UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET

Природно-математички факултел Радна заједница заједничких послова нови слад Примљеже: Орг. јед. Број (прана, срадное) () 3. 10/93

Uticaj termičkih vibracija atoma na odredjivanje kristalne i molekulske strukture 3-p-tolil-1,3,4,5,6,7, heksahidrobenzo /c/ furan-1-on-a

- diplomski rad -

Mentor:

Dr. Agneš Kapor

Kasaš Čila

Novi Sad 1991.

Zahvaljujem se profesorici dr. Agneš Kapor koja mi je svesrdno pomažući, dala korisne sugestije i savete koji su mi pomogli da okončam ovaj rad.

1. Postavka problema

Početkom 1991. godine je Institut za farmaceutsku hemiju, Albert Szent -Györgyi Medical University, Szeged - Hungary uspeo da sintetiše grupu kristala (u ovom radu označenih sa 11/274/1-4). To su jedinjenja koja u dijetalnoj ishrani mogu da utiču na smanjenje apetita (imaju anorektičko dejstvo). Da bi se saznalo nešto o strukturi i konfiguraciji ovih kristala, izvršene su elementarne hemijske analize, nuklearno-magnetno rezonantna spektroskopija, te IR analiza.

U tabeli 1.1. dat je pregled jedinjenja sa osnovnim podacima dobijenim od hemičara.

R.B.	OZNAKA	NAZIV	Bruto formula jedinjenja	Tačka topljenja (°C)
1.	11/274/1	9 bt - p - tolil - 2,3,6,7,8,9 - heksahidro - 9 lH - oksazolo (2,3 - a) - izoindol - 5 - on.	C17H21NO2	110-111
2.	11/274/2	cikloheksanom kondenzovan 1,3 - oksazin (2,1 - a) izoindolon kondenzovan cikloheksanom.	C22H29NO2	193-195
3.	11/274/3	norbonenom kondeznovan 1,3- oksazino (2,1-a) - izoindolon kondenzovan cikloheksanom.	C23H21NO2	205-207
4.	11/274/4	3 p tolil - 1,3,4,5,6,7 heksahidrobenzo /c -furan -1-on	C22H21NO3	79-81

Tabela 1.1.

Dalje su na slici 1.1. prikazane pretpostavljene strukture datih jedinjenja, sa koje se primećuje da sva jedinjenja imaju istu grupu atoma (slika 1.2.) u svom sastavu.

I. C₁₇ H₂₁NO₂

 $H \cdot C_{22} H_{29} NO_2$

Slika 1.1.

Slika 1.2.

•

Tabela 1.2.

R.B.	a(Å)	b(Å)	c(Å)	B(°)	Prostorna grupa	Z
1.	13,1456(8)	8,9174(8)	12,8288(10)	98,889(6)	P21/C	4
2.	9,053(3)	16,447(7)	12,819(9)	102,36	P _{21/C}	4
3.	7,23	17,13	7,76	100,85		2
4.	10,129(2)	16,162(3)	7,673(2)	91,94(2)	P 21/n	4

Tabela 1.3.

R.B.	Bruto formula jedinjenja	Zapremina elementarne ćelije V _c (10 ⁻ ³⁰ m ³)	Računata molarna masa (10 ⁻³ kg/mol)	Ľ	Računata gustina D _c (Mg/m ³)
1.	C17H21NO2	1485,790	271,36	4	1,213
2.	C22H29NO2	1864,300	339,479	4	1,126
3.	C ₂₃ H ₂₁ NO ₂	943,894	349,474	2	1,229
4.	C22H21NO3	1255,388	347,414	4	1,847

Elementarna hemijska analiza je kod četvrte strukture dala rezultat od 4,1% sadržaja azota dok to NMR i IR analize ne potvrdjuju. Ostalo je da rendgenostrukturna analiza pokaže da li se u jedinjenju pojavljuje azot ili kiseonik.

Kod drugog i trećeg jedinjenja ostalo je nejasno kako se vezuju cikloheksanski i norbonenski prsten na piridinski i 1,3 - oksazinski.

U tabeli 1.2. dati su parametri elementarne ćelije kristala zajedno sa poznatim rezultatima za sva jedinjenja iz grupe. U tabeli 1.3. date su vrednosti za izračunatu gustinu na osnovu zadate bruto formule i izračunate zapremine elementarne ćelije. U ovoj tabeli uočava se velika razlika vrednosti za rendgensku gustinu od uobičajene eksperimentalne vrednosti (za organske kristale od 1-1,4 Mg/m³) za četvrto jedinjenje. Eksperimentalna vrednost gustine za ovaj kristal dala je zadovoljavajući rezultat od 1,2 Mg/m³, što ukazuje na moguću grešku kod bruto i strukturne formule. U prvom delu rada monokristal ovog jedinjenja je snimljen oscilatornom, Weissenberg-ovom i precesionom filmskom meto-dom. Zatim su prikupljeni intenziteti refleksa pomoću difraktometra za monokristal e

U drugom delu rada opisan je postupak rešavanja strukture ovog kristala i izvršena je konfiguraciona i konformaciona analiza.

2. Odredjivanje parametara elementarne ćelije kristala filmskim metodama. Gustina kristala.

2.1. Uvod

Trodimenzionalna periodična uredjenost kristalnih struktura omogućava da se pomoću rasejanog elektromagnetnog zračenja i interferencije ovih na kristalima dobiju difrakcione slike. Ove slike poseduju odredjenu simetriju, na osnovu kojih se može saznati nešto i o unutrašnjoj simetriji kristala. Ovo su omogućili: Rontgen 1835, otkrićem x-zraka čije su talasne dužine reda veličine perioda kristalnih rešetki; Laue 1912, koji je opazio ova rasejanja na kristalu bakar-sulfata (CuSO4) - (slika 2.1.);

Slika 2.1. Iz Laue-ovog uslova difrakcije putna razlika talasnih puteva je: $\overline{AB} - \overline{CD} = a(\sin\beta_1 - \sin\alpha_1) = n \lambda$

otac i sin Bragg, koji su takodje matematički formulisali zakonitost rasejanja:

$$2\,d_{hkl}\sin\theta = n\lambda \qquad \qquad 2.1.$$

gde je d_{hkl} -rastojanje izmedju grupe ravni okarakterisanih Miller-ovim indeksima (hkl), θ -Bragg-ov ugao (meri se od ravni do upadnog zraka), n- red difrakcije, a λ -talasna dužina rasejanog x-zraka (slika 2.2.).

Slika 2.2.: Bragg-ov uslov refleksije: Putna razlika izmedju upadnog i odbojnog zraka iznosi: $\overline{AB} + BC = 2d\sin\theta = n\lambda$

Talasna dužina x-zračenja je kod rendgenske analize nepoznatih struktura konstantna veličina: kod neorganskih kristala najčešće se koristi MoK α zračenje (λ =0,7107Å) kod organskih kristala CuK α (λ =1,54178Å), a kod kristala belančevina CrK α (λ =2,291Å) zračenje, uz odgovarajuće filtere. Dakle, jedina veličina za izračunavanje parametara a, b, c, koja nedostaje u formuli 2.1. je ugao θ .On se izračunava iz geometrije date metode.

2.2. Oscilatorna metoda

Ovaj metod obrtnog kristala koristi se za odredjivanje parametra elementarne ćelije, ako je uzorak monokristal (vleičine ne veće od 1 mm). Kristal se orjentiše tako da se može obrtati oko nepomične ose u snopu monohromatskih zraka (λ =const). Pri obrtanju kristala (pri promeni upadnog ugla) dovode se razne familije ravni u položaj za refleksiju. To je položaj kada θ zadovoljava Bragg-ovu jednačinu.

Šematski prikaz kamere dat je na slici 2.3. Film kod ove metode postavljen je u cilindričnu kasetu, čija osa se poklapa sa osom rotacije kristala. Kristal se postavlja na goniometrijsku glavu, koja ujedno služi i za orjentaciju kristala. Glava ima sistem od četiri ladjice (dve translacije i dve rotacije), koje služe za orjentaciju kristala.

Slika 2.3. Kamera sa obrtnim monokristalom

Orjentacija kristala se prvo izvrši tako da na primer osa c bude osa rotacije kristala. To znači, pošto je upadni zrak u svakom trenutku normalan na osu rotacije, da **j**e skalarni proizvod $\vec{k} \cdot \vec{c}$ uvek jednak nuli. Vektor \vec{k} je talasni vektor. Dalje je iz uslova difrakcije:

$$\vec{k}' - \vec{k} = \Delta \vec{k} = \vec{G}(hkl) \qquad 2.2.$$

gde je G'(hkl) vektor recipročne rešetke. Vektor G'(hkl) je uvek normalan na ravan (hkl). Iz relacije 2.2. dobijamo:

$$\vec{k''} = \vec{G'}(hkl) + \vec{k'} \qquad 2.3.$$

Da bismo videli kakav je položaj vektora difraktovanog zraka $\vec{k'}$ u odnosu na osu obrtanja \vec{c} potražimo skalarni proizvod:

$$\overrightarrow{k''} \cdot \overrightarrow{c} = (\overrightarrow{G}(hkl) + \overrightarrow{k}) \cdot \overrightarrow{c} = \overrightarrow{G}(hkl) \cdot \overrightarrow{c}$$
 2.4.

gde se za $\vec{G}(hkl)$ može napisati $\vec{G}(hkl) = h\vec{a}^* + k\vec{b}^* + l\vec{c}^*$ pa dobijamo:

$$\vec{k}^{*} \cdot \vec{c} = (h\vec{a}^{*} + k\vec{b}^{*} + l\vec{c}^{*}) \cdot \vec{c} = l$$
 2.5.

Dakle, ako posmatramo familiju ravni za koje je l=const tj. za koje je \vec{k} , $\vec{c} = |\vec{k}|$, $|\vec{c}|$, $\cos(\vec{k},\vec{c}) = \text{const}$ to će i ugao kojeg ova dva vektora zaklapaju biti u svakom trenutku konstantan. Time će se obrazovati konus mogućih refleksa za jedno dato l, sa odgovarajućim odbojnim uglom β_i . Svakom drugom l odgovaraće drugi odbojni ugao β_i . Miller-ovi indeksi, hk mogu u ovom slučaju imati bilo koje vrednosti. Shodno zakonima ekstinkcije i Bragg-ovom uslovu refleksije na filmu će se formirati paralelni nizovi tačaka (slika 2.4.).

Iz razmaka ovih paralelnih tačaka odredjuje se parametar c, tj. onaj parametar ose oko koje se vrši rotacija kristala. U tu svrhu posmatrajmo vertikalni presek kamere (slika 2.5.). Na slici je predstavljeno reflektujuća sfera poluprečnika r=1. Uporedjujući slike 2.1. i 2.5. i na osnovu Laue-ovog uslova refleksije: $\alpha_1=0$ (upadni zrak je normalan na "c" osu) dobijamo:

$$c=\frac{l\cdot\lambda}{\sin\beta_{\rm L}}$$
 2.6.

Sa slike 2.5. vidimo da je tg $\beta_1 = \frac{y_1}{R} = \frac{2y_1}{2R}$ te dobijamo:

$$c(\mathring{A}) = \frac{l \cdot \lambda(\mathring{A})}{\sin \arctan \frac{2y_l}{2R}}$$
 2.7.a

ili

$$c(\mathring{A}) = \frac{l \cdot \lambda(\mathring{A})}{y_{2l}(cm)} \cdot (D^2(cm) + y_{2l}^2(cm))^{1/2}$$
 2.7.b

gde je y21 rastojanje izmedju (hkl) i (hkl) slojnih linija.

Zbog uštede u energiji i vremenu najčešće se kristal ne rotira za svih 360° nego samo u intervalu od oko $\pm 30^{\circ}$ oko nekog srednjeg položaja.

Sa oscilatornih snimaka se pomoću rasporeda difrakcionih tačaka mogu odrediti i neki elementi simetrije kao što su: l, I, m_x , m_y , mm.

2.3. Weissenberg-ova metoda

Kod Weissenberg-ove kamere pogodnim rešenjem (Stoe i Euraf-Nonins kamere) omogućeno je da se kamera translatorno pomera u pravcu ose oscilovanja kristala. Ova dva kretanja su strogo sinhronizovana. Ovim postupkom se uklanja preklapanje refleksija i omogućeno je pogodnije indeksiranje refleksa, što je kod obične oscilatorne metode vrlo teško izvesti. Weissenberg-ova metoda omogućuje potpuno odredjivanje parametara elementarne ćelije kao i njenih uglova.

Na slici 2.6. šematski je prikazana Weissenberg- ova kamera.

Slika 2.6. Weissenberg-ova kamera.

Kamera se postavlja najčešće tako da osa valjka bude u horizontalnom položaju. Ta osa je ujedno i osa oscilovanja kristala. Uzdužna pukotina na kameri omogućuje nesmetano kretanje kamere levo i desno, a da pri tome kolimator stoji u mestu. Izmedju filma i uzorka nalaze se dva prstenasta apsorbera, koji sa filma uklanjaju sve reflekse, sem jednog slojnog refleksa, najčešće 0-tog ili 1-og. Zbog pomeranja kamere ti refleksi se neće naći samo na jednoj liniji već će se raspostreti po čitavoj površini filma. Pošto je translatorno kretanje kamere strogo sinhronizovano sa oscilovanjem kristala, raspored refleksa na razvijenom filmu imaće karakterističan izgled (Slika 2.7.).

Slika 2.7.: Snimak 0-te slojne linije, c-ose kristala 3-p tolil-1,3,4,5,6,7, heksahidrobenzo /c-furan-1- on-a.

Ako za osu oscilovanja kristala izaberemo c-osu i ako smo pomoću prstenaste pukotine izabrali reflekse nulte slojne linije, onda će se na filmu pojaviti refleksi tipa (hk0). Sa slike 2.7. se vidi da se slika ponavlja na svakih 90 mm duž horizontale. To se javlja zbog toga što je sinhronizacija kretanja kamere napravljena tako da se kamera pomeri 1 mm translatorno dok se kristal obrne 2°. To znači da će se za 90 mm translatornog kretanja kristal obrnuti 180° a refleks koji dobijemo biće na 360° (kod centrosimetričnih kristala osa b* je ista sa -b* osom).

Refkleksi tipa (h00) i (0k0) u ovom slučaju ležaće duž paralelnih pravih koje će u odnosu na horizontalu graditi ugao : Φ

$$\Phi = \arctan \frac{2 \cdot \Pi R(mm)}{90(mm)} = \arctan 2 = 63^{\circ}26^{\circ}6^{\circ}$$

jer je prečnik kamere standardizovan i on iznosi 57,2958 mm.

Refleksi tipa (h10) ili (h20) itd ležaće na krivim linijama u obliku slova U.

Posmatrajmo oscilatornu ravan koja je normalna na osu rotacije "c". U toj ravni leže recipročne ose a* i b* pod uglom γ^* (kod monokliničkog sistema $\gamma^*=90^\circ$). Prilikom rotacije kristala oko c ose (Slika 2.8.) u pravcu strelice prava sa refleksima tipa (1k0) u početku neće seći Evaldovu sferu. Dakle postoji i neki minimalni ugao rotacijedmin. da bi ova prava došla u položaj tangente na Evaldovu sferu. Kod dalje rotacije kristala prava sa refleksima (1k0) seći će uvek u dve tačke Evaldovu sferu što znači da ćemo na filmu uvek dobiti dva refleksa tipa (1k0) koja su na jednakoj visini u odnosu na horiznotalu. Veličina ugla α min zavisi od indeksa h, tj. od slojne linije o kojoj se radi.

Nastajanje ovih niza refleksa u obliku slova U, za ose a*, - a* i - b*, može se objasniti na isti način.

Sa snimka nultih slojnih linija moguće je odrediti vrednosti periode uglova, kao i neke zakone pogašenja a sve ovo nam omogućuje i odredjivanje prostorne grupe kojoj kristal pripada. Na slici 2.9. ukazano je na postupak odredjivanja periode. Sa slike a) dobijamo:

$$360^\circ: 4\theta = 2\pi R: l \qquad 2.9.$$

a sa slike b):

$$l=Dsin \Phi$$
 2.10.

Slika 2.9.

Kombinujući ove dve relacije dobijamo:

$$\theta = \frac{360^{\circ} \cdot D \cdot \sin \Phi}{8 R \Pi} \qquad 2.11.$$

odnosno,

$$\theta$$
 (°)=0,447 D(mm), 2.12.

a iz Bragg-ovog uslova za refleksiju:

$$a(A) = \frac{h \lambda(A)}{2 \cdot \sin(0.447 D(mm))}$$
 2.13.

Dakle, mereći rastojanja D izmedju (h00) i ($\overline{h00}$) refleksa možemo odrediti periodu a (odnosno za rastojanja izmedju (0k0) i ($0\overline{k0}$) - periodu b), na nultim slojnim snimcima.

Odredjivanje ugla izmedju recipročnih osa može se odrediti iz linijskog rastojanja izmedju osa: a* i b*. Ako ose a* i b* ne bi zaklapale prav ugao (slika 2.8.; $\gamma < 90^{\circ}$), onda bi osa b* brže došla u položaj kolinearan sa upadnim zrakom, te bi paralelne prave a* i b* bile proporcionalno bliže jedna drugoj:

$$\gamma^*(^{\circ}) = 90 \cdot \frac{l(mm)}{45} = 2 \cdot l(mm)$$
 2.14.

gde je l (mm) rastojanje izmedju osa a* i b* na Weissenberg- ovom snimku duž ose pomeranja kamere.

Za lakše indeksiranje refleksa služi tkz. Weissenberg-ova mreža za ortogonalne sisteme (u našem slučaju $\gamma^* = 90^\circ$).

2.4. Veza izmedju gustine kristala i broja molekula u elementarnoj ćeliji. Rendgenska gustina.

Gustina kristala je jedna od njenih bitnih karakteristika. Slaganje izmedju eksperimentalne i kalkulisane vrednosti ukazuje na tačnost odredjivanja zapremine elementarne ćelije prostorne grupe i pretpostavljene bruto formule. Elementarna ćelija može sadržati samo celi broj molekula Z. On se može izračunati preko formule:

$$Z = \frac{V_C \cdot D_E \cdot N_A}{M_C}$$
 2.15.

gde je V_C - računata zapremina elementarne ćelije, D_E - eksperimentalna odredjena gustina kristala, NA - Avogadro-ov broj i M_C - računata molarna masa kristala. Broj Z ne samo da mora biti ceo broj, već u zavisnosti kom kristalografskom sistemu pripada kristal, mora zadovoljiti i dodatne uslove. Na primer: za rombički (otorombični) i monoklinički kristalni sistem Z=2n, gde je n \mathbf{E} N, a za trigonalni i hexagonalni sistem Z=3n.

Ako Z jako odudara od ovih brojeva i ako se posle ponovnog merenja gustine i rendgenodifrakcione analize, pokažu da su parametri, uglovi, prostorna grupa, V_C i D_E, tačni, onda se dolazi od zaključka da je jedino netačan podatak u formuli 2.15. veličina M_C.

To dovodi do zaključka da je broj atoma u bruto formuli bitno različit od pretpostavljenog. Iz formule 2.15. se dobija za gustinu kristala:

$$D_R = \frac{Z' \cdot M_C}{N_A \cdot V_C} \qquad 2.16.$$

gde je Z' zaokruženi celi broj Z dobijen iz relacije 2.15. (uz uslov koji odgovara datom kristalografskom sistemu), a D_R tkz. rendgenska gustina kristala. Odudaranje vrednosti D_R od D_E može biti iz više razloga: greške pri odredjivanju periode, uglova, nesavršenosti kristala ili netačno odredjene bruto formule.

2.5. Odredjivanje gustine monokristala metodom lebdenja

Ova metoda - izospecifičnih tečnosti, pogodna je u slučaju kada se raspolaže samo sa nekoliko sićušnih zrnaca nedovoljne mase za piknometarsko merenje. Metoda se primenjuje kod kristala čija gustina ne prelazi 4,5 Mg/m³ (kod organskih kristala ona se kreće od 1,0 do 1,4 Mg/m³).

Metod je zasnovan na principima Arhimedovog zakona: u stanju kad kristal lebdi u nekoj tečnosti sila potiska kristala je jednaka njenoj težini što znači da su gustina tečnosti i kristala jednake, te se zato umesto gustine kristala piknometrom odredjuje gustina tečnosti. Tečnosti koje se mogu koristiti su date u tabeli 2.1.:

R.BR.	TEČNOST	D (Mg/m ³)
1.	bromoform (C2H2Br4)	2,91
2.	metilenjodid (CH ₂ J ₂)	3,33
3.	Tuleova tečnost (vodeni rastvor HgJ2 i KJ)	3,196
4.	Kleričijeva tečnost (mešavina talijummanolata i talijumformijata)	4,2-5
5.	Hloroform (ugljentetrahlorid)	1,42
6.	Benzol (n-hexan)	≈ 0,90
7.	Vodeni rastvor NaCl	1-1,25

Tabela 2.1.

Poslednje tri tečnosti u tabeli 2.1. se koriste kod organskih kristala.

Postupak pri radu svodi se na sledeće: U mešavinu tečnosti ili rastvor se stavi monokristal. U tečnost se pažljivo dodaje redja ili gušća tečnost u zavisnosti od toga da li kristal tone ili pliva. Dodavanje druge tečnosti se završi kad kristal počne da lebdi u tečnosti. Pomoću analitičke vage se izvrše dva merenja: m_p - masa praznog piknometra i m_t - masa piknometra napunjenog zadnjom mešavinom tečnosti. Gustinu izračunavamo pomoću formule:

$$D_E = \frac{m_t - m_p}{V_p} \qquad 2.17.$$

gde je V_p poznata zapremina piknometra.

Prilikom rada treba obratiti pažnju na više stvari. Za merenje treba izabrati što pravilnije monokristale, bez pukotina i mehurića vazduha u unutrašnjosti. To se proverava pod mikroskopom. Uzimajući veći broj kristala i podešavajući gustinu tečnosti najgušćem kristalu (onaj koji najviše tone) može se ovaj problem dobrim delom ublažiti. S druge strane tečnosti sa kojima se radi mogu biti otrovne (nadražuju kožu i sluzokožu) te maksimalno treba izbegavati dodir i udisanje njihovih para.

2.6. Eksperimentalni rezultati

2.6.1. Gustina kristala odredjena metodom lebdenja

Gustina svih kristala iz grupe (tabela 1.1.) odredjivana je metodom lebdenja pomoću vodenog rastvora NaCl. Rezultati su prikazani u tabeli 2.2.

Tabela 2.2.			

OZNAKA	m _p (10 ⁻³ kg)	mt (10 ⁻³ kg)	$V_p (10^{-6}m^3)$	$D_E (Mg/m^3)$
I	10,190(5)	22,590(5)	10	1,240(1)
II	3,850(5)	6,340(5)	2	1,245(4)
III	3,850(5)	6,330(5)	2	1,240(4)
IV	10,190(5)	22,375(5)	10	1,218(1)

Vrednosti u zagradama u kolonama za m_t i m_p su greške merenja, a u koloni D su greške izračunate kao srednje kvadratne greške.

2.6.2. Obrada oscilatornog snimka

Veličina kristala koji smo merili je manja od 1 mm. Oblik kristala je prikazan na slici 2.10. Poprečni presek kristala je paralelogram čiji je jedan ugao nešto manji od 120.[•] Orjentacija kristala vršena je duž pravaca c i b prikazanih na slici. Radni uslovi rendgenskog aparata dati su u tabeli 2.3..

Tabela 2.3.

Talasna dužina zračenja	$\lambda \operatorname{CuK} \alpha = 1,54178 \text{\AA}$	
Filter	Ni	
Napon	V=30kV	<u> </u>
Jačina struje	I = 30 mA	
Položaj oscilacija	25 °	
Interval oscilacija	± 17°	
Vreme rada	3h	
Prečnik kamere	2R=5,73cm	

Orjentacija kristala duž "c" ose dala je rezultate date na slici 2.11. i obradjene u tabeli 2.4. Vrednost za c izračunava se pomoću formule 2.7. a ili b.

Slika 2.11.

Tabela 2.4.

R.B.	OZNAKA LINIJE	POLOŽAJ (mm)	OZNAKA LINIJE	POLOŽAJ (mm)	1	RAZLIKA y21 (mm)	c (Å)
1.	yl1	253,94 (1)	yd1	210,36 (1)	3	43,58 (2)	7,640 (2)
2.	y12	244,48 (1)	yd2	219,10 (1)	2	25,38 (2)	7,614 (2)
3.	y 13	237,62 (1)	yd3	225,82 (1)	1	11,80 (2)	7,643 (10)
SREDNJA VREDNOST						7,632 (6)	

Orjentacija kristala duž ose b (slika 2.10.) dala je sledeće rezultate (Slika 2.12. i tabela 2.5.):

Slika 2.12.

Tabela 2.5.

R.B.	OZNAKA LINIJE	POLOŽAJ (mm)	OZNAKA LINIJE	POLOŽAJ (mm)	k	RAZLIKA y2k (cm)	b(Å)
1.	yl1	201,10 (1)	Yd1	241,48 (1)	6	4,038 (2)	16,06 (1)
2.	y 12	205,64 (1)	yd2	237,16 (1)	5	3,158 (2)	15,99 (1)
3.	y 13	209,56 (1)	yd3	233,42 (1)	4	2,386 (2)	16,04 (2)
4.	y 14	212,90 (1)	Yd4	230,22 (1)	3	1,732 (2)	15,99 (4)
5.	y 15	216,18 (1)	Yd5	227,30 (1)	2	1,112 (2)	16,19 (5)
6.	y 16	218,82 (1)	Yd6	224,34 (1)	1	0,552 (2)	16,08 (6)
SREDNJA VREDNOST						16,07 (4)	

Snimak "b" ose je simetričan u odnosu na nultu slojnu liniju što znači da kristal ima ogledalsku ravan normalnu na "b" osu. Vrednosti za "b" periodu računate su pomoću formule

$$b(\mathring{A}) = \frac{k \cdot \lambda(\mathring{A})}{y_{2k}(cm)} (D^2(cm) + y_{2k}^2(cm))^{1/2}$$
 2.18.

2.6.3. Obrada Weissenberg-ovog snimka

Radni uslovi za rendgenski aparat su date tabelom 2.3., a rezultati snimanja su prikazani na slici 2.7. i u tabelama: 2.6. i 2.7.

R.B.	POLOŽAJ (<i>h00</i>) REFLEKSA (mm)	POLOŽAJ (ħ00) REFLEKSA (mm)	h	a (Å)
1.	278,72 (1)	238,38 (1)	4	9,957 (11)
2.	268,50 (1)	248,70 (1)	2	10,016 (30)
	9,986(27)			

Tabela 2.6.: Merenja izvršena za "a" periodu.

Tabela 2.7.: Odredjivanje "b" periode.

R.B.	POLOŽAJ (0k0) REFLEKSA (mm)	POLOŽAJ (<i>0k0</i>) REFLEKSA (mm)	k	b (Å)
1.	257,26	220,50	6	16,344
2.	250,94	226,96	4	16,571
3.	244,80	232,26	2	15,777
SREDNJA VREDNOST				16,231

Ugao γ^* sa Weissenberg-ovog snimka daje vrednost od 90°.

2.6.4. Podaci za periode i uglove dobijene difraktometrom i precesionom kamerom.

R.B.	PODATAK	PRECESIONA KAMERA	DIFRAKTOMETAR
1.	a	10,150 Å	10,129 (2)Å
2.	b	16,173 Å	16,162 (3)Å
3.	C	7,749 Å	7,673 (2) Å
4.	α	-	90 °
5.	β	93,43 °	91,94 (2) °
6.	γ	90,10 °	90 °

Tabela 2.8.

Kristal je snimljen pomoću četvorokružnog automatskog difraktometra za monokristale sa grafitnim monohromatorom tipa Philips PW 1100 u Zagrebu $(\lambda CuK_{\alpha} = 1,54178 \text{ \AA}).$

2.6.5. Odredjivanje kristalografskog sistema i prostorne grupe kristala.

Kristal 3-p-tolil-1,3,4,5,6,7 heksahidrobenzo/c/- furan-1-on pripada monokliničkom kristalografskom sistemu sa periodama datim u tabeli 2.8. izmerene pomoću difraktometra. Sa Weissenberg-ovog i precesionog snimka ustanovljeno je da se javljaju sistematska pogašenja za reflekse tipa:

0k0 za k=2n+1h00 za h=2n+1h01 za h+1=2n+1hkl nema uslova Prema International Tables for X-ray Crystallography ova sistemska pogašenja karakteristična su za centrosimetričnu prostornu grupu P21/n. Ova grupa ima zavrtanjsku osu drugog reda 21 duž kristalografske ose "b" i klizeću ravan simetrije normalnu na spomenutu osu (klizanje se vrši duž dijagonale pravaca a-c). Ovi elementi simetrije daju sledeće koordinate za ekvivalentne položaje atoma u elementarnoj ćeliji:

$$x, y, z, \quad ; \quad \frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{z} - z \quad ; \quad \overline{x}, \overline{y}, \overline{z} \quad \frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$$

2.6.6. Odredjivanje rendgenske gustine

Kristalografski podaci, dobijeni difraktometrom (tabela 2.8.) i uslovi sistematskih pogašenja ukazuju na monoklinički sistem za koji se zapremina elementarne ćelije iz-računava preko formule:

$$V_c = abc \cdot \sin\beta \qquad 2.19.$$

Eksperimenti su dali rezultate $V_c = 1255,388 \cdot 10^{-30} \text{ m}^3$. Iz bruto formule C22 H21 NO3 (tabela 1.1.) se za molarnu masu kristala dobija 347,414 kg/kmol, a za broj molekula u elementarnoj ćeliji Z=2,62 (relacija 2.15.). Pri izračunavanju Z koristila sam vrednost za D=1,218 Mg/m³ (tabela 2.2.). Za vrednost Z'izabrala sam broj 4, a to znači da molarna masa kristala mora da bude znatno manja:

$$M_c = \frac{D \cdot N_A \cdot V_C}{Z} = 240 \text{ kg/ kmol}$$

To znači da od mase molekula treba oduzeti približno 9 težih atoma. Varijanta koja je najprihvatljivija, jer je to kasnije pokazala i Fourier-ova mapa u direktnoj metodi, daje bruto formulu:

C15 H16 O2

sa molarnom masom 228,291 kg/Kmol. Rendgenska gustina ovog kristala sa novom bruto formulom biće:

što ukazuje na dobro slaganje sa eksperimentalnom vrednošću. Svi dobijeni rezultati složeni su u tabeli 2.9.

Hemijska bruto formula	C15H16O2
Relativna molekulska masa	228,291
Kristalografski sistem	monoklinički
Parametri elementarne ćelije	a = 10,129 (2) Å
	b = 16,162 (3) Å
	c = 7,673 (2) Å
	β = 91,94 (2) °
Zapremina elementarne ćelije	$Vc = 1255,388 \ 10^{-30} \text{m}^3$.
Izmerena gustina	$De = 1,218 (1) Mgm^{-3}$
Rendgenska gustina	$D_{\rm R} = 1,208 {\rm Mgm}^{-3}$
Broj molekula u elementarnoj ćeliji	Z = 4
Broj elektrona u elementarnoj ćeliji	F (000) = 488,00
Uslovi za sistematska pogašenja	h00 h=2n+1
	0k0 k = 2n+1
	hol $h+l=2n+1$
	hkl nema uslova
Prostorna grupa	P21/n
Simetrijska kartica	0,5 -x ; 0,5 +y ; 0,5 -z

Tabela 2.9.: Kristalografski podaci kristala sa novom bruto formulom.

3. Rešavanje molekulske strukture novosintetizovanog jedinjenja

<u>3.1. Uvod</u>

Rasejanje x-zraka na atomima neke supstance direktno zavisi od gustine elektronskog oblaka u omotaču datog atoma. Pošto su atomi u kristalu periodično rasporedjeni to će i raspodela elektronske gustine u kristalu biti periodična funkcija. Ona se može predstaviti u obliku trodimenzionog Furier-ovog reda:

$$\rho(x,y,z) = V^{-1} \sum_{h} \sum_{k} \sum_{l} F(h k l) \exp(-2\pi i (hx + ky + lz)) \qquad 3.1.$$

gde je V-zapremina elementarne ćelije; x, y i z - frakcione (relativne) atomske koordinate unutar elementarne ćelije; a F(hkl)-strukturni faktor za odredjen skup ravni (hkl) sa kojih potiče refleks. Nulti član sume F(000) = N je ukupan broj elektrona u elementarnoj ćeliji. Strukturni faktor F (hkl) je kompleksna veličina sa aplitudom |F(hkl)| i fazom α (hkl):

$$F(hkl) = |F(hkl)| exp(i \alpha (hkl)) \qquad 3.2.$$

$$F(hkl) = A(hkl) + iB(hkl) \qquad 3.3.$$

$$\alpha(hkl) = \operatorname{arctg}(B(hkl)/A(hkl)) \qquad 3.4.$$

On predstavlja meru moći rasejanja x-zraka po jediničnoj ćeliji i može se predstaviti grafički (slika 3.1.) i analitički u eksponencijalnom obliku:

$$F(hkl) = \sum_{j} f_j \exp \left(2\pi i (hx_j + ky_j + lz_j)\right) \qquad 3.5.$$

gde je fj - faktor rasejanja j-tog atoma sa koordinatama xj, yj, zj.

Atomski faktor rasejanja je bezdimenziona veličina a definiše se kao odnos aplitude talasa rasejanog sa atoma i aplitude talasa rasejanog sa slobodnih elektrona. Može se prikazati grafički (slika 3.2.) i pomoću formule:

$$f_j = f_{j0} \exp\left(-B_j \left(\sin \Theta / \lambda\right)^2\right) \qquad 3.6.$$

Slika 3.1.

gde je f_{j0}=Z - ukupan broj elektrona u j-tom atomu; θ -ugao rasejanja; B_j= $8\pi^2 \overline{U}_j^2$ - Debye-Waller-ov temperaturski faktor, koji odredjuje veličinu aplitude izot-ropnih temperaturskih vibracija.

Slika 3.2.

3.2. Uticaj temperaturskog faktora na strukturni faktor

U opštem slučaju za kristal, koji se može smatrati idealnim hamonijskim oscilatorom, može napisati da je temperaturski faktor anizotropskih oscilacija proporcionalan izrazu:

$$T(u_j) = \exp\left(-h^T \beta h\right) \qquad 3.7.$$

što odgovara izrazu:

$$\exp(-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)) \qquad 3.8.$$

U izrazu 3.7. je sa h označena matrica kolona $\begin{pmatrix} h \\ k \\ l \end{pmatrix}$, β - simetrična matrica anizotropnih temperaturskih koeficijenata, definisanih u odnosu na ose recipročne rešetke (3.9.). Tri (β_{11} , β_{22} , β_{33}) od šest faktora definišu veličine glavnih osa elipsoida termalnih vibracija, a preostala tri orjentaciju ovih osa u prostoru.

Da bismo dobili pravu sliku Decartes-ovom koordinatnom sistemu koji je ortogonalan, potrebno je izvršiti transformaciju matrice β pomoću matrice F:

$$F = \begin{pmatrix} \frac{1}{a^*} - cotg\gamma^*/a^* & a\cos\beta\\ 0 & \frac{1}{b^*}\sin\gamma^* \end{pmatrix} b\cos\alpha\\ 0 & 0 & c \end{pmatrix}$$

3.10.

B je simetrična matrica oblika:

$$\boldsymbol{B} = \begin{pmatrix} U_{11} & U_{12} & U_{13} \\ U_{12} & U_{22} & U_{23} \\ U_{13} & U_{23} & U_{33} \end{pmatrix}$$
3.12.

i ona sa temperaturskim faktorom povezana preko izraza:

$$\exp\left(-2\pi^2 H^T B H\right) \qquad \vec{H} = \vec{6} \qquad 3.13.$$

ili, 3.14:

$$\exp\left(-2\pi^{2}\left(U_{11}a^{*2}h^{2}+U_{22}b^{*2}k^{2}+U_{33}c^{*2}l^{2}+2U_{12}hka^{*}b^{*}+2U_{13}hla^{*c^{*}}+2U_{23}klb^{*}c^{*}\right)\right)$$

gde su U_{ij} - temperaturski faktori izraženi u funkciju srednjeg kvadrata elongacija temperaturskih oscilacija. Anizotropni temperaturski faktori se često prikazuju preko ekvivalentne vrednosti U_{eq} :

$$U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} \overrightarrow{a_i}^* \overrightarrow{a_j}^* \overrightarrow{a_i} \overrightarrow{a_j} \qquad 3.15.$$

koja u slučaju monoklinskog sistema ima olbik

$$U_{eq} = \frac{1}{3} \left(\frac{U_{11} + U_{33}}{\sin^2 \beta} + U_{22} + \frac{2U_{13} \cos\beta}{\sin^2 \beta} \right) \qquad 3.15.a$$

Zamenimo li ove vrednosti u izraz 3.14., dobijemo:

$$\exp\left(-\pi^{2}\frac{U_{eq}^{2}}{4\pi^{2}}\left(a^{*2}h^{2}+b^{*2}k^{2}+c^{*2}l^{2}+2a^{*}b^{*}\cos\gamma^{*}+\ldots\right)\right)$$
3.16.

gde je
$$(a^{*2}h^2 + b^{*2}k^2 + c^{*2}l^2 + 2a^*b^*\cos\gamma^* + ...) = |G(hkl)|^2$$
 3.17.

Znajući dalje da je:

.

$$|\vec{G}(hkl)| = \frac{4\pi \sin\theta}{\lambda} = \frac{2\pi}{d(hkl)}$$
 31.8.

možemo za izraz 3.16. dalje pis1ati:

$$\exp(-2\pi^2 \frac{U_{eq}^2 \, 16 \, \pi^2 \sin^2 \theta}{4\pi \theta^2 \chi^2}) = \exp(-B \, \frac{\sin^2 \theta}{\chi^2}) \qquad 3.19$$

- 29 -

gde $B = 8\pi^2 U_{eq}^2$ - predstavlja Debye-Waller-ov faktor (relacija 3.6.), koji odredjuje veličinu amplitude izotropnih temperaturskih vibracija za odgovarajući atom. U tom slučaju je B jednostavna matrica:

$$B = \frac{1}{4\pi^2} \begin{pmatrix} U_{eq}^2 & 0 & 0 \\ 0 & U_{eq}^2 & 0 \\ 0 & 0 & U_{eq}^2 \end{pmatrix}$$
3.20

što znači da se vibracije više sferno simetrično oko zadatih položaja atoma.

Rešavanjem svojstvenog problema matrice **B**, ova se može dovesti u dijagonalan oblik:

Onda će matrica B' zadovoljavati prostornu jednačinu elipsoide:

$$\frac{u_1^2}{B_{11}} + \frac{u_2^2}{B_{22}} + \frac{u_3^2}{B_{33}} = 1$$
 3.22.

gde su u1, u2 i u3 Decartes-ove komponente trenutnih pomeranja j-tog atoma usled termičkih vibracija. One su sa funkcijom gustine verovatnoće povezane preko formule:

$$p_{j}(u) = \left(\frac{\det B^{-1}}{8\pi^{3}}\right)^{1/2} \exp\left(-\frac{1}{2}u^{T}Bu\right) \qquad 3A$$

gde konstanta normiranja $\left(\frac{\det B^{-1}}{8\pi^3}\right)^{1/2}$ osigurava uslov da je $\int p_j(u) d^3u = 1$

Očigledno je da veličine B11, B22 i B33 odredjuju veličinu glavnih osa te elipsoide.

Broj anizotropskih koeficijenata temperaturskog faktora ß_{ij} se sa 6 može smanjiti na 4,3,2 ili 1. Tome je razlog simetrija prostorne grupe. Tabela ovih restrikcija data je u International Tabels of X-ray Crisstallography. Ako se osim harmonijskih oscilacija uzmu u obzir i anharmonijski efekti onda se elipsoid termalnih vibracija pretvara u površinu višeg reda.

Izraz 3.8. ustvari predstavlja eksponencijalni deo atomskog faktora dotičnog atoma, koji dalje utiče na opšti strukturni faktor F(hkl).

3.3. Fazna problematika

Odredjivanje funkcije gustine naelektrisanja u kristalnoj rešetci, a time i položaji pojedinih atoma svodi se na dva problema:

1) Odredjivanje amplitude strukturnog faktora |F(hkl)|,

2) Izračunavanje faza strukturnog faktora (hkl)- tkz. FAZNI PROBLEM.

Prvi problem se može rešiti eksperimentalnim putem: mereći intenzitete pojedinih refleksa. Naime, intenzitet rasejanog zraka i amplituda strukturnog faktora povezane su relacijom:

$$I(hkl) = k |F(hkl)|^2 LP(\theta) A(\theta) \qquad 3.23.$$

gde je LP (θ) - Lorenc - polarizacioni faktor koji za monokristale iznosi:

$$LP(\theta) = \frac{1 + \cos^2 2 \theta}{\sin 2\theta} \qquad \qquad 3.24.$$

A (θ) je apsorpcioni faktor, k- proporcionalna konstanta. Iz relacije 3.23. dobijamo da je:

$$|F(hkl)| = \pm \sqrt{I} \cdot const \qquad 3.25.$$

gde o znaku strukturnog faktora ne znamo ništa. Kod centro simetričnih kristala (zadati kristal kristališe u centrosimetričnoj prostornoj grupi), strukturni faktor F(hkl) je realna veličina, što znači da je B (hkl)=0 (relacija 3.3.), a ovo povlači za sobom to da faza može uzimati samo dve vrednosti 0°i 180°, tj. može imati pozitivnu ili negativnu vrednost. Ovo znači da se ceo fazni problem sveo samo na odredjivanje znaka strukturnog faktora.

Postoji više metoda rešavanja faznog problema:

1) Direktni metodi - kod kojih se direktno koriste rezultati izmerenih intenziteta pojedinih refleksa, da bi se odredile faze.

2) Indirektne metode - kod kojih se do informacija o fazi dolazi posrednim putem:

- Metoda teškog atoma - gde je potrebno da u elementarnoj ćeliji postoji nekoliko atoma koji imaju znatno veću masu (i broj elektrona) od ostalih

- Metod izomorfne zamene - koristimo kod izomorfnih jedinjenja. To su jedinjenja koja imaju bliske parametre elementarne ćelije (a,b,c, α , β , γ), istu prostornu grupu, slične hemijske formule i slične jonske radijuse na analognim mestima u molekulu. Metod se sastoji u uporedjivanju intenziteta i faza refleksa dobijenih sa teških atoma u izomorfima. Položaji teških atoma su pri tome poznati.

3.4. Direktni metodi

Ovo je jedna od najbitnijih metoda u strukturnoj analizi, koja je osmišljena zahvaljujući I. Karle-u i H. Hauptman-u (1985. Nobelova nagrada za hemiju). Direktna metoda se koristi najčešće kada se u elementarnoj ćeliji nalaze atomi koji imaju približno iste mase (npr. C,N,O). Osnovne pretpostavke od kojih se polazi pri rešavanju su:

1) Funkcija elektronske gustine $\rho(x,y,z)$ je svuda pozitivna veličina,

2) U ovoj funkciji se nalaze lokalni i nezavisni ekstremi, oko kojih se elektronska gustina rasporedjuje sferno simetrično.

U prvim koracima se mogu zanemariti oni delovi funkcija elektronske gustine koji se nalaze izmeđju tih pikova. Njihova vrednost se uzima da je 0, a vrednosti pikova treba da je proporcionalna sa rednim brojem atoma. Ovakvom tipu Furierovih radova odgovaraju normalizovani strukturni faktori:

$$|E(hkl)| = \left(\frac{I(hkl)\exp(B\sin\theta/\gamma)^2}{\sum_{j} f_j^2}\right)^{1/2}$$
3.26.

Tako dobijamo 2n jednačina (n je broj refleksija), dok je broj nepoznatih n+3N, gde je N broj atoma u elementarnoj ćeliji, 3N broj koordinatnih parametara (n je broj refleksija, a to je i broj faza). Kod kristala koji dobro reflektuju zrake odnos ova dva broja n/N je izmedju 50 i 100.

Teorija verovatnoće

Vrednost pojedinih faza, zavise od sistema izabranih osa, te zbog toga se umesto da se traži vrednost faze, traže tkz. "Strukturne invarijante". to su linearne konbinacije faza:

$$\alpha_3 = \alpha(h_1k_1l_1) + \alpha(h_2k_2l_2) + \alpha(h_3k_3l_3) \qquad 3.27.$$

uz uslov da je $h_1+h_2+h_3=0$, $k_1+k_2+k_3=0$ i $l_1+l_2+l_3=0$

Najverovatnija vrednost za o3 je nula (slika 3.3.).

Slika 3.3.: Verovatnoća distribucije za "tuplete" (strukturne invarijante) a) A=2,3 b) A=0,7 gde je $A = E_1 E_2 E_3 \sqrt{N}$ 3.28.

Vrednosti E₁, E₂, i E₃ su normalizovani strukturni faktori koji odgovaraju fazama (h1k1l1), (h2k2l2) i (h3k3l3) respektivno. Znači da trebamo tražiti takve triplete koje imaju veliku E-vrednost. Sa povećanjem broja atoma u elementarnoj ćeliji opada verovatnoća da se nadju tripleti sa vrednošću $\alpha_3 \approx 0$ jer je A $= \sqrt{N}$.

U prvom koraku je potrebno naći približno 100 puta više tripleta sa velikom vrednošću za A, nego što je broj atoma N, a zato nam je potrebno 200-500 refleksa po atomu, sa velikim E-vrednostima.

Proizvoljno se biraju maksimalno 3 faze, koje ujedno odredjuju i ose sistema. Raspolaže se obično sa 10-20 medjufaznih relacija za svaku refleksiju, iz kojih se pomoću tangentne formule A. Karle i H. Hauptman-a izračunava jedinstvena faza:

$$tg \ \alpha_h = \frac{\sum_{k} E_k E_{h-k} \sin \left(\alpha_{k+} \alpha_{h-k} \right)}{\sum_{k} E_k E_{h-k} \cos \left(\alpha_{k+} \alpha_{h-k} \right)} \qquad 3.29.$$

gde su h, k i h-k trio Miller-ovih indeksa (tačke recipročne rešetke).

Da bismo odredili α_h vrednosti, iz formule se vidi da su nam potrebne α_k i α_{h-k} vrednosti. Te vrednosti se odredjuju na više načina:

1) nepoznate početne faze se označe simbolom (metod sbranih simbola) ili,

2) im se pripišu eksplicitne vrednosti (metod sukcisivnih tangentnih formula)- ili,

3) neka slučajna vrednost (metod slučajne vrednosti).

Kako rezultat ovih tangentnih formula se dobija više faznih modela od kojih samo jedna odgovara fizičkoj realnosti i njegova vrednost za "figur of merit" je najbolja. Takva E-mapa, će pronaći i najveći broj težih atoma i odrediti njihove koordinate.

Teorija nejednačina

Osim teorija verovatnoće u direktnim metodama se koristi još i teorija nejednačina (Harker i Kasper su primenili Cauchy-jevu nejednačinu). Prvo se definiše unutarni strukturni faktor:

$$U(hkl) = F(hkl)/F(000)$$
 3.30

iz koje se dobija nejednačina:

$$|U(hkl)|^{2} \leq \frac{1}{2} (1 \pm |U(2h, 2k, 2l)|)$$
 3.31

Da bi se dobili značajni rezultati potrebno je da bude:

$$\frac{1}{2} \leq U(hkl) < 1$$

da bi se jednoznačno odredio znak za U(2h, 2k, 2l) jer je znak U 2 (hkl) sigurno pozitivan. Ovaj metod se retko koristi kod organskih kristala jer refleksi najčešće ne predstavljaju rasejanje u fazi većine elektrona u ćeliji.

3.5. Utačnjavanje strukture

<u>Metodom sukcesivnih Fourier-ovih sinteza</u> se pomoću približnih koordinata za ne vodonične atome, odredjuju sve tačniji položaji atoma. Poznavanje koordinata nam daje i odredjene fazne modele, koje nam omogućuju odredjivanje raspodele elektronske gustine. Ako se pri tome dobiju neka neslaganja pikova elektronske gustine sa početnim koordinatana, to znači da postoji neko odstupanje od stvarnih pozicija. Zatim se ove nove pozicije uvrštavaju u formulu za $\rho(x,y,z)$, te se izračunavaju nove koordinate, a time i faze. Postupak iteracije se ponavlja sve dok se početne i krajnje faze ne poklope (približno).

Za određivanje položaja vodonikovih atoma u mapi, koriste se najčešće metoda diferentne Fourier-ove sinteze ili metoda generisanja vodonika.

Diferentna Fourier-ova sinteza:

Akose pretpostavi da su greške, usled prekidanja Fourier-ovih redova kod po (xyz)

(opažene elektronske gustine) i ρ (x,y,z) (izračunate elektronske gustine) iste, onda će greška veličine:

$$\Delta \rho = \rho (xyz) - \rho (xyz) \qquad 3.32$$

$$\Delta \rho = V^{-1} \sum_{h} \sum_{k} \sum_{l} (F_0(hkl) - F_c(hkl)) \exp(-2\pi i (hx + ky + lz)) \qquad 3.33.$$

biti jednaka nuli. Diferentna mapa za $\Delta \rho(x,y,z)$ imaće sledeće osobine:

a) za tačno odredjene položaje atoma $\Delta \rho \dot{c} e$ približno biti jednako nuli,

b) za pogrešno smešten atom $\Delta \rho$ će biti negativna,

c) za nepredvidjen atom u pretpostavljenoj strukturi, pojaviće se izraziti maxsimumi (recimo nepredvidjeni vodonikovi atomi).

Analiza difientne mape može da ukaže i na pogrešno odredjene izotopne temperaturske faktore, prisustvo apsorpcije ili ekstincije u kristalu.

- Generisanje vodonika

Položaji vodonikovih atoma u diferentnoj mapi ne dolaze do izražaja zbog prisustva težih atoma, koji maskiraju njihove položaje. Kvantno mehanički proračuni u kombinaciji sa eksperimentalnim rezultatima dali su teoretsku vrednost za dužinu hemijskih veza u organskim jedinjenjima kao i dužinu C-H veze (tabela 3.1.). Dakle, položaje H-atoma, teoretski predvidimo, a zatim njihove položaje proverimo u prethodno izračunatoj diferentnoj mapi.

- Metodi najmanjih kvadrata

Ovaj metod služi za precizno utačnjavanje koordinata atoma, kao i izotropnih i anizotopnih temperaturskih faktora. Najbolji rezultati se postižu ukoliko je broj opaženih refleksa n otprilike 10 puta veće od broja promenljivih parametara. Pri utačnjavanju kod ove metode se vrši minimizacija funkcije:

$$D = \sum_{hkl} W(hkl) (|F_0| + |F_c(p_1, p_2, p_3,...)|)^2 \qquad 3.34.$$

gde je W(hkl) težinski faktor merenja. To znači da se traže parcijalni izvodi funkcija D po svim promenljivima od p1 do pm i ti izvodi izjednačavaju sa nulom:

$$\frac{\partial D}{\partial p_i} = 0 \qquad za \ svako \ i=1,...,m \qquad 3.35.$$

Tabela 3.1.

TIP VEZE	TEODETSYA	ZA sp ² HIBI (BENZOLO	RIDIZACLJU V PRSTEN)
	DUŽINA VEZE (Å)	TIP VEZE	TEORETSKA DUŽINA VEZE (Å)
С-н	1, 094	С-Н	1,079
C-C	1,54	C-N	1,39
C-N	1,47	C-C	1,48
C=C	1,353	C-C benzolov pr.	1,39
C=N	1,16-1,47		
C=0	1,22		

što daje m jednačina sa m nepoznatih parametara pi. Ako $|F_c(p_i, i=1, m)|$ razvijemo u Tajlor-ov red i zanemarimo više članove dobijamo:

$$|F_c(p_i, i=1, m)| = |F_c(a_i, i=1, m)| + \sum_{i=1}^m \Delta p_i \frac{\partial F_c}{\partial p_i}|_{a_i} \qquad 3.36.$$

gde su ai, i=1,m tačne vrednosti parametara pi. Ovako dobijene jednačine su linearne u odnosina A_{i} te se sistem može i rešiti po njih. Dobijene vrednosti za dodamo odgovarajućim tačnim vrednostima:

$$a_i = a_i + \Delta p_i$$
 3.37.

te za ove nove vrednosti a_i izračunamo vrednost $|F_i|$.

Iteracioni postupak ponavljamo dok ne postignemo odgovarajuću konveigenciju (razlike vrednosti parametara pre i posle zadnje iteracije moraju da budu manje od standardne devijacije parametara pi).

Korektnost sistema definisana je formulom za faktor tačnosti:

$$R = \frac{\sum |F_0| - |F_c|}{\sum |F_o|}$$
 3.38.

ili preko težinskog faktora tačnosti (Hamilton):

$$R_{W} = \left(\frac{\sum_{hkl} W(hkl) \Delta F^{2}(hkl)}{\sum_{hkl} W(hkl) |F_{0}(hkl)|^{2}}\right)^{1/2}$$
3.39.

3.6. Neke instrukcije programa SHELX76 - G.M. Sheldrick-a

Struktura ispitivanog jedinjenja - rešena je primenom računskih programa SHELXS86 za direktnu metodu i SHELX76 za utačnjavanje strukture. Ovde su data objašnjenja nekih ključnih instrukcija za korišćeni program SHELX76.

TITL [] - naslov strukture (ukupno 40 oznaka)

CELL $\lambda a b c \alpha \beta \gamma$ - talasna dužina zračenja (Å) i parametri elementarne ćelije (Å i °).

LATT n(t) - tip rešetke u kristalografskom sistemu: 1=P, 2=I, 3=R, 4=F, 5=A, 6=Bi 7=C; za necentrosimetrične kristale n=-1

SYMM [] simetrijske operacije date u International Tables of X-ray Crystallography. Zapis je dat u decimalnom zapisu i razdvojeni su zarezom. SFAC $[A_1, A_2, ...]$ spisak elemenata predvidjenih u strukturi. Zapis je dat velikim slovima i odvojeni razmakom.

UNIT $[n_1, n_2, ...]$ - Broj atoma za svaku vrstu atoma u elementarnoj ćeliji po SFAC redosledu.

MERG n - daje karakteristike i obim računa koji se zahteva od programa:

n=1 izračunava E-vrednosti, pomoću modifikovane metode krivulja (Karlo, Hau ptman i Christ). Štampa ukupno vrednost za U.

n=2 kao pod 1 te još spaja jednake reflekse objašnjava nedoslednost. R se definiše preko formule za težinski faktor tačnosti.

n=3 osim postupka pod 2, on još izvodi faktor grupne skale i primenjuje metod najmanjih kvadrata (E- statistika se štampa kod funkcija od sin θ).

OMIT-označava pragove za suviše male reflekse koje ne treba uzeti u obzir kod računa.

L.S. Broj ciklusa kod metode njmanjih kvadrata (Izračunava R-faktor posle svakog ciklusa).

WGHT g - težinska kartica definisana sa:

$$W = k/(\mathcal{O}'(F_o) + |g| F^2)$$

zadaju se vrednosti g koje su promenljive (znak "-") ili fiksne (znak "+")

FMAP n - Karakteriše Fourier-ovu mapu koja se izračunava (npr. n=1 Pattersonova sinteza, n=2 - diferentna Fourier-ova sinteza, n=3 Furier-ova sinteza itd.

FVAR - Daje faktor skale, treba da je reda veličine 1. (oko 1,23). U početnom stadijumu se zadaje 1,0 a kasnije se uzimaju vrednosti iz prethodnog utočnjavanja.

AFIX mn - Generiše atome prema nekim geometrijskim pravilnostima

m=0 nema generisanja

m=1 tercijalna CH grupa

m=2 sekundarna CH₂ grupa

m=3 primarna CH3 grupa

m=4 vodonik, benzenskog tipa od CH

n=3 utačnjava samo temperaturski i okupacioni faktor sa fiksiranim rastojanjem (u našim proračunima 1,08 Å).

ANIS n - n-broj atoma koji slede posle ove naredbe čiji se izotropni temperaturski faktor transformiše u anizotropni.

3.7. Torzioni uglovi i konformacija prstenova

Da bi se analizirao dobijeni molekul najčešće se pristupa, pored izračunavanja rastojanja atoma i valentnih uglova (SHELX76), izračunavanju vrednosti torzionih uglova koje odredjuju tip konformacije prstena. Torzioni ugao je definisan pomoću 4 atoma: A1,A2,A3 i A4 u trodimenzionom prostoru (slika 3.4.).

Slika 3.4. Odredjivanje znaka torzionog ugla pomoću Newman- ove projekcije

Konformacija (deformacija) petočlanih i šestočlanih prstenova prikazana su na slici 3.5. i 3.6. Isprekidana linija je oznaka za ogledalsku ravan, a puna linija za osu simetrije drugog reda.

Planarnost prstenova može se proveriti i pomoću tkz. najboljih ravni. Kod tih ravni suma kvadrata rastojanja atoma od ove ravni je minimalna. Za ove proračune koriste se programi CSU i RING.

Slika 3.5. Tri moguće konformacije ciklopentanskog prstena

Slika 3.6. a Konformacija cikloheksanskih prstenova

3.8. Eksperimentalni rezultati

Konačne vrednosti za parametre elementarne ćelije date su u tabeli 2.9.. One su odredjene difraktometrom. Izmereno je 2221 nezavisnih refleksa od kojih 1977 zadovoljavaju uslov $I \ge 1,5 \sigma$ (I). Položaji ne vodoničnih atoma odredjeni su pomoću direktnih metoda upotrebom SHELXS86 programa. Izračunata E-mapa (tabela 3.2. i slika 3.7.) dala je položaje 17 nezavisnih "težih" atoma, koji se delimično uklapaju u pretpostavljenu strukturu. Analiza rastojanja izmedju ovih pikova pokazuje da se molekul sastoji od jednog fenilnog (za koga je vezana metilna grupa), jednog petočlanog (za koga u početku nismo znali da li je piridinski ili furanski) i jednog cikloheksanskog prstena. Krajnje prihvatljivo rešenje dalo je bruto formulu $C_{15}H_{16}O_2$ (slika 3.8. i 3.9.). Veza izmedju atoma C3A i C7A je dvostruka.

Posle četiri ciklusa izotropnog utačnjavanja nevodoničnih atoma pokazalo se da izotropni temperaturski faktori perifernih atoma C5 i C6 u cikloheksanskom prstenu imaju vrednosti 0,0989 i 0,1175 što je 2 puta više nego kod drugih atoma. Iz diferentne Fourierove mape locirana su dva najverovatnija položaja atoma C5 i C5' i C6 i C6' koji se nalaze u stanju povećanog termičkog kretanja.

- 41 -

U daljem postupku su izvršena pet ciklusa anizotropnog utačnjavanja položaja ovih atoma, njihovih okupacionih faktora (sa početnim vrednostima 0,5) zajedno sa generisanim vodonicima. Ovakvo rešenje sa dva nezavisna cikloheksanska prstena se pokazala dobrim, jer je dalo zadovoljavajući konačni R-faktor; broj refleksa i broj parametara:

R=0,0603 N=1977 NP=197

Pri zadnjem anizotropnom utačnjavanju položaji vodonika u cikloheksanskom prstenu su generisani nezavisno za svaki prsten posebno. Dobijeni položaji su učvršćeni u daljem procesu utačnjavanja u kojem se ostali vodonici generišu sa fiksnim koordinatama.

To je dovelo do narušavanja dužina H-veza u konačnoj geometriji, ali je zato dalo najbolji izgled diferentne mape. Konačni izgled molekula dat je na slici 3.10, gde isprekidana linija daje drugi alternativni položaj cikloheksanskog prstena.

U tabeli 3.3. i 3.4. date su atomske koordinate, ekvivalentni izotropni temperaturski faktori i okupacioni faktor nevodoničnih (3.3.) i vodoničnih (3.4.) atoma. Vrednosti u zagradama predstavljaju standardnu devijaciju. Konačne vrednosti okupacionih faktora za atome C5, C5', C6 i C6' su: 0,60(5); 0,36(3); 0,54(2) i 0,46(2) respektivno.

U tabeli 3.5. dati su anizotropni temperaturski faktori nevodoničnih atoma. U tabelama 3.6. i 3.7. data su rastojanja i uglovi izmedju ne vodoničnih atoma. Ove vrednosti za rastojanja se dobro slažu sa teoretskim vrednostima (tabela 3.1.) i pokazuju da veza C3A-C7A (1,237(3)Å) odgovara dvostrukoj vezi, kao i rastojanje C1-08 (1,204(3)Å). Dužine C-O veza u furanskom prstenu: C3-02:1,447(3)Å i za C1-02:1,360(2)Å, ukazuju na jednostruke veze. U fenilnom prstenu su rastojanja bliska teoretskim vrednostima, dok rastojanja C-C veza u kondenzovanom cikloheksanskom prstenu pokazuju odstupanja od teoretskih vrednosti, što se može pripisati termičkim vibracijama.

Izračunati su torzioni uglovi koji su dati u tabeli 3.8. korišćenjem programa RING izračunate su konformacije cikloheksanskih prstenova kao i furanskog (tabele 3.9., 3.10. i 3.11.).

Dobijene su dve konformacione forme half-chair i to ${}^{4}H_{3}$ *i* ${}^{3}H_{4}$, koje su u kristalu procentualno zastupljene u odnosu 57:43. Iz tabela 3.9. i 3.10. vide se vrednosti torzionih uglova za atome: C5 i C6 je +65,1° dok za C5' i C6' ovaj ugao iznosi -65,7°.

Konformacija furanskog prstena je envelope E, gde atom 02 neznatno odstupa od najbolje ravni.

Dalja analiza pokazuje da se cikloheksanski i furanski prsten nalaze skoro u istoj ravni (ugao izmedju njihovih najboljih ravni iznosi 0,87(7), dok ugao izmedju fenilnog i cikloheksanskog prstena iznosi 74,38(8), a izmedju fenilnog i furanskog 74,62(4).

Na slikama 3.11. i 3.12. su prikazana pakovanja kristala 3-p tolil - 1,3,4,5,6,7 heksahidrobenzo /c / furan -1-on-a u elementarnoj ćeliji (Z=4).

Tabela 3.2.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ATOM	PEAK	Х	Y	Z		DISTAN	2	ANGLES	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	298	0 6035	0 2500	0 1602	A	ES 1 407			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	<i></i>	0.0755	0.2239	0.1092	4	1.437	400.0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						0	1.347	109.0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	252	0 6613	0 3411	0 4144	23	1.051	85.8	153.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	202.	0.0015	0.3411	0.4144	4	1.538	105 1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						0 15	1.274	107.1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	231	0 3479	0 3140	0 2401	15	1.462	123.5	129.1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•		0.5475	0.5140	0.2401) 11	1.304	104.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	229	0 5911	0 2810	0.2864	11	1.330	124.3		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•		010711	0.2010	0.2004	2	1.43/	100.0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						5	1.558	102.8	1107	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						10	1.340	110.1	112.0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	227.	0.4737	0 3218	0 1845	2	1.041	114.9	103.8	112.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-		0.1707	0.2210	0.1045	Л	1.304	100.0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						10	1.340	120.0	1107	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	227.	0.7826	0.3427	0 3760	2	1.341	120.4	118./	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				010 127	0.5700	8	1.274	112.2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						13	1.717	112.2	100 7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	216.	0.2645	0.3988	0.0031	11	1,330	125.0	122.7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				010200	0.0001	12	1.400	1170		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						14	1.343	117.9	100.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	211.	0.8076	0.2950	0.2262	14	1 347	117.0	122.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.2700	0.2202	6	1.547	109.6		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						Q	1 1 9 9	100.0	121.0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	197.	0.9044	0.2873	0.1446	8	1 1 2 2	120.0	151.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	190.	0.4985	0.3669	0.0427	5	1 3/1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.0000	010 (27)	12	1.541	1185		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						20	1 157	121.0	110.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	183.	0.2421	0.3468	0.1591	3	1 330	191.0	119.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						7	1.486	1173		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						18	1.088	121 3		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						23	1.135	117.0	96 1	60 5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	164.	0.3892	0.4082	-0.0477	7	1.343	11/10	20.1	00.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						10	1.449	121.3		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	158.	0.8901	0.3939	0.4720	6	1.536			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						17	1.497	108.6		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	149	0.1507	0.4389	-0.0898	7	1.484			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						21	1.125	107.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	141.	0.5967	0.3798	0.5612	2	1.462			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						16	1.501	108.3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						24	1.754	114.9	55.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						26	1.016	133.8	117.6	95.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	92.	0.6808	0.4507	0.6253	15	1.501			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						17	1.602	112.2		
17 85. 0.8346 0.4275 0.6359 13 1.497 16 1.602 115.7						22	1.560	113.6	76.9	
17 85. 0.8346 0.4275 0.6359 13 1.497 16 1.602 115.7						24	1.527	70.8	153.1	77.7
16 1.602 115.7	17	85.	0.8346	0.4275	0.6359	13	1.497			
						16	1.602	115.7		

Slika 3.7.

•

BG2744 C15-H16-O2 P21/N

Slika 3.8.

- 47 -

BG2744'C15-H16-O2 P21/N

Slika 3.9.

BG2744 C15-H16-O2 P21/N

Tabela 3.3.

Atom	x/a	y/b	z/c	U or Ueq	OCP
C3	5899 (2)	2835 (1)	2874 (3)	462 (4)	
O2	6931 (1)	2580 (1)	1731 (2)	592 (3)	
C1	8086 (2)	2957 (1)	2217 (3)	564 (5)	
C7A	7859 (2)	3467 (1)	3753 (2)	462 (4)	
C7	8878 (2)	3696 (2)	4743 (3)	6601 (5)	
C 6	8250 (6)	4223 (6)	6535 (10)	580 (14)	54
C6'	8191 (9)	422 (10)	5839 (20)	763 (26)	45
C5	6838 (8)	4540 (11)	6269 (22)	627 (19)	60
C5'	7128 (23)	4205 (19)	6820 (28)	574 (32)	36
C4	5966 (2)	3849 (1)	5590 (3)	544 (5)	
С9	4756 (2)	3216 (1)	1855 (2)	436 (4)	
C10	3479 (2)	3123 (1)	2412 (3)	505 (4)	
C11	2428 (2)	3499 (1)	1521 (3)	570 (5)	
C12	2629 (2)	3973 (1)	48 (3)	528 (4)	
C13	3905 (2)	4058 (2)	-502 (2)	634 (5)	
C14	4963 (2)	3694 (1)	391 (3)	594 (5)	
C15	1492 (2)	4385 (2)	-919 (4)	803 (7)	
O 8	9074 (2)	2864 (1)	1410 (2)	848 (5)	

Tabela 3.4.

Atom	x/a	y/b	z/c	U	OCP
H3	557 (2)	238 (1)	344 (3)	5 (1)	
H71	976 (0)	360 (0)	501 (0)	12 (1)	
H72	915 (0)	450 (0)	399 (0)	10 (1)	
H61	877 (0)	479 (0)	695 (0)	9 (4)	50
H62	841 (0)	375 (0)	742 (0)	6 (1)	50
H61'	877 (0)	479 (0)	695 (0)	9 (3)	50
H62'	742 (0)	503 (0)	466 (0)	7 (1)	50
H51	666 (0)	449 (0)	778 (0)	13 (4)	50
H52	683 (0)	501 (0)	579 (0)	8 (2)	50
H51'	666 (0)	449 (0)	778 (0)	13 (3)	50
H52'	775 (0)	359 (0)	736 (0)	10 (2)	50
H41	512 (0)	420 (0)	509 (0)	15 (1)	
H42	563 (0)	341(0)	653 (0)	10 (1)	
H10	330 (0)	275 (0)	354 (0)	7 (1)	
H11	144 (0)	343 (0)	199 (0)	8 (1)	
H13	408 (0)	441 (0)	-166 (0)	11 (1)	
H14	595 (0)	379 (0)	-4 (0)	10 (1)	
H151	58 (0)	424 (0)	-29 (0)	12 (1)	
H152	144 (0)	417 (0)	-225 (0)	12 (1)	
H153	164 (0)	505 (0)	-91 (0)	12 (1)	

Tabela 3.5.

.

Atom	U11 OR U	U22	U23	U12	U13	U23
СЗ	468 (9)	479 (9)	446 (10)	4 (7)	-7 (8)	-58 (8)
O2	549 (8)	698 (9)	526 (8)	147 (7)	-28 (7)	-193 (7)
C1	465 (10)	716 (13)	510 (11)	150 (9)	11 (9)	-67 (10)
C7A	412 (9)	549 (10)	422 (9)	47 (7)	-18 (7)	1 (8)
C3A	436 (9)	469 (9)	361 (9)	17 (7)	-10 (7)	-16 (7)
C7	447 (10)	727 (13)	624 (12)	-50 (9)	-47 (9)	-38 (11)
C 6	616 (30)	577 (38)	536 (31)	-123 (22)	-130 (20)	-23 (29)
C6'	711 (38)	818 (78)	772 (66)	-348 (42)	212 (37)	-347 (65)
C5	611 (27)	574 (59)	693 (44)	-26 (27)	-4 (29)	-210 (51)
C5'	638 (72)	603 (95)	488 (63)	-135 (67)	136 (48)	-242 (63)
C4	519 (11)	670 (12)	449 (10)	-68 (9)	92 (8)	-157 (9)
C9	448 (9)	464 (9)	393 (9)	-21 (7)	-13 (7)	-79 (7)
C10	483 (10)	528 (10)	505 (10)	-70 (8)	12 (8)	5 (9)
C11	437 (10)	630 (12)	642 (12)	-46 (9)	8 (9)	-68 (10)
C12	559 (11)	508 (10)	508 (11)	58 (8)	-122 (9)	-118 (8)
C13	659 (13)	786 (14)	457 (11)	92 (11)	19 (10)	98 (10)
C14	509 (11)	791 (13)	486 (11)	63 (10)	77 (9)	83 (10)
C15	722 (15)	789 (16)	881 (18)	237 (13)	-241 (14)	-46 (14)
08	572 (9)	257 (16)	724 (11)	208 (10)	152 (9)	-244 (11)

Atom	Atom	Dist.
C3	O2	1.447 (3)
C3	C3A	1.493 (3)
СЗ	C9	1.507 (3)
O2	C1	1.360 (2)
C1	C7A	1.463 (3)
C1	O8	1.204 (3)
C7A	C3A	1.327 (3)
C7A	C7	1.499 (3)
C3A	C4	1.490 (3)
C7	C6	1.588 (8)
C7	C6'	1.531 (15)
C6	C5	1.526 (12)
C6'	C5	1.427 (13)
C6'	C5'	1.495 (28)
C5	C4	1.506 (15)
C5'	C4	1.591 (24)
C9	C10	1.384 (3)
С9	C14	1.385 (3)
C10	C11	1.386 (3)
C11	C12	1.386 (3)
C12	C13	1.380 (3)
C12	C15	1.504 (3)
C13	C14	1.384 (3)

Tabela 3.6.	Bond lenghts (Å) with e.s.d.s. in parentheses
-------------	---

Atom	Atom	Atom	Angle
O2	C3	C3A	103.5 (2)
O2	C3	C9	111.1 (2)
C3A	C3	C9	114.8 (2)
C3	O2	C1	109.8 (1)
O2	C1	C7A	108.4 (2)
O2	C1	O 8	121.7 (2)
C7A	C1	O8	129.9 (2)
C1	C7A	C3A	108.2 (2)
C1	C7A	C7	126.1 (2)
C3A	C7A	C7	125.7 (2)
C3	C3A	C7A	110.1 (2)
СЗ	C3A	C4	125.3 (2)
C7A	C3A	C4	124.6 (2)
C7A	C7	C6	106.8 (3)
C7A	C7	C6'	109.5 (5)
C6	C7	C6'	31.1 (6)
C7	C6	C5	111.8 (7)
C7	C6'	C5	121.4 (11)
C7	C6'	C5'	108.3 (13)
C5	C6'	C5'	29.3 (12)
C6	C5	C6'	32.8 (7)
C6	C5	C4	109.5 (10)
C6'	C5	C4	123.1 (12)
C6'	C5'	C4	113.3 (17)
C3A	C4	C5	110.9 (6)
C3A	C4	C5'	107.1 (9)
C3	C9	C10	120.3 (2)
C3	C9	C14	120.9 (2)
C10	C9	C14	118.7 (2)
С9	C10	C11	120.7 (2)
C10	C11	C12	120.9 (2)
C11	C12	C13	118.0 (2)
C11	C12	C15	121.1 (2)
C13	C12	C15	121.0 (2)
C12	C13	C14	121.6 (2)
C9	C14	C13	120.2 (2)

•

Tabela 3.7. Bond angles (deg) with e.s.d.s. in parentheses

Atom	Atom	Atom	Atom	Angles	Atom	Atom	Atom	Atom	Angles
C3	O 2	C1	C7A	1.4 (2)	C3A	C7A	C 7	C6'	-19.2 (6)
СЗ	O 2	C1	O 8	-177.0(2)	СЗА	C4	CS	C6	-47.0 (10)
C3	C3A	C7A	C1	1.02 (2)	C3A	C4	CS	C6'	-13.5 (15)
СЗ	C3A	C7A	C7	-178.7 (2)	C3A	C4	C5'	C6'	45.9 (18)
C3	C3A	C4	C5	-164.2 (6)	C7	C7A	C1	O 8	-3.6 (4)
C3	C3A	C4	C5'	166.9(10)	C7	C7A	C3A	C4	1.6 (3)
СЗ	C9	C10	C11	177.4(2)	C7	C6	C5	C6'	-56.2 (12)
C3	C9	C14	C13	-178.2 (2)	C7	C6	C5	C4	65.2 (10)
O2	C3	C3A	C7A	-0.1 (2)	C7	C6'	C5	C6	69.6 (13)
O2	C3	C3A	C4	179.6 (2)	C7	C6'	C5'	C4	-65.7 (18)
O2	C3	C9	C10	147.1 (2)	C6	C7	C6'	C5	-70.6 (14)
O2	C3	C9	C14	-35.7 (2)	C6	C7	C6'	C5'	-41.6 (13)
O2	C1	C7A	C3A	-1.5 (2)	C6	C5	C4	C5'	40.1 (21)
O2	C1	C7A	C7	178.1 (2)	C6'	C7	C6	C5	54.2 (12)
C1	O2	C3	C3A	-0.8 (2)	C6'	C5	C4	C5'	73.6 (25)
C1	O2	C3	C9	122.9 (2)	C6'	C5'	C4	C5	-56.6 (21)
C1	C7A	C3A	C4	-178.7 (2)	C5	C6'	C5'	C4	56.4 (20)
C1	C7A	C7	C6	-166.2 (3)	C5'	C6'	C5	C4	-74.7 (24)
C1	C7A	C 7	C6'	161.2 (6)	C4	C3A	C 3	C9	58.3 (2)
C7A	C3A	C3	C9	-121.3 (2)	C9	C10	C11	C12	0.3 (3)
C7A	C3A	C4	C5	15.4 (7)	C 10	C11	C12	C15	-179.8 (2)
C7A	C3A	C4	C5'	-13.5 (10)	C14	C13	C12	C15	178.9 (2)
C7A	C 7	C 6	C5	-45.8 (8)	C7A	C7	C6'	C5	19.8 (14)
C7A	C 7	C6'	C5'	48.9 (14)	C3A	СЗ	C9	C10	-95.9 (2)
C3A	C3	C9	C14	81.3 (2)	C3A	C7A	C1	C8	176.8 (2)
C3A	C7A	C 7	C6	13.4 (4)					
				•					

.

Atom Atom Atom Atom Angles (°) Dist (Å)	
C3A C4 C5 C6 -46.9 1.50	C4-C5
C4 C5 C6 C7 65.1 1.53	C5-C6
C5 C6 C7 C7A -45.8 1.59	C6-C7
C6 C7 C7A C3A 13.5 1.50	C7-C7A
C7 C7A C3A C4 1.6 1.33	C7A-C3A
C7A C3A C4 C5 15.4 1.49	C3A-C4

Tabela 3.9. Cikloheksanski prsten: Endocyclic Torsion Angles and Interatomic Distances

Tabela 3.10. Cikloheksanski ' prsten: Endocyclic Torsion Angles and Interatomic Distances

Atom	Atom	Atom	Atom	Angles (°)	Dist (Å)	
C3A	C4	C5'	C6'	45.9	1.59	C4-C5'
C4	C5'	C6'	C7	-65.7	1.50	C5'-C6'
C5'	C6'	C 7	C7A	48.9	1.53	C6'-C7
C6'	C7	C7A	C3A	-19.2	1.50	C7-C7A
C7	C7A	C3A	C4	1.6	1.33	C7A-C3A
C7A	C3A	C4	C5'	-13.5	1.49	C3A-C4

Tabela 3.11. Furanski prsten: Endocyclic Torsion Angles and Interatomic Distances

Atom	Atom	Atom	Atom	Angles (°)	Dist (Å)	
C1	O2	C3	C3A	0.8	1.45	02-C3
O2	C3	C3A	C7A	0.2	1.49	C3-C3A
C3	C3A	C7A	C1	-1.0	1.33	C3A-C7A
C3A	C7A	C1	O2	1.6	1.46	C7A-C1
C7A	C1	O2	C3	-1.4	1.36	C1-O2

Slika 3.11.

.

BG2744 C15-H16-O2 P21/N

Slika 3.12.

4. ZAKLJUČAK

Polazeći od pretpostavke koju su dali hemičari o strukturnoj formuli novo sintetizovanog jedinjenja C₂₂ H₂₁ NO₃ (sa oznakom BG 11/274/4) dokazali smo da kristal pripada sasvim drugom jedinjenju sa novom bruto formulom C₁₅ H₁₆ O₂. U konsultaciji sa sintetičarima potvrdjeno je da se radi o jedinjenju 3-p- tolil - 1,3,4,5,6,7 heksahidrobenzo -/c/- furan-1-on-n, koji predstavlja unutrašnji enolni ester 2-5 tolil cikloheksan-karbonske kiseline.

U prvom koraku je izvršeno odredjivanje parametara elementarne ćelije filmskom metodom i odredjena je gustina kristala metodom lebdenja za celu grupu jedinjenja. Tu je prvi put uočeno neslaganje merene i računate vrednosti za gustinu kristala BG/274/4 što nam je olakšalo analizu F-mape dobijene iz direktne metode. Utačnjavanjem strukture, ovako dobijenih položaja, uočili smo povećane temperaturske faktore atoma C5 i C6 u cikloheksanskom prstenu. Utačnjavanjem okupacionih faktora atoma C5, C5', C6 i C6' dobili smo zadovoljavajući R-faktor: R=0,0603 N=1977 NP=197 $\Delta / \sigma=0,210$.

MAX/MULTIPLIED = $+ 0,273 \text{ e} \text{ Å}^{-3}$

M I N / MULTIPLIED = $-0,269 \text{ e} \text{ Å}^{-3}$

Analiza geometrije molekula pokazala je dobro slaganje sa teoretskim vrednostima, dok nam analiza konformacije cikloheksanskih prstenova pokazuje postojanje dve konformacione forme tipa half-chair 3 H4 i 4 H3 za prsten sa atomima C5 i C6, odnosno C5 ' i C6' respektivno. Ovo nas navodi na zaključak o konformacionoj neuredjenosti gde su dva oblika zastupljena u odnosu 57:43. Pretpostavka o termičkoj neuredjenosti je opravdana jer se radi o kristalu sa vrlo niskom tačkom topljenja (79-81°C).

Jedinjenje 11/274/1, sa pretpostavljenom bruto formulom, ali različitom strukturnom formulom, pokazuje isti efekat termičke neuredjenosti na periferiji cikloheksanskog prstena (tačka topljenja 110). Jedinjenja 11/274/2 (koje je i potvrdjeno) i 11/274/3 imaju nešto više tačke topljenja te se kod njih ne očekuje efekat termičkih vibracija.

Konačnu potvrdu postojanja termičkih vibracija atoma na periferiji prstenova, koje dovođe do konformacije ovih, mogle bi dati IR ili NMR - analize na nižim temperaturama od sobnih.

5. LITERATURA

1. Dr. Slobodan Carić: Praktikum iz FČS-a (II deo)

2. Dr. Slobodan Carić: Skripta iz FČS-a (I deo)

3. Kálmán Alajos: Kémiai krisztallográfia (I része)

4. Charles Kittel: Uvod u fiziku čvrstog stanja, SH perovd, 1970.

5. International Tables of X-ray Crystallography, 1974. (vol IV)

6. Náray Szabó Gábor és Simon Kálmán: Steric Aspects of Biomolecular Interacions (madjarski prevod II poglavlja), CRC press, Inc Boca Raton, Florida

7. Dr Kapor Agneš: Doktorska disertacija

8. Dr Slobodanka Stanković: Doktorska disertacija

9. Mijić K. Mira: Diplomski rad

10. BTM Willis, A.W. Pnyor: Thermal Vibrations in Crystallography, Cambridge University Press, 1975, (4.4. poglavlje)

SADRAŽAJ

1. Postavka problema	1			
2. Odredjivanje parametara elementarne ćelije kristala filmskim metodama. Gustina kristala				
2.1. Uvod	5			
2.2. Oscilatorna metoda	6			
2.3. Weissenberg-ova metoda	10			
2.4. Veza izmedju gustine kristala i broja molekula u elementarnoj ćeliji Rendgenska gustina	14			
2.5. Odredjivanje gustine kristala metodom lebdenja	15			
2.6. Eksperimentalni rezultati	16			
3. Rešavanje kristalne i molekulske strukture novosintetizovanog jedinjenja.	25			
3.1. Uvod	25			
3.2. Uticaj temperaturskog faktora na strukturni faktor	27			
3.3. Fazna problematika	30			
3.4. Direktni metodi	31			
3.5. Utačnjavanje strukture	34			
3.6. Neke instrukcije programa SHELX76-G,M. Sheldrick-a	37			
3.7. Torzioni uglovi i konformacije prstenova	39			
3.8. Eksperimentalni rezultati	41			
4. Zaključak				
5. Literatura	57			