Ljiljana S. Jovanović

Kristalografsko ispitivanje H - hloracetanilida
$C_{6}H_{5}HgNO_{4}$

(DIPLOMSKI RAD)

Novi Sad
1974.
Smatram svojom prijatnom dužnostu da se najbolje zahvalim profesoru Dr. B. Ribaru, koji je pregledao rukopis ovog rada, a čiji su saveti i sugestije bili vrlo korisni.

Posebno se zahvaljujem asistentu Vladimiru Divjakoviću na njegovom nesobijnom trudu i velikoj praktičnoj pomoći prilikom izrade rada.
SADRŽAJ

Uvod .. 1
Difrakcija X - zraka na kristalnoj rešetki 3
Ekperimentalne difrakcijske metode 7
Orijentacija kristala 9
Izračunavanje perioda 12
Weissenbergovi snimci 15
Određivanje kristalografskog sistema 19
Određivanje broja molekula u elementarnoj ćeliji
na osnovu gustine kristala 21
Zakoni pada/enja .. 23
Nepostojanost kristala 31
Zaključak .. 38
Literatura ... 39
UVOD

Određeni su kristalografski podaci za p-chloro acetanilide (C₈H₈NO₂Cl) (CRYSTAL STRUCTURES, VOLUME 6 Ralph W. G. Wyckoff). Pripada ortorombičnoj simetrijskoj parametrima elementarne ćelije:

\[a = 9,732 \quad b = 12,381 \quad c = 6,562 \]

Broj molekula u elementarnoj ćeliji je n=4 a kristal pripada prostornoj grupi C₂ᵥ \((P_{ma2_1})\).

Određen je položaj svih atoma u elementarnoj ćeliji i dužina svih veza između atoma u molekulu p-chloro acetanilide (aliha br.1).

Graf odgovarajući podacima je uključen između ove stranice, te ilustrira položaj svih atoma i veza između njih u molekulu p-chloro acetanilide.

Cilj ovog diplomskog rada je ispitivanje kristalografskih podataka N-chloro acetanilide čija je strukturna formula:

\[\text{CH}_3\text{C-N-Cl} \]

i to:

a) određivanje parametara elementarne ćelije,

b) određivanje kristalografskog sistema,

c) određivanje broja molekula u elementarnoj ćeliji,

d) određivanje prostorne grupe,

e) utvrđivanje dali su isostrukturni p-chloro i N-chloro acetanilide.
N-chloro acetanilide dobijen je dejstvom matrijum hipohlorita na acetanilid. Reakcija je isvodjena dejstvom ultra svuka u toku od 3 min. na reakciono mesto. N-chloro acetanilide izdvojen je ekstrakcijom posredu hloroforma. Iz hloroformskog rastvora, posle uparavanja na manju zapreminu pro-
izvod je talošen posredu petrolema. Nekristalizacija je vršena iz rastvora hloroforma na 0°C.

Dobijeni kristali su bezbojni, providni i pod norma-
lnim uslovima nepostojani. Lako se obradjuju, u vodi i alkoholu se ne rastvaraju ali se raspadaju pod dejstvom rendgenskog
zračenja. Mal zbog tog raspadanja N-chloro acetanilide i to već
posle 20-30 časova eksponiranja sa x - zracima, u ovom radu
neće biti određen položaj C1 u elementarnoj deliji kristala.
DIFRAKCIJA X-SRABA NA KRISTALNOJ REŠETKI

Pod strukturanom kristala podrazumijeva konkretnu prostornu raspodjelu materijalnih čestica (atoma, jona) u kristalu. Bitna osoba u ovom kontekstu je Max von Laue.

Ukoliko, zamislimo sadržaj kristala, a mesta koja su zasnovani strukturni elementi (motivi) zamijenimo tačkama, dobiven je pojam kristalne rešetke. Površina razmaci između sličnih tačaka u kristalnoj rešetki reda veličine talasne dužine x-sraka, kad snop padne na rešetku, ona će se ponatiti kao trodimenzionalna optička rešetka sa vidljivu svjetlost. Ustvari, dolazi do difrakcije x-sraka na kristalu koju je 1912. otkrio Max von Laue.

Elementarna čelija je najmanji deo prostora koji će ponajprije odrediti kod kristal (pri translaciji u sve tri dimenzije). Za određivanje parametara elementarne čelije koriste se difrakcione snimke monokristala.

Uslov za difrakciju x-sraka na kristalnoj rešetki dali su N. v. Laue, W. L. Bragg i W. H. Bragg.

Uslov uslov difrakcije može se dobiti ako pomatrano rešetku u jednoj dimenziji, odnosno niža tačaka, na koji pod ugлом \(\theta \) pada snop x-sraka. Uslov da dođe do pozitivne interferencije sraka koji difraktiraju, je da njihova putna razlika bude jednaka celobrojnom množiku talasne dužine \(\lambda \) upadnih sraka.
Na osnovu princeste broj 2. lako se izvodi uslov za pozitivan interferenciju na nisu atoma sa periodom translacije \(a_0\),

\[
\overline{AD} - \overline{BD} = \Delta S \quad \Delta S = a_0 \left(\cos d - \cos d_0 \right) = m\lambda
\]

gde je \(m\) ceco broj.

Geometrijska interpretacija ove jednačine je familija konusa čija se oca poklapa sa pravcem nisa atoma koji se periodički ponavljaju \(a_0\). Konuse difrakcije se prostiru i na levu i na desnu stranu (pozitivan i negativan) ukoliko pravac \(x\) - sraka u odnosu na nis nije nišim favorizovan i to se može napisati kao:

\[
\cos d_i = \cos d_0 + \frac{m\lambda}{a_0}
\]

\(i = (0, 1, 2, 3, \ldots)\)

\(m = (0, 1, 2, 3, \ldots)\)

Sli. br. 3.

Za trodimenzionalna prostranstvođe Laueov uslov

\[a \left(\cos d_1 - \cos d_{01} \right) = n\lambda \quad \cos d_1 = \cos d_{01} + \frac{n\lambda}{a} \]

\[b \left(\cos d_2 - \cos d_{02} \right) = p\lambda \quad \cos d_2 = \cos d_{02} + \frac{p\lambda}{b} \]

\[c \left(\cos d_3 - \cos d_{03} \right) = q\lambda \quad \cos d_3 = \cos d_{03} + \frac{q\lambda}{c} \]
Uglovi $\alpha_1, \alpha_2, \alpha_3$ određuju pravac difraktovanog sraka u funkciji parametara a, b, c i talasne dužine λ. Geometrijska interpretacija ovih trijedana su tri familije konusa čije se ose poklapaju sa pravcima perioda rešetke a, b, c. Ukoliko su konusi razmaknuti interferencija je negativna i nema difrakcije pa se samo duša njihove zajedničke izvednice postiže pozitivna interferencija.

Otač i sin Bragg su dali uslov difrakcije x - sraka na kristalnoj rešetki na osnovu refleksije. Za to pomatrao dva niza na slici br. 4. i to na nizu \overline{OA} imamo difrakciju n-tog reda, a na nizu \overline{OB} n-tog reda.

![Diagram difrakcije](image)

Sl. br. 4.

Ako na nizu \overline{OA}, gde izmedju talasa koji su difraktovani na dva susedne atome imamo t talasnih dužina rasliku, odbijamo na čvorova, a na na nizu \overline{OB} n čvorova dobijamo tačke S i T koje su u fazi. Ako tačke S i T pomatrao kao novi niz, sa obe tačke imamo $n \times m$ talasnih dužina i to važi za svaku tačku linije koja povezuje atome S i T, pa će se na tom nizu dejavati difrakcija multog reda. Na osnovu toga se difrakcija na nizovima može svešti na sakone "refleksije" koji su mnogo prestižni.
Ako sve to posmatrano i sa treću dimenziju možemo difrakciju smatrati kao refleksiju sa ekvivalentne ravni. Na osnovu ovakvog posmatranja difrakcije možemo odrediti Braggov uslov pozitivne interferencije. Putna razlika sa alike br. 6. je:

$$\Delta S = \overline{BC} - \overline{CD} = 2\overline{BC} = 2d\sin\theta$$

Pozitivna interferencija je za $n\lambda = 2d\sin\theta$ gde je n celi broj.
EXPERIMENTALNE DIFRAKCIJE METODE

Difrakcioni snimci monokristala se mogu dobiti pomoću polihromatskog i monohromatskog zračenja.

Metod nepokretnog filma i nepokretnog kristala ili Laueov metod je najstariji tip snimanja difrakcije X - zraka na kristalima. Tu se koristi polihromatsko zračenje pa se za dato d(hkl) (period identičnosti svake familije ravni) nadje talasna dužina koja zadovoljava Braggov uslov. Krive, uočljive na snimku, zavise od um uгла (Θ) između X - zraka i odgovarajućih ravni (hkl). Difraktovano zračenje se ne dobija u svim tačkama krive već samo u onima za koje poljašaj ravni zadovoljava Braggov uslov. Dobija se nis diskretnih tačaka raspoređenih po elipsi (Θ je manje od 45°), hiperboli (Θ veće od 45°), paraboli (Θ = 45°) ili pravoj liniji (Θ = 0°).

Monohromatsko zračenje omogućuje da se dobiju snimci koji daju dalje više podataka nego snimci dobijeni prethodnom metodom. Pri tome se kristal obrće ili oscilira a kamera sa filmom koji zasjenju detektuje difraktovanim sop, može da miruje ili da se i sama pokreće.

Sl. br. 7.
Ako na kristal, orijentiran tako da je pravac x - sraka normalna na jednu od osa kristala, koja je istovremeno i osa obrte-
ja (slika br. 7.) na filmu koji u cilindričnoj kameri opkoljava kristal, kad se reviri, uočava se niz tačaka poređanih po
paralelnim pravim linijama koje se zovu slojne linije. Linije koja sadrži mrlju direktnog sraka predstavlja multi nivo. Ispod
i iznad nulte slojne linije redaju se prva, druga, treća, ... slojne linije.

Redosled slojnih linija se slaže sa indeksima difrak-
cionih konusa. Ako je duž obrtnе ose usmerena jedna od krista-
lografskih osa a, b, ili c, tada broj slojne linije neposredno
daje jedan od tri indeksa difrakcije n, p ili q. Na primer,
a $_{3max}^{max}$ difraksijske se rotacionske osi poklapa
sa o osom kristala, na nekoj m - toj slojnoj liniji raspoređene
su sve tačke (n, p, q) u kojima je q-ti indeks m.

Rastojanje izmedu slojnih linija zavisio odugla otvo-
ra difrakcionih konusa, koji opet određuje veličinu periodo
penavljanja u nisu koji ide po osi konusa. Time, rastojanje
izmedu identičnih slojnih linija određuje periodu identično-
sti kristala duž rotacijske ose. Ako je upadni smop usmeren nor-
malno na rotacionu osu, može se odrediti parametri elementarne
čelije. Sa slike br. 7. se vidi:

$$\tan \mu = \frac{h}{2R} \quad \mu = \arctg \frac{h}{2R} \quad \alpha_0 = 90^\circ \quad a(\cos \alpha - \cos \alpha_0) = n\lambda \quad a \cos \alpha_i = n\lambda \quad a = \frac{n\lambda}{\sin \mu} = \frac{n\lambda}{\sin \left[\arctg \frac{h}{2R} \right]} \quad h = 2\gamma_0$$

Tako da svaki oco broj n odgovara jednoj slojnoj liniji.
ORIJENTACIJA KRISTALA

Da bi dobili uspešne difrakcione snimke monokristala sa monochromatskim zračenjem, potrebno je dobro orijentisati kristal duž neke kristalografske ose. To se postiže pomoću optičkog goniometra, ukoliko je kristal takvog oblika da možemo približno uočiti osu, ili pomoću difrakcionih snimaka ukoliko je kristal nepravilnog spoljašnjeg oblika.

Svaka slojna linija je strogog na jednom pravcu samo ukoliko x - zraci padaju tačno pod pravim uglom na osu kristala koja se poklapa sa osoom kamere. Da bi to postigli sa kristalom C_{6}H_{5}NO_{2} se prvi analog je isabran no neki proizvoljni položaj sa oscillacijskim zatim se sukcesivna smicanjima i korekcijama lukova na goniometarskoj glavi, približno, koliko je moguće jednoj od osa kristala.

Korekcije položaja kristala vršite u zavisnosti od vrste odstupanja linije od prave koje mogu biti posledice kombinacije četiri osnovna odstupanja prikazana na slici broj 8.

![Diagram](image)

Sl. br. 8.

I to su moguće kombinacije a) sa c) ili d) i kombinacije b) sa e) ili d). Ako posmatrao snimak iz prave x - zraka na slici
br. 8. je prikazana respektivno, magnutost kristalografske ose: a) ka isvornu, b) od isvora zračenja, c) u desno, i pod d) je magnutost u levo. Fizoranjem ladice u suprotnom pravcu od nagiba ose postižemo ispravljanje. Ovakvim korekcijama se postiže takva orijentacija kristala da je odstupanje na nultoj slojnoj liniji skoro neprometno.

Ali za uspešne difrakcione snimke moramo vršiti jeon i finalno centriranje pomoću specijalnih metoda. Jedna metoda je dupli Laue gde se na istom snisku nagnave dva sniska kristala sa ekspozicijama u odnosu 3:1. Ladjica se najčešće postavlja duž x - zraka a druga ekspozicija se snima tako što je kristal u odnosu na prvobitni položaj sakrenut za 180°. Zato se tačke koje su bile pri jednoj ekspoziciji na donjem delu sniska, pri drugoj nalaze na gornjem delu.

Sa finalnom orijentaciju kristala C₆H₅SO₄ koristili smo oscilatornu x - metodu. Tu se goniometarska glava sa kristalom postavlja tako da x - zraci padaju pod uglom od 45° u odnosu na svaku ladicu (slika br. 9.).
I ovdje se na istom filmu naprave dva snimka kristala sa ekspozicijama u odnosu 3:1. Pri drugoj ekspoziciji je cela glava sa kristalom zaokrenuta za 180°.

Na slici broj 10. prikazan je slučaj kad x - zraci ne padaju tačno pod pravim uglom na osu kristala. Uočljivo je nepoklapanje refleksa dobijenih pri dugoj i krakoj ekspoziciji - nalaz se jedan iznad drugog. Da bi isvršili korekciju pomoću snimka dobijenog x - metodom, izmereno na udaljenosti 4,5cm levo i desno od centra, rastojanje u millimetrima između odgovarajućih refleksa pri kratkoj i dugoj ekspoziciji i pomnoženo ga sa faktorom 0,7

\[0,7 \cdot \Delta X = \Delta \alpha \]

\(\Delta \alpha \) je ugao u stepenima za koji treba pomeriti odgovarajuće ladjice.
IZRAČUNAVANJE PERIODA

Za izračunavanje perioda kristala \(C_6H_5NO_2 \) koristili smo rotacione sniske date na slici br. 11, 12, 13. oko dobrog orijentisanog osa.

Sl. br. 11.

Sl. br. 12.

Da bi srednja vrednost perioda bila preciznija, bolje je koristiti rotacione sniske koji su bogatiji taškama od oscilatornih. Pre konačne x - metode, potrebno je kristal prevući bezbojnim lakom zbog raspadanja pod dejstvom x - zraka. Određivanje perioda kristalografske ose oko koje je rotirao kristal, vrši se tako što se prvo mere, na više mesta, rastojanja između pojedinih slojnih linija. Zatim se nađu srednje vrednosti tih rastojanja i pomoću njih se računaju periode za svaku slojnu liniju. Za računanje periode se koristi obrazac:

\[
P = \frac{n\lambda}{\sin \left[\arctan \frac{2y_n}{D_k} \right]}
\]
gde je \(d \) prečnik kamere a \(2y_n \) je rastojanje od \(n \) do \(n - 1 \)te slojne linije; \(\lambda \) je talasna dužina zračenja i za bakarnu antikatodu ima vrednost \(\lambda_{\text{kr}} = 1,54178 \) Å.

Sl. br. 13.

Da bi precizno odredili periodu, moramo koristiti efektivan prečnik kamere a ne onaj koji fabrika propisuje. Efektivan prečnik kamere se može odrediti baš darenjem pomoću nasimljenog praha germanijuma ili nekog drugog čistog praha koji daje linije pod velikim uglom i čije su periođe poznate, na rotacionom snimku kristala.

Medjutim, u svom radu nisam koristila direktno onaj obrazac za periodu već sam izmerila odstojanja izmedju odgovarajućih slojnih linija delila sa 2\(R \) i dobijenih vrednostima, is specijalnih tablica, su korenljodirane vrednosti perioda. Ako se seri razmak izmedju 1 i -1 slojne linije \(K \lambda \) zračenja bakra, vrednostima \(2y(1,-1) / 2R \) odgovaraju u tablicama direktno vrednosti perioda. Za 2,3,... slojna liniju, vrednostima perioda odgovaraju brojevi iz tablica koje treba jesti samo sa 2,3,4,... Time smo dobili vrednosti perioda za kristal \(\text{C}_6\text{H}_5\text{NO}_3 \) koje su date u tabeli:
Sa oscilatornog snimka oko b ose (slika br. 12.) sledi:

<table>
<thead>
<tr>
<th>n</th>
<th>$2y_n$ (mm)</th>
<th>b (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13,20</td>
<td>6,873</td>
</tr>
<tr>
<td>2</td>
<td>28,82</td>
<td>6,854</td>
</tr>
<tr>
<td>3</td>
<td>52,60</td>
<td>6,840</td>
</tr>
</tbody>
</table>

$b = (6,85 \pm 0,02)$ Å

Sa oscilatornog snimka oko a - ose (slika br. 11.) dobijamo:

<table>
<thead>
<tr>
<th>n</th>
<th>$2y_n$ (mm)</th>
<th>a (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13,2</td>
<td>7,160</td>
</tr>
<tr>
<td>2</td>
<td>28,6</td>
<td>7,152</td>
</tr>
<tr>
<td>3</td>
<td>51,0</td>
<td>7,131</td>
</tr>
</tbody>
</table>

$a = (7,15 \pm 0,02)$ Å

Sa oscilatornog snimka oko c - ose (slika br. 13.) sledi:

<table>
<thead>
<tr>
<th>n</th>
<th>$2y_n$ (mm)</th>
<th>c (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10,4</td>
<td>17,689</td>
</tr>
<tr>
<td>3</td>
<td>15,8</td>
<td>17,603</td>
</tr>
<tr>
<td>4</td>
<td>21,4</td>
<td>17,628</td>
</tr>
<tr>
<td>5</td>
<td>28,0</td>
<td>17,560</td>
</tr>
</tbody>
</table>

$c = (17,6 \pm 0,04)$ Å
WEISSENBROGOVI SNIMCI

Ukoliko, pri snimanju kristala, pored kristala bude pokretna i kamera, dobiće se Weissembrovski snimci. Uredaj koji se koristi za dobijanje Weissembrovoih snimaka je prikazan na slici br. 14.

Sastoji se iz cilindrične kamere, duž dijela ose se postavlja goniometarska glava sa kristalom. Kamera se može posneti duž svoje osi i to sinkronizovano sa obranjem kristala. Na odgovarajuće nosače kamere se mogu postaviti metalni satitni cilindri sa izdvajanje odgovarajuće slojne linije. Ali refleksi te slojne linije, ukoliko se posneti kamera, može biti samo na jednoj liniji, kao kod običnog oscilatornog snimka već će se rasporediti po cijeloj dužini film. Time se na snimku dobiju zakrivljene linije.

Da bi snimali nulti slojnu liniju oko neke ose, potrebno je simetrično, levio i desno, postaviti satitne prstenove tako da se u njihovom razmaku vidi Kristal a da je razmak teliki da ne dozvoljava prolazak refleksa koji ne pripadaju nultoj slojnoj liniji. Zatim treba napraviti probni snimak (posebno na više slojne linije) da bi se vidjelo da li tačke sa isabranu slojnu liniju padaju na sredini izdvojene trake na filmu. To je oscilacioni snimak samo što se postave prstenovi. Kad je izdvajanje uspelo, put se Weissembrogiom time što se i kamera krada dok kristal rotira.
Ako smanjemo multu slojnu liniju oko b - ose dobijeno na Weissenbergovom snimku samo refleksa od onih ravni koje su paralelne b - osi, odnosno od ravni sa indeksima (h0l). Na snimku se dobiju i refleksi koji leže duž dve ili trih pravih linija, a poštuju od ravni koje su paralelne jos i nekoj drugoj osi kristala, sem b - osi. Ako su paralelne sijek i a - osi, imaju indeksa (001) a ako su paralelni c - osi (h00).

Ovo se objašnjava time, da svi ti refleksi nastaju od zone reflektujućih ravni koje se sukcesivno održavaju u pogodnom položaju za pozitivnu interferenciju. Ako je vreme izmedju takvih položaja (t), pravac reflektovanog snopa (x) u pravcu kretanja kamere je:

\[x = v \cdot t \]

gde je v brzina linearnog kretanja kamere, normalno na x - srahce. Reflektovani x - srah ima i pomeranje normalno na pravac kretanja kamere zbog oscilacije kristala ugaonom brzinom w i to, ukoliko je R poluprečnik kamere, iznosi:

\[y = w \cdot R \cdot t \]

Iz ovih parametarskih jednačina se dobije:

\[y = \frac{wx}{v} = \text{const} \cdot x \]

a to je sa v = const, prava na kojoj se nalaze svi refleksi tipa (h00), (0k0) ili (001). Na jednom snimku se javljaju samo dva od tri tipa refleksija. Na Weissenbergovom snimku se to prave linije javljaju ponovo posle 180°. Pošto je rastojanje tačaka prave linije od sredine filma proporcionalno reciprocnoj vrednosti perioda, na Weissenbergovom snimku će se i usčuvati habh dve reciprocne periode i to one oko kojih kristal ne osciluje. Vrednosti tih perioda se i određuju sa Weissenbergovih snimaka ukoliko se zna kristalografski sistem korne pripada kristal.

Kvadratna forma daje vezu:

\[\sin \frac{\lambda}{x} = f (h, k, l, a, b, c, \alpha, \beta, \gamma) \]

gde su h,k,l poznati Millerovi indeksi izabranih refleksija; a,b,c vrednosti perioda kristala; \(\alpha, \beta, \gamma \) uglovi izmedju kristalografskih osa.
Posto refleksi koji leže na pravim linijama na mlinku mlin te斜ne imaju dva indeksa jednaka mlin, inače i mlinno upravo–
niju kvadratnu formu, što će omogućiti određivanje perioda uz
poznavanje uglova \(\alpha, \beta, \gamma \).

Sa to se biraju mlje na donjoj i gornjoj polovini filma koje su
ekvivalentne tj. imaju iste indekse. One su medjusobno "smanjene"
za uga \(\gamma \) čija se vrednost može odrediti sa slike br. 15.

![Slika Sli. br. 15.]

Standardna Weissenbrgova kamera ima prečnik

\[2R_{ef} = 57,2958 \text{ mm} \]

A konstruisana je tako da se hORIZONTALNO pomera
sa lin dok se kristal obrće za dva stepena. Osim kamere je takav
da jednom milimetru odgovara uga od dva stepena. Posto je za
pojavljivanje ekvivalentnog refleksa potrebno da se kristal obr-
ne sa 20° kamera da se pomeriti za 6cm. Uga izmedju ekvivalent-
tnih refleksa je \(40° = 20\text{mm} \) pa je uga \(\gamma \) dat kao:

\[\gamma = \arctg \frac{20}{2} = \arctg 2 \]

\[\gamma = 63° 26' \]

Jon se sa slike br. 15. vidi da je:

\[20 = \arcsin \frac{D}{2} \]

\[\alpha = \frac{D}{2} \sin \gamma \]

\[\alpha = \frac{D}{2} 0,89441 \]
Izraz za Hragov ugaо refleksije izabranog refleksa treba još da sadrži i korekcioni faktor koji će obuhvati odstupanje tačnog poluprečnika dobijenog bašdarenjem kamere od predvidjene fabričke vrednosti pa je konačno:

$$\theta = \frac{D}{2} \cdot 0,89441 \cdot \frac{57,2958}{R_{izm}}$$
ODREĐIVANJE KRISTALOGRAFSKOG SISTEMA

U zavisnosti od odnosa parametara elementarne celije i uglova koje ose medjusobno zaklapaju sve kristale možemo svrstati u sledećih sedam sistema:

<table>
<thead>
<tr>
<th>KRISTALOGRAFSKI S.</th>
<th>a, b, c</th>
<th>α, β, γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>TESERALNI</td>
<td>a = b = c</td>
<td>α = β = γ = 90°</td>
</tr>
<tr>
<td>TETRAgonALNI</td>
<td>a ≠ b ≠ c</td>
<td>α = β = γ = 90°</td>
</tr>
<tr>
<td>ORTorombičNI</td>
<td>a ≠ b ≠ c</td>
<td>α = β = γ = 90°</td>
</tr>
<tr>
<td>MONOKLINičNI</td>
<td>a ≠ b ≠ c</td>
<td>α = β = γ = 90° ≠ β</td>
</tr>
<tr>
<td>TRIKLINičNI</td>
<td>a ≠ b ≠ c</td>
<td>α ≠ β ≠ γ ≠ 90°</td>
</tr>
<tr>
<td>HEKSAGONALNI</td>
<td>a = b ≠ c</td>
<td>α = β = γ = 90°</td>
</tr>
<tr>
<td>TRIGONALNI</td>
<td>a = b = c</td>
<td>α = β = γ = 90° ≤ 120°</td>
</tr>
</tbody>
</table>

Za oredjivanje kristalografskog im sistema koriste se Weissembergovi sminki i to su dovoljna dva sminka dveju multih elemtnih linija. Uporedjivanjem sminka sa standardnom Weissembegovom mrežom mogu se odrediti uglovi izmedju ose i da li su i koje ose medjusobno jednake, u zavisnosti od toga da li su rastojanja izmedju odgovarajućih tačaka na dvena osama ista ili ne. Ta rastojanja izmedju tačaka su proporcionalna recipročnim vrednostima perioda ali pri oredjivanju medjusobnih odnosa to nije značajno.

Kristal N - chloro acetanilide ima sve recipročne ose, pa i kristalografske ose različite; dva ugla su od 90° a triđe različit od 90°. Iz tablice za kristalografske sisteme zaključujemo da ovaj kristal pripada monoklinom sistemu a ugao različit od 90° se naziva monoklinski ugao. Za monoklinski ugao se po konvenciji uzima da je veći od 90° i pri tome su a i c ose pozitivne. Ugao na Weissembegovu sminku se oredjuje.
nerenjen razmaka kose odgovara pozak od 180° i razmaka kose odgovara pozak od β° (monoklinski ugao) pri čemu je prvo rastojanje, rastojanje na filcu od jedne iste ose koja se pojavljuje na različitim mestima a drugo rastojanje je ono koje je duže izmedju dve ose koje grade monoklinski ugao:

$$\beta = 180^\circ - \beta$$

![Diagram](image)

87. br. 17.

Sa snimka broj 16. dobili smo sledeće vrednosti:

<table>
<thead>
<tr>
<th>D (mm)</th>
<th>d (mm)</th>
<th>β°</th>
<th>d (mm)</th>
<th>β°</th>
<th>180° - β°</th>
</tr>
</thead>
<tbody>
<tr>
<td>89,2</td>
<td>45,5</td>
<td>91,600</td>
<td>43,7</td>
<td>90,180</td>
<td>91,820</td>
</tr>
<tr>
<td>90,9</td>
<td>46,3</td>
<td>91,674</td>
<td>44,6</td>
<td>88,308</td>
<td>91,692</td>
</tr>
</tbody>
</table>

$$\bar{\beta} = 91,75^\circ = 91^\circ 45'$$

Da bi koristili Wüstenbergove snimke za određivanje perioda kristala potrebno je poznajemo kristalografskog sistema. Za monoklinski sistem je data kvadratna forma izraza:

$$\sin \theta = \frac{1}{2} \sqrt{\frac{h^2}{\sin^2 \phi} \cdot \frac{a^2}{b^2} + \frac{k^2}{c^2 \sin^2 \phi} + \frac{l^2}{a^2 \sin^2 \phi}}$$

Sa snimka oko c - ose se mogu odrediti druge dve periode. Na osema snimku nulte šaljne je indeks l = 0 a na samej a - osi je i indeks h = 0 pa je:

$$a \text{ za } a-\text{osu je: } \frac{4 \sin^2 \theta}{\lambda^2} = \frac{k^2}{b^2} \Rightarrow b = \frac{k \lambda}{2 \sin \theta}$$

$$\frac{4 \sin^2 \theta}{\lambda^2} = \frac{l^2}{a^2 \sin^2 \phi} \Rightarrow a = \frac{h \lambda}{2 \sin \theta \sin \phi}$$
ODREĐIVANJE BROJA MOLEKULA U ELEMENTARNOJ ĆELIJI NA OSNOVU GUSTINE KRISTALA

Provera hemijske formule jedinjenja preko merenih i računatih gustine je jedan od uspovnih načina za proveru polazišnih i određenih podataka.

Za određivanje gustine kristala smo koristili metodu lebdenja. zbog relativno velike gustine kristala je prilično ograničen istor težnosti. Uspeli smo da dobijemo rastvor koje je takve koncentracije da u njemu ne Kristal lebdi. Za određivanje gustine tog rastvora smo koristili piknometarsku metodu i dobili sledeće rezultate:

- sapresina piknometra = 1,0761
- tešina praznog piknometra = 4394 mg
- tešina punog piknometra = 5830 mg
- razlika tešina = 1436 mg

Na osnovu ovih vrednosti za gustine rastvora a time i kristala C₂H₅NO₄Cl smo dobili:

\[\rho_{\text{broj}} = \frac{\rho_{\text{c}} - \rho_{\text{r}}}{\rho_{\text{c}}} = \frac{1,436}{1,076} = 1,34 \text{g/cm}^3 \]

Za određivanje broja molekula u elementarnoj ĉelišću potrebnim je molekulsku tešinu, odnosno bruto formulu jedinjenja koje je iskristaliziralo. Koristeći vrednosti za atome tešine pojedinih elemenata možemo izračunati molekulsku tešinu N = chlore acetanilida:

\[\begin{align*}
8A_0 &= 8 \cdot 12,01 = 96,08 \\
8A_w &= 8 \cdot 1,00783 = 8,062 \\
1A_{Cl} &= 35,457 \\
1A_N &= 14,007 \\
1A_O &= 16
\end{align*} \]

\[N = 169,607 \]
Ako je gustina kristala \(\varphi \) a zapremina elementarne delije u kojoj se nalazi jedan gram-mol se može napisati kao:

\[
M = \frac{\varphi \cdot V \cdot 10^{-24}}{\frac{1}{2} \cdot 1,66 \cdot 10^{-26}} [g]\]

Iz ove jednačine je:

\[
Z = \frac{\varphi \cdot V}{M \cdot 1,66}
\]

Znači možemo lako naći broj molekula u elementarnoj deliji ukoliko odredimo gustinu kristala i zapreminu elementarne delije. Za kristal \(\text{C}_6\text{H}_5\text{NO}_2 \) smo dobili sledeće vrednosti:

- \(a = 7,15 \) Å \(\alpha = 90^\circ \)
- \(b = 6,85 \) Å \(\beta = 91,45^\circ \)
- \(c = 17,60 \) Å \(\gamma = 90^\circ \)

Znači da se u svakoj elementarnoj deliji nalazi po četiri molekule. Mi smo taj broj dobili kao najbliži cca broj pa ako ponešto njezina ponovno isračunamo gustinu, dobijemo takozvano "ređešku gustinu" koja bi odgovarala stvarnoj ukoliko bi kristal bio potpuno savršen. Za najkristal je to:

\[
\varphi_k = \frac{M \cdot Z \cdot 1,66}{V} = 1,3068 \approx 1,31 \left[\frac{g}{cm^3} \right]
\]

Značaj broja molekula po elementarnoj deliji je u određivanju prostorne grupe, potvrđi tačnosti pridruživanja indeksa tačkama, tj. da li je dobivena prava vrednost za period ili neki multiplitet prave vrednosti.
ZAKONI POGAĐENJA

Difrakciju na kristalnoj retežci možemo primeniti kao da se difrakcija vrši na svakoj podrešetci, koje čine ravnini atomi smešteni u istim čvorovima, kristala a da rezultujući talas nastaje interferencijom tih na podrešetkama difraktovanih. Intensitet zraka koji izasiva sazbijanje na filmu je izraz nere amplituda rezultujućih talasa:

\[I = \sum_{hkl} |F(h, k, l)|^2 \]

gde je \(f_{j} \) atomski faktor rastojanja koji zavisi od vrste atoma i pravca difraktovanog zraka i uvek je različit od nule.

Xj, Yj i Zj su kordinate atoma koji pripadaju istoj ravni sa indeksima \((hkl) \). Iz formule se vidi da intensitet sazbijanja zavisiti od rasporeda atoma. Za određeni raspored će pojedini refleks biti intensivniji, za drugi alabiji ili će neki potpuno uzasiti. Zakonitosti u pogađenju refleksa su odras simetrije kristala.

Za određivanje prostorne grupe potrebno je animiti četiri Weissenbergova simaka i to multu i prvu alojnu liniju oko baran dve kristalografske osi. Od ovog pravila se odstupa kod viših singonija gde je gađenje refleksa često pa se pristupa anisanju oko druge ili treće alojne linije.
Sli. br. 20.

Za izdvajanje prve slojne linije treba iskrenuti kamenu i za određenu vrednost pomeriti prstenove. Inklinacioni ugao \(\mu \) za koji se iskreće kamena određuje se iz obrasca:

\[
\sin \mu = \frac{\lambda}{2P}
\]

gde je \(P \) - perioda oko koje se snima.

Ukoliko se postavlja druga slojna onda se ona tretira za prvu tj. umesto \(P \) stavlja se \(P/2 \) ili ako se izdvaja n - ta slojna, umesto \(P \) stavlja se \((p/n) \).

Pomeranje prstenova, oba na istu stranu, u odnosu na položaj za snimanje multe slojne, izračunava se iz relacije:

\[
\Delta x = 23,7 \cdot \tan \mu
\]
Za izdvajanje prve slojne linije oko b - ose možemo dobijati sledeće vrednosti za inškluzivni ugao i za Δx:

\[b = 6.85 \text{ Å}, \quad \sin \mu = \frac{\lambda}{2b} = \frac{0.142}{13.7} = 0.01028433, \quad \tan \mu = 0.1135427 \]

\[\Delta x = 23.7, \quad \tan \mu = 2.6833 \quad [\text{mm}] \]

Dok su za a - osu dobivene sledeće vrednosti:

\[a = 7.15 \text{ Å}, \quad \sin \mu = \frac{\lambda}{2a} = 0.1082865 \]

\[\Delta x = 23.7, \quad \tan \mu = 0.10833 \cdot 23.7 = 2.6 \quad [\text{mm}] \]

Kristal 3-chloro acetanilide pripada monoklinskjoj simetriji sa koju su u internacionalnim tablicama dati zakoni pogledanja sa refleksa sledećih tipova hkl, h0l, 00l ukoliko je prioriteta b-osa kao osa normalna na ravan (a, c).

Sa snimka mlađe slojne linije, slika br. 19., oko b-ose možemo dobijati sledeće zakonitosti za refleksae h00, 00l i h0l:

\[
\begin{array}{cccc}
100 & 200 & 300 & 400 \\
002 & 004 & 006 & 008 & 0010 & \ldots \quad (l = 2n)
\end{array}
\]

Učesava se pojava refleksa samo za parne vrednosti indeksa l.

\[
\begin{array}{cccc}
102 & 104 & 106 & 108 \\
202 & 204 & 206 & 208 & \ldots \quad (l = 2n) \\
302 & 304 & 306 & 308 & \ldots
\end{array}
\]

Javlja se arilje na filmu samo ukoliko l ima parnu vrednost.
Sa snima sve slojne linije, alika br. 22., oko b - ose dobijamo:

\[
\begin{array}{cccc}
011 & 012 & 013 & 014 \ldots \\
010 & 010 & 010 & 010 \\
110 & 210 & 410 & 510 \ldots \\
111 & 112 & 113 & 114 \ldots \\
211 & 212 & 213 & 214 \ldots \\
311 & 312 & 313 & 314 \ldots \\
\end{array}
\]

Na osnovu ovog snima ne uočavamo nikakve zakonitosti za imagine h, k, l.

Sa snima multe slojne linije, alika br. 20., oko c - ose imamo:

\[
\begin{array}{cccc}
100 & 200 & 300 & 400 \ldots \\
020 & 040 & 060 & 080 \ldots \\
110 & 120 & 130 & 140 \ldots \\
210 & 230 & 250 & 270 \ldots \\
320 & 330 & 340 & 350 \ldots \\
\end{array}
\]

(k = 2m)

Sa snima multe slojne, alika br. 18. mitex oko a - ose slijedi:

\[
\begin{array}{cccc}
020 & 040 & 060 & 080 \ldots \\
002 & 004 & 006 & 008 \ldots \\
011 & 012 & 013 & 015 \ldots \\
021 & 022 & 023 & 024 \ldots \\
031 & 032 & 033 & 035 \ldots \\
\end{array}
\]

(k = 2n)

(l = 2n)
Znači sa Weisembergovih snimaka, datih na slici br. 18, 19, 20, 21, 22. zaključujemo da za hkl nema zakonitosti pogasanjenja, tj. javljaju se arilje čije hkl može biti bilo koje a ta činjenica nam govori da je refleksa tipa P (primitivna).

Za refleksne tipa OkO uočavamo sistematsko gašenje svih refleksija sa svako neparno k što znači da ima duž b – ose helikoidalnu osu drugog reda (2₁). Ustanovljeno je i sistematsko gašenje svih refleksija tipa h01 za svako neparno l što znači da postoji klisađa ravan simetrije normalna na b – osu a klisanje je paralelno c – osi.

Na osnovu ovih zakonitosti jednoznačno je određena centrosimetrična prostorna grupa P₀₂₁/c.

Da su ove zakonitosti saista takve možemo da proverimo na osnovu izraza za strukturnu amplitudu koji se može napisati i u vidu:

\[F(hkl) = \sum_{j=1}^{n} f_{ej}(hkl) \cdot e^{2\pi i (hx_j + ky_j + Lz_j)} = f \cdot S \]

gde je:

\[S = \sum_{j=1}^{n} e^{2\pi i (hx_j + ky_j + Lz_j)} \]

Za refleksne OkO može dobili da je k = 2n pa za k = 2n + l očekujemo da će se javiti pogasanjenja i za to se dobije:

Kordinate atoma datog kristala su:

\((x, y, z), \ (-x, -y, -z); \ (-x, 1/2 + y, 1/2 - z), \ (x, 1/2 - y, 1/2 + z)\)
S = \exp(2\pi i (hx + ky + \l_2)) + \exp(-2\pi i (hx + ky + \l_2)) + \\
+ \exp(2\pi i (-hx + \frac{1}{2} k + ky + \frac{1}{2} l - \l_2)) + \exp(2\pi i (hx + \frac{1}{2} k - ky + \frac{1}{2} l + \l_2))

\text{Za } k = 2n + 1, \: h = 0, \: l = 0 \text{ se dobije:}

S = \exp(2\pi i ky) + \exp(-2\pi i ky) + \exp(2\pi i (ky - \frac{1}{2} k)) + \exp(2\pi i (\frac{1}{2} k - ky)) = 0

\text{Za refleksije tipa h0l ustanovili smo pogatjenje za } l = 2n + 1 \text{ a dobije se:}

S = \exp(2\pi i (hx + \l_2)) + \exp(-2\pi i (hx + \l_2)) + \\
+ \exp(2\pi i (-hx + \frac{1}{2} l - \l_2)) + \exp(2\pi i (hx + \frac{1}{2} l - \l_2)) = 0

Posto je atonski faktor rasjčit od 0 mule pogatjenje refleksa je ukoliko je S = 0 što smo mi i dobili.

Znači da su uočene zakonitosti tačne, odnosno refleksi se javljaju samo za parne vrednosti l i k.

Kristal H - ohloce acetanilade je ispitivan i difraktonskom metodom. Na difraktometru SYNTEX P21 dobili smo slediće vrednosti za parametre elementarne dežije:

a = (7,0913 \pm 0,002)\AA

b = (6,857 \pm 0,002)\AA

c = (17,311 \pm 0,003)\Å

\beta = (91,59 \pm 0,02)\degree \text{ je vrednost monoklinskog ugla.}

Time su potvrđeni rezultati koje smo dobili na osnovu rotaci-

onih i Weissembergovih animaka.
NEPOSTOJANOST KRISTALA

U toku rada smo uočili da je kristal C₂H₅NO₂ nepostojeća na dejstvo elektronskog talasa. Raspad se posebno dužeg vremena i pod dejstvom vidljive svetlosti ali pod dejstvom rendgenskog zračenja je to raspadanje znatno ubrzano. Posle 20 – 30 časova osračivanja, kristali se raspadaju u prah kvasta supstancu bele boje. Da bi prikazali proces promene strukture datog kristala, timovali smo seriju lanog prora jednog usorka, slika hr. 23. pri čemu je ismedju svakog snima neokristal osračivan po u jedan čas a ismedju snima c) i d) jedanaest časova.

Sl. hr. 23.

Promenu strukture kristala smo postradali i pomoću difrakcije na kristalnom prahu. Usorak praha sme pripremili tako što sme prvo dobijeni kristal smršiti u abatnom terioniku (avazu).
Prah se stavlja u staklenu kapilaru gde se srna ravnomerno raspoređuju i statistički orijentiraju. Ukoliko na takav preparat padne snop kolinisnog monohromatskog x - zračenja, veliki broj srna će zadovoljiti Braggov ulaz difrakcije i dobiće se pozitivna interferencija po celom konusu.

Danas se najviše koristi Debye - Scherer - ova metoda za snimanje praha. Kod nje se kapilarna cevčica sa uzorkom praha nalazi u centru metalnog cilindra unutar koga se nalazi film. Da bi obezbedili da će sve orijentacije kristalida biti ravnomerne zastupljene uzorak se okreće oko ose koja je istovremeno i ose cilindra.

Sl. br. 24.

Slika koju dobijemo predstavlja prodor konusa difrakcije kroz cilindar. Kada film rasvijemo u ravan dobijemo sliku br. 25.

Sl. br. 25.
Takav snimak se naziva Debye–Schererov dijagram. Na slici broj 26. su debajgrani neozračene i ozračene, posle 48 časova eksponiranja, supstance a na slici br. 27. su njihovi fotometrijski snimci.

Sl. br. 26.

Na slici broj 26. je serija snimaka praha kristala N-chlora acetanilida dobijena na Weissenbergovoj kameri. Svaka eksposicija je od 90 minuta a izmedju svakog sniska je uzorak ozračavan po 8 časova.

Medjuranjsko rastojanje d - možemo odrediti na osnovu Braggove jednačine za difrakciju x - sraka:

\[2dsin\theta = \lambda \]

Svakom uglu \(\theta \) za koji smo dobili "refleks" odgovara jedno odredjeno medjuranjsko rastojanje d dato izrazom:

\[d = \frac{\lambda}{2sin\theta} \]

Na osnovu ove jednačine možemo odrediti odgovarajuće vrijednosti za d ukoliko poznajemo talasnu dužinu \(\lambda \) monokromatskog zračenja i iznosi odredjen ugao \(\theta \).
sl. br. 27a.

sl. br. 27b.
Sl. br. 26.
Vrednosti sa ugao θ smo dobili na osnovu a) broj 28. i te sa snimak a) i c). Rastojanje s između linija na snimku određujemo u (mm) pomoću preciznog nonijsa pri čemu film leži paralelno sa oseom lenjira.

![Diagram](image)

Sl. br. 29.

\[
\frac{2\pi}{s} = \frac{360}{40} \quad \theta = \frac{s}{20} \frac{360}{4} \pi
\]

Neresenjem rastojanja s i određivanjem ugla θ, tj. sin θ odredili smo i vrednosti za medjunavanske rastojanje d date u tablici.
<table>
<thead>
<tr>
<th>S(mm)</th>
<th>(\Theta)</th>
<th>(\Theta\sin\Theta)</th>
<th>(d(\AA))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,63</td>
<td>4,075</td>
<td>0,07091</td>
<td>10,3778</td>
</tr>
<tr>
<td>1,79</td>
<td>4,475</td>
<td>0,077679</td>
<td>9,8999</td>
</tr>
<tr>
<td>2,02</td>
<td>5,050</td>
<td>0,08802</td>
<td>8,7588</td>
</tr>
<tr>
<td>2,46</td>
<td>6,150</td>
<td>0,10713</td>
<td>7,1967</td>
</tr>
<tr>
<td>2,70</td>
<td>6,750</td>
<td>0,11753</td>
<td>6,5596</td>
</tr>
<tr>
<td>2,93</td>
<td>7,325</td>
<td>0,12735</td>
<td>6,0540</td>
</tr>
<tr>
<td>3,07</td>
<td>7,675</td>
<td>0,13340</td>
<td>5,7791</td>
</tr>
<tr>
<td>3,23</td>
<td>8,075</td>
<td>0,14032</td>
<td>5,4943</td>
</tr>
<tr>
<td>3,37</td>
<td>8,425</td>
<td>0,14637</td>
<td>5,2674</td>
</tr>
<tr>
<td>3,70</td>
<td>9,250</td>
<td>0,16074</td>
<td>4,7964</td>
</tr>
<tr>
<td>3,99</td>
<td>9,975</td>
<td>0,17537</td>
<td>4,4547</td>
</tr>
<tr>
<td>4,52</td>
<td>11,300</td>
<td>0,19594</td>
<td>3,9347</td>
</tr>
<tr>
<td>4,70</td>
<td>11,750</td>
<td>0,20564</td>
<td>3,7860</td>
</tr>
<tr>
<td>4,95</td>
<td>12,325</td>
<td>0,21416</td>
<td>3,5999</td>
</tr>
<tr>
<td>5,23</td>
<td>13,072</td>
<td>0,22608</td>
<td>3,4102</td>
</tr>
<tr>
<td>5,48</td>
<td>13,700</td>
<td>0,23638</td>
<td>3,2553</td>
</tr>
<tr>
<td>5,67</td>
<td>14,175</td>
<td>0,24474</td>
<td>3,1502</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S(mm)</th>
<th>(\Theta)</th>
<th>(\Theta\sin\Theta)</th>
<th>(d(\AA))</th>
</tr>
</thead>
<tbody>
<tr>
<td>15,2</td>
<td>3,800</td>
<td>0,06627</td>
<td>11,6336</td>
</tr>
<tr>
<td>16,2</td>
<td>4,050</td>
<td>0,07062</td>
<td>10,9265</td>
</tr>
<tr>
<td>18,1</td>
<td>4,525</td>
<td>0,07874</td>
<td>9,7905</td>
</tr>
<tr>
<td>20,3</td>
<td>5,075</td>
<td>0,08831</td>
<td>8,7501</td>
</tr>
<tr>
<td>25,0</td>
<td>6,250</td>
<td>0,10886</td>
<td>7,0820</td>
</tr>
<tr>
<td>26,6</td>
<td>6,650</td>
<td>0,11590</td>
<td>6,6578</td>
</tr>
<tr>
<td>29,5</td>
<td>7,325</td>
<td>0,12739</td>
<td>6,0540</td>
</tr>
<tr>
<td>31,2</td>
<td>7,800</td>
<td>0,13571</td>
<td>5,6809</td>
</tr>
<tr>
<td>33,4</td>
<td>8,350</td>
<td>0,14521</td>
<td>5,3091</td>
</tr>
<tr>
<td>37,1</td>
<td>9,275</td>
<td>0,16102</td>
<td>4,7879</td>
</tr>
<tr>
<td>39,6</td>
<td>9,900</td>
<td>0,17192</td>
<td>4,4844</td>
</tr>
<tr>
<td>41,6</td>
<td>10,450</td>
<td>0,18138</td>
<td>4,2508</td>
</tr>
<tr>
<td>43,2</td>
<td>10,800</td>
<td>0,18738</td>
<td>4,1246</td>
</tr>
<tr>
<td>45,2</td>
<td>12,300</td>
<td>0,19594</td>
<td>3,9347</td>
</tr>
<tr>
<td>47,1</td>
<td>12,775</td>
<td>0,20392</td>
<td>3,7807</td>
</tr>
<tr>
<td>49,4</td>
<td>12,350</td>
<td>0,21388</td>
<td>3,6047</td>
</tr>
<tr>
<td>50,8</td>
<td>12,700</td>
<td>0,21985</td>
<td>3,5069</td>
</tr>
</tbody>
</table>
ZAKLJUČAK

U toku ispitivanja kristala N-chloro acetanilide utvrdili smo da pripada monoklinskoj simetniji sa parametrima elementarne ćelije:

\[
\begin{align*}
a &= 7,15 \pm 0,02 \text{ Å} \\
b &= 6,85 \pm 0,02 \text{ Å} \\
c &= 17,60 \pm 0,04 \text{ Å}
\end{align*}
\]

Monoklinski ugao ima vrednost: \(\beta = 91,75^\circ \)

Broj molekula u elementarnoj ćeliji je četiri.

Vrednost eksperimentalne gustine je:

\[
\rho_{\text{mer}} = 1,34 \text{g/cm}^3
\]

Vrednost raspravljene gustine je:

\[
\rho = 1,31 \text{g/cm}^3
\]

Kristal pripada prostornoj grupi \(P2_1/c \).

Znači da p-chloro i N-chloro acetanilide nisu inostrukturini jer p-chloro acetanilide pripada prostornoj grupi \(C_2v \).

Kristal N-chloro acetanilide je nepostojan i posle 20 - 30 časova osnaživanja rastoga ćelina raspada se u prašinu supstanću bele boje.
LITERATURA

1) Bokij - Faraj - Ković, Rentgenostrukturni analiz
Moskva (1965.)

2) Dr. S. Garić, Uvod u fiziku čvrstog stanja
Novi Sad (1969.)

3) B. J. Finjev, Ljekeii po strukturnom analizu
Harcov (1957.)

4) Dr. Rudolf Kohlhaas, Dr. Helmut Otto
Rentgen strukturanalyse von kristallen
Berlin (1955.)

5) M. G. B. Bokij, Kristallognija
Moskva (1971.)

6) Č. Kitel, Uvod u fiziku čvrstog stanja
Beograd (1970.)

7) L. I. Hirkin, Spravočnik po rentgenostrukturnom
analizu polikristalev
Moskva (1961.)

8) Ralph W. C. Buckeoff, Kristal structures
(Volume 6)

9) International Tables for X-ray crystallography
(Volume I)

10) Chemical abstracts, Formula index
(1967 - 1973.)