INSTITUT ZA FIZIKU U BEOGRADU

KOKOVIĆ MILAN

DIPLOMSKI RAD

ŠTARK-OVO ŠIRENJE SPEKTRALNIH LINIJA ARGONA U PLAZMI

Novi Sad, jula 1975.g.

Želim da izrazim zahvalnost rukovodiocu ovog rada Dr. Nikoli Konjeviću, naučnom saradniku Instituta za fiziku u Beogradu, koji je rukovodio celokupnom izradom ovoga rada.

SADRŽAJ

	٦
U V O D	7
1. OSNOVNI MEHANIZMI KOJI DOVODE DO ŠIRENJA SPEKTRALNIH LINIJA U PLAZMI	2
1.2. ŠIRENJE SPEKTRALNIH LINIJA USLED DOPPLER-OVOG EFEKTA	3
1.3. ŠIRENJE SPEKTRAINIH LINIJA USLED PRITISKA	5
1.4. OPŠTA TEORIJA ŠIRENJA SPEKTRALNIH LINIJA U PLAZMI	6
1.5. SEMI-KLASIČNA APROKSIMACIJA	7
1.6. SUDARNA APROKSIMACIJA	9
2. OPIS APARATURE I NJENO FUNKCIONISANJE	13
2.1. UVOD	13
2.2. IZVOR PLAZME	13
2.3. DEO APARATURE ZA ELEKTRIČNO NAPAJANJE LUKA	19
2.4. DEO APARATURE ZA DOVOD GASA	19
2.5. DEO APARATURE ZA OPTIČKO CENTRIRANJE LUKA	22
2.6. SPEKTRALNI APARATI I FOTOELKTRIČNA DETEKCIJA	22
2.7. SISTEM ZA KVANTITATIVNO OSVETLJAVANJE RAZREZA	23
2.8. FOTOMULTIPLIKATOR I PISAČ	24
2.9. DEO APARATURE KORIŠĆEN ZA KOREKCIJU PROFILA LINIJE	24
3. TEMPERATURA I KONCENTRACIJA	25
3.1. KOREKCIJA PROFILA LINIJE NA SAMOAPSORPCIJU	25
3.2. SNIMANJE I ANALIZA INTEGRALNOG SPEKTRA PLAZME	28

strana

3.3. ELEKTRONSKA TEMPERATURA	30
3.4. ODREDJIVANJE ELEKTRONSKE TEMPERATURE PLAZME	31
3.5. ODREDJIVANJE PRAVOG INTENZITETA LINIJE	34
3.6. ELEKTRONSKA KONCENTRACIJA	38
4. EKSPERIMENTALNI REZULTATI I	
POREDJENJE SA TEORIJOM	40
ZAKTITIČAK	45
	72
LITERATURA	46

UVOD

Cilj ovog diplomskog rada je eksperimentalna provera teorije Štark-ovog širenja spektralnih linija argona. Teorijski proračuni izvršeni su samo za neke linije i to za koncentraciju koja je reda veličine 10¹⁶ cm⁻³.

Da bi izvršili poredjenje sa teorijom biće potrebno odrediti temperaturu i koncentraciju plazme sa kojom je vršen eksperiment. Kao standard za odredjivanje koncentracije, služiće nam vodonikova H β linija. Dosadašnji radovi na ispitivanju vodonikove H β linije indiciraju da je moguće odrediti elektronsku koncentraciju u plazmi sa tačnošću \pm 7%, mereći samo poluširinu ove linije. Elektronska temperatura plazme odrediće se merenjem relativnih intenziteta linija neutralnog argona.

U prvom delu rada data je teorija širenja spektralnih linija koja se bazira na dve granične aproksimacije; sudarnoj i i semi-klasičnoj teoriji. Obe ove teorije zasnivaju se na nizu različitih aproksimacija i pretpostavki.

U drugom delu rada opisani su eksperimentalni uslovi pod kojima će biti izveden ovaj eksperiment.

Na kraju je dat pristup eksperimentalnom odredjivanju parametara Štark-ovog širenja i poredjenje dobijenih rezultata sa teorijskim.

1. OSNOVNI MEHANIZMI KOJI DOVODE DO ŠIRENJA SPEKTRALNIH LINIJA U PLAZMI

Svi uticaji koji dovođe do širenja spektralnih linija u plazmi, dele se u tri grupe: prirodno širenje uslovljeno konačnošću srednjeg života atoma u pobudjenom energetskom stanju, Doppler-ovo širenje uslovljeno kretanjem emitera u odnosu na sistem posmatranja, i širenje usled pritiska koje potiče usled interakcije izmedju emitera (neutralnih atoma ili jona) i perturbera (okolnih čestica).

Prirodna širina linije

Iz Hajzenberg-ovog principa neodredjenosti sledi:

Što je veća odredjenost vremena to je manja odredjenost energije je i obrnuto. Ako je srednji život nekog stanja \mathcal{T}_n odredjenost energije je:

 $\Delta E \sim \frac{\hbar}{T_m}$ (1.1.2)

Srednji život atoma u osnovnom stanju je beskonačan ($\mathcal{T} = \infty$) odakle sledi da je energija osnovnog stanja potpuno odredjena. Prema tome odredjenost energije nekog stanja uslovljena je konačnošću srednjeg života atoma u tom pobudjenom stanju. Spektralna linija nastala prelaskom iz tog stanja u drugo stanje ima izvesnu širinu, koja se naziva prirodna širina linije. Pri prelasku iz stanja n u stanje m biće:

$$\Delta E = h \Delta V_{nm} = \Delta E_n + \Delta E_m \qquad (1.1.3)$$

(1, 1, 4)

pa je

$$\Delta E \sim \frac{\overline{h}}{\overline{\mathcal{T}}_{n}} + \frac{\overline{h}}{\overline{\mathcal{T}}_{m}} = \frac{h}{2\overline{\mathcal{T}}\overline{\mathcal{T}}_{n}} + \frac{h}{2\overline{\mathcal{T}}\overline{\mathcal{T}}_{n}}$$

gde je recipročna vrednost srednjeg života ustvari verovatnoća prelaza. Na osnovu izraza 1.1.5 može se napisati poluširina u odnosu na osnovni nivo:

$$\Delta V \sim \frac{1}{2 \pi T_{M}}$$
 (1,1.6)

Ako se predje na talasnu dužinu $\mathcal{V} = \frac{C}{\lambda}$ (1.1.7) $d\mathcal{V} = \frac{C}{\lambda^2} d\lambda$ ili prelaskom na mali interval učestanosti

$$\Delta \mathcal{V} = \frac{c}{\lambda^2} \Delta \lambda \qquad (1.1.8)$$

iz (1.1.6) i (1.1.8) sledi da je poluširina odnosno prirodna poluširina: $\Delta \lambda \sim \frac{\lambda^2}{2 \pi c T_m}$ (1.1.9)

Ova veličina je reda 10⁻⁴ Å i zanemarljiva je u odnosu na ostale mehanizme koji devode do širenja spektralnih linija.

1.2 ŠIRENJE SPEKTRALNIH LINIJA USLED DOPPLER-OVOG EFEKTA

Doppler-ov efekat se u optici kao i kod mehaničkih talasa (zvuka) manifestuje na taj način, da posmatrač meri više frekvencije odnosno kraće talasne dužine talasa iz izvora koji mu se približava i obrnuto. Kako su pobudjeni atomi u momentu emisije fotona takodje svetlosni izvori koji se relativno kreću prema razrezu spektrografa, fotoni, emitovani u pravcu razreza imaće frekvenciju, odnosno talasnu dužinu zavisno od komponente brzine tih atoma u istom pravcu za vreme procesa emitovanja. To uslovljava Doppler-ovo širenje spektralnih linija. Promena frekvencije usled Doppler-ovog efekta data je izrazom:

$$\frac{\Delta V}{V} = \frac{V}{C}$$
(1.2.1)

gde je v - komponenta brzine izvora u pravcu detektora, V - frekvencija sa kojom zrači izvor, △ V - razlika u frekvenciji koju konstatuje detektor a c - brzina svetlosti. Intenzitet zračenja zavisi od funkcije raspodele "(v)

$$I(V)dV = W(C \frac{V-V_0}{V_0}) \frac{C}{V_0} dV \qquad (1.2.2)$$

pri Maxsfel-vvoj raspodeli

$$W(v)dv = \frac{1}{\sqrt{\pi}} e^{-\left(\frac{v}{v_{o}}\right)^{2}} \frac{dv}{v_{o}}$$
 (1.2.3)

gde je : $V_0 = \sqrt{\frac{2KT}{M}}$

dobija se

$$I(v)dv = \frac{1}{\sqrt{\pi}} \exp\left[-\left(\frac{v-v_0}{\Delta v_0}\right)^2\right] \frac{dv}{\Delta v_0}$$
(1.2.4)

gde je:
$$\Delta V d = V_0 \frac{V_0}{C}$$
 (1.2.5)

Raspodela intenziteta (1.2.4) simetrična je u odnosu na frekvenciju oscilatora \mathcal{V}_0 . Veličina širenja definiše se parametrom $\Delta \mathcal{V}_d$. Na rastojanju $\Delta \mathcal{V}_d$ od \mathcal{V}_0 inzenzitet je umanjen e puta u odnosu na maksimalni intenzitet I (\mathcal{V}_d .

$$[(\mathcal{U})] = \frac{1}{\sqrt{2r} \triangle \sqrt{d}}$$
(1.2.6)

Širina linije se odredjuje kao $\wedge \mathcal{V} = \mathcal{V}_2 - \mathcal{V}_1$ gde je:

$$] (V_{1}) =] (V_{2}) = \frac{1}{2}] (V_{0})$$
 (1.2.7)

na osnovu (1.2.4) i (1.2.7) sledi da je:

$$\Delta V = 2\sqrt{B_m 2} \Delta V d \qquad (1.2.8)$$

Sredjivanje prethodnog izraza i zamenom vrednosti za konstante dobiće se izraz:

$$\Delta V = 7,162 \ 10^{-7} \ \sqrt{\frac{T}{M}} \ V_0 \tag{1.2.9}$$

Prelaskom na talasne dužine ()) = $\frac{c}{\lambda}$ dobiće se izraz za širenje linija usled Doppler-ovog efekta

$$\Delta \lambda = 7,162 \ 10^{-7} \ \sqrt{\frac{T}{M}} \ \lambda_0 \tag{1.2.10}$$

gde je: T - apsolutna temperatura, M - atomska težina, a λ_{0} - talasna dužina centralnog dela spektralne linije.

1. 3 ŠIRENJE SPEKTRALNIH LINIJA USLED PRITISKA

Interakcijom emitera i okolnih čestica može doći do perturbovanja energetskih stanja atoma i promene vremena života u tim stanjima, što dovodi do promene širine linije pri prelazima izmedju dva stanja.

Širenje usled pritiska deli se u tri vrste koje odgovaraju efektima uslovljenim različitim termovima tog razvoja.

Štarkovo širenje

Ovde su perturberi naelektrisane čestice, joni ili elektroni. Često su perturberi i emiteri dovoljno daleko jedan od drugog da se njihova interakcija može opisati prvim termom multipolnog razvoja $V = -\vec{d} \vec{E}$, gde je: \vec{d} - električni dipolni moment emitera, a \vec{E} - jačina električnog polja uslovljenog perturberom u emiteru. Ako je r rastojanje izmedju emitera i perturbera, onda V opada kao $1/r^2$.

Rezonatno širenje

Emiter interaguje sa perturberima iste vrste koji mogu da se ekscituju zračenjem koje on emituje što dovodi do dipol-dipolne interakcije prveg reda koja se menja kao l/r³.

Van der Wals-ovo širenje

Potiče od preostalih termova u razvoju interakcije od kojih je najviši dipol-dipolni član koji se menja kao l/r⁶, tj. emiter interaguje sa molekulima.

U plazmi gde su joni i elektroni prisutni u dovoljnoj koncentraciji, Kulon-ove sile dugog dometa su dominantne i tu preovladava Štark-ovo širenje. Od različitih mehanizama širenja spektralnih linija praktičnu važnost za dijagnostiku plazme imaju mehanizmi Starkovog i Doppler-ovog širenja. Prirodno širenje koje nastaje usled konačnog srednjeg života atoma u pobudjenom stanju praktično je uvek za nekoliko redova veličina manje od širenja, koje nastaje usled inferakcije atoma koji zrači - emitera sa okolnim česticama plazme. Zanemarivanje prirodnog širenja je ekvivalentno isključenju uticaja zračenja na talasne funkcije. Radi jednostavnosti, pretpostavimo da je Doppler-ovo širenje zanemarljivo u poredjenju sa Stark-ovim, što je ekvivalentno pretpostavci da je emiter nepokretan.

Posmatrajmo sistem koji se sastoji od emitera i perturbera. Sistem se nalazi u termodinamičkoj ravnoteži. Snaga koju izrači sistem pri prelazu iz početnog stanja i u krajnje stanje f u dipolnoj aproksimaciji je:

$$P_{\rm f} = \frac{4 W_{\rm if}}{3 c^3} \left| \left< f \left| d \right| i \right> \right|^2,$$

(1.4.1)

gde je: $\langle f | = f_{f}(0)$ funkcija stanja, $W_{if} = W_{i} - W_{f}$ ugaona frekvencija prelaza, a d dipolni momenat emitera, pošto se zanemaruje kontinualno zračenje perturbera. Da bi do bili potpunu raspodelu intenziteta u spektralnoj liniji neophodno je sumirati (1.4.1) po svim mogućim konačnim stanjima i usrednjiti po svim početnim stanjima, što je u razmatranom statističkom ansamblu predstavljeno sa nekom verovatnošću β_{i} .¹

$$F(w) = \sum_{i \neq j} d(w - w_{ij}) |\langle f|d|i \rangle | \beta_{i}, \qquad (1.4.2)$$

gde je sa $F(\omega)$ označena funkcija profila linije definisana tako, da je verovatnost emisije u intervalu $\omega, \omega + d\omega$ jednaka vrednosti $F(\omega) d\omega$. Fourier-ova komponenta profila linije je:

$$\Phi(S) = \int e^{-iws} F(w) dw$$

$$\Phi(S) = \sum_{i \neq i} e^{-iws} |\langle f|d|i \rangle|^{2} \qquad (1.4.3)$$

Pokazuje se da funkcija ϕ (S) ima jednostavan fizički smisao; ona pretstavlja autokorelacionu funkciju amplitude zračenja. Da bi korelacionu funkciju doveli u oblik pogodan za primenu računa smetnje uvedimo operator evolucije:

$$T(S) = \exp\left(-i\frac{H_s}{h}\right) \qquad (1.4.4)$$

i operator gustine sistema:

$$p(S) = \sum_{m} |n\rangle p_{m}|n\rangle.$$

Tada se $\phi(S)$ može izraziti u obliku traga proizvoda operatora:

$$\phi(s) = Tr[dT^*(s)dT(s)\rho].$$

(1.4.5)

1.5 SEMI-KLASIČNA APROKSIMACIJA

Pretpostavka da su perturberi klasične čestice, koje se kreću po zadanim putanjama neovisno od stanja emitera ^{2,4,5} znatno pojednostavljuje izračunavanje izraza (1.4.5). Za neutralne emitere putanja je prava linija, a za jone hiperbola.^{6,7} Talasne funkcije perturbera se ne menjaju sa promenom energije emitera^{1,2}. Talasna funkcija celokupnog sistema može se napisati u obliku proizvoda funkcija:

$$J(t) = Z(t) J(t),$$
 (1.5.1)

gde $\chi(t)$ zavisi samo od koordinata emitera, a $\gamma(t)$ od koordinata perturbera. Talasna funkcija perturbera odredjena je Schrödinger-ovom jednačinom:

$$i\hbar \frac{df}{dt} = H_p f.$$
 (1.5.2)

Hamiltonijan sistema je:

$$H = H_{A} + H_{p} + V,$$
 (1.5.3)

gde je H_a - hamiltonijan neperturbovanog stanja atoma, a

H_p - hamiltonijan perturbera, koji u sebi sadrži totalnu kinetičku energiju svih perturbera i njihovu medjusobnu interakciju.

V - pretstavlja interakciju izmedju emitera i perturbera. Schrödinger-ova jednačina za sistem se uz upotrebu relacija (1.5.1), (1.5.2) i (1.5.3) svodi na:

$$i\hbar \frac{\partial \chi}{\partial t} = \left[H_{A} + V(t) \right] \chi, \qquad (1.5.4)$$

gde jev(t) srednja vrednost potencijala V po funkcijama per-

turbera.

$$V(t) = \int f^{*}(t) V f(t) dt.$$
 (1.5.5)

Sada možemo umesto talasnih funkcija stacionarnih stanja koristiti funkcije koje opisuju stanja talasnih paketa. Pretpostavimo li da je matrica gustine dijagonalna u odnosu na te talasne funkcije, tj. da je širina energijeu talasnom paketu mala u odnosu na KT dobijamo:

$$\Phi(s) = \operatorname{Tr}\left[dt(s)dt(s)p\right]_{SR}.$$
(1.5.6)

je operator evolucije koji odredjuje ponašanje sa vremenom funkcije χ (*t*) i zadovoljava jednačinu (1.5.4). Usrednjavanje se vrši po svim mogućim putanjama perturbera. To je polazna jednačina za izračunavanje profila linija u semi-klasičnoj aproksimaciji.

Potrebno je ispitati uslove važenja semi-klasične aproksimacije.

l. Pretspostavka da se perturberi kreću po zadanoj putanji, neovisno od stanja emitera, se svodi na uslov: promena energije perturbera usled delovanja emitera∧ & mora biti zanemarljiva u poredjenju sa početnom energijom KT.

2. Pretpostavka da jematrica gustine dijagonalna postavlja isti zahtev na $\triangle \mathcal{E}$, tj. aproksimacija se može primeniti ako je doprinos širini linije od sudara za koje je $\triangle \mathcal{E}$ veliko, zanemarljiv. Zanemarivanje povratnog dejstva emitera na perturber, nameće još i zahtev na vremenski interval (0,5) za koje se računa korelaciona funkcija. Da bi se izbegao beskonačan porast temperature emitera taj interval ne sme biti veliki.

3. Da bi dejstvo talasnog paketa na emiter bilo identično dejstvu klasične čestice, potrebno je da je dimenzija paketa mala u poredjenju sa parametrom sudara. Uvodjenjem orbitalnog kvantnog broja l dobije se da osnovni doprinos širini potiče od perturbera, čijije orbitalni kvantni broj velik.^{2,3,8}.

1.6 SUDARNA APROKSIMACIJA

Odnos intervala vremena (0,S), za koji se računa autokorelaciona funkcija $\phi(S)$ i vremena sudara \mathcal{T} odredjuje izbor aproksimacije za izračunavanje širine linije. Srednja vrednost vremena S je vreme u kome se emitovani talasni paket prigušuje.⁹ Ako je w širina linije, onda je S ~ $\frac{1}{w}$, pa se uslov važenja sudarne teorije: interval vremena \triangle S mnogo veći od vremena sudara \mathcal{T} svodi na: $W \ll \mathcal{T}^{-4}$

Ako je interval(0,S) manji od vremena sudara pri izračunavanju (5) se može zanemariti kretanje perturbera. Jasno je da je ova tzv. "kvazi-statička aproksimacija" primenljiva za širenje izazvano sudarima sa jonima.

- 9 -

Da bi sudarna teorija davala dobre rezultate, osnovni doprinos širini linije moraju davati slabi sudari³, tj. oni koji se mogu razmatrati teorijom smetnje prvog reda. Sudarna aproksimacija vredi praktično uvek za elektrone¹⁰, a za jone samo do gustine 10¹⁷ cm⁻³.

Kako je \triangle 5 >> 7 to u intervalu \triangle 5 se dogodi **veli**ki broj statistički nezavisnih sudara, čiji srednji efekat se može opisati uvodjenjem efektivne smetnje \mathcal{H} , koja ne zavisi od vremena². Tada je hamiltonijan sistema H_a + \mathcal{H} . Ako zanemarimo pobudjenje energetski nižeg stanja date linije, dobijemo za korelacionu funkciju:

$$\phi(s) = T_{\mathbf{Y}} \left[\mathsf{Dt}_{sR}(s) \right]$$
 (1.6.1)

Uveli smo operator D, koji deluje samo na stanja koja se odnose na gornji nivo. Sada je potrebno izračunati t_{SR} . Uvedimo operator evolucije u reprezentaciji medjudelovanja:

$$U(S) = \exp\left[\frac{i H_{a}S}{\hbar}\right] \dot{t}(S), \qquad (1.6.2)$$

koji zadovoljava Schrödinger-ovu jednačinu:

$$i\hbar \frac{\partial U}{\partial S} = \exp\left[\frac{iH_{A}S}{\hbar}\right] V(s) \exp\left[\frac{iH_{A}S}{\hbar}\right] U.$$
 (1.6.3)

Metoda iteracije omogućava da se nadje rešenje ove jednačine¹¹. Nakon toga treba primeniti teoriju smetnje prvog reda. Uslov da je veličina sudara slaba, ne isključuje postojanje jakih sudara, ali zahteva da su oni razdvojeni u vremenu ¹² i da u intervalu (0,S) postoji samo jedan jaki sudar. Pretpostavimo li da je vreme sudara \mathcal{T} manje od vremena izmedju dva sudara ΔT , tj. uz uslov $\mathcal{T} < 5 < \Delta T$ možemo U (0,S) zameniti sa U (- ∞ , + ∞) što po definiciji pretstavlja matricu raspršenja S. Svi ovi uslovi su uvedeni da bi se operator U (S,O) mogao izraziti u obliku proizvoda komutativnih operatora, gde svaki operator pretstavlja doprinos jednog od sudara. Za rešenje jednačine (1.6.3) dobije se ²:

$$t_{2R}(s) = \exp\left[i(H_{A} + \mathcal{H}) \frac{s}{h}\right], \qquad (1.6.4)$$

gde je:

$$\mathcal{H} = \frac{i}{\hbar} \int (1-S) dV$$
$$dV = n \int f(v) dv \int R dR.$$

Kako je funkcija profila linije obrnuta Fourie-ova transformacija autokorelacione funkcije (1.6.1), to iz (1.6.4) dobijamo:

$$\frac{\pi}{\hbar} F(\omega) = \operatorname{Im} \operatorname{Tr} \left[D(\hbar \omega - H_A - \mathcal{H})^{-1} \right], \quad (1.6.5)$$
gde I_m označava imaginarni deo.

Interesuju nas spektralne linije čiji nivoi nisu degenerisani i čiji se prošireni nivoi emitera ne preklapaju medjusobno. Za te izolovane spektralne linije pri prelazu iz gornjeg stanja $|i\rangle$, linija ima Lorenz-ov oblik:

$$F(\omega) = \frac{1}{\pi} \frac{W_i \langle i | D | i \rangle}{(\omega - \omega_i - d_i)^2 + W_i^2}$$
(1.6.6)

Širina i pomeraj za linije za koje se može zanemariri pobudjenje nižih stanja u sudarnoj aproksimaciji imaju oblik:

$$hd = Re\langle i|\mathcal{H}|i\rangle,$$

$$hw_i = Im\langle i|\mathcal{H}|i\rangle. \qquad (1.6.7)$$

Da bi izračunali profil za linije za koje se pobudjuje i početnoj i krajnje stanje uvedimo pojam² "stanja dupliranog atoma". Svakom stanju duplirnog atoma odgovaraju dva stanja početnog atoma, tj. proizvod gornjeg i kompleksno konjugovanog donjeg stanja atoma. Operator dipolnog momenta tada je odredjen sa:

$$\langle a|d| \alpha \rangle \langle \beta|d|b \rangle = \langle \langle a \alpha^* |\Delta|b \beta \rangle \rangle$$
, (1.6.8)
gde se α odnosi na gornje, a α na energetski niže stanje,

stanje dupliranog atoma je označeno sa . Svi operatori deluju na stanje dupliranog atoma, tako da

je efektivna smetnja:

(1.6.9)

 $\mathcal{H} = \frac{i}{\hbar} \int (1 - S_i S_f) d\nu,$

gde S_i deluje na gornje, a S_f na energetski niže stanje, koje odgovara razmatranoj liniji. Analognim razmatranjem kao u prethodnom slučaju dobijamo za profil:

 $\frac{\mathcal{M}}{\mathcal{T}}F(\omega) = \int m \operatorname{Tr} \left[\Delta(\hbar\omega - H_{Ai} - H_{AF}^{*} - \mathcal{H})^{\dagger} \right], \quad (1.6.10)$ gde operatori H_{Ai} i H_{Af} su neperturbovani hamiltonijani za početno i konačno stanje. Trag se uzima preko dupliranih stanja emitera. Perturbovana stanja se sadrže u operatoru efektivne smetnje.

Kvantno-mehanička teorija daje vezu izmedju efektivne smetnje H i amplitude rasejanja. Stanje čestica smetnje opisujemo talasnim paketom. Širina paketa je veća od rastojanja na kome se oseća znatno medjudelovanje. U opštem slučaju različiti paketi se prekrivaju. To ujedno pretstavlja i uslov važenja sudarne teorije $\triangle s \gg \mathcal{C}$. Uslov primenljivosti teorije smetnje svodi se na zahtev da je amplituda talasnog paketa mala. Taj zahtev je potreban da bi smetnja koja deluje na različite čestice bila aditivna, što znači da svaki talasni paket medjudeluje sa izolovanim atomom bez ikakve interferencije sa drugim talasnim paketima. Potrebno je naći doprinos širini svih sudara, koji se odigravaju u intervalu 🛆 S, kao i doprinos svakog od talasnih paketa koji medjudeluje sa atomom za vreme 🛆 S. Kako pri tome medjudelovanju dolazi do mosojanja talasnog paketa, to treba uzeti i taj rasejani talas. U slučaju kada se krajnje stanje ne pobudjuje upotrebom optičkog teorema, širinu možemo izraziti preko sudarnog preseka2:

$$W = \frac{2\pi\hbar}{m} m \left[f(0) \right]_{SR} = \frac{1}{2} M (V B)_{SR}. \quad (1.6.11)$$

Primetimo da je n < v < b frekvencija sudara, čija je recipročna vrednost vreme života stanja. Ako se pobudjenje ne može zanemariti, tj. kada se obadva stanja uzmu u račun, za neelastično rasejanje dobijemo:

$$W = \frac{mv}{2} \left[6i_{im} + 6f_{im} + \int d\Omega \left[f_i(\Theta, \Psi) - f_{\Psi}(\Theta, \Psi) \right]_{sR}^{(1.6.12)} \right]_{sR}^{(1.6.12)}$$

2. OPIS APARATURE I NJENO FUNKCIONISANJE

2.1. UVOD

Na slici (?.1.1.) šematski je prikazana aparatura za ispitivanje uticaja Štark-ovog efekta na širenje spektralnih linija argona u plazmi. Kao izvor plazme služio je stabilisani električni luk. Snimanje je vršeno na spektrografu. Svetlosni snop iz električnog luka usmeren je sistemom od dva sočiva na razrez spektrografa. Detekcija se vrši pomoću fotomultiplikatora postavljenog na razrez spektrografa. Signal sa fotomultiplikatora prenosi se direktno na pisač. Na spektrografu se može podešavati ravnomerna promena talasnih dužina. Postoji brojčanik na kome se može očitavati o kojoj se talasnoj dužini u datom trenutku radi.

Iza luka nalazi se konkavno ogledalo a izmedju luka i tog ogledala prekidač svetlosti koji se ravnomerno obrće uz pomoć malog sinhronog elektromotora, tako da na pisaču registrujemo u jednom trenutku samo upadnu svetlost iz električnog luka, a odmah zatim i odbijenu svetlost od konkavnog ogledala. Dobijeni profil linije imaće izgled kao na slici (2.1.2.).

2.2. IZVOR PLAZME

Kao izvor plazme korišćen je stabilisani električni luk.

Stabilisani luk je izabran zato jer ima niz dobrih osobina kao što su stabilnost tokom rada i reproducibilnost, a osim toga ovaj luk je kontinualan izvor svetlosti.

Luk se sastoji od više delova, odnosno segmenata koji su izradjeni od bakra i kao celina čine jedan unutrašnji centralni kanal (slika 2.2.1.). Svi segmenti su medjusobno izolovani. Na krajnjim segmentima se nalaze zaštitne mesingane kape koje u sredini imaju otvor od 1,5 mm, radi uzdužnog spektroskopskog posmatranja svetlosti.

spektralnih linija

- 16 -

Ugljene elektrode su pričvršćene za držače koji se stavljaju na krajnje segmente, unutar kojih postoje otvori za elektrode. Duž elektrode postoji otvor koji služi pri paljenju luka. Treba još napomenuti da su elektrode nešto uzdignute iznad centralnog kanala tako da ne smetaju prilikom uzdužnog spektroskopskog posmatranja.

U svaki segment posebno se dovodi argon koji ispunjava unutrašnji centralni kanal. U dva srednja segmenta ubacuje se argon koji se dovodi preko raspršivača tako da sa sobom nosi veoma sitne vodene kapljice koje se u luku usled visoke temperature razlažu na vodonik i kiseonik.

Zbog vrlo visoke temperature segmenti imaju vodeno hladjenje. Sistem gasnog napajanja i vodenog hladjenja segmenata prikazan je na (slici 2.2.3.).

Paljenje luka vrši se na sledeći način. Prvo se kroz otvore na elektrodama pomoću stezaljki spuste tungsten žice koje treba da dopiru do ose centralnog kanala kao što se vidi na (slici 2.2.2.).

Sl. 2.2.2.

- 18 -

Zatim se kroz zadnji ot**vo**r uvlači pomoćna elektroda koja je vezana za negativni pol. Kada se ovom elektrodom dodirne volfram žica koja je vezana za pozitivni pol, napravi se kratak spoj i izmedju njih se pojavi luk. Polaganim izvlačenjem pomoćne elektrode koja je takodje od volfram žice, luk se razvlači do druge volfram žice. Zatim se pomoćna elektroda izvadi i odvoji od negativnog pola i odstrani. Sada luk gori izmedju volfram žica. Posle toga se vadi jedna po jedna volfram žica i na taj način se luk razvuče do elektroda.

2.3. DEO APARATURE ZA ELEKTRIČNO NAPAJANJE LUKA

Sistem aparature za električno napajanje luka sastoji se od izvora jednosmerne struje (generator jednosmerne struje), promenljivog otpora i ampermetra za merenje jačine struje. Otpornik je ručne izrade i prikazan je na (slici 2.3.1.). Kao otpori služe grejači za vodu snage l KW i 2 KW, smešteni u limenu kadu kroz koju stalno cirkuliše hladna voda koja hladi grejače koji u ovom slučaju imaju ulogu balastnih otpora. Odvodi grejača su smešteni na razvodnu ploču na koju je doveden i napon jednosmerne struje. Kombinovanim povezivanjem otpornika mogu se dobiti razne vrednosti struje, pre nego što se krajnji izvodi dovedu na elektrode stabilisanog luka.

2.4. DEO APARATURE ZA DOVOD GASA

Kao radni gas služi argon koji se nalazi u boci. Pritisak ispuštenog gasa reguliše se slavinom a meri manometrom. Odmah na izlazu iz boce nalazi se razvodnik gde se cev račva u dva dela. Jedan deo ide preko protokomera do razvodnika a odatle u svaki segment luka. Drugi deo cevi ide preko drugog protokomera do raspršivača i dalje zajedno sa sitnim kapima vode ubacuje se u dva srednja segmenta. Protokomeri su tipa TG 300.(SC.2.4.4.)

Raspršivač je centralnog tipa predstavljen na (slici 2.4.1.). Na jednom njegovom kraju učvršćena je kapilara koja se stavlja u sud sa vodom. Argon prolazi pored kapilare i za sobom povlači destilovanu vodu, koja se na drugom kraju kapilare

rasprašuje u sitne kapljice i zajedno sa argonom ubacuje u srednje segmente luka. Staklena cev služi za sakupljanje viška vode koja se pomoću jedne slavine izbacuje napolje.

2.5. DEO APARATURE ZA OPTIČKO CENTRIRANJE LUKA

Da bi svetlost iz luka padala na razrez spektrografa potrebno je centrirati luk tako, da se osa njegovog centralnog kanala poklapa sa osom koja pada na razrez spektrografa. Luk se pričvrsti za optičku klupu a manje translacije uzdužne i poprečne mogu se vršiti pomoću zavrtnja koji se nalazi na postolju luka.

Centriranje se može izvršiti na dva načina.

I. Na izlazni razrez spektrografa postavi se obična sijalica. Ako je luk dobro centriran onda svetlosni snop sijalice kad prodje kroz spektrograf izlazi na njegov prednji razrez, pada na prvu mesinganu pločicu luka, prodje kroz njen mali otvor i pojavljuje se na otvoru zadnje mesingane pločice. Tada mi gledajući kroz zadnji otvor luka vidimo vlakno sijalice. Sve dok ne ugledamo izvor svetlosti moramo vršiti uzdužne i poprečne translacije luka odnosno njegovo centriranje.

II. Luk se može centrirati i pomoću He-Ne lasera.Pre postavljanja luka na optičku klupu se postavi He-Ne laser tako da njegov svetlosni snop pogadja razrez spektrografa i pojavljuje se na izlazu iz spektrografa. Zatim se na optičku klupu postavlja luk tako da se osa njegovog centralnog kanala poklapa sa osom svetlosti, tj. da laserski snop nesmetano prolazi kroz oba otvora na krajevima luka, i pada na razrez spektrografa.

2.6. SPEKTRALNI APARATI I FOTOELEKTRIČNA DETEKCIJA

Prilikom izvodjenja ovog eksperimenta korišćen je 1 m monohromator-spektrograf tipa "MC PHERSON" GCA CORPORATION, USA.

Kao disperzioni elemenat služila je rešetka (1200 nareza po mm). Inverziona linearna disperzija je 8,33 Å po mm.

- 22 -

Na ovom spektrografu može se vršiti analiza spektra u ultraljubičastom, vidljivom, infracrvenom delu spektra.

Iz svetlosnog izvora zraci preko sistema sočiva padaju na prednji razrez spektrografa. Zatim preko refleksionog ogledala padaju na jedno konkavno ogledalo, odatle bivaju usmereni na rešetku. Posle difrakcije na refrakcionoj rešetci dispergovani zraci pogadjaju drugo konkavno ogledalo koje ponovo ujedinjuje paralelne zrake i šalje ih na zadnji razrez spektrografa. Na zadnjem delu spektrografa nalazi se brojčanik na kome se može očitati o kojim talasnim dužinama se radi. Širina razreza se reguliše preko mikrometarskog zavrtnja.

2.7. SISTEM ZA KVANIITATIVNO OSVETLJAVANJE RAZREZA

Da bi na razrez spektografa pao baš centralni deo svetlosnog snopa potrebno je izmedju luka kao svetlosnog izvora i spektrografa postaviti sistem od dva sočiva. Razmak izmedju pojedinih sočiva i spektrografa prikazan je na (slici 2.7.1.) a izračunava se iz jednačine sočiva

$$\frac{\Lambda}{F} = \frac{\Lambda}{L} - \frac{\Lambda}{L}$$

gde je F - žižna daljina prvog sočiva do spektrografa, f - žižna daljina drugog sočiva a 1 - rastojanje izmedju njih. 1 = 1000mm f= 250mm \$ = 170 mm izvor svetla 330mm 520mm 170mm

Sl. 2.7.1.

Prilikom vršenja proračuna morali smo voditi računa da nam je žižna daljina objektiva spektrografa f = 1000 mm, da je dužina optičke klupe na kojoj je potrebno postaviti ceo sistem oko 2 metra, i da smo imali na raspolaganju jedno kvarcno sočivo f = 170 mm.

2.8. FOTOMULTIPLIKATOR I PISAČ

Detekcija je vršena pomoću fotomultiplikatora EMI 6215 B koji je pričvršćen na izlazni razrez spektrografa. Napajanje fotomultiplikatora vrši se preko visokonaponskog ispravljača.

Signal sa fotomultiplikatora prenosi se na pisač tipa BECMAN 10 - 20 LL.

2.9. DEO APARATURE KORIŠĆEN ZA KOREKCIJU PROFILA LINIJE

Ovaj deo aparature čini jedno konkavno ogledalo f = 10 cm i jedan elektromotor na čijoj se osovini nalazi svetlosni prekidač.

Ogledalo je postavljeno iza luka tako da reflektuje svetlost nazad kroz luk. Izmedju luka i ogledala postavljen je svetlosni prekidač koji ima ulogu da omogući istovremeno snimanje profilallinije sa i bez odbijene svetlosti. Motor koji pokreće svetlosni prekidač je sinhroni motor 110 V 5 W.

Za odredjivanje temperature plazme bilo je potrebno snimiti sve argonove linije pod istim uslovima. Zbog velike razlike u intenzitetu pojedinih linija, potrebno je bilo snimiti pojedine linije propuštajući prethodno svetlosni snop kroz filtre čija je propustljivost 3, 12 i 50% izlazne svetlosti. U kasnijim izračunavanjima intenziteta pojedinih linija mora se uzimati u obzir i ovaj faktor.

3. TEMPERATURA I KONCENTRACIJA

3.1. KOREKCIJA PROFILA LINIJE NA SAMOAPSORPCIJU

Uticaj apsorpcije na eksperimentalni profil linije može biti veoma značajan pa se za dobijanje stvarnog profila linije mora izvršiti korekcija na samoapsorpciju.

Intenzitet I, koji emituje homogena plazma za slučaj LTR (lokalne termodinamičke ravnoteže) dat je izrazom:

$$I_{\lambda} = B_{\lambda T} [1 - e^{-\kappa L}]$$
 (3.1.1.)

gde je $B_{\lambda T}$ - Plank-ova funkcija a K - koeficijenat apsorpcije koji je sa koeficijentom emisije povezan sledećom relacijom: $\mathcal{E}_{\lambda} = V R_{\lambda T}$ (3.1.2.)

 $\mathcal{E}_{\lambda} = K \mathcal{B}_{\lambda T}$ (3.1.2.) Ako je apsorpcija slaba u opsegu talasnih dužina koji obuhvata celu liniju tako da je K l << l za svako λ iz ovog opsega onda se jednačina (3.1.1.) može napisati u obliku:

In ≈ BAT Kl (3.1.3.)

pošto je B_{XT} konstanta u oblasti koju obuhvata profil linije iz jednačine (3.1.3.) sledi da je plazma optički tanka za zračenje odgovarajuće talasne dužine, ako je intenzitet profila linije proporcionalan apsorpcionom koeficijentu. Potrebno je proveriti ovaj uslov za svaki konkretan slučaj.

Ako je K l >>l onda je $\overline{I_{\lambda}} = \overline{B_{\lambda T}}$ (3.1.4.) odakle sledi da je I jednako intenzitetu koji emituje crno telo na temperaturi T i linija gubi svoj karakterističan oblik. Profil linije biće najviše deformisan u centru linije pošto je tamo apsorpcioni koeficijenat naj**v**eći.

Kada proizvod K l nije suviše veliki odn. kada je . Kl = l onda se profil linije za slučaj optički tanke splazme može dobiti korekcijom na samoapsorpciju. Ta korekcija se zasniva na pretpostavci, da u kontinumu nema apsorpcije, pa se na odredjeni način vrši uporedjivanje intenziteta kontinuma i intenziteta linije. Izmedju luka i ogledala obrće se svetlosni prekidač koji omogućava istovremeno snimanje sa i bez ogledala što je potrebno radi uporedjivanja. Ako naprimer, intenzitet kontinuma poraste za 80% sa ogledalom, a isto toliko i intenzitet linije u centru tada linija nije apsorbovana. Medjutim, ako je pojačanje u centru linije manje, onda postoji apsorpcija. Zbog toga je potrebno proveriti da li je i koliko linija apsorbovana, i na osnovu dobijenih rezultata nacrtati stvarni profil linije. Tako izračunavanje izvršeno je na sledeći način. Na (slici 3.1.1.) prikazan je profil spektralne linije snimljene sa i bez ogledala.

S1. 3.1.1.

Sa J_1 označen je intenzitet linije snimljen bez ogledala a sa J_1+J_2 - intenzitet linije snimljen sa ogledalom. Sa a - je označen intenzitet kontinuma bez ogledala, a sa b razlika intenziteta kontinuma sa i bez ogledala. Nula se odredjuje tako što se zakloni razrez spektrografa i pusti da pisač izvuče liniju.

Označimo sa x i y sledeće relacije:

$$\frac{a+b}{a} = x \qquad (3.1.5.) \qquad \frac{J_1 + J_2}{J_1} = y \qquad (3.1.6.)$$

gde je x≥y. Znak jednakosti važi u slučaju kada linija nije apsorbovana. Sa I₁ označen je pravi intenzitet linije tj. onaj koji bi bio da nema apsorpcije, snimljen bez ogledala, a sa I₂ pravi intenzitet koji se vrati od ogledala bez apsorpcije. Prema tome sledi da je:

$$I_{1} = J_{1} + \Delta J_{1}$$
(3.1.7.)

$$I_{2} = J_{2} + \Delta J_{2}$$
(3.1.8.)

gde su $\triangle J_1$ i $\triangle J_2$ razlike u intenzitetima usled apsorpcije. Pošto su I_1 i I_2 pravi intenziteti mora važiti:

$$\frac{I_1 + I_2}{I_1} = \frac{a + b}{a} = x$$
(3.1.9.)

Na (slici 3.1.2.) šematski je prikazan put zraka izmedju razreza spektrografa i konkavnog ogledala. Izvor šalje jedan deo svetlosti direktno na razrez, a drugi se odbija od ogledala i vraća nazad.

S1. 3.1.2.

Sa slike se može zaključiti da je: $\Delta J_2 = 3\Delta J_1$ (3.1.10.) Iz (3.1.9.) i (3.1.10.) može se napisati:

$$\frac{I_1 + I_2}{I_1} = \frac{J_1 + \Delta J_1 + J_2 + \Delta J_2}{J_1 + \Delta J_1} = \frac{J_1 + \Delta J_1 + J_2 + 3\Delta J_1}{J_1 + \Delta J_1} = x$$

odakle se kraćeg računa dobija:

$$\Delta J_{1} = \frac{(x - 1)J_{1} - J_{2}}{3 - (x - 1)} \xrightarrow{J_{1}(x - 1) - \frac{J_{2}}{J_{1}}}_{3 - (x - 1)} = \frac{J_{1}\left[x - (1 + \frac{J_{1}}{J_{1}})\right]}{4 - x}$$

a izraz $1 + \frac{J_{1}}{J_{2}}$ je ustvari y, odakle se konačno dobija:
 $\Delta J_{1} = \frac{x - y}{4 - x} J_{1}$ (3.1.11.)

Prema ovom izrazu može se izračunati na bilo kom mestu u liniji za koliko još treba povećati intenzitet pa da se dobije njegova prata vrednost. Pored toga treba još proveriti da li je K $1 \leq 1$ jer ako bi taj proizvod bio veći od l linija bi bila suviše deformisana pa se ni korekcijom ne bi mogao dobiti pravi profil linije. Proizvod K l se može izračunati preko izraza za apsorpciju:

$$J = Ie^{-kl}$$
 (3.1.12.)

koji se može napisati i ovako:

$$\frac{I}{J} = e^{kL} \quad \text{ili sa oduzimanjem l sa obe strane}$$

$$\frac{I}{J} - l = e^{kl} - l \quad \text{odakle sledi:}$$

$$\frac{I}{J} = \frac{AJ}{J} = e^{kl} - l \quad \text{i dalje} \quad e^{kl} = \frac{AJ}{J} + l \quad \text{odnosno}$$

$$k \quad l = \ln(l + \frac{AJ}{J}) \quad (3.1.13.)$$

prelaskom na dekadni logaritam imamo:

 $k = 2,3 \log(1 + \frac{\Delta J}{J})$ (3.1.14.)

3.2. SNIMANJE I ANALIZA INTEGRALNOG SPEKTRA PLAZME

Prilikom snimanja integralnog spektra uporedo sa spektrom argona snimljen je i spektar gvoždja. Spektar gvoždja nam je služio kasnije kao referentni spektar pri odredjivanju vrednosti talasnih dužina pojedinih linija argona. Snimanje spektra vršeno je pod uslovima prikazanim u tabeli (3.2.1.) a analiza foto-ploče izvršena je na projektoru.

Nepoznatu talasnu dužinu pojedinih linija iz spektra argona tražili smo na sledeći način. Odaberu se dve bliske linije iz spektra gvoždja. Izmedju njih pada nepoznata linija kao na(slici 3.2.1.). Računanje se vrši na sledeći način

Kada se odrede sve linije nepoznatog spektra onda se one identifikuju pomoću spektralnih tablica, odnosno odredi se kom elementu pripada koja linija. Vrednosti pojedinih talasnih dužina date su u tabeli (3.2.2.).

Položaj kasete	Broj snimka	Uzorak	Vreme ekspo- niranja	Položaj dijafragme	Primedbe
15	1	skala	7	-	-
19	1	plazma+voda	30	6	≪=6,315 2500-
19	2	gvoždje	20	5	f=5,2 4000Å F=10,3 r:10u
and there we changed and the first of the second					
26	1	skala	7	-	-
30	1	plazma+voda	30	6	l=9,46 4200- l=5.3 5900Å
30	2	gvoždje	40	5	F=10,2 r:10µ
37	1	skala	7		-
41	l	plazma+voda	30	6	<=12,81 5900- l=5.3 7800Å
41	2	gvoždje	60	5	F=10,2 r:10µ

Ta	be	la	3.	2	.1.	0
			-			

Tabela 3.2.2.

	•			and an	Constitution of the owner	aperandormalis of management in memory
∧_ [°▲]	λ2 [Å]	L [1015]	1 [1088]	λx [▲]	Tablične vrednosti	Ele - menat
4767 492	4168.625	19.32	7,36	4164,2093	4164,1795	Ar I
4155 A05	4161,492	22.12	9,38	4157,8342	4158,5906	Ar I
4050 688	4057.348	18,26	10,00	4054,3342	4054,5255	Ar I
4029 636	4050,688	57,80	44,38	4045,8001	4045,9658	Ar I
4029,636	4050.688	17,80	40,20	4044,4185	4044,4185	Ar I
3940.014	3914.715	40,24	24,54	5948,9909	3948,9785	Ar I
3940.014	39-4.715	40,24	19,60	3947,1899	3947,5048	Ar I
3889,928	3905,350	42,80	27,00	3899,6549	3899,778	¥
3664 540	36''8 864	38,25	28,90	3675,3625	3675,2367	Ar I
3664.540	36/8,864	58,25	16,85	3670,850	3670,6693	AT 1
3651,469	3664.540	35,70	21,70	3659,4141	3659,5305	Ar 1
3640.390	3651,469	29,55	26,00	3650,138	3649,833	AT 1
3630, 349	3640,390	28,55	12,60	3634,7809	3634,4605	AT 1
3630,349	3640,390	28,55	8,70	3632,836	3632,6837	Ar 1
3599.623	3612.674	33,55	19,45	3607,198	3606,5224	AT 1
3576,760	3599.146	59,40	35,60	3589,124	3588,970	WI T
3576,760	3599,146	59,40	23,40	3585,5787	3585,710	191 191
3576.760	3599,146	59,40	18,45	3583,7132	3583,460	den 7
3560,697	3576,760	43,05	19,00	3567,7863	3567,0502	AT .
3560,697	3576,760	43,05	10,30	3564,5401	3564,2957	Ar -
3560,69	3576,760	43,05	7,35	3563,4394	3503,2004	6.4
3549,87	2 3560,697	29,35	13,30	3554,7773	3554, 2020	Arr.
3500.56	7 3510,446	26,80	15,45	3506,2621	2700,4001	Are
3457.08	6 3466,895	22,95	7,40	3461,2488	3 3401,0107	Ar
3387.41	1 3399,336	31,85	17,60	3394,0000	3300 7810	Are
5387.41	1 3399,336	31,85	14,4	5 3392,821	0 0988 5611	W
2879,43	0 2887,807	22,05	11,7	5 2883,893	3 500191011	10

Tabela 3.2.2.

	∧₁ [▲]	A2 [A]	L [2000]	1 [mw]	λx [▲]	Tabl ične vre dnosti	Bla - menat
	7509,008	7526,104	31,28	16,16	7514,7404	7514,6514	år I
	7492,970	7505,008	44,88	30,94	7504,026	7505,153	Ar II
-	7368,224	7390,108	60,96	44,36	7384,148	7383,9796	AT I
	7260,698	7276,596	40,22	30,52	7272,7618	7272,9349	Ar I
	7060,778	7075,114	34,24	18,06	7067,2846	7067,2175	Ar I
	6955,712	6970,684	46,68	32,32	6966,0782	6965,4304	AT I
-						6562,849	Ea
	4950,105	4956,096	45,06	20,44	4957,358	4956,750	kr I
						4861,332	HB
	4700,171	4704,963	13,10	6,12	4702,4097	4702,3155	Ar I
	4665,900	4675,120	21,04	11,86	4669,871	4667,297	Cu II
	4625,055	4635,852	29,78	9,60	4628,5355	4628,4409	Ar I
	4592,555	4602,010	25,60	9,68	4596,1006	4596,0964	Ar I
	4517,530	4526,419	24,66	12,96	4522,2015	4522,3238	Ar I
	4504,849	4517,530	24,76	11,94	4509,205	4510,7335	Ar I
Contraction of the	4423,142	4430,207	19,60	7,66	4425,903	4426,005	Ar I
and the second second	4423,142	4430,207	19,60	2,88	4424,180	4423,996	Ar I
	4395,286	4409,123	37,94	15,56	4400,9608	4400,983	Ar II
	4365,899	4373,566	21,06	14,42	4371,1486	4371,330	a II
1	4365,899	4373,566	21,06	6,04	4368,0978	4368,300	O I
and the second second	4358,505	4365,899	20,48	14,72	4363,8194	4363,7957	Ar I
and the second	4343,257	4348,939	15,68	5,86	4345,3807	4345,190	Ar I
A DESCRIPTION OF THE PARTY OF T	4298,040	4302,192	11,46	6,00	4300,2138	4300,1011	Ar I
-	4268,758	4276,678	26,02	9,34	4271,6009	4272,169	ar I
-	4264,215	4268,758	12,65	5,72	4266,2839	4266,2868	Ar I
of Taxaballa	4258,324	4264,215	16,04	3,14	4259,3617	4259,3617	Ar I
and the second s	4248,226	4258,324	22,46	7,92	4251,7868	4251,185	Ar I
Contraction of Contraction	4196,533	4205,546	23,18	9,24	4200,1251	4200,6746	Ar I
	4196,533	4205,546	23,18	3,20	4197,7722	4198,3176	Ar I
and a second second	4188,780	4196,533	23,12	5,20	4190,5237	4191,0288	Ar I
Contraction of the local division of the loc	4178,051	4188,780	29,72	9,96	4181,6485	4181,8837	Ar I

3.3. ELEKTRONSKA TEMPERATURA

Svaka plazma sastavljena je od mnoštva elektrona i jona i neutralnih čestica čiji broj zavisi od pritiska i stepena jonizacije. Različite vrste čestica mogu imati razne raspodele brzina. U većini laboratorijskih plazmi viših koncentracija elektroni imaju Maksvel-ovu raspodelu brzina. U tom slučaju definiše se kinetička temperatura elektrona u plazmi, slično definiciji temperature u kinetičkoj teoriji gasova. Često je to slučaj i sa jonima. Medjutim, pošto je izmena energije izmedju elektrona i jona mala (zbog velike razlike u masama) njihove temperature mogu biti različite. Da li će temperature različitih vrsta čestica u plazmi biti jednake, zavisi od uslova ravnoteže. Može se sa sigurnošću tvrditi da ni jedna laboratorijska plazma nije u takvoj termodinamičkoj ravnoteži. Medjutim, kada su kolizioni procesi dominantni nad radijativnim, može se govoriti o LTR. Pri LTR kinetička temperatura različitih vrsta čestica^{14,21} i temperatura koja karakteriše raspodelu elektrona po slobodnim i vezanim stanjima medjusobno su jednake. Pa se za opis ravnotežnih uslova može koristiti Saha jednačina. Ravnotežna raspodela po vezanim i slobodnim stanjima karakteriše se tada temperaturom koja je jednaka elektronskoj temperaturi plazme.

Uslovi postojanja LTR su diskutovani ranije¹⁶, ali treba napomenuti da je plazma u LTR ako su elektronske koncentracije relativno velike²¹, veće od 10¹⁶ cm⁻³, a srednje energije elektrona manje od 10 eV.

U zavisnosti od toga da li u plazmi postoji ravnoteža ili ne, treba birati metode za merenje elektronske temperature.

Elektronska temperatura u plazmi može se meriti sondnim i spektroskopskim metodama. Spektroskopske metode omogućuju merenje elektronske temperature bez perturbacije plazme. Medjutim, spektroskopske metode zahtevaju postojanje LTR u plazmi, ali se njome može istovremeno i proveravati postojanje LTR. Spektroskopskim putem, elektronska temperatura u plazmi može se odrediti merenjem apsolutnih intenziteta linija i kontinuma, količnika intenziteta linija i kontinuma, relativnih intenziteta linija i slično.

Ovde će odredjivanje elektronske temperature biti izvršeno pomoću merenja relativnih intenziteta linija.

3.4. ODREDJIVANJE ELEKTRONSKE TEMPERATURE PLAZME

U slučaju LTR u plazmi, broj ekscitovanih stanja ${\rm N_m}$ čija je energija ekscitacije ${\rm E_m}$ dat je izrazom 21

$$N_{m} = \frac{g_{m}}{g_{o}} N_{o} \mathcal{C}^{-\frac{Em}{KTE}} \left(= \frac{g_{m}}{g_{o}} N_{o} \mathcal{C}^{-\frac{Em}{KTE}}\right) \quad (3.4.1)$$

gde je N_0 - broj emitera u osnovnom stanju, T_e - temperatura elektrona u plazmi, g_m i g_0 su statističke težine ekscitovanog i osnovnog stanja emitera. Ako u plazmi postoje čestice različitih vrsta (neutralni atomi, jednostruko i višestruko jonizovani atomi) onda se može napisati analogna jednačina za čestice r - te vrste

$$N_{rim} = \frac{g_{rim}}{\sum_{s=0}^{smax} g_{ris} e^{-\frac{Eris}{KTe}}} N_r e^{-\frac{Erim}{KTe}} (3.4.2)$$

gde je

$$Z_{r}(Te) = \sum_{s=0}^{smax} grs e^{-\frac{Eris}{KTe}}$$
(3.4.3)

funkcija particije čestica odredjene vrste - r. Ako se posmatra zračenje koje nastaje prelazom iz stanja m u stanje n, onda je intenzitet po sekundi i po jednom atomu i jediničnom prostornom uglu dat izrazom

$$J_{mm} = \frac{1}{4\pi} A_{mm} 4 V_{mm}$$
 (3.4.4)

gde je Anm - Enstein-ov koeficijenat²³ dat izrazom

$$A_{MM} = \frac{64 \pi^2 e^2 \mathcal{V}_{MM}}{34 e^3} |\langle m | r | m \rangle|^2 \quad (3.4.5)$$

а

$$|\langle m|r|m\rangle| = \int \mathcal{P}_m r \mathcal{P}_n^* dz \qquad (3.4.6)$$

matrični elemenat za prelaz iz stanja m u stanje n, čije su sopstvene funkcije Ψ_m i φ_n , h γ_{nm} - je energija emitovanog kvanta.

Ako se u stanju m nadje N_m atoma po cm³ optički tanke plazme čija je efektivna emisiona dužina 1 cm, onda je intenzitet spektralne linije

$$J_{nm} = \frac{1}{4R} A_{nm} N_m h \mathcal{D}_{nm} \ell \qquad (3.4.7.)$$

Kombinacijom jednačina (3.4.2.) i (3.4.7.) dobi**ć**e se sledeći izraz

$$J_{\text{mm}} = \int J_{\lambda} d\lambda = \frac{1}{4\pi} \operatorname{Nrh} \mathcal{V}_{\text{mm}} \frac{2^{m}m}{Z_{\text{P}}} \mathcal{C}^{-\frac{E_{\text{P}}}{KK}} \mathcal{A}_{\text{mm}} \mathcal{L} (3.4.8.)$$

 $-\infty$ Uobičajeno je da se jednačina (3.4.8.) piše u sledećem obliku (3.4.9.)

$$J_{nm} = \frac{4}{4\pi} N_0 \frac{g_m}{Z_0} P^- \frac{E_m}{KT_c} A_m m lih V_m m$$
(3.4.9.)

Takodje, umesto Z_o moguće je za niže temperature uzeti statističku težinu osnovnog stanja g_o. Ako se jednačina (3.4.9.) preuredi tako da na desnoj strani ostanu samo one veličine koje karakterišu jednu spektralnu liniju, onda će se dobiti pogodan oblik za odredjivanje elektronske temperature merenjem **relativ**nih intenziteta nekoliko spektralnih linija spektra emitera ist istog stepena jonizacije

$$J^{*} = \frac{N_{0}}{Z_{0}} \frac{g_{m} A_{mm}}{\lambda_{mm}} e^{-\frac{Em}{KTe}} \qquad (3.4.10)$$

gde je J* - relativni intenzitet jedne linije. Ako se jednačina (3.4.10) napiše u obliku

$$\frac{J^* \lambda_{mm}}{g_m A_{mm}} = \frac{N_0}{Z_0} C^- \frac{E_m}{KTe} \qquad (3.4.11.)$$

i logaritmuje dobiće se

$$log\left[\frac{J^*\lambda_{mm}}{gnA_{mm}}\right] = log\left(\frac{N_o}{Z_o}\right) - \frac{E_m}{KTe} log e$$
 (3.4.12.)

Iz jednačine (3.4.12.) vidi se da je grafik veličine $\lim_{g \to 1} \left[\frac{f}{g_n AnA}\right]$ u zavisnosti od energije ekscitacije gornjih nivoa linija emitera jednog stepena jonizacije prava linija. Koeficijenat pravca te prave odredjuje elektronsku temperaturu

$$t_{gd} = -\frac{l_{oge}}{KTe} \qquad (3.4.13.)$$

Tačnost ove metode zavisi od razlike energija ekscitacije gornjih nivoa linija korišćenih u toku merenja. Takodje tačnost zavisi i od ispunjenosti uslova koji omogućavaju korišćenje LTR. Izraz (3.4.12) predstavlja pravu liniju (slika 3.4.1.).

Sl. 3.4.1.

Iz gornjeg izraza sledi

$$tg d = -\frac{1}{2,3kT}$$
 a sa(slike 3.4.1.) se vidi
 $tg d = -tg \beta$ pa je $tg \beta = \frac{1}{2,3kT}$ odakle se

dobija

$$I = \frac{1}{2,3k \, tg\beta} = \frac{1}{2,3k} \, ctg\beta$$

i zamenom Boltsman-ove konstante k u eV dobija se izraz pomoću koga se može izračunati elektronska temperatura

$$I = 0,505 \cdot 10^4 \text{ ctg}/^3$$

Iz izraza (3.4.12.) se vidi da vrednost elektronske temperature zavisi od intenziteta linije I, talasne dužine linije koja se meri, statističke težine g i verovatnoće prelaza A. Tačnost ove metode zavisi od razlike energija ekscitacije gornjih nivoa linija korišćenih pri merenju. Zbog toga su izabrane linije neutralnog argona čije su talasne dužine: 7067,217; 6965,43; 4272,17; 4702,32; 4300,10.

3.5. ODREDJIVANJE PRAVOG INTENZITETA LINIJA

Posle korekcije linija na samoapsorpciju i kontinum treba izvršiti i korekciju na spektralnu osetljivost.

Iz krive osetljivosti sistema za snimanje (slika (3.5.2.) i karakteristike svetlosnog izvora za kalibraciju (slika 3.5.3.) dobiće se nova kriva (slika 3.5.4.) koja predstavlja M/R u funkciji talasne dužine.

Sada se vrednost M/R za izebranu argonovu liniju najmanje talasne dužine uzme za jedinicu kao što je prikazano na (slici 3.5.1.)

Sl. 3.5.1.

Za argonovu liniju 4158,59 Å je M/R = 50,25. Intenziteti ostalih linija se množe sa faktorom q = 50,25/x, a njihove vrednosti date su u tabeli (3.5.1.)

- 34 -

Karakteristika avetlocnes izvera

. .

Tabela 3.5.1.

(Å)	M(rel)	x(rel)	$q = \frac{M}{x}$
7067		7	7,18
6965	analan kanangkan kana Manang	7,25	6,49
4702		39	1,28
4300	-	47	1,07
4272		47,75	1,05
4158	50,25	50,25	1

Za linije kod kojih su korišćeni filtri mora se prilikom izračunavanja pravog intenziteta uzeti u obzir i faktor f koji se dobija na sledeći način:

Postavi se proporcija

I': 100 = J': x ili $I' = \frac{100}{J'}$

gde je I' intenzitet linije kad nema filtra a J' intenzitet linije sa filtrom. Faktorom $f = \frac{100}{x}$ treba pomnožiti vrednost intenziteta dobijenu planimetrom da bi se dobio pravi intenzitet. Ovde x predstavlja postotak propuštanja filtra. Dakle ako se svi ovi faktori uzmu u obzir, onda je ukupan intenzitet linije dat izrazom:

$$I = qfJ$$

gde je J - intenzitet linije izmeren planimetrom.

Svi potrebni podaci za odredjivanje elektronske temperature plazme dati su u tabeli (3.5.2).

Grafik sa kojeg je odredjena elektronska temperatura prikazan je na slici (3.5.2).

(گ)	7067,217	6965,430	4702,320	4300,100	4272,170
È(eV)	13,33	13,33	14,46	14,51	14,52
g	5	3	3	5	3
A. 10 ⁸	0,0395	0,0670	0,00113	0,00394	0,0084
f	8,34	8,34	1	8,34	8,34
k.1	0,456	0 ,6 50	0,516	0,000	0,000

Tabela 3.5.2

3.6. ELEKTRONSKA KONCENTRACIJA

Širine spektralnih linija usled Štark-ovog efekta u plazmi proporcionalne su prvom stepenu elektronske koncentracije. Zbog toga je za teorijsko izračunavanje širina spektralnih linija potrebno znati elektronsku koncentraciju u plazmi u kojoj se vrši eksperimentalno merenje Stark-ovih parametara radi poredjenja.

Metode za merenje elektronske koncentracije u plazmi mogu se podeliti u dve grupe:

l. Spektroskopske metode, zasnovane na merenju apsolutnih intenziteta linijskog i kontinualnog zračenja iz plazme i Štark-ovog širenja spektralnih linija u plazmi.

2. Interferometrijske metode, bazirane na merenju indeksa prelamanja svetlosti na elektronskoj komponenti plazme u toku njenog kreiranja i nestajanja.

Elektronska koncentracija se može odrediti merenjem apsolutnih intenziteta linija i kontinuuma. Kao i u slučaju merenja elektronske temperature i ovde postoje ograničenja koja ili smanjuju tačnost ili onemogućavaju merenje elektronske gustine.

Merenjem Štark-ovog širenja spektralnih linija u plazmi može se odredjivati elektronska koncentracija ako se poznaju teorijske vrednosti poluširina. Za takvo merenje elektronskih koncentracija u plazmi najpogodnija je vodonikova H_p linija. Uporedjivanjem eksperimentalno dobijenog profila H_p linije u datoj plazmi sa teorijskim^{10, 24, 25}, dobijaju se vrednosti za elektronsku koncentraciju sa tačnošću do 10%. Za ovakvo merenje elektronske koncentracije može se koristiti i H_M linija ali je greška veća. Takodje se mogu koristiti i profili helijumovih linija za odredjivanje elektronske koncentracije u plazmi, samo je tačnost manja u poredjenju sa korišćenjem profila H₃ linije i iznosi do 15%.

U plazmama ostalih elemenata koncentracija se može meriti uvodjenjem vodonika ili helijuma u odredjenom odnosu i merenjem Štark-ovog profila neke od linija vodonika ili helijuma.

Tačnost merenja se na taj način smanjuje u poredjenju sa merenjima u čistoj vodonikovoj odnosno helijumovoj plazmi.

Elektronsku koncentraciju plazme smo odredili mereći poluširinu eksperimentalnih profila vodonikove H_{β} linije. Na osnovu teorije¹⁷ nacrta se profil odgovarajuće linije H_{β} i izmeri njena poluširina. Na osnovu dobijenih vrednosti nacrta se grafik 3.6.1 na kojem je data zavisnost koncentracije N u funkciji poluširine linije $\Delta \lambda$. Sada se za eksperimentalni profil linije odredi vrednost poluširine i sa odgovarajućeg grafika pročita koliko iznosi elektronska konentracija.

Poluširina H_B linije pri struji od 24 A iznosila je; $\Delta \nearrow \beta = 18$ Å, što na grafiku pokazuje koncentraciju od 2,6 . 10¹⁶ cm⁻³.

S1. 3.6.1

4. EKSPERIMENTAINI REZULTATI I POREDJENJE SA TEORIJOM

Sa dobivenog snimka linije slika (2.1.2) potrebno je izvršiti dekonvoluciju¹¹ tj., razdvajanje Gaus-ovog profila linije od Lorenc-ovog profila.

Očitavanje vrednosti Gausijana i Lorencijana za pojedine linije vrši se sa grafika (4.1.1) koji je uradjen prema teoriji¹¹.

h - predstavlja poluširinu linije dobivene eksperimentalno tj., širinu eksperimentalnog profila linije na polovini njene visine; b₀₁ - širinu linije na 1/10 njene visine.

> $h_L = L \cdot h - poluširina Štark-ovog širenja$ $<math>h_G = G \cdot h - Gaus-ova poluširina$

Rezultati dobiveni merenjem nalaze se u tabeli (4.1.1) a vrednosti poluširina Štark-ovog širenja u koloni h_{LE} . Odmah pored te kolone nalazi se kolona h_{LT} i predstavlja teorijsku poluširinu.

Teorijske vrednosti h_{LT} dobivene su po teoriji datoj u uvodnom delu ovog rada. Iz jednačine (1.6.12) dobija se jednačina (4.1.1) koja daje dobre rezultate za poluširinu kada je koncentracija plazme reda veličine 10^{16} cm⁻³ - što je bio slučaj u ovom eksperimentu. (4.4.1)

$$h_{\rm LT} \approx 2 \left[1+1,75 \times 10^{-4} N_{\rm e}^{1/4} \ll (1-0,068 N_{\rm e}^{1/6} T^{-1/2}) \right] 10^{-16} W N_{\rm e}$$

Vrednost W - očitava se iz tabele (4.1.2), isto tako i vrednost za \checkmark . Koncentraciju N_e smo odredili ranije i ona je iznosila N_e = 2,6 10¹⁶ cm⁻³ i T = 11300 ^oK. Zamenom ovih vrednosti jednačina (4.4.1) se uprošćava i dobija se jednačina (4.4.2)

$$h_{\rm LT} = 6,6 \cdot W (1+1,517 \, \checkmark)$$
 (4.4.2)

TABELA 4.1.1.

入 (名)	h (Å)	^ъ оі (А)	b ₀₁ h	L	h _{LE}	h _{LT}	G	h _G	h _{LE}
4045	0,48	1,42	2,95	0,970	0,460		0,175	0,084	5,47
4151	0,55	1,43	2,95	0,975	0,533		0,175	0,098	5,55
4164	0,56	1,78	2,96	0,975	0,543		0,150	0,084	6,46
4181	0,65	1,92	2,96	0,975	0,630		0,150	0,097	6,49
4198	0,65	1,93	2,97	0,980	0,637	1,097	1,130	0 ,0 85	7,41
4200	0,55	1,62	2,95	0,965	0,528	0,766	0,175	0,093	5,67
4259	0,62	1,84	2,96	0,980	0,607	0,975	0,150	0,093	6,52
4272	0,63	1,86	2,95	0,965	0,607	0,722	0,150	0,094	6,45
4301	0,54	1,83	2,95	0,965	0,521		0,170	0,093	5,60
4345	0,62	1,84	2,96	0,980	0,607		0,145	0,089	6,82
4510	0,82	2,43	2,98	0,985	0,807	1,304	0,115	0,094	8,58
4522	0,78	2,32	2,97	0,986	0,764		0,130	0,093	8,21
4596	0,60	1,77	2,95	0,975	0,585		0,145	0,087	6,88
4628	0,60	1,93	2,96	0,980	0,588		0,140	0,084	7,00
4702	0,52	1,53	2,94	0,965	0,501		0,180	0,093	5,78
6965	0,36	1,05	2,91	0,945	0,321		0,230	0,082	3,91
7067	0,41	1,19	2,91	0,940	0,389		0,230	0,094	4,13

			TH	7BELA	4.1.2.						
DR		0000	0000	0000	0000	0000	0000	0000.	0000	n n z n	ทุกรุง
0	-000	0000	0000	0000	0000	0000	0000	0000	0 N		++++
WA WS	44 70 37 60 34 51 34 42	72 89 67 76 63 61 62 49	73 89 68 76 65 61 64 49	72 89 67 76 63 61 61 49	69 84 63 70 59 57 58 46	69 69 62 70 57 57 57 46	65 79 59 65 54 54 55 44	55 55 55 55 55	0000 0000 000 000 000 000 000 000 000	8 N 8 P	000 000 100 4 100 100 100 100 100 100 10
BETA	.13-01 .25-01 .10	.20-01 .41-01 .81-01 .16	.22-01 .43-01 .87-01	.22-01 .44-01 .87-01	.57-02 .11-01 .23-01 .46-01	.63-02 .13-01 .25-01	.20-02 .99-02 .20-01	.52-02 .52-02 .10-01 .21-01	4.4 8.9 16.	12 47 47	.27-01 .55-01 .11
ALPHA	071 058 049	.095 .083 .073	.098 .086 .076	095	.134 .115 .100	.131 .112 .097	.172 .145 .126	.175 .148 .128 .128	.056 .046 .038 .038	.101 .087 .075 .058	.142 .122 .107
SHIFT	.482 .469 .426 .361	.575 .608 .584 .510	.667 .708 .685	.607 .641 .615 .536	1.06 1.08 .996 .845	1.07 1.09 1.000 1.850	1.90 1.87 1.67 1.38	2:05 2:01 1:79 1:48	3.49 3.61 2.42 2.96	2.78 2.71 2.79 2.48	4.42 4.52 3.71
WIDTH	.799 1.06 1.31 1.46	•500 •600 •719 •823	.574 .685 .813 .922	.530 .637 .764 .876	.975 1.20 1.45 1.64	.998 1.24 1.50 1.71	1.92 2.40 3.23	2.04 2.55 3.08 5.43	3,58 4,61 5,96 7,31	2.50 3.07 3.72 4.24	4.16 5.12 6.10 0.77
TEMP.	5000 20000 40000	5000 10000 20000 40000	5000 10000 20000 40000	5000 20000 40000	5000 20000 20000	5000 20000 40000	5000 20000 40000	1,0000 2,0000 2,0000	5000 10000 20000 40000	5000 10000 20000 40000	10000 10000
ELEMENT	6297 (267) MULT: 4P-5D 1/2-3/2	7030 (272) MULT: 442-65 5/2-3/2	7312 (277) MULT: 44P-65 3/2-3/2	7207 (291) MULT: 4P-65 3/2-1/2	5689 (337) MULT: 4P-75 5/2-3/2	6425 (353) MULT: 4P-75 3/2-1/2	5421 (375) MULT: 4P-85 5/2-3/2	5534 (384) MULT: 4P-85 3/2-1/2	31453 (1) MULT: 30-5P 20-2P	15364 (2) MULT: 30-6P 2D-2P	10462 (3) MuLT: 30-7P 20-2F
-	AR	AR	AR	AR	AR	AR	AK	AR	×	×	×
									and the second se		
DR .	0000	0000	0000	- N N N	ორჭი 1111	0110	0 1 1 1	0 0 1 1	0440	0044	0 H H N
WS WO DR	22 0 0 31 0 0 57 0 0 54 0 0	32 31 56 61 0 0 0 0 0 0 0 0 0 0 0	0000	93 0 1 82 0 2 54 0 2 30 2 3	A9 0 - 3 77 0 - 3 64 0 - 4 53 0 - 5	73 0 0 50 0 1 41 0 2	72 0 0 50 0 1 42 0 2	71 0 0 49 0 1 41 0 1	71 0 0 59 0 1 41 0 2 41 0 2	55 0 0 45 0 1 37 0 1	71 0 0 59 0 1 41 0 2
WA WS WO DR	73 92 0 0 70 81 0 0 65 67 0 0 62 54 0 0	75 92 0 0 63 66 0 0 59 54 0 0	73 92 0 0 68 80 0 0 62 66 0 0 58 53 0 0	73 93 0 1 70 82 0 2 65 67 0 2 62 54 0 3	69 89 0 -3 60 77 0 -3 52 64 0 -4 46 53 0 -5	62 73 0 0 55 60 0 1 52 50 0 1 53 41 0 2	55 72 0 0 48 60 0 1 44 50 0 1 45 42 0 2	60 71 0 0 54 59 0 0 51 49 0 1 52 41 0 1	56 71 0 0 49 59 0 1 47 41 0 2	07 68 0 0 04 55 0 0 03 45 0 1 68 37 0 1	56 71 0 0 49 59 0 1 46 50 0 1 47 41 0 2
BETA WA WE WO DR	•19 73 92 0 0 •38 70 81 0 0 •76 85 67 0 0 1•5 62 54 0 0	.31 75 92 0 0 .62 69 81 0 0 1.2 53 66 0 0 2.5 59 54 0 0	.43 73 92 0 0 .85 68 80 0 0 1.7 62 66 0 0 3.4 58 53 0 0	.34 73 93 0 1 .69 70 82 0 2 1.4 65 67 0 2 2.9 62 54 0 3	-75 69 89 0 -3 1.5 60 77 0 -3 3.0 52 64 0 -4 6.0 46 53 0 -5	.50-02 62 73 0 0 .12-01 55 60 0 1 .24-01 52 50 0 1 .47-01 53 41 0 2	.85-02 55 72 0 0 .17-01 48 60 0 1 .34-01 44 50 0 1 .69-01 45 42 0 2	.53-02 60 71 0 0 .12-01 54 59 0 0 .23-01 51 49 0 1 .47-01 52 41 0 1	.71-02 56 71 0 0 .14-01 49 59 0 1 .27-01 46 50 0 1 .56-01 47 41 0 2	-56-02 c7 68 0 0 -12-01 c4 55 0 0 -23-01 c3 45 0 1 -23-01 c3 45 0 1 -47-01 c8 37 0 1	.85-02 56 71 0 0 .17-01 49 59 0 1 .34-01 45 50 0 1 .69-01 47 41 0 2
ALPHA BETA WA WS WO DR	.059 .19 73 92 0 0 .052 .38 70 81 0 0 .046 .76 55 67 0 0 .040 1.5 52 54 0 0	.059 .31 75 92 0 0 .051 .62 69 81 0 0 .044 1.2 63 66 0 0 .038 2.5 59 54 0 0	.058 .43 73 92 0 0 .051 .85 68 80 0 0 .043 1.7 62 66 0 0 .038 3.4 58 53 0 0	.059 .34 73 93 0 1 . .052 .69 70 82 0 2 . .045 1.4 65 67 0 2 . .040 2.9 62 54 0 3	.052 .75 69 89 0 -3 .043 1.5 60 77 0 -3 .035 3.0 52 64 0 -4 .030 6.0 46 53 0 -5	.111 .59-02 62 73 0 0 .094 .12-01 55 60 0 1 .082 .24-01 52 50 0 1 .077 .47-01 53 41 0 2	.095 .86-02 55 72 0 0 .079 .17-01 48 60 0 1 .068 .34-01 44 50 0 1 .063 .69-01 45 42 0 2	.109 .58+02 60 71 0 0 .092 .12-01 54 59 0 0 .081 .23-01 51 49 0 1 .076 .47-01 52 41 0 1	.099 .71-02 56 71 0 0 .083 .14-01 49 59 0 1 .072 .29-01 45 50 0 1 .067 .55-01 47 41 0 2	.140 .50-02 07 68 0 0 .124 .12-01 04 55 0 0 .113 .23-01 53 45 0 1 .109 .47-01 68 37 0 1	.099 .85-02 56 71 0 0 .082 .17-01 49 59 0 1 .072 .34-01 45 50 0 1 .067 .68-01 47 41 0 2
SHIFT ALPHA BETA WA WS WO DR	-358 -059 -19 73 92 0 0 -392 -052 -38 70 81 0 0 -391 -046 -76 95 67 0 0 -351 -040 1-5 52 54 0 0	.482 .059 .31 75 92 0 0 .518 .051 .62 69 81 0 0 .509 .044 1.2 63 66 0 0 .453 .038 2.5 59 54 0 0	•582 •058 •43 73 92 0 0 •628 •051 •85 68 80 0 0 •618 •043 1.7 62 66 0 0 •551 •038 3.4 58 53 0 0	.540 .059 .34 73 93 0 1 .592 .052 .69 70 82 0 2 .596 .045 1.4 65 67 0 2 .546 .040 2.8 62 54 0 3	.627 .052 .75 69 89 0 -3 .645 .043 1.5 60 77 0 -3 .597 .035 3.0 52 64 0 -4 .495 .030 6.0 46 53 0 -5	.671 .111 .59-02 62 73 0 0 .639 .094 .12-01 55 60 0 1 .558 .082 .24-01 52 50 0 1 .454 .077 .47-01 53 41 0 2	.642 .095 .86-02 55 72 0 0 .610 .079 .17-01 48 60 0 1 .535 .068 .34-01 44 50 0 1 .439 .063 .69-01 45 42 0 2	.678 .109 .58-02 60 71 0 0 .639 .092 .12-01 54 59 0 0 .554 .081 .23-01 51 49 0 1 .451 .076 .47-01 52 41 0 1	.022 .099 .71-02 56 71 0 0 .589 .083 .14-01 49 59 0 1 .516 .072 .28-01 46 50 0 1 .425 .067 .56-01 47 41 0 2	1.29 .140 .50-02 07 68 0 0 1.19 .124 .12-01 04 55 0 0 1.00 .113 .23-01 53 45 0 1 .794 .109 .47-01 68 37 0 1	.699 .099 .85-02 56 71 0 0 .661 .082 .17-01 49 59 0 1 .576 .072 .34-01 46 50 0 1 .471 .067 .69-01 47 41 0 2
WIDTH SHIFT ALPHA BETA WA WO DR	-304 -358 -059 10 73 92 0 0 -359 -392 -052 -38 70 81 0 0 -431 -391 -046 76 55 0 0 -431 -351 -044 15 55 4 0 0	.396 .482 .059 .31 75 92 0 0 .483 .518 .051 .62 69 81 0 0 .592 .509 .044 1.2 63 66 0 0 .708 .453 .038 2.5 59 54 0 0	.492 .582 .058 .43 73 92 0 0 .594 .628 .051 .85 68 80 0 0 .728 .618 .043 1.7 62 66 0 0 .671 .551 .038 3.4 58 53 0 0	.453 .540 .059 .34 73 93 0 1 .536 .592 .052 .69 70 82 0 2 .644 .596 .045 1.4 65 67 0 2 .700 .546 .040 2.8 62 54 0 3	•589 •627 •052 •75 69 89 0 -3 •760 •645 •043 1.5 60 77 0 -3 •989 •597 •035 3.0 52 64 0 -4 1.24 •495 •030 6.0 46 53 0 -5	-740 .671 .111 .59-02 62 73 0 0 .924 .639 .094 .12-01 55 60 0 1 1.10 .558 .082 .24-01 52 50 0 1 1.21 .454 .077 .47-01 53 41 0 2	.823 .642 .095 .86-02 55 72 0 0 1.06 .610 .079 .17-01 48 60 0 1 1.28 .535 .068 .34-01 44 50 0 1 1.41 .439 .063 .69-01 45 42 0 2	-789 .678 .109 .58-02 60 71 0 0 .988 .639 .092 .12-01 54 59 0 0 1.17 .554 .081 .23-01 51 49 0 1 1.28 .451 .076 .47-01 52 41 0 1	-778	1,35 1,29 .140 .50-02 o7 68 0 0 1,60 1.19 .124 .12-01 o4 55 0 0 1.80 1.00 .113 .23-01 b3 45 0 1 1.89 .794 .109 .47-01 63 37 0 1	.880 .699 .099 .85-02 55 71 0 0 1.12 .661 .082 .17-01 49 59 0 1 1.35 .576 .072 .34-01 46 50 0 1 1.48 .471 .067 .68-01 47 41 0 2
TLMP. WIDTH SHIFT ALPHA BETA WA WS WO DR	5000 .304 .358 .059 10 73 92 0 0 10000 .359 .392 .052 .38 70 81 0 0 2.000 .431 .391 .046 .76 65 67 0 0 2.000 .431 .391 .046 .76 65 67 0 0 40000 .509 .351 .040 1.5 62 54 0 0	5000 .396 .482 .059 .31 .75 92 0 110000 .483 .518 .051 .62 69 81 0 20000 .592 .509 .044 1.2 .63 64 0 20000 .592 .509 .044 1.2 .63 64 0 4000 .708 .453 .038 2.5 59 54 0	5000 4492 582 058 443 73 92 0 0 10000 594 658 051 85 68 80 0 0 20000 728 618 043 1.7 62 66 0 0 40000 871 551 038 3.4 58 53 0 0	5000 453 540 059 34 73 93 0 1 11000 536 5592 052 69 70 82 0 2 20000 644 5596 045 1.4 65 67 0 2 40000 .546 .046 1.4 65 67 0 2	5000 589 627 052 75 69 89 0 3 110000 760 645 043 1.5 60 77 0 3 21000 989 597 035 3.0 52 64 0 4 410000 1.24 .495 .030 6.0 46 53 0 5	5000 .740 .671 .111 .59-02 62 73 0 0 10000 .924 .639 .094 .12-01 55 60 0 1 20000 1.10 .558 .082 .24-01 52 50 0 1 4,0000 1.21 .454 .077 .47-01 53 41 0 2	5000 .823 .642 .095 .86-02 55 72 0 0 10000 1.06 .610 .079 .17-01 48 60 0 1 20000 1.28 .535 .068 .34-01 44 50 0 1 40000 1.41 .439 .063 .69-01 45 42 0 2	5000 779 678 1109 58-02 60 71 0 0 10000 -988 -639 -092 -12-01 54 59 0 0 20000 1.17 -554 -081 -23-01 51 49 0 1 20000 1.17 -554 -061 -23-01 51 49 0 1 40000 1.28 -451 -076 -47-01 52 41 0 1	5000 778 622 099 71-02 56 71 0 0 10000 -992 589 .083 .14-01 49 59 0 1 20000 1.19 .516 .072 .28-01 41 0 0 20000 1.19 .516 .072 .28-01 47 41 0 2	5000 1.35 1.29 .140 .50-02 o7 68 0 0 10000 1.60 1.19 .124 .12-01 o4 55 0 0 20000 1.80 1.00 .113 .23-01 b3 45 0 1 40000 1.89 .794 .109 .47-01 68 37 0 1	-2000 .880 .699 .099 .85-02 55 71 0 0 1.000 1.12 .661 .082 .17-01 49 59 0 1 2.0000 1.35 .576 .072 .34-01 46 50 0 1 4.0000 1.48 .471 .067 .68-01 47 41 0 2
LEMENT TEMP. WIDTH SHIFT ALPHA BFTA WA WS WO DR	Ub74 (184) 5000 .304 .358 .059 .19 73 72 0 0 ULT: 10000 .359 .392 .052 .38 70 81 0 0 V-55 2J000 .431 .371 .046 .76 65 67 0 0 /2-3/2 40000 .551 .351 .040 1.5 .254 0 0	2488 (188) 5000 .396 .482 .059 .31 75 92 0 0 ULT: 10000 .483 .518 .051 .62 69 81 0 0 220000 .592 .509 .044 1.2 63 66 0 0 72-3/2 4JU0U .708 .453 .038 2.5 59 54 0 0	Job 26 (196) 5000 492 582 058 43 73 92 0 ULT: 10000 594 582 051 85 68 0 0 P-55 23000 728 618 043 1.7 62 66 0 Y=57 4000 871 551 038 3.4 58 53 0 0	-0009 (207) 5000 453 540 059 34 73 93 0 1 ULT: 10000 536 592 055 69 70 82 0 2 r-55 20000 644 556 045 14 65 67 0 2 r-1/2 4000 70 050 046 14 0 3	5969 (213) 5000 589 .627 .052 .75 69 89 0 -3 ULT1: 10000 .760 .645 .043 1.5 60 77 0 -3 r-55 21000 .989 .597 .035 3.0 52 64 0 -4 r-1/2 40000 1.24 .495 .030 6.0 46 53 0 -5	U59 (216) 5000 740 .671 .111 .59+02 .62 73 0 0 ULT: 10000 .924 .639 .094 .12-01 55 60 0 1 P-5D 20000 1.10 .558 .082 .24+01 52 50 0 1 /2-3/2 4,0000 1.21 .454 .077 .47-01 53 41 0 2	u32 (219) 5000 .823 .642 .095 .86-02 55 72 0 0 ULT: 10000 1.06 .610 .079 .17-01 48 60 0 1 P-50 20000 1.28 .535 .068 .34-01 44 50 0 1 /2-7/2 40000 1.41 .439 .063 .69-01 45 42 0 2	1073 (233) 5000 789 .678 .109 .58-02 60 71 0 ULT: 10000 .988 .639 .092 .12-01 54 59 0 ULT: 2.000 1.17 .554 .081 .23-01 51 49 1 /2-5/2 4000 1.28 .451 .076 .47-01 52 1 1	740 (239) 3000 778 .622 .099 .71-02 56 71 0 0 WLT: 10000 .992 .589 .083 .14-01 49 59 0 1 P-50 20000 1.19 .516 .072 .28-01 46 50 0 1 /2-5/2 40000 1.31 .425 .067 .56-01 47 41 0 2	<pre><13 (245) 5000 1.35 1.29 .140 .56-02 67 68 0 0 ULT: 10000 1.60 1.19 .124 .12-01 64 55 0 0 P-5D 20000 1.80 1.00 .113 .23-01 53 45 0 1 /2-5/2 40000 1.89 .794 .109 .47-01 68 37 0 1</pre>	.406 (255) 5000 .880 .699 .099 .85-02 56 71 0 0 ULT: 1.000 1.12 .661 .082 .17-01 49 59 0 1 P-5D 2.0000 1.35 .576 .072 .34-01 46 50 0 1 /2-5/2 40000 1.448 .471 .067 .68-01 47 41 0 2

				TAB	ELA 4	1.2.					
DR 0	0004	0000	onee	0004	onor	4 N t M	H H N M	t N N N	NNMI	NM	- N N M
M SH	44000 44000	86 1 73 1 59 1 47 1	833 1 70 1 71 1 71 1 1	79 55	41 000	1000	1000	4 0 0 0 F	4 10 00 1	77 1 64 53 44	44
MA	72 69 68 70	72 6.8 6.4 6.4	500 540 540	72 58 72	72 69	20000	1000	20111		56 56 51	51252
BETA	.68-02 .14-01 .27-01 .55-01	.67-02 .13-01 .27-01 .53-01	.20-02 .40-02 .80-02 .16-01	.14-02 .27-02 .55-02 .11-01	.16-02 .33-02 .66-02 .13-01	.29-01 .59-01 .12	.34-01 .69-01 .14	.10-15 .20 .20 .4	.72-01 .14 .29 .57	.58-01 .12 .23	.61-01 .12 .24 .49
ALPHA	085 068 068	.078 .069 .051	.103 .087 .075 .068	.135 .120 .110	.135	067	.071 .060 .052 .047	058 047 040	.057 .046 .039	.058 .058 .058	. 069 . 058 . 050 . 046
SHIFT	.172 .178 .166 .141	.125 .132 .125	.206 .210 .195	.380 .381 .345 .287	.430 .430 .390 .325	.269 .259 .228	.356 .340 .298 .243	.307 .294 .260	.335 .323 .286 .237	4459 4445 394	475 460 4166 332
HIDIM	.149 .174 .200 .218	.110 .130 .154 .174	.199 .247 .347	. 336 . 392 . 444 . 474	.380 .443 .502 .536	.285 .360 .436	. 483 682 682 692 692	.523 .523 .646	.412 .541 .679 .785	481 604 736 836	.497 .020 .763 .868
TEMP.	5000 100000 200000) 5000 10000 20000 40000) 5000 10000 20000 40000) 5000 10000 20000 40000) 5000 10000 20000 40000) 5000 10000 20000 40000) 5000 10000 20000 40000	1 5000 20000 40000) 5000 20000 20000	1 5000 10000	1) 5000 20000 40000
ELEMENT	4511 (76) MULT: 45-5P 1/2-1/2	4259 (80 MULT: 45-5P 1/2-1/2	3554 (82 MULT: 45-6P 3/2-3/2	3007 (87 MULT: 45-6P 3/2-1/2	3835 (92 MULT: 45-6P 1/2-1/2	6753 (137 MULT: 4P-4D 1/2-3/2	7.572 (141 MULT: 4P-4D 5/2-7/2	7491 (162 MULT: 4P-4D 3/2-3/2	8020 (107 MULT: 41-4D 1/2-1/2	8006 (175 MuLT: 47-40 372-372	8762 (18) MuLT: 4r-4D 1/2-3/2
	AR	AR	AR	AR	AR	Ан	AR	AR	AR	AH	AR.
		-									
		an Bratanetia	preside proprieta de			-					

WO DR	1 0 0 -1 0 -4 6	0000	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	ດີ 12 ທ 4 າວ ດ ຍ -		1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ດ ດີ 1 1 1 1 1 1 1 1 1 1 1	3 0 2 0 1 - 1	000	0 2 1 1	0 00
WA WS WO DR	41 64 1 0 36 56 0 -1 33 50 0 -4 32 44 0 6	70 86 1 0 65 74 1 0 59 61 0 0 57 49 0 0	59 84 5 0 50 75 3 0 41 64 2 -1 35 55 1 -1	38 77 10 4 29 72 5 5 23 64 2 6 19 56 1 9	64 87 4 0 56 77 3 1 48 65 2 1 42 55 1 1	63 84 5 0 53 75 3 0 44 65 2 1 38 55 1 1	51 83 5 -2 42 73 3 -2 34 64 2 -3 29 55 1 -4	57 83 5 0 48 74 3 0 39 64 2 0 33 55 1 -1	69 R6 2 0 64 73 1 0 59 60 1 0 58 48 1 0	68 87 2 0 67 2 0 67 62 1 0 57 62 1 0 54 59 1 0	73 83 1 0 70 69 0 0 68 56 0 0 70 44 1 1
BETA WA WS WO DR	-37 41 64 1 0 -75 36 56 0 -1 1-5 33 50 0 -4 3-0 32 44 0 6	1.4 70 86 1 0 2.9 65 74 1 0 5.7 59 61 0 0 11. 57 49 0 0	.31 59 84 5 0 .61 50 75 3 0 1.2 41 64 2 -1 2.5 35 55 1 -1	.63 38 77 10 4 1.3 29 72 5 5 2.5 23 64 2 6 5.1 19 56 1 9	-26 64 87 4 0 -53 56 77 3 1 1.1 48 65 2 1 2.1 42 55 1 1	-28 63 84 5 0 -56 53 75 3 0 1.1 44 65 2 1 2.2 38 55 1 1	.48 51 83 5 -2 .96 42 73 3 -2 1.9 34 64 2 -3 3.8 29 55 1 -4	.35 57 83 5 0 .70 48 74 3 0 1.4 39 64 2 0 2.3 33 55 1 -1	-77-02 69 86 2 0 -16-01 64 73 1 0 -32-01 59 60 1 0 -53-01 58 48 1 0	-89-02 68 87 2 0 -18-01 57 51 0 -36-01 57 62 1 0 -71-01 54 50 1 0	.55-02 73 83 1 0 .11-01 70 69 0 0 .22-01 68 56 0 0 .44-01 70 44 1 1
ALPHA RETA WA WS WO DR	.044 .37 41 64 1 0 .036 .75 36 56 0 -1 .031 1.5 35 50 0 -4 .028 3.0 32 44 0 6	.069 1.4 70 86 1 0 .060 2.9 65 74 1 0 .052 5.7 59 61 0 0 .046 11. 57 49 0 0	.026 .31 59 84 5 0 .021 .61 50 75 3 0 .017 1.2 41 64 2 -1 .014 2.5 35 55 1 -1	.014 .63 38 77 10 4 .010 1.3 29 72 5 5 .008 2.5 23 64 2 6 .006 5.1 19 56 1 9	.030 .26 64 87 4 0 .025 .53 56 77 3 1 .020 1.1 48 65 2 1 .017 2.1 42 55 1 1	.028 .28 63 84 5 0 .023 .56 53 75 3 0 .018 1.1 44 65 2 1 .015 2.2 38 55 1 1	.023 .448 51 83 5 -2 .018 .96 42 73 3 -2 .014 1.9 34 64 2 -3 .012 3.8 29 55 1 -4	.025 .35 57 83 5 0 .020 .70 48 74 3 0 .016 1.4 39 64 2 0 .013 2.8 33 55 1 -1	.069 .79-02 69 86 2 0 .059 .16-01 64 73 1 0 .051 .32-01 59 60 1 0 .046 .63-01 58 48 1 0	.065 .89-02 68 87 2 0 .056 .18-01 62 75 1 0 .048 .36-01 57 62 1 0 .042 .71-01 54 50 1 0	.085 .55-02 73.83 1 0 .076 .11-01 20.69 0 0 .068 .22-01 68.56 0 0 .064 .44-01 70.44 1 1
SHIFT ALPHA BETA WA WS WO DR	529 .044 .37 41 64 1 0 295 .036 .75 36 56 0 -1 794-01 .031 1.5 33 50 0 -4 .625-01 .028 3.0 32 44 0 6	3.00 .069 1.4 70 86 1 0 3.15 .060 2.9 65 74 1 0 3.01 .052 5.7 59 61 0 2 2.62 .046 11 57 49 0 0	.347-01 .026 .31 59 84 5 0 .346-01 .021 .61 50 75 3 0 .304-01 .017 1.2 41 64 2 -1 .235-01 .014 2.5 35 55 1 -1	.155-01 .014 .63 38 77 10 4 .142-01 .010 1.3 29 72 5 5 .114-01 .008 2.5 23 64 2 6 .795-02 .006 5.1 19 56 1 9	.433-01 .030 .26 64 87 4 0 .452-01 .025 .53 56 77 3 1 .424-01 .020 1.1 48 65 2 1 .356-01 .017 2.1 42 55 1 1	.364-01 .028 .28 63 84 5 0 .367-01 .023 .56 53 75 3 0 .333-01 .018 1.1 44 65 2 1 .270-01 .015 2.2 38 55 1 1	.385-01 .023 .448 51 83 5 -2 .375-01 .018 .96 42 73 3 -2 .316-01 .014 1.9 34 64 2 -3 .229-01 .012 3.8 29 55 1 -4	.356-01 .025 .35 57 83 5 0 .353-01 .020 .70 48 74 3 0 .310-01 .016 1.4 39 64 2 0 .239-01 .013 2.8 33 55 1 -1	-917-01 .069 .79-02 69 86 2 0 -961-01 .059 .16-01 64 73 1 0 -913-01 .051 .32-01 59 60 1 0 .777-01 .046 .63-01 58 48 1 0	.855-01 .065 .89-02 58 87 2 0 .905-01 .055 .18-01 57 2 1 0 .872-01 .048 .36-01 57 62 1 0 .759-01 .048 .36-01 54 50 1 0	.150 .085 .55-02 73 83 1 0 .155 .076 .11-01 70 69 0 0 .144 .068 .22-01 68 56 0 0 .123 .064 .44-01 70 44 1 1
WIDTH SHIFT ALPHA RETA WA WS WO DR	1,46 529 .044 .37 41 64 1 0 1,89 295 .036 .75 36 56 0 -1 2.51 794-01 .031 1.5 35 50 0 -4 2.63 .675-01 .028 3.0 32 44 0 6	2.68 3.00 .069 1.4 70 86 1 0 3.26 3.15 .060 2.9 65 74 1 0 3.98 3.01 .052 5.7 59 61 0 4.65 2.62 .0146 11 57 49 0	*388-01 *347-01 *026 *31 59 84 5 0 *514-01 *346-01 *021 *61 50 75 3 0 *695-01 *304-01 *017 1.2 41 64 2 -1 *904-01 *235-01 *014 2.5 35 55 1 -1	*288-01 *155-01 *014 *63 38 77 10 4 *418-01 *142-01 *010 1.3 29 72 5 5 *601-01 *114-01 *008 2.5 23 64 2 6 *810-01 *795-02 *006 5.1 19 56 1 9	.433-01 .433-01 .030 .26 64 87 4 0 .550-01 .452-01 .025 .53 56 77 3 1 .723-01 .424-01 .020 1.1 48 65 2 1 .923-01 .356-01 .017 2.1 42 55 1 1	.361-01 .364-01 .028 .28 63 84 5 0 .480-01 .367-01 .023 .56 53 75 3 0 .649-01 .333-01 .018 1.1 44 65 2 1 .843-01 .270-01 .015 2.2 38 55 1 1	*534-01 *385-01 *023 *48 51 83 5 -2 *723-01 *375-01 *018 *96 42 73 3 -2 *997-01 *316-01 *014 1*9 34 64 2 -3 *131 *229-01 *012 3*8 29 55 1 -4	.413-01 .356-01 .025 .35 57 83 5 0 .553-01 .353-01 .020 .70 48 74 3 0 .758-01 .310-01 .016 1.4 39 64 2 0 .994-01 .239-01 .013 2.8 33 55 1 -1	.834-01 .917-01 .069 .79-02 69 86 2 0 .101 .951-01 .059 .15-01 64 73 1 0 .123 .913-01 .051 .32-01 59 60 1 0 .122 .787-01 .046 .53-01 58 48 1 0	.803-01 .855-01 .065 .89-02 68 87 2 0 .982-01 .905-01 .056 .18-01 u2 75 1 0 .121 .872-01 .048 .39-01 u2 76 1 0 .143 .759-01 .042 .71-01 54 50 1 0	.128 .150 .085 .55-02 73 83 1 0 .155 .155 .076 .11-01 70 69 0 0 .173 .144 .068 .22-01 68 56 0 0 .123 .124 .064 .449-01 70 44 1 1
TEMP. WIDTH SHIFT ALPHA RETA WA WS WO DR	1 000 1.46 529 .044 .37 41 64 1 0 1 10000 1.89 295 .035 .75 35 56 -1 2 0000 2.31 794-01 .031 1.5 .35 50 -4 4 0002 2.31 0794-01 .032 3.0 .35 44 0 6	5000 2.68 3.00 .069 1.4 70 86 1 0 10000 3.26 3.15 .060 2.9 65 74 1 0 20000 3.98 3.01 .052 5.7 59 61 0 20000 4.65 2.62 .046 11 57 49 0	5000 .388-01 .347-01 .026 .31 59 84 5 0 10000 .514-01 .346-01 .021 .61 50 75 3 0 20000 .695-01 .304-01 .017 1.2 41 64 2 -1 40000 .904-01 .235-01 .014 2.5 35 55 1 -1	5000 .288-01 .155-01 .014 .63 38 77 10 4 10000 .418-01 .1142-01 .010 1.3 29 72 5 5 20000 .601-01 .114-01 .008 2.5 23 54 2 6 40000 .810-01 .775-02 .006 5.1 19 56 1 9	5000 433-01 4433-01 030 26 64 87 4 0 10000 550-01 4452-01 025 53 56 77 3 1 20000 723-01 424-01 025 1.1 48 65 2 1 40000 923-01 356-01 017 2.1 42 55 1 1	5000 .364-01 .364-01 .028 .28 63 84 5 0 10000 .480-01 .357-01 .023 .56 53 75 3 0 20000 .6449-01 .333-01 .018 1.1 44 65 2 40000 .843-01 .015 2.2 38 55 1 1	5000 534-01 385-01 023 48 51 83 5 -2 10000 723-01 375-01 018 96 42 73 3 -2 20000 997-01 316-01 014 1.9 34 64 2 -3 4000 131 229-01 012 3.8 29 55 1 -4	\$6000 .413-01 .356-01 .025 .35 57 83 5 0 10000 .553-01 .353-01 .020 .70 48 74 3 0 20000 .758-01 .316-01 .016 1.4 39 64 2 0 40000 .994-01 .239-01 .013 2.8 33 55 1 1	0 0 634-01 .917-01 .069 .79-02 69 86 2 0 10000 101 .951-01 .059 .16-01 64 73 1 0 20000 .123 .913-01 .051 .32-01 59 1 0 20000 .123 .913-01 .051 .32-01 59 1 0 40000 .124 .777-01 .076 .63-01 58 48 1	5000 .803-01 .855-01 .065 .89-02 .66 87 2 0 10000 .982-01 .905-01 .056 .18-01 .2 0 <l< th=""><th>5000 .128 .150 .085 .55-02 73.83 1 0 10000 .150 .076 .11-01 70.63 0 0 20000 .173 .144 .068 .22-01 68 56 0 40000 .173 .123 .064 .44-01 70.44 1 1</th></l<>	5000 .128 .150 .085 .55-02 73.83 1 0 10000 .150 .076 .11-01 70.63 0 0 20000 .173 .144 .068 .22-01 68 56 0 40000 .173 .123 .064 .44-01 70.44 1 1
ELEMENT TEMP. WIDTH SHIFT ALPHA BETA WA WS WO DR	1+634 (18) .000 1.46 529 .044 .37 41.64 0 MuLT: 1.0000 1.89 295 .075 35.56 0 -1 Ju-4F 2.000 2.31 794-01 .031 1.5 35.50 0 -4 Ju-4F 2.000 2.43 -6675-01 .028 3.01 52.44 0 -4	23845 (21) 5000 2.68 3.00 .069 1.4 70 86 1 0 MuLT: 10000 3.26 3.15 .060 2.9 65 74 1 0 3u-5P 20000 3.98 3.01 .052 5.7 59 61 0 7/2-5/2 4u000 4.65 2.62 .046 11. 57 49 0 0	BLIS (25) 5000 .388-01 .347-01 .026 .31 59 84 5 0 WULT: 10000 .514-01 .346-01 .021 .61 50 75 3 0 42-4P 20000 .695-01 .304-01 .017 1.2 41 64 2 -1 3/2-5/2 .40000 .904-01 .235-01 .014 2.5 35 55 1 -1	8425 (33) 5000 288-01 155-01 014 63 38 77 10 4 MULT: 10000 448-01 .142-01 .010 1.3 29 72 5 45-4P 20000 .601-01 .114-01 .008 2.5 23 64 2 3/2-5/2 40000 .810-01 .775-02 .006 5.1 19 56 1	A104 134 1 5000 4433-01 4433-01 030 26 64 87 4 0 WULT: 10000 550-01 4452-01 025 553 56 77 3 1 45-4P 20000 723-01 442-01 020 1.1 48 65 2 1 3/2-3/2 40000 923-01 356-01 017 2.1 42 55 1 1	7948 (43) 5000 .361-01 .364-01 .028 .28 63 84 5 0 WULT: 10000 .480-01 .367-01 .023 .56 53 75 3 0 45-4P 20000 .649-01 .333-01 .018 1.1 44 65 2 1 4.2-3/2 40000 .843-01 .270-01 .015 2.2 38 55 1 1	9225 (48) 5000 534-01 385-01 023 48 5183 5 -2 MuLT: 10000 723-01 375-01 018 96 42 73 3 -2 45-4P 20000 997-01 315-01 014 1.9 34 64 2 -3 1/2-3/2 40000 131 229-01 012 3.8 29 55 1 -4	8408 (50) 5000 413-01 .356-01 .025 .35 57 55 0 MULT: 10000 .553-01 .355-01 .020 .70 48 74 3 0 40-4P 2.0000 .758-01 .315-01 .016 1.4 39 64 2 0 1/2-3/2 40000 .994-01 .239-01 .013 2.8 33 55 1 1	4cul (54) 5000 .834-01 .917-01 .069 .79-02 69 86 2 0 wuLT: 10000 .101 .961-01 .059 .16-01 64 73 1 0 4-5P 20000 .123 .915-01 .051 .32-01 59 60 1 0 3/2-5/2 40000 .142 .7P7-01 .046 .63-01 58 48 1 0	4<72 (62) 3000 803-01 855-01 065 89-02 88 7 2 0 MuLT: 13500 982-01 975-01 055 18-01 2 1 0 45-5P 2000 121 872-01 056 18-01 2 1 0 45-5P 2000 121 872-01 04.8 36-01 2 1 0 372-372 40000 143 775-01 042 71-01 54 1 0	#196 (64) 5000 .128 .150 .085 .55-02 73.83 1 0 MULT: 1'0000 .150 .155 .076 .11-01 70.63 0 MULT: 1'0000 .150 .155 .076 .11-01 70.63 0 MULT: 1'0000 .173 .194 .068 .222-01 68.56 0 0 45-5F 20000 .173 .144 .068 .222-01 68.56 0 0 3/2-1/2 49000 .189 .123 .064 .44-01 70.44 1 1

ZAKLJUČAK

Uporedjivanjem eksperimentalnih i teorijskih vrednosti za poluširinu linije dolazi se do zaključka da su neslaganja izmedju teorije i eksperimenta od 30% do 40% osim za liniju 4272 Å gde je neslaganje 18%. Teorijske vrednosti bile su uvek veće od eksperimentalnih.

LITERATURA

1. Baranger, M., Phys. Rev., 111, 494 (1958.) in Atomic and Molecular Processes, ch. V, 2. Baranger, M., ed. Bates, Acad. Press. New York (1962). 3. Sahal-Bréchot, S., Astron. Astrophys., 1. 91, (1969.) 4. Seatom, M.J., Proc. Phys. Soc. 79, 1105 (1962.) 5. Burgess, A., Proceedings of the Symposium on Atomic Collisions processes in Plasmas, Culham, England (1963.)6. Griem, H.R. Phys. Rev. 140 A, 1140 (1965.) 7. Griem, H.R. Plasma Spectroscopy, Mcgraw-Hill Book Co., New York, (1964.) 8. Bréchot, S., Vam Regemorter, H., Ann. d'Astr. 37, 439 (1964.)9. Lorentz, H.A., Proc. Roy. Sci., 8, 591 Amsterdam (1906.) 10. Blandin, J., Sahal-Brechot, S., Chapelle, J. and Sy, A. 26 A, 487 (1968.) 11. H.C. Vande Hulst J.J.M. Reesinsk, Astro Phys. J. 106 (1947) 121 12. J.T. Davies and J.M. Vanghan, Astro Phys. J. 137 (1963) 1302. 13. Purić, J., Ispitivanje Štark-ovog širenja i pomeranja spektralnih linija neutralnih atoma i jona u plazmi - Doktorska disertacija (1972). 14. Wiese W.L., Smith M.W. and Miles B.B., Atomic transition probabilites Institute for Basic standards Washington D.C. (1969) 15. Vidal, C.R., Cooper J. and Smith E.W. Hydrogen Stark broadening tables (1972).

16. Konjević N., Širenje spektralnih linija u plazmi, Predavanje na kongresu Matematičara, Fizičara i Astronoma Jugoslavije, Ohrid (1970.)

17. Djurović Stevica, Štark⇔ovo širenje spektralnih linija H_β i H_ℓ u plazmi, Diplomski rad, Novi Sad PMF 1975.

