

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA FIZIKU

Električne osobine nanokristalnih ferita tipa $Ni(Fe_xY_{2-x})O_4$, (x = 2, 1.7, 1.8, 1.95)

- diplomski rad -

Mentor: prof. dr Srđan Rakić Kandidat: Ivica Patarčić

Novi Sad, 2014

Ovom prilikom želim da se zahvalim:

dr Srđanu Rakiću, redovnom profesoru Prirodno-matematičkog fakulteta u Novom Sadu, mentoru ovog rada, na pomoći u izradi ovog rada.

mr Stevanu Jankovu, asistentu Prirodno-matematičkog fakulteta u Novom Sadu, na korisnim primedbama i sugestijama pri izradi ovog rada.

Rad posvećujem supruzi Danijeli

Sadržaj

1. 000D	4
2. SINTEZA NANOMATERIJALA	6
2.1 Mehanohemijske metode	6
2.2 Metode sinteze iz tečne faze	6
2.3 SINTEZA IZ GASNE FAZE	8
2.4 Metode formiranja in situ	8
2.5 SINTEZA ISPITIVANOG UZORKA	9
3. STRUKTURA SPINELNIH FERITA	9
4. ELEKTRIČNE, DIELEKTRIČNE I MAGNETNE OSOBINE	13
4.1 MAGNETNE OSOBINE	
4.2 Električne osobine	
4.2.1 Električna provodljivost materijala	
4.2.2 Feriti u konstantnom električnom polju	
4.3 DIELEKTRIČNE OSOBINE	
4.3.1 Polarizacioni mehanizmi	16
5. POLARIZACIJA U KONSTANTNOM ELEKTRIČNOM POLJU	17
6. POLARIZACIJA U PROMENJIVOM ELEKTRIČNOM POLJU	
6.2 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ORIJENTACIJSKOJ POLARIZACIJI	20
6.2 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ORIJENTACIJSKOJ POLARIZACIJI	20 24
 6.2 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ORIJENTACIJSKOJ POLARIZACIJI 6.3 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ELEKTRONSKOJ POLARIZACIJI 6.4 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ JONSKOJ POLARIZACIJI 	20 24 26
 6.2 Uticaj frekvencije pri dominirajućoj orijentacijskoj polarizaciji 6.3 Uticaj frekvencije pri dominirajućoj elektronskoj polarizaciji 6.4 Uticaj frekvencije pri dominirajućoj jonskoj polarizaciji 6.5 Dielektrični gubici	20 24 26 29
 6.2 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ORIJENTACIJSKOJ POLARIZACIJI 6.3 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ELEKTRONSKOJ POLARIZACIJI 6.4 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ JONSKOJ POLARIZACIJI 6.5 DIELEKTRIČNI GUBICI 7. OSOBINE ISPITIVANIH UZORAKA 	20 24 26 29 31
 6.2 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ORIJENTACIJSKOJ POLARIZACIJI 6.3 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ELEKTRONSKOJ POLARIZACIJI 6.4 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ JONSKOJ POLARIZACIJI 6.5 DIELEKTRIČNI GUBICI 7. OSOBINE ISPITIVANIH UZORAKA 7.1 MERNI UREĐAJ 	20 24 26 29
 6.2 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ORIJENTACIJSKOJ POLARIZACIJI 6.3 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ELEKTRONSKOJ POLARIZACIJI 6.4 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ JONSKOJ POLARIZACIJI 6.5 DIELEKTRIČNI GUBICI 7. OSOBINE ISPITIVANIH UZORAKA 7.1 MERNI UREĐAJ 7.2. DIELEKTRIČNE OSOBINE I PROVODLJIVOST KOD ISPITIVANOG NANOKRISTALNOG FERITA 	20 24 26 29 31 31 33
 6.2 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ORIJENTACIJSKOJ POLARIZACIJI 6.3 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ELEKTRONSKOJ POLARIZACIJI 6.4 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ JONSKOJ POLARIZACIJI 6.5 DIELEKTRIČNI GUBICI 7. OSOBINE ISPITIVANIH UZORAKA 7.1 MERNI UREĐAJ 7.2. DIELEKTRIČNE OSOBINE I PROVODLJIVOST KOD ISPITIVANOG NANOKRISTALNOG FERITA 7.2.1 Frekventna zavisnost dielektrične propustljivosti. 	20 24 26 29 31 31 33 33 34
 6.2 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ORIJENTACIJSKOJ POLARIZACIJI 6.3 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ELEKTRONSKOJ POLARIZACIJI 6.4 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ JONSKOJ POLARIZACIJI 6.5 DIELEKTRIČNI GUBICI 7. OSOBINE ISPITIVANIH UZORAKA 7.1 MERNI UREĐAJ 7.2. DIELEKTRIČNE OSOBINE I PROVODLJIVOST KOD ISPITIVANOG NANOKRISTALNOG FERITA 7.2.1 Frekventna zavisnost dielektrične propustljivosti 7.2.2 Frekventna zavisnost provodljivosti uzoraka 	20 24 26 29 31 31 33 33 34 37
 6.2 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ORIJENTACIJSKOJ POLARIZACIJI 6.3 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ELEKTRONSKOJ POLARIZACIJI 6.4 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ JONSKOJ POLARIZACIJI 6.5 DIELEKTRIČNI GUBICI 7. OSOBINE ISPITIVANIH UZORAKA 7.1 MERNI UREĐAJ 7.2. DIELEKTRIČNE OSOBINE I PROVODLJIVOST KOD ISPITIVANOG NANOKRISTALNOG FERITA 7.2.1 Frekventna zavisnost dielektrične propustljivosti. 7.2.2 Frekventna zavisnost provodljivosti uzoraka 7.2.3 Frekventna zavisnost tangensa gubitaka 	20 24 26 29 31 31 33 33 34 37 39
 6.2 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ORIJENTACIJSKOJ POLARIZACIJI 6.3 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ELEKTRONSKOJ POLARIZACIJI 6.4 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ JONSKOJ POLARIZACIJI 6.5 DIELEKTRIČNI GUBICI 7. OSOBINE ISPITIVANIH UZORAKA 7.1 MERNI UREĐAJ 7.2. DIELEKTRIČNE OSOBINE I PROVODLJIVOST KOD ISPITIVANOG NANOKRISTALNOG FERITA 7.2.1 Frekventna zavisnost dielektrične propustljivosti 7.2.3 Frekventna zavisnost tangensa gubitaka 7.2.4 Temperaturna zavisnost dielektrične propustljivosti 	20 24 26 29 31 31 33 34 37 39 41
 6.2 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ORIJENTACIJSKOJ POLARIZACIJI 6.3 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ELEKTRONSKOJ POLARIZACIJI 6.4 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ JONSKOJ POLARIZACIJI 6.5 DIELEKTRIČNI GUBICI 7. OSOBINE ISPITIVANIH UZORAKA 7.1 MERNI UREĐAJ 7.2. DIELEKTRIČNE OSOBINE I PROVODLJIVOST KOD ISPITIVANOG NANOKRISTALNOG FERITA 7.2.1 Frekventna zavisnost dielektrične propustljivosti 7.2.3 Frekventna zavisnost tangensa gubitaka 7.2.4 Temperaturna zavisnost provodljivosti 	20 24 26 29 31 31 33 34 34 37 39 41 43
 6.2 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ORIJENTACIJSKOJ POLARIZACIJI 6.3 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ELEKTRONSKOJ POLARIZACIJI 6.4 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ JONSKOJ POLARIZACIJI 6.5 DIELEKTRIČNI GUBICI 7. OSOBINE ISPITIVANIH UZORAKA 7.1 MERNI UREĐAJ 7.2. DIELEKTRIČNE OSOBINE I PROVODLJIVOST KOD ISPITIVANOG NANOKRISTALNOG FERITA 7.2.1 Frekventna zavisnost dielektrične propustljivosti 7.2.3 Frekventna zavisnost tangensa gubitaka 7.2.4 Temperaturna zavisnost dielektrične propustljivosti 7.2.5 Temperaturna zavisnost tangensa ugla gubitaka 	20 24 26 29 31 31 33 33 34 37 39 41 43 45
 6.2 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ORIJENTACIJSKOJ POLARIZACIJI 6.3 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ ELEKTRONSKOJ POLARIZACIJI 6.4 UTICAJ FREKVENCIJE PRI DOMINIRAJUĆOJ JONSKOJ POLARIZACIJI 6.5 DIELEKTRIČNI GUBICI 7. OSOBINE ISPITIVANIH UZORAKA 7.1 MERNI UREĐAJ 7.2. DIELEKTRIČNE OSOBINE I PROVODLJIVOST KOD ISPITIVANOG NANOKRISTALNOG FERITA 7.2.1 Frekventna zavisnost dielektrične propustljivosti 7.2.3 Frekventna zavisnost tangensa gubitaka 7.2.4 Temperaturna zavisnost dielektrične propustljivosti 7.2.5 Temperaturna zavisnost tangensa ugla gubitaka 8. ZAKLJUČAK 	20 24 26 29 31 31 33 33 34 37 39 41 43 45 47

1. Uvod

Nanomaterijale definišemo kao materijale kod kojih je bar jedna spoljna dimenzija reda veličine 1 - 100nm. Nanočestice su objekti kod kojih su sve tri spoljne dimenzije reda veličine nm.¹ Nanočestice koje se pojavljuju u prirodi (npr. vulkanski pepeo, čađ od požara) ili koje se nusprodukti procesa sagorevanja obično su fizički i hemijski heterogene i često ih nazivamo ultrafinim česticama. Dizajnirane nanočestice su namerno proizvedene i dizajnirane sa vrlo specifičnim svojstvima povezanim sa oblikom, veličinom, hemijom i osobinama površine. Često ponašanje nanočestica više zavisi od površine čestice nego od samog sastava.

18. oktobra 2011. god Evropska komisija usvojila je sledeću definiciju nanomaterijala:

Prirodni, slučajni ili proizvedeni materijal koji sadrži čestice u nevezanom stanju ili kao agregat ili aglomerat² i gde za 50% ili više čestica u datoj distribuciji veličine ima jednu ili više dimenzija u intervalu 1nm - 100nm.

Materijali na koje mislimo kada kažemo nanomaterijali, opšte govoreći, obično padaju u jednu od dve kategorije: fulerene i nanočestice (prahove).³

Fulereni su opšti naziv za familiju ugljeničnih klastera koji su konceptualno listovi (sheets) grafita urolani u cevi ili sfere. Tu spadaju ugljenične nanocevi (ili silikonske nanocevi) koje su interesantne zbog svoje mehaničke čvrstine i zbog električnih osobina. Na slici levo je fuleren C_{60} .

Nanočestice su od velikog naučnog značaja jer efektivno

predstavljaju most između voluminoznih (bulk) materijala i atomskih ili molekularnih struktura. Bulk materijal treba da ima nepromenjive fizičke osobine bez obzira na veličinu, ali na nanoskali ovo često nije slučaj. Interesantna i nekad neočekivana svojstva nanočestica su obično posledica odnosa površine i zapremine. Takva svojstva su npr.: kvantni confinement u poluprovodničkim česticama, površinska rezonancija plazme, supermagnetna svojstva u magnetnim materijalima, itd.... Takođe, za materijale reda veličine *nm* broj čestica na površini srazmerno čini najveći deo atoma samog nanomaterijala. U ovom slučaju difuzija se odigrava na relativno niskim temperaturama i stoga tačke topljenja mogu biti znatno niže u odnosu na bulk materijal. Interesantno je da neka svojstva nisu uvek željena. Feromagnetni materijali manji od 10*nm* mogu da promene smer magnetizacije koristeći termalnu energiju sobne temperature i na taj način postaju nepodobni za skladištenje podataka.

¹ http://www.stanford.edu/dept/EHS/prod/researchlab/IH/nano/what_are_nanomaterials.html

² Sastoje se od više kristalita(postoji prostorna uređenost, a kristaliti su razdvojeni površinama gde ne postoji prostorna uređenost

³ http://en.wikipedia.org/wiki/Nanomaterials

1kg čestica zapremine $1mm^3$ ima istu površinu kao 1mgčestica zapremine $1nm^3$.

Od posebnog značaja su nanočestice načinjene od metala, poluprovdnika ili oksida, koje zovemo i nanokristalima, zbog svojih mehaničkih, električnih, optičkih, hemijskih i drugih osobina.

U ovom radu biće predstavljeni rezultati ispitivanja električnih osobina ferita tipa $NiFe_2O_4$. Feritni prahovi dobijeni su metodom taloženja.

2. Sinteza nanomaterijala

Postoje četiri opšte metode za dobijanje nanomaterijala:

- 1. Mehanohemijske metode;
- 2. Sinteza iz tečne faze;
- 3. Sinteza iz gasne faze;
- 4. Metode formiranja in situ.

2.1 Mehanohemijske metode

Pod ovom metodom podrazumeva se mlevenje jednog ili smeše prahova u različitim tipovima mlinova. Svrha postupka je promena veličine i oblika nanočestica, promena osobina datog uzorka i homogenizacija. Pri mlevenju odigravaju se mnogi procesi na atomskom, mikroskopskom i makroskopskom nivou usled kojih dolazi do obrazovanja i kretanja defekata u strukturi, smicanje i lom čestica, lokalno zagrevanje i emisija elektrona, itd. Najbitnija osobina ove metode je smanjenje veličine kristalita. Dobijaju se nanokristali veličine 5 - 20 nm.

Prednost ove metode je u niskoj ceni opreme, jednostavnosti i mogućnosti dobijanja širokog spektra neorganskih materijala i metala. Kao nedostaci obično se pominju aglomeracija praga, široka distribucija veličine dobijenih čestica, otežano dobijanje čestica veoma malih dimenzija i kontaminacija uzorka koju je nemoguće izbeći.

2.2 Metode sinteze iz tečne faze

U ovu grupu metoda ubrajamo: sol-gel, hemijsku koprecipitaciju i hidrotermalnu metodu.

Sol-gel metoda ima dve faze: hidrolizu i kondenzaciju metal-alkoksida. Ovom metodom mogu se, između ostalog, dobiti balk i nanočestični feriti. Proces sinteze uslovljen je spoljašnjim i unutrašnjim parametrima koji utiču na hidrolizu i kondenzaciju. Promenom ovih parametara utiče se na osobine dobijenog proizvoda. Korišćenjem ove metode dobija se koloidni dvofazni sistem – gel, čijim sušenjem dobijamo praškasti uzorak koji se zatim zagreva kako bi se oslobodio isparljivih organskih nečistoća. Prednost ove metode je mogućnost sinteze velikih količina materijala, pristupačnost opreme i zadovoljavajuća raspodela veličine dobijenog uzorka. Kao nedostatak izdvajaju se teškoće u postizanju potrebnih stehiometrijskih odnosa.

Hemijska koprecipitacija (taloženje) sastoji se u mešanju rastvora sa dispergovanim jonima na atomskom nivou u željenom odnosu na određenoj temperaturi i pritisku. Dobijaju se homogene smeše u kojima se formira čvrst talog različitih jona u zahtevanom odnosu. Nedostatak ove metode je, opet, postizanje potrebnih stehiometrijskih odnosa.

Postupak dobijanja nanočestičnih ferita ovom metodom sastoji se iz nekoliko faza. Prvo rastvaramo u destilovanoj vodi određene količine (biramo koncentracije na osnovu željene stehiometrije ferita) metalnih soli (uglavnom nitrati, hloridi i sulfati) pri čemu usled disocijacije dolazi do oslobađanja metalnih jona. Tako pripremljen rastvor mešamo sa alkalnom bazom (najčešće NaOH) koja izaziva izdvajanje nanočestičnog ferita u vidu taloga. Zatim dobijeni talog ferita se odvaja od rastvora (najčešće centrifugiranjem), ispira nekoliko puta, suši i termički tretira (sinteruje).

Hidrotermalna sinteza je metod koji se može koristiti samostalno ili može predstavljati jednu od faza tokom procesa sinteze. Ovom metodom se polazna suspenzija ili homogeni rastvor metalnih soli izlaže dejstvu visoke temperature (do ~ 400 °C) i pritiska (do 100MPa), koji utiču na kinetiku faznih transformacija i omogućuju, preko procesa rastvaranja i naknadnog formiranja čvrste faze, dobijanje nehidratisanih oksidnih nanočestica. Kao prednost ove metode izdvaja je to što se finalni proizvod, nehidratisani oksid, dobija u jednostepenom procesu. Nedostaci su što se ova metoda može primenjivati samo na dobijanje oksidnih prahova i odstupanja od željene stehiometrije kod dobijenih uzoraka.

Slika 2.1 TEM mikrograf i snimak elektronske difrakcije nanokristala $NiFe_2O_4$.

Slika 2.2 SEM mikrograf nanokristala $NiFe_2O_4$.

2.3 Sinteza iz gasne faze

Metode sinteze keramičkih prahova iz gasne faze delimo na:

- *metode koje uključuju isparavanje i kondenzaciju* gde polazni materijal isparava bez hemijskih reakcija a zatim se kondenzuje pri čemu nastaju čestice koje se zatim izdvajaju iz gasne faze primenom uređaja za separaciju;
- *metode kod kojih je sinteza praćena hemijskim reakcijama u gasnoj fazi* gde se željeni materijal u vidu praha dobija usled hemijske reakcije polaznog materijala i datih supstanci u gasnom stanju.

Ove metode su se razvile iz metoda nanošenja filmova i prevlaka. Pri sintezi iz gasne faze mogu se koristiti različiti izvori energije za aktiviranje procesa isparavanja kao što su laseri, mikrotalasi, otporno zagrevanje, sagorevanje u plamenu itd. Osnovne prednosti ove metode su homogenost, čistoća i finoća oksidnih i neoksidnih čestica dobijenih na ovaj način i smanjenje kontaminacije dobijenih materijala.

2.4 Metode formiranja in situ

Metode formiranja in situ (na licu mesta) uključuju procese litografije, vakumskog taloženja (fizičkog i hemijskog naparavanja), i tehnologiju sprejnih premaza. Korišćenjem ovih metoda dobijaju se gotovi proizvodi kao što su: tranzistori, integrisana kola, senzori i druge elektronske komponente.

Sve nabrojane metode imaju svoje mane i prednosti a zajednička karakteristika im je komercijalna primena.

2.5 Sinteza ispitivanog uzorka

Nanočestični prahovi NiFe_{2-x} Y_xO_4 su sintetisani metodom taloženja, a polazne supstance su bile nitratne soli gvožđa, itrijuma i nikla. Nakon postupka koji se odvijao u nekoliko faza (rastvaranje soli u vodi, tretiranje rastvora pomoću NaOH, centrifugiranje i sušenje dobijenog taloga) prah je ispitan pomoću difrakcije X-zraka i elektronske mikroskopije kako bi se potvrdila struktura i nanočestični karakter dobijenih proizvoda.

Prahovi su zatim presovani u obliku tableta pod pritiskom od 250MPa i sinterovani na 1250°C tokom 4h.

Dobijene tablete su ponovo ispitane koristeći metod difrakcije X-zraka.

3. Struktura spinelnih ferita

Feromagnetni materijali koji su uglavnom sačinjeni od oksida gvožđa (Fe_2O_3) zovu se feriti. Magnetit (Fe_3O_4), prirodni mineral, je tipičan predstavnik. Na osnovu kristalne strukutre, ferite kategorišemo kao spinele, pervoksite, garnets i heksaferite. Nanokristalni magnetni oksidi pokazuju jedinstvena svojstva kao što su super-paramagnetizam, magnetno optička i magnetno kalorična svojstva. Sve to ih čini tehnološki izuzetno važnim.

Spinelima nazivamo izostrukturna jedinjenja sa karakterističnom spinelnom strukturom. Dobili su naziv po mineralu $MgAl_2O_4$. U opštem slučaju strukutru spinela možemo prikazati kao AB_2O_4 gde je: A^{2+} dvovalentni katjon koji se nalazi u svim tetraedarskim položajima, B^{3+} trovalentni katijon smešten u svim oktaedarskim položajima i O – dvovalentni anjon kiseonika smešten u temenim tetraedra odnosno oktaedra.

Slika 3.1. Na slici je prikazana tipična struktura spinela $MgAl_2O_4$.

- predstavlja atom tipa B, u ovom slučaju to je *Al*.

- predstavlja atom kiseonika O.

 \mathbf{M} - predstavlja atom tipa A, u ovom slučaju to je Mg.

Osnovu elementarne ćelije očigledno čini površinski centrirana kubna struktura čije se popunjavanje vrši sa četiri grupe oktanta od kojih su dve iste. Jedan oktant sadrži i oktaedarsku i tetraedarsku strukturu, pri čemu imamo naizmenično slaganje oktanta tipa tetraedar – oktaedar i oktanta tipa oktaedar – tetraedar. Isti oktanti imaju zajedničku ivicu a različitu zajedničku stranu. Metalni katjoni raspoređuju se u šupljinama između katjona kiseonika. Ukupan broj molekula u jednoj elementarnoj ćeliji je 8, što znači da jedinična ćelija sadrži 32 anijona koji formiraju 64 tetraedarske i 32 oktaedarske šupljine od kojih je 8 tetraedarskih mesta zauzeto od strane A katjona, a 16 oktaedarskih mesta zauzeto od strane B katjona.

Opšta formula nanokristalnih spinelnih ferita je MFe_2O_4 , u koju grupu spada i $NiFe_2O_4$ koji ispitujemo. On imaju strukturu inverznog spinela. Razlika je u tome što A^{2+} sada zauzimaju polovinu tetraedarskih položaja i polovinu oktaedarskih položaja. Isto važi i za , B^{3+} koji sada zauzima polovinu tetraedarskih i polovinu oktaedarskih položaja

Slika 3.2. Struktura inverznog spinela $NiFe_2O_4$.

Slika 3.3. Ovde vidimo na uvećanom delu *Fe* u tetraedarskom položaju.

Slika 3.4. Na uvećanom delu prikazan je *Fe* u oktaedarskom položaju.

Slika 3.5. Na uvećanom delu prikazani su položaji *Ni*.

Spinel se može predstaviti formulom:

$$(A_{1-\delta}^{2+}B_{\delta}^{3+})[A_{\delta}^{2+}B_{2-\delta}^{3+}]O_4^{2-}$$

gde je δ stepene inverzije koji pokazuje koji deo tetraedarskih mesta A je zauzet katjonima B. U zavisnosti od vrednosti δ razlikujemo tri slučaja:

- $\delta = 0$, normalna spinelna struktura. Svi katjoni A zauzimaju tetraedarske položaje, a svi katjoni B zauzimaju oktaedarske položaje. Formula jedinjenja je tada AB_2O_4 .
- $\delta = 1$, inverzna spinelna struktura. Polovina katjona B zajedno sa katjonima A zauzima oktaedarske položaje. Preostala polovina B katjona je u tetraedarskim položajima. Formula jedinjenja u ovom slučaju je $B(AB)O_4$.
- $\delta = \frac{1}{3}$, mešovita spinelna struktura. Raspodela katjona je između normalne i inverzne strukture.

4. Električne, dielektrične i magnetne osobine

4.1 Magnetne osobine

Feromagnetni bulk materijali poseduju magnetne osobine koje su određene domenima i odgovarajućim domenskim zidovima. Unutar jednog magnetnog domena, materijal je homogeno namagnetisan i svi elementarni momenti su usmereni u istom pravcu i smeru. Pravac namagnetisanja varira od domena do domena, a prelazne oblasti koje razdvajaju domene su domenski zidovi.

Smanjenjem dimenzija magnetika ispod određene kritične vrednosti formiranje magnetnih domena u materijalu više nije energetski povoljno, te čestice materijala egzistiraju kao jednodomenske. Ova pojava je zaslužna za veliku primenu feromagnetnih materijala. Kod materijala u formi jednodomenskih feromagnetnih čestica reda veličine 10 - 100 nm, postoji mogućnost upotrebe za binarni zapis u magnetnim memorijama jer su tada moguće samo dve vrednosti magnetnog momenta svakog domena.

Kod jednodomenskih nanočestičnih feromagnetnih materijala se javlja supermagnetizam. Supermagnetizam je pojava pri kojoj se svaka čestica ponaša kao atom sa veliki rezultujućim magnetnim momentom a vektori magnetizacije su nasumično orijentisani. U skladu sa tim do uređenja dolazi samo u spoljašnjem magnetnom polju.

4.2 Električne osobine

Električne osobine opisuju ponašanje materijala u promenljivom električnom polju. Za karakterizaciju materijala najčešće se koriste njegova električna provodljivost (otpornost) i dielektrična propustljivost, polarizacija itd..

4.2.1 Električna provodljivost materijala

Sposobnost provođenja struje u nekom materijalu u najvećoj meri zavisi od koncentracije kvazislobodnih naelektrisanja (elektrona i šupljina) u njemu, mada u izvesnoj meri ova provodljivost može biti uzrokovana defektima (vakancijama) u kristalnoj strukturi, koji dovode do jonske provodljivosti.

Specifična električna provodljivost može se izraziti relacijom:

$$\sigma = en\mu$$

gde je *n* koncentracija slobodnih naelektrisanja, $\mu = \frac{en\tau}{m^*}$ pokretljivost elektrona (τ je srednje vreme slobodnog puta elektrona a m^* je efektivna masa).

Recipročna vrednost provodljivosti je otpornost $\rho = \frac{1}{\sigma}$.

Vrednost specifične električne otpornosti za različite materijale varira u širokim granicama, pa se može uzeti kao jedan od kriterijuma klasifikacije materijala. Provodnicima se smatraju materijali kod kojih je električna provodljivost u intervalu $10^6 (\Omega m)^{-1} < \sigma < 10^8 (\Omega m)^{-1}$, a dielektricima kod kojih je $10^6 (\Omega m)^{-1} < \sigma < 10^{-8} (\Omega m)^{-1}$. Poluprovodnicima se smatraju materijali čija provodnost upada u opseg između datih intervala.

4.2.2 Feriti u konstantnom električnom polju

Spinelne ferite po specifičnoj provodnosti i direktnoj proporcionalnosti između provodnosti σ i temperature *T* svrstavamo u poluprovodnike. Njihova provodnost je data sa:

$$\sigma = \sigma_0 e^{-\frac{E_0}{kT}}$$

Veličina E_0 , kod klasičnih kristalnih poluprovodnika (zonski model provodnosti), naziva se energija aktivacije. Za sopstvene poluprovodnike ona odgovara širini zabranjene zone dok se kod primesnih poluprovodnika dovodi u vezu sa udaljenošću donorskog (akceptorskog) nivoa od dna provodne (vrha valentne) zone.

U slučaju spinelnih ferita ne može se primeniti zonski model provodnosti. U skladu sa tim E_0 ima drugačiju interpretaciju. Zavisnost provodnosti od temperature u širem temperaturnom intervalu je vrlo složena i ne može se adekvatno objasniti. Kod nekih ferita uočava se promena karaktera provodnosti na određenoj temperaturi ili postepena promena u određenom temperaturnom intervalu.

U slučaju spinelnih ferita primenjuje se takozvani **preskočni mehanizam provodnosti**. Kod oksida kod kojih postoje katjoni prelaznih metala (kao što su spinelni feriti) u različitim valentnim stanjima te može doći do preskakanja elektrona sa jednog na drugi katjon⁴. Ukoliko se na određenim Wyckoffovim položajima u rešetki kristala nalaze joni istog elementa sa valencama koje se razlikuju za jedinicu, verovatnoća preskoka je veća. Ti preskoci mogu se odigravati pod dejstvom termičkih pobuđenja i u odsustvu spoljašnjeg električnog polja ali su statistički jednako raspoređeni u svim pravcima i ne daju rezultujuću struju kroz materijal. Uvođenje električnog polja daje rezultujuću struju u pravcu polja, duž kojeg se odigrava najveći broj preskoka elektrona između katjona prelaznih metala. Ovaj proces analogan je procesu difuzije pri čemu je uzrok usmerenog kretanja naelektrisanja električna sila a ne gradijent koncetracija kvazi-slobodnih čestica.

Za koeficijent difuzije D_H važi relacija:

$$D_H = \beta \alpha^2 P_H$$

gde je:

- α dužina preskoka (rastojanje katijona između kojih se odigrava preskok elektrona;
- β numerički parametar koji zavisi od geometrije rešetke

14

⁴ Transfer elektrona možemo predstaviti pomoću formule: $M_1^{p+} + M_2^{q+} \leftrightarrow M_1^{(p-1)+} + M_2^{(q+1)+}$

• P_H – verovatnoća preskoka u jedinici vremena.

Koeficijent difuzije D_H se dovodi u vezu sa pokretljivošću μ_H Ajnštajnovom relacijom:

$$\mu_H = \frac{e}{kT} D_H = \frac{e\beta \alpha^2 P_H}{kT}$$

Verovatnoća preskoka P_H zavisi od temperature i visine energetske barijere za preskočni mehanizam transporta naelektrisanja E_H , pri čemu je veza oblika

$$P_H \propto e^{-\frac{E_H}{kT}}$$

odakle sledi da i pokretljivost μ_H zavisi na sličan način:

$$\mu_H \propto T^{-1} e^{-\frac{E_H}{kT}}$$

Odavde sledi da je zavisnost provodljivosti od temperature $\sigma_H(T)$ kod spinelnih ferita analogna sa onom kod poluprovodnika pod pretpostavkom da je broj nosilaca naelektrisanja konstantan. Značajna razlika je u tumačenju veličine E_H koja kod zonskih poluprovodnika predstavlja energiju aktivacije. U slučaju spinelnih ferita E_H se dovodi u vezu sa energijom koja je potrebna elektronu da bi savladao određenu energetsku barijeru i preskočio sa jednog katjona na drugi.

4.3 Dielektrične osobine

Dielektrici su materijali koji nemaju slobodnih nosilaca naelektrisanja i loši su električni provodnici. Molekuli dielektrika mogu biti polarni i nepolarni. Veličina polarnosti molekula se meri dipolnim momentom p. Rezultujući dipolni moment dielektrika kao celine u odsustvu spoljašnjeg električnog polja jednak je nuli zbog haotične orijentacije dipola.

Kod polarnih molekula se centri pozitivnog i negativnog naelektrisanja ne poklapaju pa predstavljaju permanentne dipole. U prisustvu električnog polja teže da zauzmu pravac polja pa dolazi do delimične orijentacije u pravcu polja u toku vremenskog perioda od $10^{-9}s$. Potpuna orijentacija je nemoguća zbog termičkog kretanja molekula odakle zaključujemo da se orijentacijska uređenost povećava sa porastom jačine električnog polja i snižavanjem temperature. Materijale sastavljene od polarnih molekula nazivamo *polarnim dielektricima*.

Kod nepolarnih molekula centri pozitivnog i negativnog naelektrisanja se poklapaju pa u odsustvu polja nemaju dipolni moment. U električnom polju nepolarni molekuli se polarizuju, odnosno dolazi do razdvajanja težišta pozitivnog i negativnog naelektrisanja, i na taj način oni postaju indukovani električni dipoli. Istovremeno oni se potpuno orijetnišu u pravcu polja. Ovakva polarizacija se naziva i deformacionom jer je elektronska polarizacija izazvana deformacijom elektronskih oblaka i nema trajni karakter. Nakon uklanjanja spoljašnjeg električnog polja polarizacija nestaje u vremenskom intervalu reda veličine $10^{-16}s$ Materijale sastavljene od nepolarnih molekula nazivamo *neutralnim dielektricima*.

U neidealizovanom realnom materijalu električno polje istovremeno uređuje postojeće električne dipole u materijalu i indukuje nove, a ovakav sumarni efekat dejstva električnog polja na materijal zove se *polarizacija materijala*.

4.3.1 Polarizacioni mehanizmi

Razlikujemo četiri tipa polarizacije:

- 1. elektronska polarizacija
- 2. jonska polarizacija
- 3. orijentacijska polarizacija
- 4. međuslojna polarizacija

Elektronska polarizacija predstavlja pomeranje elektronskog omotača pod dejstvom električnog polja, u odnosu na atomsko jezgro. Ovaj tip polarizacije je praćen deformacijom elektronske putanje zbog čega se još zove i deformaciona polarizacija. Elektronska polarizacija je prisutna u svim dielektričnim materijalima (nepolarnim i polarnim), bez obzira da li u njima postoje drugi vidovi polarizacije. Pod dejstvom električnog polja, kod polarnih dielektrika dolazi do male ali konačne deformacije elektronskog oblaka, dok kod nepolarnih dolazi do razdvajanja efektivnih centara pozitivnog I negativnog naelektrisanja odnosno, dolazi do obrazovanja dipola. Za elektronsku polarizaciju je karakteristično da nastupa za $10^{-15}s$ do $10^{-14}s$ nakon uspostavljanja polja

Jonska polarizacija se javlja u materijalima u kojima dominira jonska hemijska veza. U ovim materijalima kristalnu rešetku grade katjoni i anjoni povezani Kulonovom elektrostatičkom interakcijom. U odsustvu spoljašnjeg polja ukupna polarizacija jednaka je nuli zbog međusobnog poništavanja dipolnih momenata susednih dipola. Ako primenimo spoljašnje električno polje dolazi do deformacije kristalne rešetke. Usled promene položaja katjona i anjona javlja se rezultujući dipolni moment. Ovo je takođe elastična deformacija.

Orijentacijska polarizacija se javlja kod polarnih dielektrika. Permanentni dipoli ovih materijala su međusobno nezavisni i mogu slobodno rotirati. Međutim, ovi dipoli u odsustvu spoljašnjeg polja nisu uređeni (orijentisani u istom pravcu). Razlog tome je haotično toplotno kretanje koje narušava uređenost dipola. Primenom spoljašnjeg električnog polja dolazi do povećanja uređenosti u pravcu polja. Orijentacijska polarizacija se uspostavlja za $10^{-9}s$ te se naziva sporom ili relaksacionom polarizacijom.

Međuslojna polarizacija. Ukoliko su u materijalu u većoj meri prisutni defekti u strukturi, slobodni nosioci naelektrisanja koji se skupljaju na tim mestima se mogu pomerati dejstvom spoljašnjeg polja. Vreme potrebno za ovakvu preraspodelu je 10^{-2} .

5. Polarizacija u konstantnom električnom polju

Kovalentne veze i elektronska polarizacija dovođe do izolatorskih svojstava sa relativnom dielektričnom konstantom $\varepsilon < 3$, specifičnom otpornošću $\rho > 10^{14}\Omega m$. Jonska veza i jonska polarizacija dovođe do izolatorskih osobina sa relativnom dielektričnom konstantom $\varepsilon < 10$, i specifičnom otpornošću reda veličine $10^{10}\Omega m < \rho < 10^{14}\Omega m$. Stalni dipoli i orjentacijska polarizacija dovođe do relativno slabih izolatorskih svojstava sa relativnom dielektričnom konstantom $\varepsilon > 10$, i specifičnom otpornošću reda veličine $10^{10}\Omega m < \rho < 10^{14}\Omega m$.

Moguća je podela dielektrika prema agregatnom stanju u kom se nalaze: gasovite, tečne i čvrste. U poslednju grupu se priključuju i tečni kristali. Opravdanija je podela prema osnovnim relativnim osobinama i mogućnosti primene, na pasivne i aktivne dielektrike.

Kod materijala kod kojih dominira dipolna polarizabilnost u statičkom polju, polarizacija P linearno je proporcionalna električnom polju E. Ovi meterijali se nazivaju paradielektrici i predstavljaju osnovne pasivne dielektrike. Kod drugih materijala efekti električnog polja mogu biti dosta složeniji i čine grupu aktivnih dielektrika. U njih spadaju feroelektrici, piezoelektrici, piroelektrici i elektreti.

Unošenjem dielektrika u statičko električno polje dolazi do pojave električne struje, koja se sastoji od dve komponente: provodne i pomerajne struje:

- Provodni deo električne struje je posledica usmerenog kretanja slobodnih naelektrisanja kojih u dielektriku ima zanemarljivo malo, pa se i njihov uticaj u ukupnoj struji zanemaruje.
- Pomerajna struja nastaje kao posledica polarizacije, tj. preraspodele vezanih naelektrisanja u dielektriku, pod dejstvom električnog polja.

Posebno značajna veličina je polarizabilnost atoma α , definisana odnosom dipolnog momenta atoma \vec{P} i veličinom lokalnog električnog polja \vec{E}_l :

$$\vec{P} = \alpha \vec{E}_l \tag{1}$$

Na veličinu lokalnog električnog polja utiču spoljašnje električno polje i polje koje je posledica uticaja dipolnih momenata svih atoma u okruženju neke odabrane tačke. Za kubnu simetriju lokalno polje dato je relacijom:

$$\vec{E}_l = \vec{E}_0 + \frac{f_d \vec{P}}{\varepsilon_0} \tag{2}$$

Gde je:

- \vec{E}_0 spoljašnje polje;
- ε_0 dielektrična konstanta vakuuma;
- f_d faktor depolarizacije koji ima tenzorski karakter i zavisi od oblika uzorka.

Polarizacija \vec{P} definisana kao dipolni momenat po jedinici zapremine uzorka, obuhvata sve atome u jedinici zapremine N_i pa odgovarajućim sumiranjem dobija:

$$\vec{P} = \sum_{i} N_i \alpha_i \vec{E}_i(i) \tag{3}$$

Veličina $\vec{E}_l(i)$ odogvara lokalnom polju za atom i-te vrste.

Dielektrični pomeraj \vec{D} je veličina značajna za dielektrike. Definisan je preko polarizacije \vec{P} i makroskopskog polja \vec{E} unutar dielektrika, sledećom relacijom:

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P} \tag{4}$$

Polarizacija \vec{P} je proporcionalna makroskopskom polju \vec{E} :

$$\vec{P} = \varepsilon_0 \chi \vec{E} \tag{5}$$

gde je χ dielektrična susceptibilnost.

Sada vraćanjem relacije (5) u (4) dobijamo:

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon_0 \vec{E} + \varepsilon_0 \chi \vec{E} = \varepsilon_0 \vec{E} (1 + \chi) = \varepsilon_0 \varepsilon_r \vec{E}$$
(6)

gde je ε_r relativna dielektrična propustljivost.

Na osnovu (2) i (3) dobija se za izotropnu kubnu sredinu:

$$\vec{E}_0 = \vec{E}_l - \frac{\vec{P}}{3\varepsilon_0} = \vec{E}_l - \frac{1}{3\varepsilon_0} \sum_i N_i \alpha_i \vec{E}_l(i)$$
(7)

Iz (3) i (7) za količnik $\frac{\vec{P}}{\vec{E}_0}$ dobijamo:

$$\frac{\vec{P}}{\vec{E}_0} = \frac{\sum_i N_i \alpha_i \vec{E}_l(i)}{\vec{E}_l - \frac{1}{3\varepsilon_0} \sum_i N_i \alpha_i \vec{E}_l(i)}$$
(8)

Iz (5) imamo:

$$\frac{\vec{P}}{\vec{E}} = \varepsilon_0 \chi = \varepsilon_0 (\varepsilon_r - 1) \tag{9}$$

Iz (8) i (9) sada sledi da je:

$$\frac{\sum_{i} N_{i} \alpha_{i} \vec{E}_{l}(i)}{\vec{E}_{l} - \frac{1}{3\varepsilon_{0}} \sum_{i} N_{i} \alpha_{i} \vec{E}_{l}(i)} = \varepsilon_{0} (\varepsilon_{r} - 1)$$
(10)

Uz pretpostavku da su sva lokalna polja \vec{E}_l jednaka dobijamo:

$$\sum_{i} N_{i} \alpha_{i} = \varepsilon_{0} (\varepsilon_{r} - 1) \left(1 - \frac{1}{3\varepsilon_{0}} \sum_{i} N_{i} \alpha_{i} \right)$$
(11)

18

$$\sum_{i} N_{i} \alpha_{i} \left(\varepsilon_{r} + 2\right) = 3\varepsilon_{0} (\varepsilon_{r} - 1)$$

odakle sledi izraz poznat kao Klauzijus - Mosotijeva relacija:

$$\frac{(\varepsilon_r - 1)}{(\varepsilon_r + 2)} = \frac{1}{3\varepsilon_0} \sum_i N_i \alpha_i$$
(12)

Treba napomenuti da je ova relacija izvedena uz aproksimaciju da se radi o nepolarnim i izotropnim materijalima, odnosno kod uređenih sistema o kubnom sistemu, ili nekoj drugoj visoko simetričnoj strukutri. Sama relacija je jako značajna zato što daje direktnu vezu između makroskopskih parametara preko dielektrične propustljivosti ε_r , i mikroskopskih veličina poput polarizabilnosti α i broja atoma u jedinici zapremine *N*. Pošto uzrok polarizabilnosti može biti elektronska, jonska ili oreijentacijska polarizacija i veličina α može se tretirati kao složena iz tri odgovarajuće komponente:

$$\alpha = \alpha_e + \alpha_j + \alpha_o \tag{13}$$

6. Polarizacija u promenjivom električnom polju

U slučaju kada se dielektrični materijali unesu u vremenski promenljivo električno polje, ukupna polarizacija P, odnosno ukupna polarizabilnost dielektrika α , kao i dielektrična konstanta ε_r , zavise od sposobnosti dipola da prate promenu električnog polja.

Polarizacija dielekrika se ne javlja odmah nakon primene električnog polja, već nakon određenog vremena koje je karakteristično za određenu vrstu polarizacije. Vreme potrebno da se dostigne ravnotežno stanje naziva se vreme relaksacije, a njegova recipročna vrednost frekvencija relaksacije.

Kada frekvencija primenjenog polja postane veća od frekvencije relaksacije specifičnog procesa polarizacije, dipoli ne mogu dovoljno brzo da se preorijentišu i proces polarizacije prestaje. Kako se frekvencija relaksacije razlikuje za svaki tip polarizacije možemo dobiti zavisnost dielektrične konstante od frekvencije primenjenog polja.

6.2 Uticaj frekvencije pri dominirajućoj orijentacijskoj polarizaciji

Kod polarnih dielektrika dominantna polarizabilnost je orijentacijskog karaktera i javlja se pri niskim frekvencijama, reda veličine 10 *Hz*.

Za razliku od rezonantnih pojava na karakterističnim učestanostima za jonsku i elektronsku polarizaciju, kod orijentacione polarizacije $\omega_0 \sim \tau^{-1}$ realni deo orijentacione polarizacije ispoljava tzv. relaksaciono ponašanje. Imaginarni deo karakteriše gubitke.

Kako se polarni molekuli sastoje od molekula koji imaju asimetričnu raspodelu pozitivnog i negativnog naelektrisanja, pored toga što obrazuju dipole, mogu i menjati veličinu dipolnog momenta pod dejstvom spoljašnjeg polja, kako usled promene rastojanja jona u dipolima tako i usled deformacije elektronske ljuske jona koji obrazuju molekularni dipol.

Dipolna, odnosno orijentaciona polarizacija se javlja uglavnom kod gasnih, tečnih i nekih amorfnih viskoznih čvrstih dielektričnih materijala. U većini čvrstih dielektričnih materijala, ispod njihove tačke topljenja dipoli se ne bi mogli orijentisati pod dejstvom električnog polja, pa se zato u tim materijalima ovaj vid polarizacije i ne javlja.

U sporo promenljivim spoljašnjim električnim poljima, dielektrični pomeraj na osnovu relacije (4), je linearno proporcionalan jačini spoljašnjeg polja. U spoljašnjem polju više frekvencije, može se očekivati složenija zavisnost ove veličine, odnosno da direktno zavisi i od brzine promene električnog polja i povratno od brzine sopstvene promene. U linearnoj aproksimaciji, može se očekivati zavisnost oblika

$$\vec{D} = \varepsilon_s \vec{E} + c_1 \frac{d\vec{E}}{dt} + c_2 \frac{d\vec{D}}{dt}$$
(13)

Pošto su u statičkom polju izvodi članova uz c_1 i c_2 jednaki nuli, veličina ε_s odgovara dielektričnoj propustljivosti u vremenski stalnim električnim poljima.

Prilikom početka dejstva vremenski stalnog električnog polja, ukoliko su prisutni polarni molekuli, odnosno permanentni dipoli, formirani električni pomeraj D_0 će se izvesno vreme menjati. Na to će uticati proces postepenog usmeravanja dipla u pravcu dejstva polja. Pošto je sada samo izvod iza konstante c_1 jednak nuli, relacija (13) se svodi na

$$\vec{D} = \varepsilon_s \vec{E} + +c_2 \frac{d\vec{D}}{dt}$$
(14)

Poslednja relacija može se zapisati u formi diferencijalne jednačine

$$\frac{d(D-\varepsilon_s E)}{(D-\varepsilon_s E)} = \frac{dt}{c_2}$$
(15)

Rešenje ove jednačine je

$$\ln(D - \varepsilon_s E) = \frac{t}{c_2} + C$$

Pošto je ta $t = 0, D = D_0$, dobija se da je $C = \ln(D_0 - \varepsilon_s E)$, odnosno da je

$$\ln(D - \varepsilon_s E) = \frac{t}{c_2} + \ln(D_0 - \varepsilon_s E)$$

Odakle dobijamo:

$$D = \varepsilon_s E + (D_0 - \varepsilon_s E) e^{\frac{t}{c_2}}$$
(16)

Iz relacije (15) vidimo da c_2 ima dimenzije vremena i da predstavlja konstantu u funkciji dielektričnog pomeraja koji posle dovoljno dugog vremena treba da se ustali na vrednosti $\varepsilon_s E$. Ovo je i očekivano jer ta vrednosti odgovara vremenski nepromenjivom električnom polju. Da bi funkcija (15) imala ovakav fizički smisao, vremenska konstanta τ_d mora biti manja od nule, odnosno mora važiti $\tau_d = -c_2$. Odavde sledi:

$$D = \varepsilon_s E + (D - \varepsilon_s E) e^{\frac{-t}{\tau_d}}$$
(16a)

Ukoliko bismo pošli od pretpostavke da se uspostavljeni električni pomeraj D_1 , održava u vremenski promenjivom spoljašnjem električnom polju, izvod iza konstante c_2 bio bi jednak nuli, pa relacija (13) dobija oblik

$$\vec{D} = \varepsilon_s \vec{E} + c_1 \frac{d\vec{E}}{dt}$$
(17)

Poslednju relaciju možemo napisati u formi diferencijalne jednačine

$$D_1 - \varepsilon_s E = -\frac{c_1}{\varepsilon_s} \frac{d(D_1 - \varepsilon_s E)}{dt}$$

čije je rešenje:

$$D_1 - \varepsilon_s E = C e^{-\varepsilon_s \frac{t}{c_1}}$$

Za $t = 0, E = E_0$ dobijamo da je $C = D_1 - \varepsilon_s E_0$, odnosno da je:

21

$$D_1 - \varepsilon_s E = (D_1 - \varepsilon_s E_0) e^{-\varepsilon_s \frac{L}{C_1}}$$

i konačno

$$\varepsilon_s E = D_1 + (\varepsilon_s E_0 - D_1) e^{-\varepsilon_s \frac{t}{c_1}}$$
(18)

Iz relacije (18) vidi se da veličina $\frac{c_1}{\varepsilon_s}$ ima dimenzije vremena i da predstavlja konstantu opadajuće funkcije koja posle dovoljno dugog vremena ustali vrednost dielektričnog pomeraja na vrednost $\varepsilon_s E$. Ako označimo vremensku konstantu $\frac{c_1}{\varepsilon_s}$ sa τ_e , izraz (13) dobija oblik:

$$D = \varepsilon_s E + \varepsilon_s \tau_e \frac{dE}{dt} - \tau_d \frac{dD}{dt}$$
(19)

Prethodnu jednačinu možemo napisati u formi

$$Ddt + \tau_d dD = \varepsilon_s Edt + \varepsilon_s \tau_e dE$$

Integracijom poslednje jednačine, kada $\Delta t \rightarrow 0$, a kojem odgovaraju promene $\Delta D, \Delta E$, dobija se:

$$\tau_d \Delta D = \varepsilon_s \tau_e \Delta E$$

Prema relacijama (4) i (6), odnos promena dielektričnom pomeraja i električnog polja odgovara vrednosti dielektrične propustljivosti, pa je

$$\varepsilon_{\nu} = \frac{\Delta D}{\Delta E} = \frac{\varepsilon_s \tau_e}{\tau_d} \tag{20}$$

Propustljivost ε_v odgovara vrednosti ove veličine za izrazito velike vrednosti frekvencija spoljašnjeg polja, odnosno kada se frekvencije mogu smatrati beskonačno visokim. Na osnovu relacije (20), može se u jednačini (18) eliminisati proizvod $\varepsilon_s \tau_e$, te ona dobija oblik

$$D + \tau_d \frac{dD}{dt} = \varepsilon_s E + \varepsilon_v \tau_d \frac{dE}{dt}$$
(21)

Ako je spoljašnje polje periodična funkcija vremena sa sinusnom i kosinusnom komponentom, ono se može zapisati kao kompleksna funkcija oblika

$$E = E_0 e^{i\omega t} \tag{22}$$

Diferenciranjem po vremenu izraza (22) relacija (21) dobija oblik

$$D + \tau_d \frac{dD}{dt} = (\varepsilon_s + i\omega\varepsilon_v\tau_d)E_0e^{i\omega t}$$
(23)

Partikularno rešenje ove linearne diferencijalne jednačine ima oblik

$$D = D_0 e^{i(\omega t + \varphi_0)} \tag{24}$$

Diferenciranjem po t poslednjeg izraza i zamenom u jednačinu (21) dobija se

$$D(1 + i\omega\tau_d) = (\varepsilon_s + i\omega\varepsilon_v\tau_d)E_0e^{i\omega t}$$

odakle je

$$D = \frac{\varepsilon_s + i\omega\varepsilon_v\tau_d}{1 + i\omega\tau_d}E$$
(25)

Kompleksna vrednost dielektrične propustljivosti ε_c može se, na osnovu prethodnog izraza i relacija (4) i (6), definisati kao

$$\varepsilon_c^0 = \frac{\varepsilon_s + i\omega\varepsilon_v \tau_d}{1 + i\omega\tau_d} \tag{26}$$

Ako racionalizujemo prethodni izraz

$$\varepsilon_{c}^{0} = \frac{\varepsilon_{s} + i\omega\varepsilon_{v}\tau_{d}}{1 + i\omega\tau_{d}} \frac{1 - i\omega\tau_{d}}{1 - i\omega\tau_{d}} = \frac{\varepsilon_{s} + i\omega\varepsilon_{v}\tau_{d} - i\omega\varepsilon_{v}\tau_{d} - i^{2}\omega^{2}\tau_{d}^{2}\varepsilon_{v}}{1 - i^{2}\omega^{2}\tau_{d}^{2}}$$
$$\varepsilon_{c}^{0} = \frac{\varepsilon_{s} + i\omega\tau_{d}(\varepsilon_{v} - \varepsilon_{s}) + \omega^{2}\tau_{d}^{2}\varepsilon_{v}}{1 + \omega^{2}\tau_{d}^{2}}$$
(27)

Iz ovog izraza mogu se eksplicitno sagledati realni ε_r i imaginarni ε_i delovi kompleksne dielektrične konstante.

$$\varepsilon_r^0 = \frac{\varepsilon_s + \omega^2 \tau_d^2 \varepsilon_v}{1 + \omega^2 \tau_d^2}$$
(28)

$$\varepsilon_i^0 = \frac{\omega \tau_d (\varepsilon_v - \varepsilon_s)}{1 + \omega^2 \tau_d^2} \tag{29}$$

Pri čemu je

$$\varepsilon_c^0 = \varepsilon_r^0 - \varepsilon_i^0 \tag{30}$$

Realni deo dat izrazom (28) može se transformisati u oblik

$$\varepsilon_r^0 = \varepsilon_v + \frac{\varepsilon_s - \varepsilon_v}{1 + \omega^2 \tau_d^2} \tag{31}$$

Gde je ε_s statička dielektrična propustljivost ili statička dielektrična konstanta.

Slika 6.1 Zavisnost realnog i imaginarnog dela kompleksne dielektrične konstante orijetnacijskog tipa od frekvencije spoljašnjeg polja. Oblik zavisnosti upućuje na relaksacioni karakter pojave orijentacijske polarizacije.

Može se zapaziti da se za niske vrednosti frekvencije oscilovanja spoljašnjeg električnog polja, dielektrična propustljivost može aproksimovati sa realnim delom, odnosno sa vrednosti dielektrične propustljivosti u vremenski nepromenjivom spoljašnjem polju ε_s . U tački gde je proizvod između frekvencije spoljašnjeg polja i vremena relaksacije jednak jedinici ($\omega \tau_d = 1$) i realni i imaginarni deo imaju vrednost $\frac{\varepsilon_s + \varepsilon_v}{2}$, odnosno ε_r i ε_i imaju zajedničku tačku preseka. To je ujedno i tačka maksimalne vrednosti imaginarnog dela i očiti je da se ostvaruje za vrednosti kada je frekvencija jednaka recipročnoj vrednosti vremena relaksacije $\omega = \frac{1}{\tau_d}$. Za dovoljno visoke frekvencije, dominira realni deo i dielektrična propustljivost aproksimativno odgovara vrednosti ε_v . Treba zapaziti da je za polarne dielektrike $\varepsilon_v \ll \varepsilon_s$.

Isti oblik disperzije⁵ dielektrične konstante dobija se i kod **međuslojne polarizacije** pri čemu treba imati na umu da je τ_m najčešće reda veličine $10^{-4}s$.

6.3 Uticaj frekvencije pri dominirajućoj elektronskoj polarizaciji

U materijalima gde nema polarnih molekula, može se očekivati da će dominirati elektronska polarizacija. Na osnovu klasične teorije elektronske polarizacije može se smatrati da elektron u prostoperiodičnom električnom polju vrši prigušeno oscilatorno kretanje.

Rezultujuća sila koja deluje na elektron sadrži restitucionu silu $F_r = -kx$, silu prigušenja $F_p = -\gamma mv$ i periodičnu silu $F_e = eE$, obzirom da je spoljašnje polje periodično. Veličina označena sa k je konstanta elastičnost, a x je odstupanje geometrijskog centra negativnog naelektrisanja od tačke zajedničkog centra pozitivnog naelektrisanja i negativnog naelektrisanja pre pojave indukovane polarizacije, γ je faktor prigušenja, $v = \frac{dx}{dt}$ linearna brzina, a spoljašnje periodično polje je funkcija oblika $E = E_0 e^{i\omega t}$. U tom slučaju bi diferencijalna jednačina kretanja imala oblik

$$-kx - \gamma m \frac{dx}{dt} + eE = m \frac{d^2x}{dt^2}$$

odnosno

$$m\frac{d^2x}{dt^2} + kx + \gamma m\frac{dx}{dt} = eE_0e^{i\omega t}$$
(32)

Prethodna jednačina je oblik diferencijalne jednačine za prigušeno harmonijsko kretanje čije je rešenje

$$x = \frac{eE_0 e^{i\omega t}}{m[(\omega_0^2 - \omega^2) + i\gamma\omega]}$$
(33)

⁵ Disperzija označava zavisnost određene karakteristike materijala od frekvencije ν , odnosno kružne frekvencije ω , spoljašnjeg električnog polja.

gde je ω_0 sopstvena frekvencija atoma dielektrika $\omega_0 = \sqrt{\frac{k}{m}}$.

Elektronska polarizacija P data je relacijom

$$P = nex \tag{34}$$

gde je n broj dipolnih momenata u jedinici zapremine.

Korišćenjem izraza (33) i (34) u jednačini (4) za dielektrični pomeraj dobija se:

$$D = \left[\varepsilon_0 + \frac{ne^2}{m[(\omega_0^2 - \omega^2) + i\gamma\omega]}\right]E$$
(35)

Sada se na osnovu ove jednačine i izraza (4) i (6) dobija:

$$\varepsilon_c^e = \frac{D}{\varepsilon_0 E} = 1 + \frac{ne^2}{m\varepsilon_0[(\omega_0^2 - \omega^2) + i\gamma\omega]}$$
(36)

Odnosno posle racionalizacije

$$\varepsilon_c^e = 1 + \frac{ne^2}{m\varepsilon_0} \frac{(\omega_0^2 - \omega^2) - i\gamma\omega}{(\omega_0^2 - \omega^2)^2 + (\gamma\omega)^2}$$
(37)

Iz prethodnog izraza mogu se eksplicitno sagledati realni ε_r i imaginarni ε_i delovi kompleksne dielektrčine konstante.

Realni deo elektronske polarizacije kompleksne dielektrične konstante iznosi:

$$\varepsilon_r^e = 1 + \frac{ne^2}{m\varepsilon_0} \frac{(\omega_0^2 - \omega^2)}{(\omega_0^2 - \omega^2)^2 + (\gamma\omega)^2}$$
(38)

Imaginarni deo kompleksne dielektrične konstante iznosi:

$$\varepsilon_i^e = 1 + \frac{ne^2}{m\varepsilon_0} \frac{\gamma\omega}{(\omega_0^2 - \omega^2)^2 + (\gamma\omega)^2}$$
(39)

Slika 6.2 Zavisnost realnog i imaginarnog dela kompleksne dielektrične konstante od frekvencije spoljašnjeg polja pri elektronskoj polarizaciji. Oblik zavisnosti upućuje na rezonantni karakter pojave elektronske polarizacije. ε_r^e karakteriše tzv. elastična svojstva dielektrika i u fazi je sa spoljašnjim poljem. ε_i^e karakteriše dielektrične gubitke (energija polja pretvorena u toplotu) koji su značajni samo u okolini ω_0 i defazovana je u odnosu na spoljašnje polje za $\pi/2$.

Realni deo dielektrične konstante raste sa porastom frekvencije spoljašnjeg polja ω , do vrednosti frekvencije nešto manje od sopstvene frekvencije, a zatim opada i ima minimum za vrednosti frekvencija nešto većih od ω_0 . Za visoke frekvencije spoljašnjeg polja, realni deo dielektrične konstante teži jedinici. Ovo se objašnjava time što se pri kritičnoj i višim

učestalostima polarizacija ne može uspostaviti u toku jedne poluperiode električnog polja. Pri visokim učestalostima polja, elektroni ne mogu da prate promene polja i realni deo električne konstante počinje da opada.

Imaginarni deo dielektrične konstante za male i velike vrednosti frekvencije spoljašnjeg polja teži nuli. Maksimum imaginarni deo dostiže za vrednosti frekvencije spoljašnjeg polja koje odgovaraju vrednosti sopstvene frekvencije ω_0 .

Rastojanje između ekstrema realnog dela dielektrične propustljivosti odgovara konstanti γ i predstavlja meru prigušenja u dielektriku. Realni deo je u fazi sa spoljašnjim poljem, a imaginarni deo je defazovan za $\frac{\pi}{2}$. Tako realni deo karakteriše elastična, a imaginarni neelastična svojstva dielektrika.

6.4 Uticaj frekvencije pri dominirajućoj jonskoj polarizaciji

Pri analizi jonske polarizacije posmatramo dva jona različitog naelektrisanja i njihove jednačine kretanja, tj. pomeranje iz ravnotežnog položaja usled dejstva prosto-periodičnog električnog polja. Kod jonskih uređenih struktura, polarizaciji bitno doprinose pomeranja jona pod dejstvom spoljašnjeg električnog polja.

Treba istaći da je sopstvena frekvencija oscilovanja oko ravnotežnog položaja jona značajno manja od sopstvene frekvencije oscilovanja elektrona. Ovo je razumljivo iz razloga što je masa elektrona mnogo manja od mase svakog jona. Jednačina kretanja analogna diferencijalnoj jednačini (32) koja bi odgovarala oscilovanju *n*-tog jona mase M_l jonskog kristala u spoljašnjem električnom polju $E = E_0 e^{i\omega t}$, imala bi oblik:

$$M_{l}\frac{d^{2}l_{n}}{dt^{2}} = -M_{l}\gamma\frac{dl_{n}}{dt} + k[(s_{n} - l_{n}) - (l_{n} - s_{n-1})] + eE$$

odnosno

$$M_{l}\frac{d^{2}l_{n}}{dt^{2}} + M_{l}\gamma\frac{dl_{n}}{dt} - k(s_{n} + s_{n-1} - 2l_{n}) = eE$$
(40)

Jednačina kretanja koja bi odgovarala oscilovanju n-tog jona mase M_s , imala bi oblik:

$$M_{l}\frac{d^{2}l_{n}}{dt^{2}} = -M_{l}\gamma\frac{dl_{n}}{dt} + k[(l_{n+1} - s_{n}) - (s_{n} - l_{n})] - eE$$

$$M_{l}\frac{d^{2}l_{n}}{dt^{2}} + M_{l}\gamma\frac{dl_{n}}{dt} - k(l_{n} + l_{n+1} - 2s_{n}) = -eE$$
(41)

Gde su l_n i s_n pomeraji jona mase M_l i M_s u odnosu na ravnotežni položaj.

Rešenja jednačina (40) i (41) odgovaraju obliku progresivnih talasa

$$l_n = l_0 e^{i(knx + \omega t)} \tag{42}$$

26

$$s_n = s_0 e^{i(knx + \omega t)} \tag{43}$$

gde su l_0 i s_0 amplitude talasa a k je talasni vektor.

Za male vrednosti talasnog vektora ($k \rightarrow 0$) u relacijama (42) i (43) u eksponentima ostaje samo član $i\omega t$. Posle skraćivanja zajedničkog eksponencijalnog člana, jednačine (40) i (41) dobijaju oblik:

$$-M_l l_0 \omega^2 = -i\omega\gamma M_l l_0 - 2k(l_0 - s_0) + eE_0$$
(44)

$$-M_s s_0 \omega^2 = -i\omega \gamma M_s s_0 + 2k(l_0 - s_0) - eE_0$$
(45)

Iz poslednja dva izraza dobijamo

$$l_0 - s_0 = \frac{eE_0}{M[(\omega_T^2 - \omega^2) + i\omega\gamma]}$$
(46)

gde je M redukovana masa M_l i M_s , a ω_T kružna frekvencija transferzalnog akustičnog fonona

$$\frac{1}{M} = \frac{1}{M_l} + \frac{1}{M_s}, \quad \omega_T = \sqrt{\frac{2k}{M}}$$

Zamenom (46) u relaciju (34) za polarizaciju dobijamo

$$P_j = Ne(l-s) = Ne(l_0 - s_0)e^{i\omega t} = \frac{Ne^2E_0}{M}\frac{e^{i\omega t}}{(\omega_T^2 - \omega^2) + i\omega\gamma}$$

odnosno

$$P_j == \frac{Ne^2}{M} \frac{E}{(\omega_T^2 - \omega^2) + i\omega\gamma}$$
(47)

Gde je N broj jonskih parova u jedinici zapremine.

Korišćenjem (47) u relaciji (6), kompleksna relativna dielektrična konstanta za jonske kristale ima oblik

$$\varepsilon_c^j = 1 + \frac{Ne^2}{M\varepsilon_0} \frac{1}{(\omega_T^2 - \omega^2) + i\omega\gamma}$$
(48)

Uvođenjem oznake ε_s za dielektričnu konstantu pri veoma niskim frekvencijama i ε_f pri veoma visokim frekvencijama, kompleksna dielektrična konstanta za jonske kristale može se pisati u formi

$$\varepsilon_c^j = \varepsilon_c^j(\omega) = \varepsilon_f + \frac{\left(\varepsilon_s - \varepsilon_f\right)\omega_T^2}{\left(\omega_T^2 - \omega^2\right) + i\omega\gamma}$$
(49)

pri tome je

$$\varepsilon_s - \varepsilon_f = \frac{Ne^2}{M\varepsilon_0\omega_T^2}$$

odakle je

$$\varepsilon_f = \frac{\frac{Ne^2}{M\varepsilon_0\omega_T^2}}{\frac{\varepsilon_s}{\varepsilon_f - 1}}$$
(50)

Posle racionalizacije mogu se razdvojiti realni i imaginarni delovi ε_r^j i ε_i^j u obliku

$$\varepsilon_r^j = \varepsilon_f + \frac{(\varepsilon_s - \varepsilon_f)(\omega_T^2 - \omega^2)\omega_T^2}{(\omega_T^2 - \omega^2) + (\gamma\omega)^2}$$
(51)

$$\varepsilon_i^j = \frac{(\varepsilon_s - \varepsilon_f)\gamma\omega\omega_T^2}{(\omega_T^2 - \omega^2) + (\gamma\omega)^2}$$
(52)

Slika 6.3 Zavisnost realnog i imaginarnog dela kompleksne dielektrične konstante od kružne frekvencije na osnovu relacija (51) i (52). Oblik zavisnosti upućuje na rezonantni karakter pojave jonske polarizacije.

Zaključujemo da realni deo dielektrične konstante raste sa porastom frekvencije spoljašnjeg polja ω do vrednosti frekvencije nešto manje od kružne frekvencije transverzalnog fonona ω_T . Za male vrednosti frekvencija spoljašnjeg polja realni deo dielektrične konstante teži statičkoj vrednosti ε_s . U intervalu vrednosti kružne frekvencije između vrednosti kvadrata frekvencija transverzalnog i longitudinalnog fonona, realni deo dielektrične konstante je negativan. Pri tome je kružna frekvencija longitudinalnog optičkog fonona data izrazom:

$$\omega_L = \sqrt{\omega_T^2 + \frac{Ne^2}{M\varepsilon_0\varepsilon_f}} \tag{52}$$

Imaginarni deo dielektrične konstante, kao i kod elektronske polarizacije, za male i velike vrednosti frekvencije spoljašnjeg polja teži nuli. Imaginarni deo dostiže maksimum za vrednosti frekvencije spoljašnjeg polja koja odgovara vrednosti kružne frekvencije transverzalnog fonona ω_T .

Korišćenjem (49) i (52) dobijamo

$$\omega_L^2 - \omega_T^2 = \frac{Ne^2}{M\varepsilon_0\varepsilon_f} = \frac{Ne^2}{M\varepsilon_0\frac{Ne^2}{\frac{M\varepsilon_0\omega_T^2}{\frac{\varepsilon_s}{\varepsilon_f - 1}}}}$$

odnosno

$$\omega_L^2 - \omega_T^2 = \omega_T^2 \left[\frac{\varepsilon_s}{\varepsilon_f} - 1 \right]$$

odakle se dobija

$$\frac{\omega_L^2}{\omega_T^2} = \frac{\varepsilon_s}{\varepsilon_f}$$
(53)

Ova izraz je Liden-Saks-Telerova relacija.

Disperzija dielektrične konstante izražena je samo u određenim oblastima frekvencija, gde je prisutan određen mehanizam polarizacije. Može se očekivati da $\varepsilon_r(\omega)$ ima opadajući trend sa porastom frekvencije (kao na slici ispod), pošto bi se u hipotetičkom materijalu koji poseduje sve pomenute mehanizme polarizacije sa porastom frekvencije jedan po jedan mehanizam gasio usled nemogućnosti nosilaca naelektrisanja da prate tempo promene spoljašnjeg polja, tako da pri višim frekvencijama važi $\lim_{\omega \to \infty} \varepsilon_r(\omega) = 1$, što znači da nema polarizacije.

Slika 6.4 Prikaz disperzije realnog (puna linija) i imaginarnog (isprekidana linija) dela dielektrične konstante u hipotetičkom materijalu koji poseduje sve opisane mehanizme polarizacije. Vrednosti frekvencija date su samo orijentaciono, kako bi se stekao uvid o redu veličine ω za koju je određeni mehanizam polarizacije karakterističan.

6.5 Dielektrični gubici

Vrlo koristan parametar za opis interakcije materijala sa spoljašnjim električnom poljem je tzv. tangens ugla gubitaka (tan δ) definisan relacijom

$$\tan \delta = \frac{\varepsilon_i}{\varepsilon_r}$$

U dielektriku koji se nalazi u spoljašnjem polju javljaju se gubici usled kondukcione struje, polarizacije materijala (rezonantne i relaksaione pojave), nehomogenosti materijala itd.. Dominantan faktor su gubici usled Džulove toplote (pojava indukovane električne struje u

uzorku, posebno pri stalnom električnom polju) i gubici usled polarizacije. Oba efekta zavise od temperature. Disperziju tan $\delta(\omega)$ teško je generalizovati jer zavisi od mnoštva faktora kao što su struktura i sastav materijala, stepen uređenosti, frekventni opseg itd. Svo mehanizmi polarizacije podrazumevaju postojanje izvesne inercije, odnosno naelektrisanja koja osciluju pod uticajem spoljašnjeg polja čine to sa određenim zakašnjenjem okarakterisanim veličinom ε_i . Tangens ugla gubitaka dostiže maksimalne vrednosti kada se frekvencija spoljašnjeg polja poklopi sa sopstvenim frekvencijama oscilovanja vezanih naelektrisanja (rezonantni procesi) ili sa recipročnom vrednošću karakterističnog vremena relaksacije za određeni proces (relaksacioni procesi).

Slika 6.5 Tipičan oblik zavisnosti integralnog tangensa gubitaka (puna linija) od temperature za slučaj dielektrika. Krive *a* i *b* predstavljaju zavisnosti tan δ (*T*) kao posledice Džulovog efekta i dipolne, odnosno jonske polarizacije materijala.

7. Osobine ispitivanih uzoraka

7.1 Merni uređaj

Merenje dielektrične konstante ispitivanih uzoraka $NiFe_{2-x}Y_xO_4$ izvršeno je pomoću uređaja GwINSTEK LCR-8101 prikazanim na slici ispod.

Slika 7.1 Uređaj za merenje električnih osobina uzorka u zavisnosti od frekvencije.

Uređajem se upravlja uz pomoć računara preko serijskog porta RS-232, što obuhvata i zadavanje parametara merenja. Podaci dobijeni merenjem se automatski beleže u digitalnoj formi u memoriji upravljačkog računara ili direktno na floppy disk. Očitavanje ovih podataka se ostvaruje pomoću odgovarajućeg PC softvera. Dobijeni podaci se beleže u ASCI-formatu i jednostavno se importuju u program za obradu Origin koji je korišćen za finalnu obradu i grafički prikaz rezultata.

Korišćeni uređaj omogućava merenje električnih osobina uzorka u zavisnosti od frekvencije. Merenje se zasniva na merenju kapacitivnosti i provodljivosti materijala.

Oblasti merenja i tehničke karakteristike uređaja:

•	frekventni opseg	20 Hz – 1 MHz
•	preciznost (R,Z,X,G,Z,B,L,C)	±0,1%
•	merni opseg L	0,1 nH – 100 kH
•	merni opseg C	0,01 pF – 1 F
•	merni opseg R	0,1 mΩ - 100 MΩ

Mereni uzorci su ispresovani u obliku tableta prečnika 10 mm a zatim na osnove tablete nanet sloj srebrne paste čime su na površinama stvorene merne elektrode, a sam uzorak se moze na zadovoljavajući način tretirati kao neidealni kondenzator sa zanemarljivom induktivnošću. Pomoću srebrne paste su na nanesene elektrode zalepljeni tanki bakarni provodnici čime se obezbeđuje kontakt sa mernim uređajem. Uzorci se tokom merenja mogu zagrevati pomoću pećnice ručne izrade čime se postiže i merenje električnih osobina u zavisnosti od temperature.

Dielektrična analiza podrazumeva da se na elektrodama sa ubačenim uzorkom primenjuje sinusoidni napon, što dovodi do stvaranja naizmeničnog polja. Na ovaj način se dobija polarizacija uzorka, sa oscilacijama iste frekvencije kao frekvencija primenjenog električnog polja, ali sa pomerenim faznim uglom δ . Pomeraj faznog ugla se može odrediti poređenjem primenjenog napona i izmerene struje koja je podeljena na kapacitivnu i provodnu komponentu.

Slika 7.2 Fazni pomeraj oscilacija u uzorku.

Slika 7.3 Kapacitivna i provodna komponenta izmerene struje u odnosu na primenjeni napon.

Neidealni kondenzator se u ovom slučaju može predstaviti ekvivalentnom šemom:

U naizmeničnom režimu važi $U_{eff} = I_2 Z_{eq}$, gde Z_{eq} predstavlja ekvivalentnu impedancu paralelno vezanog kondezatora *C* i otpora *R*. Na osnovu relativno jednostavnog računa dobija se da je:

$$\frac{1}{Z_{eq}} = \frac{1}{R} + \frac{1}{\frac{1}{jC\omega}} = \frac{1}{R} + jC\omega = \frac{1+jC\omega R}{R} \Rightarrow Z_{eq} = \frac{R}{1+jC\omega R} = \frac{1-jc\omega R^2}{1+\omega^2 C^2 R^2} \Rightarrow$$
$$Z_{eq} = \frac{\sqrt{R^2 + C^2 \omega^2 R^4}}{1+\omega^2 C^2 R^2} = \frac{R}{\sqrt{1+\omega^2 C^2 R^2}}$$

Kao i da je $tg\varphi = \frac{1}{\omega CR}$

Pošto je $C = \varepsilon_0 \varepsilon \frac{s}{d}$ i $R = \rho \frac{d}{s}$, mogu se dobiti vrednosti relativne dielektrične konstante i specifične otpornosti (provodljivosti) uzoraka što je i učinjeno.

7.2. Dielektrične osobine i provodljivost kod ispitivanog nanokristalnog ferita

Dielektrične osobine ferita su uslovljene različitim faktorima od kojih veličina zrna, granica zrna i temperatura sinterovanja igraju važnu ulogu. Dielektrično ponašanje ferita je objašnjeno pre svega međuslojnom polarizacijom koja proizilazi iz heterogene prirode same strukture. Ovaj tip polarizacije je dominantan za frekvencije koje su manje od 30 *kHz*.

Na frekvencijama manjim od 1Hz ponašanje dielektričnih osobina ferita se objašnjava LFD modelom (low frequency dispersion–nisko frekventna disperzija). Naime, kod većine materijala ovog tipa pri frekvencijama od 3 do 10 *mHz* vrednost dielektrične konstante opada i ide ka negativnim vrednostima.

Na frekvencijama većim od 30kHz dielektrična konstanta ne opada kontinualno do nule kao što se očekuje kod međuslojne polarizacije. U ovom frekventnom regionu ponašanje ferita je analogno Debajevom relaksacionom procesu. Debajev tip polarizacije vezan je za polarne materijale koji manifestuju orijentacionu polarizaciju u frekventnom regionu od 104–109 *Hz*. Jonska i elektronska polarizacija imaju neznatan udeo u vrednosti dielektrične konstante, jer se frekvencije, koje odgovaraju ovim tipovima polarizacije, nalaze u mikrotalasnoj oblasti.

Prisustvo Fe^{2+} i Fe^{3+} jona na okteadarskim mestima definiše ferite kao polarne materijale. Fe^{2+} joni se između ostalog formiraju i zbog delimične redukcije Fe^{3+} jona u Fe^{2+} jone prilikom sinterovanja. Orijentaciona polarizacija je posledica rotacionog razmeštanja dipola. U slučaju ferita rotacija $Fe^{3+} - Fe^{2+}$ dipola može biti predstavljena kao unutrašnja izmena naelektrisanja tj. izmena elektrona između dva jona koja se razlikuju za jedinično naelektrisanje, te se dipoli uređuju u prisustvu polja. Potencijalna barijera, između dva različito naelektrisana jona, nametnuće inerciju u kretanju naelektrisanja, što dovodi do relaksacije u polarizacionom procesu. Drugi verovatni izvor orjantacione polarizacije je postojanje katjonskih vakancija. Naime, postoji tendencija zauzetih katijona da budu vezani sa pozitivnim jonima (anjonima) vakancija, pa tako vezani parovi poseduju dipolne momente. Sa primenom polja, katjoni i vakancije u susedstvu mogu onda zameniti pozicije. Način ponašanja međuslojne polarizacije u niskofrekventnom regionu i polarizacije Debajevog tipa na višim frekvencijama je slično, jer oba polarizaciona procesa zavise od prisustva provodnih elektrona čija je koncentracija jednaka koncentraciji Fe^{2+} jona. Osnovna razlika je ta, da na niskim frekvencijama pri međuslojnoj polarizaciji veliki deo elektrona efikasno preskače između nesavršenosti kristalne rešetke, dok pri višim frekvencijama ovo preskakanje se, pre svega, odnosi na preskoke između Fe^{2+} i Fe^{3+} jona.

Treba istaći da postoji snažna korelacija između provodnog mehanizma i dielektičnog ponašanja spinelnih ferita. Provodni mehanizam se objašnjava preko preskočnog mehanizma (mehanizam skoka) koji se odigrava na oktaedarskim B mestima između Fe^{2+} i Fe^{3+} jona.

7.2.1 Frekventna zavisnost dielektrične propustljivosti.

Slika 7.4 Frekventna zavisnost dielektrične propustljivosti za $NiFe_{1.7}Y_{0.3}O_4$

Slika 7.5 Frekventna zavisnost dielektrične propustljivosti za $NiFe_{1.8}Y_{0.2}O_4$

Slika 7.6 Frekventna zavisnost dielektrične propustljivosti za $NiFe_{1.95}Y_{0.05}O_4$

Slika 7.7 Frekventna zavisnost dielektrične propustljivosti za $NiFe_2O_4$

Vidimo, da u sva četiri slučaja, dielektrična propustljivost ε_r opada. Na nižim frekvencijama opadanje vrednosti ε_r je izraženije nego pri višim frekvencijama gde ima konstantnu vrednost. Pri niskim frekvencijama spoljašnjeg polja, gotovo svi provodni elektroni (lokalizovani na Fe^{2+} jonima) imaju dovoljno vremena da dospeju do najbliže granice zrna⁶ gde se nagomilavaju što za rezultat ima visoku vrednost dielektrične konstante. Sa porastom frekvencije sve manji broj elektrona je u mogućnosti da prati tempo promene spoljašnjeg polja te stoga koncentracija na granicama zrna opada. Povećanje frekvencije na par desetina kHz dovodi do potpunog odsustva polarizacije, pošto je za ferite u frekventnoj oblasti $10kHz < \nu < 1GHz$ karakteristična pojava orijentacione polarizacije gde spoljašnje polje delimično orijentiše dipole.

⁶ Feriti se najčešće javljaju kao polikristalni keramički materijali, čiju strukturu čine kristalna zrna koja su međusobno odvojena granicama sa visokom koncentracijom defekata.

7.2.2 Frekventna zavisnost provodljivosti uzoraka

Slika 7.8 Frekventna zavisnost provodljivosti za $NiFe_{1.7}Y_{0.3}O_4$

Slika 7.9 Frekventna zavisnost provodljivosti za $NiFe_{1.8}Y_{0.2}O_4$

Slika 7.10 Frekventna zavisnost provodljivosti za $NiFe_{1.95}Y_{0.05}O_4$

Slika 7.11 Frekventna zavisnost provodljivosti za $NiFe_2O_4$

Iz snimaka zavisnosti dielektrične konstante i provodljivosti od frekvencije spoljašnjeg polja vidi se da kada dielektrična propustljivost opada a provodljivost raste sa porastom frekvencije. Ova pojava može se objasniti ukoliko se strukutra materijala smatra dvoslojnom⁷. Pri tome provodan sloj čine čestice i njihov uticaj je dominantan na visokim frekvencijama usled male dielektrične konstante. Granice čestica obrazuju slabo provodan sloj i imaju veliki uticaj na niskim frekvencijama usled velike dielektrične konstante.

⁷ Kopsov model, koji tretira dielektrik kao nehomogenu strukutru koju čine dva sloja Maksvel-Vagner tipa. Po ovom modelu jedan sloj čine zrna i predstavljaju provodan sloj, a drugi čine granice zrna i predstavljaju slabo provodan sloj.

7.2.3 Frekventna zavisnost tangensa gubitaka

Slika 7.12 Frekventna zavisnost tangensa gubitaka za $NiFe_{1.7}Y_{0.3}O_4$

Slika 7.13 Frekventna zavisnost tangensa gubitaka za $NiFe_{1.8}Y_{0.2}O_4$

Slika 7.14 Frekventna zavisnost tangensa gubitaka za $NiFe_{1.95}Y_{0.05}O_4$

Slika 7.15 Frekventna zavisnost tangensa gubitaka za $NiFe_2O_4$

Karakteristiku disperzije tan $\delta(v)$ teško je generalizovati što vidimo iz priloženih grafika. Ono što je zajedničko za sva četiri slučaja mala vrednost tan $\delta(v)$ pri niskim frekvencijama. U ovom frekventnom opsegu granice zrna u materijalu imaju dominantnu ulogu na vrednost tan $\delta(v)$. Unutar njih, zbog visoke koncentracije defekata, potrebno je znatno više energije za transport nosilaca naelektrisanja što rezultira visokim gubicima energije spoljašnjeg polja u vidu toplote. Povećanje frekvencije favorizuje uticaj zrna na disperziju, transport elektrona kroz rešetku je olakšan i dielektrični gubici su manji.

U određenom frekventnom opsegu tan $\delta(\nu)$ može imati maksimum i to u tačkama u kojima se vrednosti frekvencije spoljašnjeg polja poklapa sa sopstvenim frekvencijama oscilovanja vezanih naelektrisanja (rezonantni procesi) ili sa recipročnom vrednošću karakterističnog vremena relaksacije za određeni proces (relaksacioni procesi).

7.2.4 Temperaturna zavisnost dielektrične propustljivosti

Slika 7.16 Temperaturna zavisnost dielektrične propustljivosti za $NiFe_{1.7}Y_{0.3}O_4$

Slika 7.17 Temperaturna zavisnost dielektrične propustljivosti za $NiFe_{1.8}Y_{0.2}O_4$

Slika 7.18 Temperaturna zavisnost dielektrične propustljivosti za $NiFe_{1.95}Y_{0.05}O_4$

Slika 7.19 Temperaturna zavisnost dielektrične propustljivosti za $NiFe_2O_4$

Na graficima se jasno uočava trend porasta vrednosti dielektrčne konstante sa temperaturom na manjim frekvencijama što je posledica postojanja permanentnog dipolnog momenta. Sa porastom temperature orijentacija dipola je olakšana što dovodi do povećanja dielektrične polarizacije. Sa porastom frekvencije vrednosti dielektrične konstante mnogo sporije rastu, ili čak opadaju, što je posledica dominantne uloge međuslojne polarizacije u datom frekventnom opsegu.

7.2.5 Temperaturna zavisnost provodljivosti

Slika 7.20 Temperaturna zavisnost provodljivosti za $NiFe_{1.7}Y_{0.3}O_4$

Slika 7.21 Temperaturna zavisnost provodljivosti za $NiFe_{1.8}Y_{0.2}O_4$

Slika 7.22 Temperaturna zavisnost provodljivosti za $NiFe_{1.95}Y_{0.05}O_4$

Slika 7.23 Temperaturna zavisnost provodljivosti za $NiFe_2O_4$

Vidimo da provodljivost raste sa temperaturom i frekvencijom spoljašnjeg polja. Ova pojava objašnjava se u okviru Koops-ovog modela po kome se materijal sastoji iz kristalnih zrna, čija je provodnost mnogo veća od provodnosti granica između susednih zrna. Povećanjem frekvencije opada uticaj granica, a raste uticaj kristalnih zrna što vidimo kao povećanje provodljivosti.

7.2.6 Temperaturna zavisnost tangensa ugla gubitaka

Slika 7.24 Temperaturna zavisnost tangensa ugla gubitaka za $NiFe_{1.7}Y_{0.3}O_4$

Slika 7.25 Temperaturna zavisnost tangensa ugla gubitaka za $NiFe_{1.8}Y_{0.2}O_4$

Slika 7.26 Temperaturna zavisnost tangensa ugla gubitaka za $NiFe_{1.95}Y_{0.05}O_4$

Slika 7.27 Temperaturna zavisnost tangensa ugla gubitaka za $NiFe_2O_4$

Primećujemo trend opadanja vrednosti tan δ sa porastom temperature.

8. Zaključak

U ovom radu su ispitivane električne osobine uzoraka sledećeg sastava:

- $NiFe_{1,7}Y_{0,3}O_4;$
- $NiFe_{1,8}Y_{0,2}O_4;$
- $NiFe_{1,95}Y_{0,05}O_4;$
- $NiFe_2O_4$.

Prah je ispitan pomoću difrakcije X-zraka i elektronske mikroskopije kako bi se potvrdila struktura i nanočestični karakter dobijenih proizvoda.

Analizom dobijenih podataka došli smo do sledećih zaključaka:

- Dielektrična propustljivost opada a provodljivost svih uzoraka raste sa porastom frekvencije. Ova pojava može se objasniti ukoliko se strukutra materijala smatra dvoslojnom. Pri tome provodan sloj čine čestice i njihov uticaj je dominantan na visokim frekvencijama usled male dielektrične konstante. Granice čestica obrazuju slabo provodan sloj i imaju veliki uticaj na niskim frekvencijama usled velike dielektrične konstante.
- Vrednosti $\tan \delta(v)$ su u sva četiri slučaja male pri niskim frekvencijama. U ovom frekventnom opsegu granice zrna imaju dominantnu ulogu na vrednosti $\tan \delta(v)$, jer je potrebno znatno više energije, zbog visoke koncentracije defekata, za transport nosilaca naelektrisanja što za rezultat ima velike gubitke spoljašnjeg polja u vidu toplote. Povećanjem frekvencije favorizuje se uticaj zrna na diperziju i transport elektrona kroz rešetku je olakšan. U određenom frekventnom opsegu $\tan \delta(v)$ ima maksimume i to u tačkama u kojima se vrednosti frekvencije spoljašnjeg polja poklapaju sa sopstvenim vrednostima oscilovanja vezanih naelektrisanja ili sa recipročnom vrednošću vremena relaksacije za određeni proces.
- Dielektrična propustljivost, na nižim frekvencijama, raste sa temperaturom što je posledica postojanja permanentnog dipolnog momenta čija je orijentacija na većim temperaturama olakšana. Sa porastom frekvencije vrednosti dielektrične konstante sporije rastu ili čak opadaju što je posledica dominantne uloge međuslojne polarizacije u datom frekventnom opsegu.
- Provodljivost raste sa temperaturom i frekvencijom spoljašnjeg polja. Pojava se objašnjava u okviru Kopsovog modela po kome se materijal sastoji od kristalnih zrna čija je provodnost mnogo veća od provodnosti granica između susednih znra. Povećanjem frekvencije opada uticaj granica, a raste uticaj kristalnih zrna što za posledicu ima povećanje provodljivosti.

9. Literatura

- 1. A. Antić, Strukturne, mikrostrukture i električne osobine nanokristalnog nikl ferita (master rad, Univerzitet u Novom Sadu, Prirodno-matematički fakultet, 2013)
- 2. C. Cheng, *Enhanced magnetization and conductive phase in* $NiFe_2O_4$, Journal of Magnetism and Magnetic Materials 325 (2013) 144-146
- 3. C. Kittel, Introduction to Solid State Physics 7th edition John Willey and Sons New York 1996
- 4. D.M.Petrović, S.R.Lukić, Eksperimentalna fizika kondezovane materije, Univerzitet u Novom Sadu, Prirodno-matematički fakultet, 2000
- 5. D. Grdenić, Molekule i kristali, Školska knjiga, Zagreb, 1973
- 6. E. V. Gopalan, K.A. Malini, S. Saravanan, D. S. Kumar, Y. Yoshida, M.R. Anantharaman, Journal of Applied Physics, 41, 185005, 2008
- 7. Inorganic Crystal Structure Databes, National Institute of Standard and Technology, Gaithersburg, 2002
- 8. Join Committee on Powder Diffraction Standards (JCPDS), International Center for Diffraction Data, Newton Square, PA, 2003
- 9. K.C. Patil, M.S. Hegde, T. Rattan, S.T. Aruna, Chemistry of Nanocrystalline Oxide Materials, World Scientific, 2008
- M. Younas, M- Nadeem, M. Atif and R. Grossinger, Metal-semiconductor transition in NiFe₂O₄ nanoparticles due to reverse cationic distribution by impedance spectroscopy, Journal of Applied Physics 109, 093704, 2011
- 11. N. Kasapoglu, A. Baykal, S. Toprak, Y. Koseoglu, H. Bayrakdar, Synthesis and Characterization of NiFe₂O₄ Nano-Octahedrons by EDTA-Assisted Hydrothermal Metod, 2006
- 12. R.J. Elliot, A.F. Gibson, An Introduction to Solid State Physics and its Applications, The Macmillan Press LTD, London 1974
- 13. S. Jankov, Električne osobine cink-ferita dopiranog itrijumom (magistarska teza, Univerzitet u Novom Sadu, Prirodno-matematički fakultet, 2011)
- 14. Ž, Cvejić, Strukturne, magnetne i električne osobine nanočestičnih ferita tipa $Fe_{3-x}Me_xO_4$, $Fe_2Zn_yMe_{1-y}O_4$ (Me:Y:In) (doktorska disertacija, Univerzitet u Novom Sadu, Prirodno-matematički fakultet, 2008)
- 15. http://wikis.lib.ncsu.edu/index.php/Spinel
- 16. http://www.chemtube3d.com/solidstate/_spinel(final).htm
- 17. http://www.chem.uwimona.edu.jm/courses/invspinelJ.html
- 18. http://www.stanford.edu/dept/EHS/prod/researchlab/IH/nano/what_are_nanomaterials. html

Sombor, 22. jun 2014.

Ivica Patarčić rođen je 18.07.1982. godine u Somboru. Pohađao je osnovnu školu "Avram Mrazović" i Gimnraziju "Veljko Petrović" u Somboru. Nakon stečenog srednjoškolskog obrazovanja upisuje Prirodno-matematički fakultet u Novom Sadu, odsek za fiziku, smer diplomirani fizičar. Posle upisa apsolventskog staža povremeno radi kao nastavnik fizike u nekoliko osnovnih škola i gimnaziji u Somboru.

Ivica Patarčić

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET

KLJUČNA DOKUMENTACIJSKA INFORMACIJA

Redni broj:	
RBR	
Identifikacioni broj:	
IBR	
Tip dokumentacije:	Monografska dokumentacija
TD	
Tip zapisa:	Tekstualni štampani materijal
Vrsta rada:	Diplomski rad
VR Autom	Ivino Dotovčić
	Ivica Fatalcic
AU Mentor:	nraf dr Srðan Rakić
MN	protici Stean Kakle
Naslov rada:	Električne osobine nanokristalnih ferita tina $Ni(Fe, Y_{o},)O_{i}$ (r =
NR	$2 \ 1 \ 7 \ 1 \ 8 \ 1 \ 95$
Jezik publikacije:	srpski (latinica)
JP	F ()
Jezik izvoda:	srpski/engleski
JI	
Zemlja publikovanja:	Srbija
ZP	
Uže geografsko područje:	Vojvodina
UGP	
Godina:	2014
GO	
12aavac: 17	Autorski reprint
Mesto i adresa:	Prirodno-matematički fakultet Tra Dositeja Obradovića 4. Novi Sad
MA	Thround matematicki lakaket, 115 Doshoja Odradovka 4, 1001 bad
Fizički opis rada:	9 poglavlja/47 stranice/12 slika/30 grafika/7 referenci
FO	, F. Sen . Per
Naučna oblast:	Fizika
NO	
Naučna disciplina:	Eksperimentalna fizika kondezovane materije
ND	
Predmetna odrednica/ ključne reči:	Inverzni spinel, nanostructure, električne osobine
PO	
UDK Č	
Cuva se:	Biblioteka departmana za fiziku, PMF-a u Novom Sadu
U Važna napomana:	nome
VN	nema
Izvod:	Nanočestice su od velikog naučnog značaja jer efektivno predstavljaju most
IZ	između voluminoznih (bulk) materijala i atomskih ili molekularnih struktura. Bulk materijal treba da ima nepromenjive fizičke osobine bez obzira na veličinu, ali na nanoskali ovo često nije slučaj. Interesantna i nekad neočekivana svojstva nanočestica su obično posledica odnosa površine i
D	zaprennne.

Datum prihvatanja teme od NN veća: **DP**

Datum odbrane: DO Članovi komisije: KO Predsednik: član: član:

dr Željka Cvejić, vanredni profesor, PMF u Novom Sadu dr Srđan Rakić, redovni profesor, PMF u Novom Sadu dr Miodrag Krmar, redovni profesor, PMF u Novom Sadu

UNIVERSITY OF NOVI SAD FACULTY OF SCIENCE AND MATHEMATICS

KEY WORDS DOCUMENTATION

Accession number:	
ANO	
Identification number:	
INO	
Document type:	Monograph publication
DT	
Type of record:	Textual printed material
TR	
Content code:	Final paper
CC	
Author:	Ivica Patarčić
AU	
Mentor/comentor:	prof.dr Srđan Rakić
MN	
Title:	Electrical Properties of Nanocrystalline Ferrites $Ni(Fe_xY_{2-x})O_4$,
TI	(x = 2, 1.7, 1.8, 1.95)
Language of text:	Serbian (Latin)
LT	
Language of abstract:	English
LA	
Country of publication:	Serbia
СР	
Locality of publication:	Vojvodina
LP	
Publication year:	2014
PY	
Publisher:	Author's reprint
PU	
Publication place:	Faculty of Science and Mathematics, Irg Dositeja Obradovica 4, Novi Sad
	0/47/10/20/7
Physical description:	9/4//12/30/7
PD Seiendifie field	Dhawing
Scientific field:	Physics
	Envertimental condexed metter above
scientific discipline:	Experimental condesed matter physics
Subject/Ven words	Inverse spinal percettriciture electrical properties
Subject/ Key words.	inverse spiner, nanostructure, electrical properties
Holding data:	Library of Department of Physics Tra Dositeia Obradovića 4
HD	Elotary of Department of Thysics, Trg Dosheja Obradovica 4
Note:	none
N	none
Abstract:	Nanoparticles are of great scientific importance because they represent a
AB	bridge between the voluminous (bulk) materials and atomic or molecular structures. Bulk material should have an unchangeable physical properties regardless of its size, but at the nano-scale this is often not the case. The interesting and sometimes unexpected properties of nanoparticles are usually a consequence of the relationship surface area and volume.

Accepted by the Scientific Board: ASB

Defended on: DE Thesis defend board: DB President: Member: Member:

dr Željka Cvejić, associate professor, Faculty of Sciences, Novi Sad dr Srđan Rakić, full professor, Faculty of Sciences, Novi Sad dr Miodrag Krmar full professor, Faculty of Sciences, Novi Sad