ \mathrm{sloj} \\ 0.13208 \\ 0.35459 \\ 0.36777 \\ 0.14556 \\ 9.7 \cdot 10^{-9} \\ \end{array}$ $\begin{array}{c} 5. \ \mathrm{sloj} \\ 0.13399 \end{array}$	
Redukovana relativna ENERGIJA -1.63052 -0.65266 0.58054 1.60263 10.1000 Redukovana relativna ENERGIJA -1.62664 -0.64147	1. sloj 0.00113 0.00330 0.00386 0.00171 0.99000 1. sloj 0.00054 0.00152	$\epsilon_0 = 0.2; \ \epsilon_N$ 2. sloj 0.15231 0.37422 0.34278 0.12079 0.00990 $\epsilon_0 = 0.3; \ \epsilon_N$ 2. sloj 0.14793 0.37078	$= 0.0; x_0 = 0$ 3. sloj 0.36334 0.11685 0.16164 0.35807 0.00001 $= 0.0; x_0 = 0$ 3. sloj 0.36300 0.12368	0.0; $x_N = 0.0$ 4. sloj 0.35115 0.15104 0.12395 0.37386 9.9.10 ⁻⁷ 0.0; $x_N = 0.0$ 4. sloj 0.35454 0.14694	$\begin{array}{c} 5. \ \mathrm{sloj} \\ 0.13208 \\ 0.35459 \\ 0.36777 \\ 0.14556 \\ 9.7\cdot 10^{-9} \end{array}$ $\begin{array}{c} 5. \ \mathrm{sloj} \\ 0.13399 \\ 0.35709 \end{array}$	
Redukovana relativna ENERGIJA -1.63052 -0.65266 0.58054 1.60263 10.1000 Redukovana relativna ENERGIJA -1.62664 -0.64147 0.59331	1. sloj 0.00113 0.00330 0.00386 0.00171 0.99000 1. sloj 0.00054 0.00152 0.00169	$\epsilon_0 = 0.2; \ \epsilon_N$ 2. sloj 0.15231 0.37422 0.34278 0.12079 0.00990 $\epsilon_0 = 0.3; \ \epsilon_N$ 2. sloj 0.14793 0.37078 0.34987	$= 0.0; x_0 = 0$ 3. sloj 0.36334 0.11685 0.16164 0.35807 0.00001 $= 0.0; x_0 = 0$ 3. sloj 0.36300 0.12368 0.15366	0.0; $x_N = 0.0$ 4. sloj 0.35115 0.15104 0.12395 0.37386 9.9.10 ⁻⁷ 0.0; $x_N = 0.0$ 4. sloj 0.35454 0.14694 0.12882	$\begin{array}{c} 5. \ \mathrm{sloj} \\ 0.13208 \\ 0.35459 \\ 0.36777 \\ 0.14556 \\ 9.7\cdot 10^{-9} \\ \hline \\ 5. \ \mathrm{sloj} \\ 0.13399 \\ 0.35709 \\ 0.36596 \\ \end{array}$	
Redukovana relativna ENERGIJA -1.63052 -0.65266 0.58054 1.60263 10.1000 Redukovana relativna ENERGIJA -1.62664 -0.64147 0.59331 1.60814	1. sloj 0.00113 0.00330 0.00386 0.00171 0.99000 1. sloj 0.00054 0.00152 0.00169 0.00071	$\epsilon_0 = 0.2; \ \epsilon_N$ 2. sloj 0.15231 0.37422 0.34278 0.12079 0.00990 $\epsilon_0 = 0.3; \ \epsilon_N$ 2. sloj 0.14793 0.37078 0.34987 0.12700	$= 0.0; x_0 = 0$ 3. sloj 0.36334 0.11685 0.16164 0.35807 0.00001 $= 0.0; x_0 = 0$ 3. sloj 0.36300 0.12368 0.15366 0.35964	0.0; $x_N = 0.0$ 4. sloj 0.35115 0.15104 0.12395 0.37386 9.9.10 ⁻⁷ 0.0; $x_N = 0.0$ 4. sloj 0.35454 0.14694 0.12882 0.36970	$5. sloj$ 0.13208 0.35459 0.36777 0.14556 $9.7 \cdot 10^{-9}$ $5. sloj$ 0.13399 0.35709 0.36596 0.14296	

Tabela 3.2: Verovatnoće nalaženja eksitona u perturbovanom petoslojnom filmu

U gornjoj tabeli (tabela 3.3) su prikazane verovatnoće nalaženja eksitona za slučaj kada je parametar $\epsilon_N = 0.3$ i tu se jasno vidi da je u tom slučaju najveća verovatnoća nalaženja eksitona u zadnjem sloju filma. Donja tabela prikazuje raspored verovatnoća nalaženja eksitona za slučaj negativne perturbacije $\epsilon_0 = -0.3$, sa najvećom lokalizacijom na prvom sloju, ali je ovde, kao što je prethodno istaknuto, lokalizovani energetski nivo pomeren prema nižim energijama.

Ovde je važno istaći da povećanjem parametra ϵ_0 (ϵ_N) izrazito raste verovatnoća nalaženja eksitona na prvom (zadnjem) sloju. Naprimer, već za relativno malu vrednost $\epsilon_0 = 0.05$ dobija se da će se eksiton naći na prvom sloju sa verovatnoćom od 84 %, dok je na zadnjem sloju ta verovatnoća 0.03 %.

Redukovana relativna		$\epsilon_0 = 0.0; \ \epsilon_N = 0.3; \ x_0 = 0.0; \ x_N = 0.0$				
ENERGIJA	1. sloj	2. sloj	3. sloj	4. sloj	5. sloj	
-1.62664	0.13400	0.35454	0.36300	0.14793	0.00054	
-0.64147	0.35709	0.14694	0.12368	0.37078	0.00152	
0.59331	0.36596	0.12882	0.15366	0.34987	0.00169	
1.60814	0.14296	0.36970	0.35964	0.12700	0.00071	
15.0667	$3.8 \cdot 10^{-10}$	$8.7 \cdot 10^{-8}$	0.00002	0.00442	0.99556	
Redukovana		$c_{-} = -0.3$				
relativna	$\epsilon_0 = -0.3; \ \epsilon_N = 0.0; \ x_0 = 0.0; \ x_N = 0.0$					
ENERGIJA	1. sloj	2. sloj	3. sloj	4. sloj	5. sloj	
-15.0667	0.99556	0.00442	0.00002	$8.7 \cdot 10^{-8}$	$3.8 \cdot 10^{-10}$	
-1.60814	0.00071	0 1 0 7 0 0	0.25064	0.26070	0.14906	
	0.00071	0.12700	0.55904	0.30970	0.14290	
-0.59331	0.00169	0.12700	0.35964	0.30970	0.14296 0.36596	
-0.59331 0.64147	0.00169	0.12700 0.34987 0.37078	0.15366 0.12368	0.12882 0.14694	0.14296 0.36596 0.35709	

Tabela 3.3: b) Verovatnoće nalaženja eksitona u perturbovanom petoslojnom filmu

Iz svih tabela se može uočiti da se na svakom čvoru kristalnog sloja nalazi tačno jedan eksiton, koji može biti u N + 1 = 5 različitih energetskih stanja, sa različitim verovatnoćama nalaženja. Za proizvoljan broj slojeva filma (N + 1) važi sledeća relacija, koja ukazuje na to da je zbir svih verovatnoća nalaženja eksitona jednak broju mogućih stanja:

$$\sum_{\nu=1}^{N+1} \sum_{n_z=0}^{N} g_{n_z}^{\nu}(\varrho_{\nu}) = N+1 .$$
(3.19)

3.4 Permitivnost molekulskih filmova

Pri odredivanju dinamičke permitivnosti kristala, koristi se formula Djaložinskog i Pitajevskog u obliku:

$$\varepsilon^{-1}(\omega) = 1 - 2\pi i S \left[\Gamma(\omega) + \Gamma(-\omega) \right] , \qquad (3.20)$$

gde je $S = \frac{\tau_0 E_0^2}{8\pi\hbar}$. Kao što je rečeno, u nultoj aproksimaciji paulionske Grinove funkcije prelaze u bozonske, tako da je:

$$\varepsilon^{-1}(\omega) = 1 - 2\pi i S \left[G(\omega) + G(-\omega) \right] . \tag{3.21}$$

Ovaj izraz, uz $a_x = a_y = a_z \equiv a$, možemo napisati u obliku:

gde je:

$$E_{\vec{k}} = \Delta - 2|X| \left(\cos ak_x + \cos ak_y + \cos ak_z\right).$$
(3.23)

 $G_{\vec{k}}(\omega) = \frac{i\hbar}{2\pi} \frac{1}{\hbar\omega - E_{\vec{k}}} ,$

Zamenom ovoga u (3.21), dobijamo izraz za dinamičku permitivnost u balk-kristalu:

$$\varepsilon_{\vec{k}}(\omega) = \left[1 + 2\hbar S \frac{E_{\vec{k}}}{(\hbar\omega)^2 - E_{\vec{k}}^2}\right]^{-1}.$$
 (3.24)

Zavisnost ove permitivnosti od redukovane frekvencije (bezdimenziona veličina: $\hbar\omega/\Delta$) spoljašnjeg elektromagnetnog polja data je na sl.3.3.

Vidljivo je postojanje apsorpcione zone unutar određenih graničnih frekvencija. Energetska zona je računata za dvodimenzioni centar Briluenove zone $(k_x = k_y = 0; k_z = [0, \pi])$.

Za proračun permitivnosti kristalnih filmova koristimo isti izraz kao kod odgovarajućih balk-struktura, ali sa tom razlikom što sada permitivnost zavisi od sloja filma n_z . Uvr-štavanjem izraza za Grinove funkcije (3.16) dobija se:

$$\varepsilon_{n_z}^{-1} = 1 - \frac{\hbar S}{|X|} \sum_{\nu=1}^{N+1} \sum_{s=+,-} \frac{g_{n_z}^{\nu}}{\varrho_s - \varrho_\nu} , \qquad (3.25)$$

gde su: $\varrho_{\pm} = \frac{\pm \hbar \omega - \Delta}{|X|} + 2(\cos a_x k_x + \cos a_y k_y)$, a obeležavanjem $\frac{\Delta}{|X|} \equiv |p|$ i sredivanjem ovog izraza sledi:

$$\varepsilon_{n_{z}}(\omega) = \left\{ 1 - \frac{2\hbar S}{|X|} \sum_{\nu=1}^{N+1} g_{n_{z}}^{\nu} \frac{\varrho_{\nu} - |p| - 2(\cos a_{x}k_{x} + \cos a_{y}k_{y})}{\left(\frac{\hbar\omega}{|X|}\right)^{2} - [\varrho_{\nu} - |p| - 2(\cos a_{x}k_{x} + \cos a_{y}k_{y})]^{2}} \right\} \quad .$$
(3.26)

Na slikama 3.3 (a–e) prikazane su zavisnosti dinamičke permitivnosti ε od redukovane energije $\hbar \omega/|X|$ za monomolekulski dielektrični tanki film. Svaka slika prikazuje 10 grafika (po 5 u dve kolone), za pojedine slojeve ovog filma (u našem slučaju broj slojeva je N+1=5), gde leva kolona predstavlja grafike zavisnosti permitivnosti kada se parametar ϵ_0 (ili ϵ_N) menja u intervalu [0, 0.3], a desna kolona kada se ϵ_0 (ϵ_N) menja u intervalu [0, -0.3]. Svi grafici su računati i prikazani za ϵ_0 , ali idenitični rezultati se dobijaju i ako se računa sa ϵ_N , jer postoji simetrija ($\epsilon_0 \Leftrightarrow \epsilon_N$) u odnosu na odgovarajući sloj filma za koji se računa dinamička permitivnost.⁵

Broj rezonantnih pikova (kada $\varepsilon(\omega_r) \to \pm \infty$) zavisi od sloja n_z za koji se računa permitivnost, ali i od vrednosti parametra $\epsilon_{0/N}$. Samo kada je $\epsilon_{0/N} = 0$ broj pikova opada na unutrašnjim slojevima filma, dok je za bilo koju konačnu vrednost perturbacije $\epsilon_{0/N} \neq 0$ broj rezonantnih pikova jednak N+1, s tim da može doći do "gašenja" pojedinih.

(3.22)

⁵Tako se, naprimer, pokazuje da je grafik sa parametrom $\epsilon_0 = 0.3$ i prvi sloj filma $(n_z = 0)$ identičan grafiku računatom sa $\epsilon_N = 0.3$ ali za zadnji sloj filma $(n_z = 4)$, što ukazuje na simetriju u odnosu na središnji sloj tankog filma. Ako je broj slojeva neparan, jednaki grafici za bilo koju vrstu perturbacije $\epsilon_{0/N}$ će biti samo za srednji sloj (što je u našem slučaju za $n_z = 2$).

Slika 3.3: a) Dinamička permitivnost monomolekulskog filma

Slika 3.3: b) Dinamička permitivnost monomolekulskog filma

Slika 3.3: c) Dinamička permitivnost monomolekulskog filma

Slika 3.3: d) Dinamička permitivnost monomolekulskog filma

Slika 3.3: e) Dinamička permitivnost monomolekulskog filma

4 Zaključak

U radu su istraženi i analizirani energetski spektri (moguća energetska stanja) eksitona u dielektričnim, kristalnim, idealnim beskonačnim i film-strukturama, sa primitivnom kubnom rešetkom, na osnovu čega se došlo do sledećih važnijih rezultata.

- 1. Ove analize su pokazale bitne razlike u zakonu disperzije eksitona u pomenuta dva sistema, kao isključive posledice postojanja granica film-struktura, u kojima energetski spektri poseduju dva gepa. Veličine gepova zavise od debljine filma i od vrednosti izmana energetskih parametara na graničnim površima filma.
- 2. Postojanje graničnih uslova ima za posledicu promenu širine energetske zone eksitona. U odnosu na zonu dozvoljenih energija idealnih struktura sa praktično kontinualnim rasporedom, zona eksitonski dozvoljenih energija u filmu je izrazito diskretna sa konačnim brojem mogućih energetskih nivoa koji je proporcion broju atomskih ravni duž z-pravca.
- 3. Povećanjem eksitonske energije na graničnim površima filma (povećanjem parametra ε) dolazi do pomeranja energetskog spektra ka višim energijama (povećava se donji, a smanjuje gornji energetski gep).
- 4. Za neke vrednosti pomenutih parametara energetska zona eksitona izlazi van zone eksitonskih energija neograničenog kristala. U tom slučaju pojavljuju se lokali-zovana eksitonska stanja. Energije ovih stanja zavise od debljine filma, ali je uočljiva i izražena zavisnost veličine energije lokalizovanih stanja eksitona od vrednosti graničnih energetskih parametara.
- 5. Ukoliko se pojave lokalizovana eksitonska stanja, onda su ona rasporedjena duž graničnih kristalografskih ravni ("površinska" stanja). Za pojavu "zapreminskih" stanja, u tom slučaju je verovatnoća zanemarivo mala.
- 6. Za razliku od eksitonskih sistema u balku molekuskih kristala, gde se, u zavisnosti permitivnosti od frekvencije, javlja kontinualna apsorpciona zona u odredjenom opsegu energija spoljašnjeg zračnja, kod film-struktura egzistiraju rezonantni pikovi na tačno odredjenim energijama. Broj ovih pikova zavisi od sloja filma (n_z) za koji se izračunava permitivnost, ali i od perturbacionih parametara $\epsilon_{0/N}$.
 - (a) Kada je $\epsilon_{0/N} = 0$ broj rezonantnih pikova opada na unutrašnjim slojevima filma, dok je za bilo koju konačnu vrednost perturbacije $\epsilon_{0/N} \neq 0$ broj rezonantnih pikova jednak N + 1, s tim da može doći do "gašenja" pojedinih.
 - (b) Povećanjem (odnosno, smanjenjem) parametra ϵ dolazi do širenja zone apsorpcije, a dominantan rezonantni pik se uočava samo na graničnom sloju filma (prvom ili zadnjem) i to za dovoljno velike vrednosti parametra $|\epsilon|$. Na ostalim slojevima monomolekulskog filma ovaj rezonantni pik isčezava i to na taj način da je ovo isčezavanje sve brže kako se povećava n_z i/ili ϵ .

5 Literatura

- V.M.Agranovich: TEORIYA EKSITONOV, Hayka, Moskva 1968.
- L.L.Chang and L.Esaki, *Phys.Today* Oct. 36 (1992).
- 3. M.G.Cottam and D.R.Tilley: INTRODUCTION TO SURFACE AND SUPERLATTICE EXCITATIONS, Univ.Press, Cambridge 1989.
- 4. D.Raković: FIZIČKE OSNOVE I KARAKTERISTIKE ELEKTROTEHNIČKIH MATERIJALA, Elektrotehnički fakultet, Beograd 1995.
- G.Rickayzen: GREEN'S FUNCTIONS AND CONDENSED MATTER, Academic Press, London 1980.
- B.S.Tošić: STATISTIČKA FIZIKA, *PMF IF*, Novi Sad 1978.
- G.Mahan: MANY PARTICLE PHYSICS, Plenum Press, New York 1990.
- 8. V.M.Agranovich and V.L.Ginzburg: CRYSTALOPTIC WITH SPACE DISPERSION AND THEORY OF EXCITONS, *Nauka*, Moskwa 1979.
- I.D.Vragović, S.M.Vučenović, J.P.Šetrajčić,
 S.M.Stojković, D.Lj.Mirjanić i D.Raković:
 OPTIČKE KARAKTERISTIKE DIELEKTRIČNIH FILMOVA.
 Zbornik radova 2. Simpozijum industrijske elektronoike, 33-37 (1999).

 C.Kittel: QUANTUM THEORY OF SOLIDS, Wiley, New York 1963.

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET KLJUČNA DOKUMENTACIJSKA INFORMACIJA

- Redni broj: RBR
- Identifikacioni broj: IBR
- Tip dokumentacije: Monografska dokumentacija TD
- Tip zapisa: Tekstualni štampani materijal TZ
- Vrsta rada: Diplomski rad VR
- Autor: Dean Ristivojević, br.dos. 187/94 AU
- Mentor: Dr Jovan Šetrajčić, redovni profesor, PMF, Novi Sad MN
- Naslov rada: Permitivnost ultratankih molekulskih filmova NR
- Jezik publikacije: Srpski (latinica) JP
- Jezik izvoda: Srpski JI
- Zemlja publikovanja: Srbija ZP
- Uže geografsko područje: Vojvodina UGP
- Godina: 2005. GO
- Izdavač: Autorski reprint IZ
- Mesto i adresa: Prirodno-matematički fakultet, Trg Dositeja Obradovića 4, 21000 Novi Sad MA

- Fizički opis rada: (5/27/10/3/7/17/0) FO
- Naučna oblast: Fizika NO
- Naučna disciplina: Fizika čvrstog stanja ND
- Predmetna odrednica / ključne reči: ultratanki molekulski filmovi, eksitoni, Grinove funkcije, spektri, permitivnost PO
- Čuva se: Biblioteka Instituta za fiziku, PMF Novi Sad
- Izvod:

U radu je primenjen metod dvovremenskih Grinovih funkcija za ispitivanje uticaja granica film-struktura sa primitivnom kristalnom rešetkom na energetski spektar i moguća stanja eksitona i na odredjivanje permitivnosti tih struktira. Dobijeni rezultati predstavljeni su grafički i izvršene su analize, odnosno poredjenja tih rezultata sa odgovarajućim u idealnim beskonačnim (prostorno neograničenim) strukturama. Na osnovu toga uočene su najbitnije razlike izmedju njih. IZ

- Datum prihvatanja teme od strane Veća: .05.2005.
 - DP
- Datum odbrane: 11.07.2005.
 - DO
- Članovi komisije:

 Predsednik:
 Dr Miroslav Vesković,
 red. profesor, PMF, Novi Sad
 Članovi:
 Dr Jovan Šetrajčić,
 red. profesor, PMF, Novi Sad
 Dr Milica Pavkov,
 docent, PMF, Novi Sad
 KO

UNIVERSITY OF NOVI SAD FACULTY OF SCIENCES KEY WORDS DOCUMENTATION

- Accenssion number: ANO
- Identification number: INO
- Document type: Monograph type DT
- Type of record: Printed text TB
- Contents Code: Diploma work CC
- Author: Dean Ristivojević AU
- Mentor: *Prof. Dr Jovan Šetrajčić* MN
- Title: Permittivity of Ultrathin Molecular Films NR
- Language of text: Serbian LT
- Language of abstract: English LA
- Country of publication: Serbia CP
- Locality of publication: Vojvodina LP
- Publication year: 2005.
 PY
- Publisher: Author's reprint PU
- Publ.place: Novi Sad, Department of Physics, Faculty of Sciences, Trg Dositeja Obradovića 4 PP

- Physical description: (5/27/10/3/7/17/0) FO
- Scientific field: *Physics* SF
- Scientific discipline: Solid State Physics SD
- Key words: ultrathin molecular films, excitons, Green's functions, spectra, permittivity KW
- Holding data: Library Department of Physics, Novi Sad
- HD Note: N
- Abstract:

In this work, the method of the two-time dependent Green's functions was applied to researching of the influence of the surfaces of the film-structures with simple crystalline lattice on the energy spectra and possible exciton states as well as permittivity determined of these structures. The obtained results are plotted and the analyzes are carried out, together with the comparison of those results to those obtained for the corresponding ideal, infinite, e.i. spatially unbounded structures. On the basis of those analyzes, the main differences between the structures are observed. AB

- Accepted by the Scientific Board on: .05.2005.
- ASB • Defended: 11.07.2005. DE
- Work defend board:

 DB President:
 Dr. Miroslav Vesković,
 Full Professor, Faculty of Sciences,
 University of Novi Sad
 Member:
 Dr. Jovan Šetrajčić,
 Full Professor, Faculty of Sciences,
 University of Novi Sad
 Dr. Milica Pavkov,
 Assistant Professor, Faculty of Sciences,
 University of Novi Sad

Kratka biografija autora

Rodjen 02.07.1975. u Ljuboviji. Završio osnovnu školu u Valjevu, a zatim srednju tehničku, takođe u Valjevu. Prirodno-matematički fakultet, institut za fiziku, smer diplomirani fizičar upisao 1994. godine.

Novi Sad, 02.07.2005.

Dean Ristivojević