Kontrola kvaliteta stomatološkog RTG aparata
R-100B detektorom
-diplomski rad-

Mentor: Prof. dr Nataša Todorović
Student: Ana Martinović

532/12

Novi Sad, septembar 2016
Ovim putem se zahvaljujem svom mentoru prof. dr Nataši Todorović na svesrdnoj podršci i pomoći pri izradi diplomskog rada.
Sadržaj:

1 Uvod ... 3
2 Rengensko zračenje .. 3
 2.1. Otkriće rengenskog zračenja .. 3
 2.2. Dobijanje i osobine rengenskog zračenja ... 4
 2.3. Mehанизam proizvodnje rengenskog zračenja i spektri rengenskog zračenja 5
 2.3.1. Kontinualni spektar ... 5
 2.3.2. Karakterističan spektar .. 8
3 Interakcija zračenja sa materijom ... 9
 3.1. Fotoelektrični efekat ... 10
 3.2. Rasejanje elektromagnetnog zračenja. Komptonov efekat 13
4 Atenuacija rengenskog zračenja ... 16
 4.1. HVL ... 18
 4.2. Linearni atenuacioni koeficijent u funkciji energije fotona ... 19
5 Poluprovodnički detektori ... 21
 5.1. Osnovne osobine poluprovodnika ... 22
 5.2. P-N spoj, poluprovodnički detektor ... 24
6 Doze jonizujućeg zračenja .. 26
 6.1. Ekspoziciona doza .. 26
 6.2. Apsorbovana doza .. 27
 6.3. Linearni transfer energije (LET) ... 28
 6.4. Ekvivalent doze .. 29
 6.5. Efektivna doza i težinski faktor tkiva (E, W_T) .. 30
 6.6. Kerma ... 31
 6.7. Cema .. 32
7 Barakuda (Barracuda) detektorski sistem ... 33
 7.1. R-100B detektor ... 34
7.2. oRTIgo software .. 35
8. Kontrola kvaliteta kao deo programa zaštite od zračenja ... 36
8.1. NCRP 145 .. 37
 8.1.1. Osnovni principi zaštite od zračenja .. 38
 8.1.2. Dozni limiti ... 40
8.2. Pravilnik o uslovima za dobijanje licence za obavljanje radijacije delatnosti ... 42
8.3. Pravilnik o primeni izvora jonizujućih zračenja u medicini ... 43

9 Testovi kontrole kvaliteta i prezentacija rezultata ... 44
9.1. Osnovni testovi .. 44
 9.1.1. Poludebljina slabljenja snopa (Half Value Layer) .. 44
 9.1.2. Linearnost ... 47
 9.1.3. Reproducibilnost .. 48
 9.1.4. Tačnost tajmera (Timer Accuracy) .. 49
9.2. AEC .. 51
 9.2.1. AEC korekcija gustine ... 52
 9.2.2. AEC balans polja .. 53
 9.2.3. AEC kV kompenzacija ... 54
 9.2.3. AEC mA kompenzacija ... 55
 9.2.3. AEC reciprocitet .. 56
 9.2.4. AEC reproducibilnost .. 58
9.3. Specijalni testovi .. 60
 9.3.1. Ekspozicioni limiti kod stomatoloških rendgenskih aparata .. 60
10 Merenja radi kontrole radne sredine ... 60
 10.1. Opšti principi proračuna efektivne doze ... 61
11 Zaključak .. 63
1 Uvod

Primarna odgovornost medicinskog fizičara u bilo kom imidžing programu jeste razvoj i supervizija programa kvantitativne kontrole kvaliteta. Jasno je i da se odgovornost njegovog utvrđivanja premestio iz domena radiološkog tehničara u domen medicinskog fizičara. Stoga, medicinski fizičar mora posedovati znanje u oblasti dizajna opreme, kao i različitih oblika instrumentalnih testiranja da bi se dobro procenio rad mašina. Dijagnostička radiologija kako u medicini, tako i u stomatologiji, podlegla je velikim promenama koje su direktno uticale na potrebu za kontrolom kvaliteta. Naša sposobnost da testiramo radiografske sisteme bez invazivnih merenja se razvijao istovremeno sa razvojem kompjuterske industrije, što je omogućilo preuzimanje rezultata testa direktno u bazu podataka laptop računara. [3]

U ovom radu će biti prezentovan proces kontrole kvaliteta stomatološkog RTG aparata pomoću R-100B detektora Barracuda detektorskog sistema. Vizuelizaciju rezultata merenja, kao i obradu podataka omogućava QA softver oRTIgo koji poseduje set standardizovanih testova koji se koriste u procesu kontrole kvaliteta i ocenjuju rad RTG sistema. Merenja su vršena u stomatološkoj ordinaciji “NS Dental Studio” sa Satelec® RTG aparatom.

2 Rendgensko zračenje

2.1. Otkriće rendgenskog zračenja

Rendgen je 1895. godine, proučavajući električno pražnjenje kroz razređene gasove, otkrio zrake novog tipa koji su imali do tada nevidenu prodornu moć. Da bi naglasio njihovu zagonetnu prirodu, Rendgen ih je nazvao x-zraci. Oni se često nazivaju, u čast Rendgena, rendgenski zraci. Kasnije je utvrđeno, da su x-zraci elektromagnetne prirode, vrlo kratkih talasnih dužina, od 100 – 0,1 Å, kao i svetlosni zraci. Rasejanje x-zraka na materiji (Komptonov efekat) potvrdilo je njihovu korpuskularnu prirodu (fotoni velike energije, hν). Laue je 1912. godine dokazao njihovu talasnu prirodu difrakcijom na kristalu. Otkriveno je da su rendgenski zraci transferzalno polarizovani talasi kao i svetlost.
Šest godina nakon otkrića x-zraka, 1901., Rendgen je dobio Nobelovu nagradu za ovo otkriće i time postao prvi dobitnik ove nagrade za fiziku. [1]

2.2. Dobijanje i osobine rendgenskog zračenja

X-zraci nastaju pri padu brzih elektrona na čvrstim telima na kojima bivaju naglo zaustavljeni. [1] Proizvode se u tzv. rendgenskim odnosno vakuumskim cevima. To su cevi sa visokim vakuumom i dve elektrode (katoda koja se zagreva i antikatoda) između kojih je velika razlika potencijala (napon) reda veličine nekoliko desetina, a može i nekoliko stotina kV. Katoda, usled zagrevanja, emituje elektrone (termoelektronskom emisijom) koji se potom ubrzavaju u električnom polju između katode i antikatode. Visok vakuum je neophodan da gasovi ne bi ometali prolaz elektrona kroz cev i da ne bi došlo do pražnjenja kroz gas usled visokog napona. Katoda je spiralno metalno vlakno i može da se usijava posebnim električnim izvorom. Antikatoda je nagnuta pod uglom od 45º u odnosu na pravac kretanja elektrona. Mesta na antikatodi koja su izložena udaru elektrona postaju izvori x-zraka. Intenzitet x-zraka reguliše se grejanjem katode i naponom. Veoma mali deo od ukupne energije elektrona koji padaju na antikatodu pretvara se u energiju rendgenskog zračenja, a ostali deo energije pretvara se u toplotu, zbog čega dolazi do jakog zagrevanja antikatode, te se ona mora hladiti ili uključivati cev samo u kratkim vremenskim razmacima. Hlađenje može biti vazduhom, vodom ili uljem. Najčešće se hlađenje vodom ostvaruje tako, što ona prolazi kroz kanale urezane u samoj antikatodi.

![Slika 1. – Šematski prikaz vakuumске cevi](image-url)
Rendgen je u periodu od 1895. do 1897. godine ispitivao osobine x-zraka. Zapazio je da
oni imaju veliku prodornu moć, jonizaciono dejstvo, izazivaju luminiscenciju i zacrnjenje
fotografske ploče (fotohemijsko dejstvo). [1]

2.3. Mehanizam proizvodnje rendgenskog zračenja i sprektri
rendgenskog zračenja

Kao što je već rečeno, x-zraci nastaju pri bombardovanju antikatode (čvrstog materijala)
elektronima velike energije. Merenja pokazuju, da se oko 99% energije elektrona koji padaju pri
tome na površinu antikatode pretvara u toplotu i antikatoda se jako zagreva. [1] Većina elektrona
vrši elastične sudare sa česticama materije povećavajući njihovu kinetičku energiju, čime se
srednja vrednost kinetičke energije materijala antikatode povećava, a time i njena temperature.
Samo 1% snage se pretvara u energiju x-začenja. Postoje principijalno dva različita procesa koji
dovode do emisije x-zraka, po kojima x-začenje delimo na: zakočno i karakteristično x-začenje.
[1]

2.3.1. Kontinualni spektar

Neki od elektrona (oko 1%) pri padu na površinu antikatode, usled snažne interakcije sa
atomima njenog sastava, snažno bivaju zakočeni (trpe negativno ubrzanje), tako da odjednom
gube deo ili celokupnu svoju energiju. [1] Elektron može pri više akata interakcije i kočenja
gubiti svoju energiju. Znamo iz klasične elektrodinamike da se pri ubrzanju (promeni brzine)
naelektrisanog tela javlja elektromagnetno zračenje. Otuda, kada jedan elektron izgubi deo ili
celokupnu energiju pri kočenju, javiće se jedan kvant energije (foton) rendgenskog zračenja. Pri
tome energija koju izgubi elektron je jednaka energiji foton. Kako elektron, pri zakočnom
začenju, može pretvoriti ili celokupnu ili delimično svoju energiju u kvant x-zraka, tako da je
ovaj različite energije, odnosno frekvencije i talasne dužine, sledi da će spektar zakočnog x-
začenja biti kontinualan. Ukupan intenzitet takvog zračenja, kao i oblik spektra zavise od
napona na cevi. [1] Na slici 1 prikazan je spektar zakočnog x-začenja na antikatodi pri različitim
naponima (U) između elektroda u cevi. Ono što je zajedničko za sve kontinualne spektere (spektre
zakočnog zračenja) je postojanje jako izražene kratkotalasne granice, koja zavisi samo od napona u cevi, ali ne i od materijala antikatode. Eksperimentalno je nađena sledeća veza između talasne dužine kratkotalasne granice kontinualnog spektra izražene u angstromima i napona u cevi (U) izraženog u voltima:

\[\lambda_{\text{min}} = \frac{12396}{U} \text{ Å} \] (2.1)

Sa slike 1 možemo videti da se povećanjem napona u cevi kratkotalasna granica spektra pomera ka kraćim talasnim dužinama.

Slika 2. – Kontinualni spektar rendgenskog zračenja

Ako se elektron ubrza prolazeći razliku potencijala i ako mu je početna energija bila jednaka nuli ili zanemarljivo mala u odnosu na onu koju je dobio usled ubrzavajućeg napona, tada će njegova kinetička energija biti jednaka razlici u električnom polju:
\[
\frac{1}{2} \cdot m \upsilon^2 = eU
\]
(2.2)

S druge strane, pri potpunom preobražaju kinetičke energije elektrona u energiju jednog fotona rendgenskog zračenja ova energija će biti jednaka kinetičkoj energiji elektrona. Takav foton ima maksimalnu energiju \((h\upsilon_{\text{max}}) \) odnosno frekvenciju \((\upsilon_{\text{max}}) \), a minimalnu talasnu dužinu \((\lambda_{\text{min}}) \), te se može pisati:

\[
eU = h\upsilon_{\text{max}} \quad \text{i} \quad eU = hc/\lambda_{\text{min}}
\]
(2.3)

Odakle dobijamo:

\[
\lambda_{\text{min}} = hc/eU = (6,62 \cdot 10^{-34} \cdot 3 \cdot 10^8) / (1,6 \cdot 10^{-19} \cdot U) \quad = 12396/U \quad [\text{Å}]
\]
(2.4.)

To je upravo relacija koja je dobijena eksperimentalnim putem. Na taj način je kvantna teorija objasnila kratkotalasnu granicu kod kontinualnog spektra zakočnog rendgenskog zračenja.

Ako u interakciji elektrona sa atomima antikatode dođe samo do delimičnog pretvaranja kinetičke energije elektrona u energiju fotona x-zraka, takav će foton imati manju energiju od maksimalne, a samim tim i nižu frekvenciju, odnosno talasnu dužinu veću od kratkotalasne granice spektra, čime se objašnjava spektar zakočnog x-zračenja.

Maksimum intenziteta u spektru zavisi od napona na cevi. [1] Ovaj maksimum se pomera ka kraćim talasnim dužinama sa povećanjem napona. Za vrednost talasne dužine koja odgovara maksimumu intenziteta zračenja, teorija daje formulu:

\[
\lambda_{\text{max}} = \frac{3}{2} \cdot \lambda_{\text{min}}
\]
(2.5.)

Dok je empirijska formula:

\[
\lambda_{\text{max}} = \frac{3}{2} \cdot \lambda_{\text{min}} + 0,05 \quad [\text{Å}]
\]
(2.6.)

Prema tome, sa povećanjem napona u cevi, smanjuje se kako \(\lambda_{\text{min}} \), tako i talasna dužina koja odgovara maksimumu zračenja. [1]
2.3.2. Karakterističan spektar

Ako napon rendgenske cevi, odnosno energija elektrona dostigne ili premaši određenu vrednost karakterističnu za materijal date antikatode, u spektru x-zraka se javljaju pored kontinualnog spektra i diskretne linije većeg intenziteta. Takve linije čine karakterističan spektar materijala od kojeg je izrađena antikatoda, odnosno karakterističan spektar atoma antikatode, jer je pokazano da je on karakterističan za date atome (element), nezavisno od hemijskog sastava elementa. Najčešće spektar x-zračenja formiraju superponirani spektri zakočnog i karakterističnog x-zračenja. Na slici 3 prikazan je karakterističan spektar rendgenskog zračenja molibdenske antikatode pri naponu od 35 kV.

![Karakterističan spektar x-zračenja superponiran na kontinualni spektar zakočnog zračenja](image)

Slika 3. Karakterističan spektar x-zračenja superponiran na kontinualni spektar zakočnog zračenja

Karakteristično rendgensko zračenje lako se može objasniti na osnovu kvantnog modela atoma, ako se energija elektrona u pojedinim ljuskama (K, L, M, N, itd.) u atomu predstave u polarnom energetskom dijagramu. Na njemu su energetske razlike između pojedinih ljusaka u atomu prikazane srazmernim razlikama poluprečnika energetskih nivoa. Udarom elektrona u antikatodu neki od njih će izbaciti elektrone iz atoma antikatode. Da bi se to desilo upadni elektroni moraju imati energiju najmanje jednaku jonizacionoj energiji izbačenih elektrona. Ako

3 Interakcija zračenja sa materijom

Osnovne interakcije koje nastaju pri prolasku elektromagnetnog zračenja kroz materiju mogu se opisati putem tri efekta:

1. Fotoelektrični efekat
2. Rasejanje elektromagnetnog zračenja na slobodnom ili vezanom elektronus (Tomsonovo, Rejlijevo i Komptonovo rasejanje)
3. Proizvodnja para elektron-požitron

Prilikom fotoelektričnog efekta i stvaranja parova fotoni u potpunosti nestaju. U procesu Tomsonovog i Rejlijevog rasejanja fotoni bivaju skrenuti, obično za mali ugao, bez gubitka energije. Ovi su procesi znatno manje verovatnoće od Komptonovog rasejanja, kada foton biva skrenut, ali tom prilikom preda deo svoje energije elektronus.

Proizvodnja para elektron-požitron se javlja samo u slučaju kada upadni foton ima energiju veću ili jednaku dvostrukoj energiji mase mirovanja elektrona koja iznosi 1,022 MeV. S obzirom da u radiodijagnostici ne koristimo ovako visoke energije fotona, ovaj efekat nećemo detaljno razmatrati. [2]
3.1. Fotoelektrični efekat

Fotoelektrični efekat je proces u kojem foton predaje svoju kompletnu energiju orbitalnom elektronu. Foton tom prilikom prestaje da postoji a elektron se udalji iz atoma sa energijom:

\[E_e = E_f - E_v \] (3.1.)

gde je \(E_f \) energija koju je foton posedovao pre interakcije, a \(E_v \) je energija veze orbitalnog elektrona. [2]

To znači da se energija fotona utroši na rad potreban da se elektron izbaci iz atoma kao i na njegovu kinetičku energiju. Iz ove jednačine možemo zaključiti da je fotoelektrični efekat moguć samo na vezanom elektronu.

Teoretski fotoefekat može da se odigra na svakom pojedinačnom orbitalnom elektronu, ali se verovatnoća odvijanja ovog procesa razlikuje od elektrona do elektrona. Što je energija veze elektrona bliža energiji fotona elektron će biti čvršće vezan, pa je i verovatnoća dešavanja fotoefekta na takvom elektronu viša. I obrnuto, ako foton poseđuje energiju znatno višu od energije veze elektrona, verovatnoća za fotoefekat je mala, pošto se sa aspekta energije fotona elektroni ne mogu smatrati dovoljno čvrsto vezanim da bi se fotoefekat odigrao. Ukoliko je energija fotona neznatno niža od energije veze K-elektrona, foton neće imati mogućnost da ga izbaci iz atoma pa se verovatnoća fotoefekta naglo smanjuje. Na tim energijama moguće je samo fotoefekat na L i M-elektronima. S obzirom da ovde foton ima znatno višu energiju od energija kojim su vezani L i M-elektroni, efikasni presek za fotoefekat ponovo ima nisku vrednost. No kako se energija fotona približava energiji veze L-elektrona, vrednost efikasnog preseka raste i dobija se još jedan maksimum, kada je energija fotona upravo jednak energiji veze elektrona na L-ljusci. Nakon maksimuma, idući ka nižim energijama, efikasni presek naglo opada pošto
fotoni nemaju dovoljno energiju da izbace L-elektrone. Lako je zaključiti da se situacija na identičan način ponavlja i sa M-elektronima.

![Slika 4. – Zavisnost efikasnog preseka za fotoelektrični efekat od energije](https://en.wikipedia.org/wiki/File:Optical_absorption.png)

takođe rastu sa povećanjem rednog broja. Budući da se fotoefekat odvija u većoj meri tamo gde su elektroni čvrše vezani, jasno je da mora postojati veoma jaka zavisnost efikasnog preseka fotoefekta od energije i rednog broja materijala. [2] Iz navedenog može se pisati:

\[\sigma_{fe} \sim \frac{Z^5}{E^{7/2}} \text{ za } E > E^K_0 \] (3.2)

\[\sigma_{fe} \sim \frac{Z^5}{E} \text{ za } E >> E^K_0 \] (3.3)

Ako je energija upadnih fotona dovoljno visoka, elektron izbačen iz atomskog omotača može imati energiju koja je dovoljna za vršenje jonizacije. Ugaona raspodela elektrona emitovanih u fotoefektu takođe zavisi od energije fotona i može se izračunati upotrebom kvantne elektrodinamike. Ukoliko je energija fotona \(E_f << m_e c^2 \), elektroni će najvećom verovatnošću biti emitovani normalno na pravac prostiranja fotonskog snopa da bi se sa povećanjem fotonkske energije, pravac u kojem se emituju elektroni polako pomerao prema pravcu prostiranja upadnog fotona. Kada fotoni dostignu MeV-ske energije, tj. \(E_f >> m_e c^2 \), fotoelektronii se emituju u relativno uskom prostornom uglu, preferentno unapred odnosno u pravcu upadnih fotona.

Nakon što jedan od elektrona bude izbačen iz atoma u procesu fotoelektričnog efekta, na njegovo mesto dolazi elektron sa neke od viših orbitala. Tom prilikom dolazi do emisije zračenja. U slučaju da se taj proces odigrao na K-elektronu, emitovana radijacija za većinu elemenata će, osim onih najlakših, biti u oblasti rendgenskog zračenja. To je tzv. karakteristično rendgensko zračenje koje uvek neizbežno prati proces fotoelektričnog efekta. Ponekad je moguće da atom umesto emisije fotona, koja bi usledila nakon popunjavanja praznog mesta na nekoj od
3.2. Rasejanje elektromagnetnog zračenja. Komptonov efekat.

$$\sigma_{\text{Tom}} = \frac{8\pi}{3} r_e^2 = 0.64 \cdot 10^{-28} \text{m}^2$$

(3.4)

gde je

$$r_e = \frac{1}{4\pi\varepsilon_0} \cdot \frac{e^2}{mc^2}$$

(3.5)

takozvani klasični radijus elektrona i iznosi $2.8 \cdot 10^{-15}$ m. [2] Iz gornje jednačine vidimo da ukupna verovatnoća za Tomsonovo rasejanje uopšte ne zavisi od energije upadnog fotona. Prostorna raspodela rasejanih fotona je proporcionalna sa funkcijom $1 + \cos^2 \theta$, što znači da je najveća verovatnoća da fotoni prilikom Tomsonove interakcije budu skrenuti pod uglom od 0º i 180º. Ukoliko je energija fotona znatno viša od energije veze orbitalnih elektrona, tom prilikom dolazi do nekoherentnog rasejanja. Obično se za ovu interakciju kaže da se odvija na slobodnom
elektronu. Tada foton preda deo svoje energije elektronu i nastavlja da se kreće u drugom pravcu i sa manjom energijom (odnosno većom talasnom dužinom).

\[\frac{E_f}{E_0} = \frac{1}{1 + \frac{E_0}{mc^2}} \cdot (1 - \cos \theta) \]

Slika 5. – Komptonovo rasejanje

Na osnovu zakona održanja energije i impulsa primenjenog na elastični sudar dobija se odlična saglasnost računskih sa eksperimentalnim rezultatima. Energija fotona koji se rasejao pod uglom \(\theta \) se može izraziti kao:

\[E_f = E_0 \left(1 + \frac{E_0}{mc^2} \right) \cdot (1 - \cos \theta) \]

gde \(E_0 \) predstavlja energiju koju je foton posedovao pre interakcije a \(m \) je masa mirovanja elektrona. [2]

Iz gornje jednačine sledi da je za male uglove skretanja, kada veličina \(\cos \theta \) ima vrednost veoma blisku jedinici, energija rasejanog fotona približno jednaka energiji upadnog fotona. Kako
ugao rasejanja raste, tako raste i razlika u energijama fotona pre i nakon interakcije pa će najmanju energiju imati foton koji se rasejava pod uglom od 180º (unazad). Za visoke energije upadnog fotona tj. $E_{fo}>>mc^2$, energija rasejanog fotona će biti:

$$E_f \sim \frac{E_{fo}}{1-\cos \theta} \quad (3.7)$$

Najmanju energiju imaju fotoni rasejani unatrag i ona će biti približno jednaka $mc^2/2$.

Kompton je u svojim eksperimentima ustanovio i da razlika talasnih dužina upadnog i rasejanog fotona na određenom uglu uopšte ne zavisi od energije fotona koju je imao pre interakcije, kao ni od rednog broja materijala na kojem se rasejanje vrši. Za razliku talasnih dužina fotona nakon i pre rasejanja dobijamo:

$$\Delta \lambda = \lambda - \lambda_0 = \Lambda \cdot (1-\cos \theta) = 2\Lambda \cdot \sin^2(\theta/2) \quad (3.8)$$

gde je λ talasna dužina rasejanog fotona, λ_0 je talasna dužina upadnog fotona a Λ se izračunava kao:

$$\Lambda = \frac{h}{(me \cdot c)} = 2.42 \cdot 10^{-12} \, \text{m} \quad (3.9)$$

i naziva se Komptonovska talasna dužina elektrona.

Iz relacije se vidi da razlika talasnih dužina fotona pre i nakon interakcije zavisi samo od ugla a ne od početne energije fotona niti rednog broja materijala na kojem se Komptonovo rasejanje odvija. Nakon rasejanja foton će imati talasnu dužinu za $\Delta \lambda$ veću od talasne dužine upadnog fotona. Ova je razlika jednaka i za gama zračenje i za vidljivu svetlost jer $\Delta \lambda$ ne zavisi od energije upadnog fotona. Kod vidljive svetlosti, talasne dužine su toliko velike da se iznos povećanja $\Delta \lambda$ ne može ni primetiti. [2] No, kod gama i x-zračenje MeV-skih energija, povećanje talasne dužine je istog reda veličine kao i sama talasna dužina upadnog fotona pa se Komptonov efekat vrlo lako može primetiti. Iz tog razloga nekoherentno rasejanje nije moglo biti primećeno na vidljivoj svetlosti već je otkriveno tek prilikom izučavanja svojstava gama zračenja.

Prilikom detekcije i spektroskopije gama ili x-zračenja, ako foton doživi Komptonov efekat u aktivnoj zapremini detektora, detektuje se samo onaj iznos energije koju je dobio elektron. Foton sa određenom verovatnoćom napusti detektor, a u njegovoj aktivnoj zapremini ostavi samo deo svoje energije. Energiju koju može dobiti elektron u jednoj ovakoj interakciji, se izračunava kao:
Maksimalan iznos energije elektron će dobiti u slučaju kada se foton raseje pod uglom od 180°. U slučaju kada je \(E_{fo} \gg mc^2 \), energija koju dobije elektron biva jednaka:

\[
E_e = E_{fo} - \frac{m_e c^2}{2}
\]
(3.11)

Diferencijalni efikasni presek, odnosno verovatnoću skretanja pod datim uglom, za rasejanje fotona na jednom elektronu, izveli su Klajn i Nišina. Na osnovu njega u mogućnosti smo da odredimo verovatnoću rasejanja fotona pod nekim uglom i intenzitet zračenja koje će se rasejati pod datim uglom u zavisnosti od energije upadnog fotona. Pri malim energijama verovatnoća rasejanja fotona je simetrična, tj. jednaka je verovatnoća da će foton biti rasejan unapred kao i unazad. Kako energija fotona raste, ova distribucija se pomera ka unapred (tačnije rečeno u pravcu i smeru kretanja upadnog fotona), da bi za visoke energije gotovo svi fotoni nakon rasejanja bili usmereni ka napred.

Na osnovu Klajn-Nišinine relacije moguće je odrediti ukupni efikasni presek za Komptonovo rasejanje integracijom po svim mogućim uglovima rasejanja pri čemu se dobija relativno komplikovan izraz. No, za sve obrasce koji se dobijaju na ovaj način, zajedničko je da je totalni efikasni presek za rasejanje fotona na jednom elektronu obrnuto proporcionalan njegovoj energiji. Ako se još uzme u obzir da atom ima Z elektrona, konačno se dobija da je:

\[
\sigma_{Com} \sim \frac{Z}{E}
\]
(3.12)

Ako se ovaj izraz uporedi sa izrazom za verovatnoću odigravanja fotoelektričnog efekta, možemo zaključiti da se verovatnoća za dešavanje Komptonovog efekta smanjuje sa energijom, ali u znatno manjoj meri nego što je to slučaj sa fotoelektričnim efektom. [2]

4 Atenuacija rendgenskog zračenja

Kada paralelan snop monoenergetskega x-zračenja prolazi kroz neki materijal, intenzitet izlaznog snopa je manji od intenziteta upadnog snopa \(I_0 \). Slabljenje, odnosno smanjenje
intenziteta snopa kada on prođe malu debljinu materijala dx, srazmerna je debljini sloja dx i intenzitetu snopa I, tj.

\[dI = -\mu \cdot I \cdot dx \quad (4.1) \]

gde je \(dI \) – iznos smanjenja intenziteta snopa, a \(\mu \) - faktor proporcionalnosti koji se naziva linerani atenuacioni koeficijent x-zračenja. Znak (-) je zbog toga što se intenzitet snopa, prolaskom kroz supstancu, smanjuje, te \(dI \) ima negativnu vrednost. [1] Slablenje fotonskog snopa pri prolasku kroz materijal debljine dx prikazano je na slici 6. Linearni koeficijent slabljenja predstavlja relativno slabljenje intenziteta snopa \((dI/I)\) po jedinici dužine puta u apsorberu, te su mu dimenzije cm\(^{-1}\) odnosno m\(^{-1}\).

\[\mu = -\frac{dI/I}{dx} \quad (4.2) \]

Slika 6. – Atenuacija fotonskog snopa kroz materijal debljine dx

Zavisi od prirode materijala, njegove gustine i talasne dužine zračenja. Jednačina 4.2 može se napisati u obliku:

\[\frac{dI}{I} = -\mu \cdot dx \quad (4.3) \]

Integrisanjem leve strane u granicama od \(I_0 \) do \(I \), a desne od 0 do \(x \), dobija se:
\[\ln \frac{I}{I_0} = -\mu \cdot x \] (4.4)

odnosno

\[I = I_0 \cdot e^{-\mu \cdot x} \] (4.5)

gde je \(I_0 \) – intenzitet upadnog snopa, \(I \) – njegov intenzitet nakon prolaska kroz materijal debljine \(x \). Iz jednačine 4.5 se može zaključiti da intenzitet snopa opada eksponencijalno sa debljinom materijala. Ako sa \(x_0 \) obeležimo debljinu materijala koja smanjuje intenzitet upadnog snopa e puta, tada se iz jednačine dobija da je \(\mu = 1/x_0 \) tj. linearni koeficijent slabljenja x-zračenja (i \(\gamma \)-zračenja) brojno je jednak recipročnoj vrednosti one debljine sloja apsorbera koji smanjuje intenzitet upadnog snopa e puta. [1]

Kao što je već rečeno, linearni atenuacioni koeficijent zavisi od prirode supstance, njene gustine i talasne dužine x-zračenja. Kako gustina jedne iste supstance može biti veoma različita, u zavisnosti u kom agregatnom stanju se ta supstanca nalazi i pod kojim je pritiskom, za jednu vrstu supstance se ne može navesti jedan linearni atenuacioni koeficijent za x-zračenje određene talasne dužine. Zbog toga su uvedeni maseni koeficijenti slabljenja x-zračenja, kao odnos linearnog atenuacinog koeficijenta i gustine apsorbera. [1]

\[\mu_m = \frac{\mu}{\rho} \] (4.6)

Iz toga sledi da je izraz za slabljenje monoenergetskog snopa:

\[I = I_0 \cdot e^{-\left(\frac{\mu}{\rho}\right) \cdot \rho \cdot x} = I_0 \cdot e^{-\mu_m \cdot \rho \cdot x} \] (4.7)

4.1. HVL

U doslovnom prevodu HVL predstavlja debljinu medijuma koja oslavi upadni snop zračenja na 50% upadne vrednosti. HVL je vrlo pogodan parametar za utvrđivanje tvrdoće x-zračenja odnosno njegovog kvaliteta. Zbog kontinualnog karaktera spektra zakočnog x-zračenja, u snopu su prisutni i zraci veoma malih energetskih vrednosti koji nemaju sposobnost penetracije kroz tkivo, čak i u vrlo tankom sloju. Nakon prolaska kroz filter (najčešće pločice Al) ostaje zračenje u velikoj meri pročišćeno od niskoenergetskog zračenja. Izlazni zraci su sada
komponovani od zraka viših energija, te je za sledeću filtraciju na 50% upadne vrednosti potrebno koristiti deblji filter, odnosno HVL ima veću vrednost. Prema tome, merenjem HVL utvrđujemo da li su korišćeni x-zraci u skladu sa dijagnostičkim standardima. [4]

4.2. Linearni atenuacioni koeficijent u funkciji energije fotona

Rečeno je da se linearni atenuacioni koeficijent dobija kao proizvod broja atoma po jedinici zapremine posmatranog materijala i ukupnog efikasnog preseka σ za uklanjanje fotona iz snopa zračenja, odnosno [2]:

$$\mu = n \cdot \sigma$$ (4.8)

Napomenuli smo da fotoni mogu biti uklonjeni iz snopa putem fotoefekta, Komptonovog efekta i stvaranjem parova. Iz toga sledi da bi se ukupan efikasni presek mogao dobiti kao zbir efikasnih preseka za pomenuta tri procesa. U tom slučaju se gornji izraz može napisati kao zbir tri linearna atenuaciona koeficijenta od kojih je svaki određen jednom od navedenih interakcija kao:

$$\mu = n \cdot \sigma_{fe} + n \cdot Z \cdot \sigma_{Com} + n \cdot \sigma_{par}$$ (4.9)

Vrednosti efikasnih preseka za fotoefekat i stvaranje parova određeni su za atom, dok je efikasni presek za Komptonov efekat izračunat po jednom elektronu. Maseni atenuacioni koeficijent se dobija deobom gornje gubitke materijala kroz koji se zračenje prostire. [2]

Sva tri efikasna preseka na različit način zavise od energije i rednog broja materijala, pa samim tim daju različit doprinos ukupnom efikasnom preseku. Rekli smo da je efikasni presek za fotoelektrični efekat proporcionalan sa $Z^2E^{-7/2}$ ili Z^2E^{-1}, efikasni presek za Komptonov efekat je proporcionalan sa ZE^{-1}, dok je presek za stvaranje parova proporcionalan sa $Z^2\ln E$. Na slici 7 je prikazano kako se maseni atenuacioni koeficijenti za tri interakcije menjaju sa energijom, kao i kako ukupni maseni atenuacioni koeficijent zavisi od energije fotona. Može se videti da na niskim energijama dominira fotoelektrični efekat, da bi na srednjim energijama doprinos Komptonog efekta bio najveći. Kako efikasni presek za oba procesa opada sa porastom energije,

Slika 7. – Totalni efikasni presek u zavisnosti od energije

Efikasni preseći za fotoefekat, Komptonov efekat i stvaranje parova na različite načine zavise od energije, ali i od rednog broja materijala što se može videti na slici 8. Na njoj je prikazan grafik na kome su orijentaciono prikazane oblasti energija i rednih brojeva materijala u kojima se može očekivati dominacija jednog od pomenutih načina putem kojih fotonii interagiju sa materijom.

Na niskim energijama (koje su nam od važnosti s obzirom da se koriste u radiodijagnostici) dominantan doprinos će imati fotoelektrični efekat. On će imati najveći udeo u atenuaciji fotonskog zračenja i na nešto višim energijama, reda veličine nekoliko stotina keV, ali
samo za materijale veoma visokog atomskog broja. Na visokim energijama, od nekoliko MeV i naviše, dominira stvaranje parova, dok na srednjim energijama najveći udeo u atenuaciji zračenja daje Komptonov efekat. Komptonov efekat će biti dominantan mehanizam atenuacije zračenja i na veoma niskim i visokim energijama, ali samo u slučaju kada su atenuatori jako niskog atomskog broja.

![Diagram](image.png)

Slika 8. – Oblasti dominacije određenog efekta u zavisnosti od rednog broja asporbera i energije fotona

Meka tkiva čovekovog tela uglavnom su sačinjena od lakih elemenata - ugljenika, kiseonika, azota i vodonika što daje srednji redni broj mekih tkiva negde oko 7. Iz toga se može zaključiti da će dominantan način interakcije zračenja u veoma širokom intervalu fotonskih energija sa mekim tkivima biti upravo Komptonov efekat. [2]

5 Poluprovodnički detektori

Poluprovodnici su materijali koji u isto vreme mogu posedovati osobine i provodnika i izolatora. Razvoj poluprovodničke tehnike omogućio je da se konstrušu detektori od čvrstog materijala kod kojih bi prikupljanje naelektrisanja stvorenog zračenjem bilo jednako efikasno
kaži i kod gasa, pri čemu bi primenjeno električno polje pokrenulo samo ono naelektrisanje stvoreno dejstvom zračenja. [2]

Prvi poluprovodnički detektori su počeli da se koriste krajem šezdesetih godina. Efikasnost detekcije poluprovodničkih detektora je znatno viša nego kod gasnih brojača, no njihova osnovna prednost se ogleda u tome da imaju veoma dobnu energijsku rezoluciju. Sposobnost poluprovodničkih detektora da mogu razlikovati dve čestice veoma bliskih energija ih je učinila nenadmašnim u spektroskopiji. [2]

5.1. Osnovne osobine poluprovodnika

Poluprovodnici su materijali koji se po svojim provodnim karakteristikama nalaze između provodnika i izolatora. Tipični poluprovodnici, kao što su Ge i Si, u čistom stanju nalaze se u obliku čvrstih kristala, i na sobnoj temperaturi veoma slabo provode struju. Oba elementa su četvorovalentna, i u kristalnoj rešetci im sva četiri spoljašnja elektrona učestvuju u kovalentnim vezama sa okolnim atomima. Tek jedan na svakih 10^9 elektrona na sobnoj temperaturi može da napusti vezu i slobodno se kreće između. Za njega kažemo da je iz valentne zone prešao u provodnu zonu. Ovakvi elektroni se mogu usmeravati električnim poljem i putem njih se ostvaruje provodnost. Potrebna energija da bi jedan elektron napustio kovalentnu vezu je oko 1 eV. Kada elektron napusti kovalentnu vezu, on ostavi za sobom prazninu, koja se naziva šupljina. Ova šupljina se može popuniti nekim sledećim kovalentno vezanim elektronom koji za sobom takođe ostavlja šupljinu. S obzirom da se ovaj proces može nastavljati, dolazi do pomeranja šupljine, kao efektivno pomeranje pozitivnog naelektrisanja. Ovo pomeranje se u nekom električnom polju vrši u suprotnom smeru od smera kretanja elektrona.

Provodna svojstva poluprovodnika se dramatično menjaju dodavanjem primesa u čiste poluprovodnike. Pretpostavimo da je u kristalnu rešetku umesto atoma Ge i Si ugrađen neki petovalentni atom (npr. fosfor (P) ili arsen (As)). Na ovaj način dobija se poluprovodnik n-tipa (slika 9). Sa slike vidimo da bi četiri elektrona atoma primese bila uključena u kovalentne veze sa susednim atomima Ge i Si, dok bi peti elektron bio slobodan od hemijskih veza. Peti elektron u kristalu poluprovodnika postaje slobodan ako mu se dovede energija od oko 0,01-0,05 eV u
zavisnosti da li se radi o Ge ili Si. Obično se kaže da ovi elektroni čine donorski nivo u prostoru između valentne i provodne zone. Donorski nivo se nalazi ispod provodne zone, pomeran za iznos od pomenutih 0,01-0,05 eV.

Slika 9. – poluprovodnik n-tipa

Ugrađivanjem trovalentnog elementa u kristalnu rešetku poluprovodnika dobija se poluprovodnik p-tipa (slika 10). Tada će jedna od četiri kovalentne veze ostati nepopunjena. To praktično znači da će svaki atom trovalentne primese u kristalnu rešetku Ge ili Si uneti po jednu šupljinu.

Slika 10. – Poluprovodnik p-tipa
Okolni elektroni se mogu pomerati da bi popunili tu šupljinu, čak i ako im je energija mnogo manja od energije potrebne da pređu u provodni nivo. Dovoljno je da elektron poseduje 0,01 eV u slučaju Ge ili 0,05 eV u slučaju Si da bi došlo do ovakvog kretanja. To efektivno dovodi do prostornog pomeranja naelektrisanja i provođenja struje, bez prelaza elektrona u provodni nivo. U interpretaciji koja se zasniva na zonskoj teoriji, kaže se da u ovom slučaju dolazi do stvaranja akceptorskog nivoa, neposredno iznad valentnog nivoa. [2]

5.2. P-N spoj, poluprovodnički detektor

Pri spajanju poluprovodnika p i n-tipa, elektroni iz n-tipa će difundovati ka poluprovodniku p-tipa da bi tamo popunjavali šupljine. Kao rezultat ovih difuzionih procesa, stvoriće se višak negativnog naelektrisanja u poluprovodniku p-tipa, dok će n-tip poluprovodnika usled odsustva elektrona biti pozitivno naelektrisan u oblasti blizu spoja. Ovaj proces difuzije elektrona će trajati onoliko dugo dok se na spoju ne stvori električno polje dovoljnog intenziteta da onemogući dalju preraspodelu naelektrisanja. Ovim putem se stvara kontaktni potencijal. Deo poluprovodnika oko spoja u kome se odvijaju difuzioni procesi naziva se oblast prostornog naelektrisanja (prikazano na slici 11).

Slika 11. – p-n spoj
Pošto u ovoj oblasti postoji električno polje, osobine ove oblasti su slične kondenzatoru (ili jonizacionoj komori), samo što je ovde prostor u kome vlada električno polje ispunjen poluprovodnikom a ne vazduhom. Kada bi neko zračenje, prolazeći kroz oblast prostornog naelektrisanja, vršilo jonizaciju – stvarali bi se elektroni i šupljine koje bi postojeće polje usmeravali na suprotne strane. Potrebno je samo da na krajevima ovog spoja postavimo elektrode da bi se ovako stvoren naelektrisanje pokupilo.

Opisani p-n spoj je obična poluprovodnička dioda. Ako se na njene krajeve dovede napon, i to takav da se p-tip poluprovodnika prikopča na negativni, a n-tip na pozitivni potencijal dobićemo inverzno polarisana diodu (slika 12), kojoj je znatno povećana oblast prostornog naelektrisanja. Električno polje je sada mnogo snažnije nego u slučaju kada potiče od samog kontaktog potencijala, bez izvora napona. Ako kroz tu oblast prolazi jonizujuće zračenje, elektroni i šupljine koje tom prilikom nastaju će se efikasnije pokupiti.

Dodatna prednost poluprovodničkih detektora se ogleda u tome što je za stvaranje jednog jonskog para u poluprovodniku potrebno znatno manje energije nego za stvaranje jonskog para u gasu ili nekom scintilatoru. To znači da će od dve identične čestice koje poseduju jednaku energiju, u slučaju da obe budu u potpunosti zaustavljene, čestica registrovana poluprovodničkim detektorom stvoriti znatno više jonskih parova nego čestica zaustavljena u gasu. Količina
naelektrisanja koje stvori neka čestica zračenja (ili foton) prilikom svog potpunog zaustavljanja u aktivnoj zapremini detektora direktno je proporcionalna njenoj energiji. Neodređenost merenja energija čestica uglavnom potiče od mogućih fluktuacija u količini prikupljenog naelektrisanja prilikom detekcije. Ove fluktuacije, ili neodređenost sa kojom se dobija merena vrednost, su statističkog karaktera, i njihov je relativni doprinos utoliko manji ukoliko se radi o većim količinama naelektrisanja. To znači da od količine naelektrisanja koje se prikupi u detektoru zavisi sa kolikom će se tačnošću odrediti energija posmatrane čestice. Kako se prilikom detekcije zračenja u poluprovodničkom detektoru stvara više naelektrisanja nego u gasnom ili scintilacionom detektoru, vrednost energije koja je izmerena u poluprovodničkom detektoru biće najmanje podložna neodređenosti statističkog karaktera. To dovodi do toga da je energetska rezolucija poluprovodničkih detektora mnogo bolja nego kod bilo kojih drugih detektora. [2]

6 Doze jonizujućeg zračenja

Prvi korak u procesu detaljnijeg sagledavanja bioloških promena koje su nastale kao posledica zračenja, bilo bi uvođenje fizičkih veličina putem kojih bi se to dejstvo zračenja moglo kvalitativno i kvantitativno opisati. U tu svrhu uvedeni su pojmovi ekspozicione, aspsorbovane i ekvivalentne doze, kao i još nekolicine fizičkih veličina. Oblast koja se bavi mehanizmima pod kojim dolazi do predaje energije zračenja organskim materijalima, kao i načinima merenja i izračunavanja doze, naziva se dozimetrija. [2]

6.1. Ekspoziciona doza

Ekspoziciona doza jonizujućeg zračenja ili doza izlaganja je prva veličina koja je trebala kvantitativno da opiše efekte rendgenskog i gama zračenja. Definiše se kao odnos naelektrisanja ΔQ koje elektromagnetno zračenje proizvede u određenoj zapremini i mase Δm vazduha koja se u toj zapremini nalazi [2]:

\[X = \frac{\Delta Q}{\Delta m} \] (6.1)
Jedinica ekspozicione doze je 1 C (kulon) po kg ozračenog vazduha. Ekspoziciona doza jonizujućeg zračenja od 1C/kg označava dozu izlaganja x ili gama zračenja pri kojoj ukupno naelektrisanje stvorenih jona istog znaka u ozračenom vazduhu mase 1 kg (pri normalnim atmosferskim uslovima) iznosi 1 C pri istoj gustini energetskog fluksa u celoj količini ozračenog vazduha. [5]

Vansistemska jedinica za ekspozicionu dozu, koja je ranije bila u upotrebi, je rendgen R

\[1 \text{ R} = 2.58 \times 10^{-4} \text{ C/kg}\] (6.2)

Jačina ekspozicione doze jonizujućeg zračenja (brzina ekspozicione doze) definiše se kao količnik ekspozicione doze i vremena ozračivanja:

\[\dot{X} = \frac{X}{\Delta t} = \frac{\Delta Q}{\Delta m \cdot \Delta t}\] (6.3)

Jedinica za jačinu ekspozicione doze (koja se često naziva i brzina doze) je rendgen u sekundi R·s⁻¹ ili kulon po kilogramu i satu C·kg⁻¹·h⁻¹. [2]

6.2. Apsorbovana doza

Osnovna dozimetrijska veličina koja se koristi u oblasti zaštite od jonizujućeg zračenja je apsorbovana doza. Ekspoziciona doza, definisana kao odnos stvorenog naelektrisanja i mase ozračenog vazduha, pruža mogućnost relativno lakog merenja – potrebno je samo odrediti količinu naelektrisanja koju zračenje stvori u određenoj zapremini vazduha poznate mase. Ali, osnovni nedostatak ovako koncipirane veličine je da se hemijske i biološke promene na tkivima izloženim zračenju mnogo jednostavnije mogu dovesti u vezu sa energijom koju je zračenje ostavilo tkivu, nego sa količinom naelektrisanja koje zračenje prilikom svog prolaska kroz tkiva stvara.

Apsorbovana doza se definiše kao odnos energije ΔE koju zračenje preda određenoj zapremini sredine kroz koju se prostire i mase Δm sadržane u toj zapremini [2]:

\[D = \frac{\Delta E}{\Delta m}\] (6.4)
SI jedinica za apsorbovanu dozu jonizujućeg zračenja naziva se grej Gy. Apsorbovana doza od 1 Gy označava apsorbovanu dozu jonizujućeg zračenja koja nastaje pri apsorpciji jonizujućeg zračenja stalne gustine energetskog fluksa čija je energija 1 J u masi od 1 kg. [5]

\[
1 \text{ Gy} = 1 \text{ J/kg} \quad (6.5)
\]

U praksi je ušla i 100 puta manja jedinica koja se naziva rad. Dakle, 1Gy = 100 rad, i obrnuto 1 rad = 0.01 Gy. [2]

Ukupna energija jonizujućeg zračenja apsorbovana od celokupnog ozračenog materijala mase \(m \) ili integralna apsorbovana doza \(D \) izražava se u jedinicama energije (J), a data je relacijom:

\[
D = m \cdot D \quad (6.6)
\]

Poznato je da biološki efekti jonizujućeg zračenja neće zavisiti samo od veličine doze već i od vremena ozračivanja. Vreme ozračivanja uvek treba imati u vidu u slučajevima procene ozračenosti profesionalno izloženih lica i pacijenta jer nije svejedno da li se oni ozračuju u kraćem ili dužem vremenskom intervalu. [5] Iz tog razloga je uvedena veličina jačina apsorbovane doze zračenja koja prikazuje dozu u jedinici vremena izraženu relacijom:

\[
\dot{D} = \frac{D}{\Delta t} = \frac{\Delta E}{\Delta m \cdot \Delta t} \quad (6.7)
\]

Jedinica za jačinu apsorbovanu doze je Gy/s. [5][2]

6.3. Linearni transfer energije (LET)

LET je ona količina energije koju čestica preda medijumu prelazeću jedinični put kroz isti. Proporcionalna je kvadratu naelektrisanja čestice i obrnuto proporcionalna njoj kinetičkoj energiji:

\[
\text{LET} \sim q^2/Ek \quad (6.8)
\]

Otuda proizilazi da spore, kao i višestruko naelektrisane čestice (α čestice) ostvaruju daleko veći linearni transfer energije. Jedinica za LET je KeV/μm. Za protone i α čestice dostiže
vrednosti od 3 KeV/µm – 20 KeV/µm, dok za fotone, elektrone i pozitrone iznosi 0,2 KeV/µm – 3 KeV/µm. Čestice koje dosežu visoke vrednosti LET čine veću biološku štetu organizmu jer deponuju energiju u maloj zampremini, te je “gustina” destrukcije tkiva veća, što za posledicu ima smanjenu verovatnoću regeneracije. [4]

6.4. Ekvivalent doze

Apsorbovana doza D nije sama po sebi dovoljna da bi se njom mogla definisati učestalost ili verovatnoća nastajanja štetnih efekata nastalih usled izlaganja jonizujućem zračenju pod nespecifičnim uslovima. Zbog toga se smatralo da bi u oblasti zaštite od jonizujućeg zračenja bilo potrebno uvesti novu radiacionu veličinu koja bi opisivala uslove nastajanja štetnih efekata usled ozračivanja, a posebno kasnih stohastičkih efekata.

Veličina ekvivalent doze predstavlja prozvod apsorbovane doze zračenja D, faktora kvaliteta Q i proizvoda svih drugih modifikujućih faktora N [5]:

$$H = D \cdot Q \cdot N$$ (6.9)

Na predlog Komisije za zaštitu od zračenja, veličini N je pripisana jedinična vrednost (N=1), dok faktor kvaliteta zavisi od posmatrane vrste zračenja. Preporučene vrednosti za faktor kvaliteta Q za razne vrste zračenja date su u Tabeli 1:

<table>
<thead>
<tr>
<th>Vrsta zračenja</th>
<th>Faktor kvaliteta Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendgensko, gama, beta</td>
<td>1</td>
</tr>
<tr>
<td>Termalni neutron</td>
<td>5</td>
</tr>
<tr>
<td>Neutroni i protoni</td>
<td>20</td>
</tr>
<tr>
<td>Alfa čestica</td>
<td>20</td>
</tr>
<tr>
<td>Teška jezgra</td>
<td>20</td>
</tr>
</tbody>
</table>

Tabela 1. – faktori kvaliteta za različite vrste zračenja
Jedinica za ekvivalent doze je sivert Sv, \((1 \text{ Sv} = 1 \text{ J/kg})\). Kako je faktor kvaliteta bezdimenzionalna veličina, jedinica za ekvivalent doze je zapravo J/kg, kao i za apsorbovanu dozu. U upotrebi je i sto puta manja jedinica koja se naziva rem. Dakle, \(1 \text{ Sv} = 100 \text{ rem}\) ili \(1 \text{ rem} = 0,01 \text{ Sv}\). [5][2]

6.5. Efektivna doza i težinski faktor tkiva \((E, W_T)\)

Odnos verovatnoće nastajanja stohastičkih efekata zračenja i ekvivalentne doze zračenja zavisi od organa ili tkiva koje se izlaže zračenju. Pri tome je neophodno poznavanje ekvivalentnih doza u pojedinim organima ili tkivima \(T\) kojima se pridružuju odgovarajući težinski faktori tkiva \(W_T\). Zbir svih težinskih faktora je jedinica iz čega sledi da pri računanju efektivne doze za celo telo uzimamo da je težinski faktor jednak jedinici.

Efektivna doza \(E\) predstavlja zbir proizvoda svih ekvivalentnih doza tkiva ili organa \(H_T\) i odgovarajućih težinskih faktora tkiva \(W_T\):

\[
E = \Sigma T W_T H_T
\]
\[(6.10)\]

gde je

\(W_T\) – težinski faktor tkiva ili organa \(T\)
\(H_T\) – ekvivalentna doza za tkivo ili organ \(T\)

Ukoliko se u gornju relaciju uveže izraz za ekvivalentnu dozu dobija se relacija:

\[
E = \Sigma R W_R \Sigma T W_T D_{T,R}
\]
\[(6.11)\]

gde je

\(D_{T,R}\) srednja apsorbovana doza u tkivu ili organu \(T\) nastala od zračenja \(R\).

Obe navedene relacije se odnose na ozračivanje tkiva ili organa spoljašnjim, odnosno unutrašnjim izvorima jonizujućih zračenja. Predložene vrednosti težinskih faktora tkiva \(W_T\) date su u tabeli 2:
<table>
<thead>
<tr>
<th>Tkivo ili organ T</th>
<th>Težinski faktor tkiva W_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gonade</td>
<td>0,20</td>
</tr>
<tr>
<td>Crvena kostna srž</td>
<td>0,12</td>
</tr>
<tr>
<td>Debelo crevo</td>
<td>0,12</td>
</tr>
<tr>
<td>Pluća</td>
<td>0,12</td>
</tr>
<tr>
<td>Želudac</td>
<td>0,12</td>
</tr>
<tr>
<td>Bešika</td>
<td>0,05</td>
</tr>
<tr>
<td>Dojka</td>
<td>0,05</td>
</tr>
<tr>
<td>Jetra</td>
<td>0,05</td>
</tr>
<tr>
<td>Jednjak</td>
<td>0,05</td>
</tr>
<tr>
<td>Tireoideja</td>
<td>0,05</td>
</tr>
<tr>
<td>Koža</td>
<td>0,01</td>
</tr>
<tr>
<td>Površina kostiju</td>
<td>0,01</td>
</tr>
<tr>
<td>Ostalo</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Tabela 2. – Težinski faktori tkiva W_T

Jedinica za ekvivalent doze je sivert Sv (1 Sv = 1 J/kg). [5]

6.6. Kerma

U Međunarodnom sistemu jedinica SI radijaciona veličina ekspozicija zamenjena je veličinom “kerja u vazduhu” (air kerma). Naziv KERMA je akronim od *Kinetic Energy Released per unit Mass* (kinetička energija koja se oslobodi po jedinici mase). Kako x-zraci spadaju u indirektno jonizujuće zračenje, njihova interakcija sa tkivom koja vodi deponovanju energije može se podeliti u dve sekvencijalne faze. U prvoj, deo energije upadnog zračenja pretvara se u kinetičku energiju elektrona, koji nastaju u interakciji zračenja i medijuma. Kada se ova količina energije podeli sa masom medijuma dobija se KERMA. [5][4]

Kerma je određena relacijom:

$$K = \frac{dE_{tr}}{dm}$$ \hspace{1cm} (6.12)
i predstavlja količnik zbira svih početnih kinetičkih energija jonizujućih čestica oslobođenih sekundarno jonizujućim naelektrisanim česticama dE_{tr} u materijalu mase m.

Jedinica za kermu je grej Gy (1Gy = 1 J/kg).

Ova veličina se posebno koristi u oblasti zaštite od jonizujućeg zračenja, i to u slučaju kada se posmatra rendgensko zračenje, odnosno kada se koriste podaci za proračun izloženosti profesionalno izloženih lica i pacijenata u rendgen-dijagnostici. Kerma ima istu vrednost kao i apsorbovana doza u vazduhu i koristi se za opisivanje polja zračenja u prisustvi ili odsustvu pacijenta. U oblasti rendgeno-dijagnostike kerma u mekom tkivu je približno jednaka kermi u vazduhu (razlika je manje jednaka 10% i zavisi od energije fotona), tako da se pri proračunima u zaštiti od zračenja mogu izjednačiti.

Jačina kerme se izražava sledećom relacijom:

\[
\dot{K} = \frac{dK}{dt} \quad (6.13)
\]

gde dK predstavlja promenu kerme u vremenskom intervalu dt. Jedinica za jačinu kerme je Gy/s.

U oblasti zaštite od zračenja je najčešće se koristi kerma definisana u odnosu na vazduh, odnosno jačina kerme u vazduhu. [5]

6.7. Cema

U drugoj fazi slobodni i brzi elektroni nastali u prvoj fazi interakcije, interaguju sa medijumom deponujući u isti određenu količinu energije. Kada se ova energija obračuna po jedinici mase, izražava se takođe jedinicom Gy, ali ima drugačiji smisao od kerme. [4]
7 Barakuda (Barracuda) detektorski sistem

Za potrebe ovog rada koristili smo Barakuda detektorski sistem i detektor R-100B, švedske kompanije RTI Electronics. Glavni delovi tipičnog Barrakuda sistema su:

- Kabinet, koji sadrži jedan ili više modula;
- Multi-Purpose Detector, tzv. MPD, koji meri cevni napon, eksponiciono vreme, dozu i brzinu doze;
- Ručni kompjuter sa QA Browser softverom i/ili PC sa oRTIgo softverom (nova verzija je Ocean softver);
- R-100B detektor pomoću kojeg smo vršili merenje i biće detaljnije opisan.

Kabinet je glavni deo Barakude na koji se svi detektori priključuju. Kabinet može biti različito konfigurisan u zavisnosti od potrebe korisnika. Konektori, prekidači, i indikatori su locirani na kabinetu i sadržanim modulima. Prednja i zadnja strana kabineta su prikazane na slici 13:

Slika 13. – prednja i zadnja strana Barakuda kabineta

Na pozadini kabineta nalaze se dva priključka EMM-BiasW i MPM. Za potrebe ovog merenja koristili smo EMM-BiasW. To je jednokanalni elektrometar i predstavlja modul na koji priključujemo R-100B detektor. MPM modul se koristi za priključivanje MPD detektora i u ovim merenjima nije korišćen.
Serijski interfejs je RS-232 interfejs i koristi se da poveže kabinet sa H/PC-om ili sa PC računarom. Brzina prebacivanja podataka je 57,6 kbit/s kada se koristi H/PC, a 115 kbit/s kada se koristi PC.

USB interfejs koristi se da poveže Barakudu sa PC-om pri pokrenutom QA oRTIgo-u. USB konektor se ne može koristiti kod H/PC-a, već se u tom slučaju Barakuda povezuje putem Bluetooth veze. [6]

7.1. R-100B detektor

R-100B detektor je specijalno dizajniran za merenje niskih doza. Detektor je mali da bi minimizirao interferenciju sa automatskom ekspozicionom kontrolom (AEC-om) rendgenskih sistema. Veličina detektora je 20x45x7,4 mm od čega je 10x10 mm aktivne površine. Čak i za vrlo tvrde zrake R-100B poseduje zavisnost od apsolutne energije. Njegova senzitivnost je 55 µC/Gy. S obzirom da je “solid state” detektor nema potrebe za korigovanjem temperature i pritiska, kao ni za prednaponom. Izgled detektora možemo videti na slici 14:

![Slika 14. – R-100B detektor](image)

R-100B radi sa svim tipovima elektrometarskih modula dostupnih na Barakudi. Najbolji performans se postiže sa EMM-BiasW. Kada se koristi zajedno sa ovim elektrometarskim modulom, R-100B može detektovati ekstremno niske doze zračenja. Može meriti jačine doze od
0,1 nGy do 150 kGy, i brzine doze od 1 nGy do 76 mGy/s. S obzirom da može izmeriti brzine doze niže od 1 nGy/s (0,4 mR/h) može se koristiti i za merenje rasejanog i curećeg zračenja. [6]

7.2. oRTIgo software

oRTIgo je profesionalna platforma za kontrolu kvaliteta, osiguranje kvaliteta, i servis rendgen aparata. Softver sadrži dodatke za izvođenje testova koji se baziraju na merenju pomoću Barakude ili Pirane. Poseduje automatski transfer podataka sa instrumenta, a takođe i kontrolu svih funkcija merača. Merenja se lako ponavljaju i rezultati se vrlo brzo upoređuju sa prethodnim merenjima. Dizajniran je da radi u Windows okruženju.

Njegova najveća prednost ogleda se u obimnoj bazi predefinisanih procedura za određenu vrstu merenja. Kriterijumi i standardi koji su na taj način implementirani u softver predstavljaju ključni alat za standardizovano izvođenje testova kao i tumačenje rezultata istih.

oRTIgo softver se sastoji iz tri glavna dela:

- Test i pregled rezultata
- Merenje u realnom vremenu
- Postavka

Detalji softvera su obrađeni u korisničkom uputstvu koje se dobija uz Barakudu. Najvažnija sekcija u okviru koje se obavlja veći deo stvarnog posla je Test i pregled rezultata. U ovoj sekciji vrši se izbor ustanove u kojoj je merenje vršeno, radna soba kao i odgovarajuća cev za zračenje.

Unose se sledeći podaci:

- Podaci o ustanovi
- Podaci o radnoj sobi
- Podaci o rendgenskoj cevi
- Podaci o test sesiji
- Obrasci koji se koriste prilikom izvođenja testa
- Potrebna učestalost sprovođenja testa
Iz ove sekcije se takođe vrši štampanje ili izvoz rezultata merenja.

Izborom obrasca merenja zadajemo parametre za test. Postoje predefinisani parametri ali takođe i mogućnost korisničke informacije. One ne utiču na rezultat merenja ali se navode na vrhu izveštaja.

Predefinisani parametri su:

- Dozvoljene granice
- Podaci za izračunavanje doze i brzine doze
- Izbor radiografskog ili fluoroskopskog režima
- Set vrednosti generatora koje važe za sve ekspozicije
- Podaci koje je definisao korisnik

8 Kontrola kvaliteta kao deo programa zaštite od zračenja

Kontrola kvaliteta jeste set procedura i uslova, koji ima za zadatak da obezbedi:

- Konzistentan i optimilan kvalitet rendgenskih snimaka;
- Bezbedno radno okruženje, kako za osoblje tako i za pacijente;
- Usklađenost procedura i opreme sa propisanom zakonskom regulativom, kao i pravilima; domaćih i međunarodnih asocijacija iz te oblasti.

Ostvarivanje kvaliteta počinje pravilnim izborom opreme. Medicinski fizičari su edukovani u tehničkom, kliničkom i administrativnom smislu da pravilno procene potrebe i mogućnosti medicinske ustanove pre nabavke opreme. Oprema mora biti odgovarajuća kako u pogledu kvaliteta dijagnostičke slike i cene, tako i prema pacijentu i medicinskoj ustanovi. Pre
nabavke opreme medicinski fizičari su dužni da formiraju specifikaciju potrebnih performansi i osmisle detaljne testove prihvatljivosti, koji će biti izvedeni nakon instaliranja nove opreme. Specifikacija zahtevanih performansi mora biti usklađena sa potrebama i mogućnostima medicinske ustanove. Tu se misli pre svega na vrstu dijagnostičkih ispitivanja koja se sprovede u ustanovi, ali i na tehničke mogućnosti koje obezbeđuje prostorija u kojoj će oprema biti smeštena. Nakon uspešne instalacije i testova prihvatljivosti, potrebno je osmisli kontinuirani monitoring iste kako bi se osigurale pouzdane performance. Osnov kontrole kvaliteta jesu periodične evaluacione procedure. Svrha takve kontrole jeste otkrivanje promena u načinu funkcionisanju opreme, koje mogu uzrokovati kliničku degradaciju snimaka ili, sa druge strane, neprihvatljivo povećanje prilmjene doze zračenja.

Učestalost testa kontrole kvaliteta zavisi od mnogih faktora, od kojih su neki:

- Inherentna osetljivost procesa ili dela opreme;
- Starost i frekvencija upotrebe opreme;
- Važnost pojedinog elementa u kliničkom procesu i dijagnostike.

Ako je proces posebno osetljiv i podložan promenama pod uticajem okoline ili učestalosti korišćenja, potrebno je odgovarajuće testove izvoditi češće. Ovo posebno važi za stariju opremu, koja je po pravilu manje pouzdana i nestabilna. Takođe, element koji je najkritičniji u procesu formiranje slike, ili najviše afektira apsorbovanu dozu, treba pratiti učestalim korišćenjem testova.

Na kraju, neophodno je da sve procedure kontrole kvaliteta, zajedno sa njihovim rezultatima i korekcionim akcijama, budu dokumentovane. Ova informacija je od ključne važnosti za rešavanje hroničnih problema. Poređenje novih rezultata sa prethodnim je najbolji način za detektovanje bilo kakve promene u radu opreme ili procedura. [4][3]

8.1. NCRP 145

NCRP je akronim od engleskog naziva za američki nacionalni savet za zaštitu od zračenja i merenje (National Council for Radiation Protection and Measurements). Izveštaj pod rednim brojem 145 nam daje preporuke za upotrebu x-zračenja u stomatološkoj praksi,
uključujući savete za projektovanje zaštitnih barijera. U protokolu možemo naći i detaljno opisane preporuke u vezi kontrole kvaliteta stomatološke rendgenske opreme, jer bez iste projekat zaštite od zračenja ne bi bio kompletan.

Svrha zaštite od zračenja jeste limitiranje izloženosti od zračenja profesionalno izloženih lica i civilnih lica na prihvatljiv nivo. Dizajn ordinacije, opreme, i procedure koje minimiziraju izloženost pacijenta će takođe redukovati ekspoziciju operatera i javnosti. Dodatna merenja, ipak, moraju biti izvršena od strane regulatornih organa da bi se utvrdilo da doze koje prime operateri i javnost se nalaze unutar dozvoljenih granica. Doze treba da budu najniže moguće, imajući u vidu ekonomske i socijalne faktore (ALARA princip) (NCRP, 1990.). Stoga, cilj ovog izveštaja jeste eliminacija nepotrebne radijacione izloženosti pacijenta i obezbeđivanje takvih uslova koji neće dovesti da doze koje prime osoblje i javnost pređu preporučene limite i koje će biti u skladu sa ALARA principom. [7]

8.1.1. Osnovni principi zaštite od zračenja

Postizanje ovog cilja zahteva dve povezane aktivnosti:

1) Napori da se obezbedi da nijedan pojedinac ne primi dozu veću od preporučene granice
2) Napori da se obezbedi da su doze u skladu sa ALARA principom

U većini slučajeva, ALARA princip predstavlja jednostavan nastavak dobrog programa radijacione zaštite i prakse koja je tradicionalno efektivna u održavanju doza ispod limita. Na
merenja se primenjuju analize cene u odnosu na benefit da bi se postigli ciljevi ALARA principa. Za svaki izvor ili tip radiacionog izlaganja, određeno je da li benetiti nadmašuju cenu. Često se cena i benetiti navode u različitim jedinicama. Pa se tako cena navodi u jedinicama štetnih bioloških efekata ili ekonomskog troška, dok se benetiti mogu navoditi u jedinicama otkrivenih bolesti i spašenih života. Tri principa obezbeđuju osnovu svih akcija koje se preduzimaju u cilju radijacione zaštite. Oni su:

1. Opravdanje: Benetiti radiacionog izlaganja mora biti veći od bilo kakvog pratećeg rizika.
2. Optimizacija: Ukupna ekpozicija mora biti najniža moguća, uključujući ekonomskie i socijalne faktore (ALARA princip).
3. Limitiranje doze: limiti za doze se primenjuju na svakog pojedinca da bismo osigurali da niko neće biti izložen dozi neprihvatljivog visokog rizika.

Sva ova tri principa se primenjuju radi procene profesionalne i javne ekspozicije. Prva dva se odnose na izlaganje pacijenta. Ipak, ne postoji utvrđena granica doze za dijagnostička i terapeutska eksponiranja. Primarni predmet jeste obezbediti da zdravstveni benetiti nadmaši rizik kome se pacijent izlaže.

NCRP je utvrdio preporučene granice doza za profesionalno i javno izlaganje (Tabela 3) (NCRP, 1993.). Limiti su postavljeni ispod procenjenog praga za determinističke efekte. S obzirom da prag doze za stohastičke efekte ne postoji, limiti za doze su ustanovljeni tako da verovatnoća za stohastički efekat ne prelazi verovatnoću rizika za povrede u drugim profesijama koje se u opštem slučaju smatraju bezbednim. [7]
<table>
<thead>
<tr>
<th>Osnova</th>
<th>Dozni limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stohastički efekti</td>
<td>Za profesionalno izloženo osoblje</td>
</tr>
<tr>
<td></td>
<td>50 mSv godišnja efektivna doza</td>
</tr>
<tr>
<td></td>
<td>10 mSv x godine kumulativna efektivna doza</td>
</tr>
<tr>
<td>Deterministički efekti</td>
<td>150 mSv godišnja ekvivalentna doza za očno sočivo</td>
</tr>
<tr>
<td></td>
<td>500 mSv godišnja ekvivalentna doza za kožu, šake i stopala</td>
</tr>
<tr>
<td>Stohastički efekti</td>
<td>Za javnost</td>
</tr>
<tr>
<td></td>
<td>1 mSv godišnja efektivna doza za konstantno ili često izlaganje</td>
</tr>
<tr>
<td></td>
<td>5 mSv godišnja efektivna doza za retko izlaganje</td>
</tr>
<tr>
<td>Deterministički efekti</td>
<td>15 mSv godišnja ekvivalentna doza za očno sočivo</td>
</tr>
<tr>
<td></td>
<td>50 mSv godišnja ekvivalentna doza za kožu, šake i stopala</td>
</tr>
<tr>
<td>Embrion i fetus</td>
<td>0,5 mSv mesečna ekvivalentna doza koja je posledica profesionalnog izlaganja majke od trenutka kada je ustanovljena trudnoća</td>
</tr>
</tbody>
</table>

Tabela 3. – preporučeni dozni limiti

8.1.2. Dozni limiti

Američki nacionalni savet je preporučio godišnje i kumulativne dozne limite za pojedince koji se profesionalno izlažu jonizujućem zračenju, kao i godišnje dozne limite za javnost iz veštačkih izvora radijacije. Ove doze se ne primenjuju u dijagnostici ili terapiji pacijenta u zdravstvenoj ustanovi.
Kumulativni limit za profesionalno izložena lica je strožiji nego godišnji limit. Npr., osoba koja od 18. godine prima godišnju dozu od 50 mSv će za četiri godine primiti 200 mSv, približavajući se limitu od 220 mSv u 22. godini. Sa ove tačke gledišta, profesionalno izlaganje tog pojedinca mora biti ograničeno kumulativnim, a ne godišnjim limitom. To znači da doza koju prima ova osoba mora biti ograničena na 10 mSv po godini, sa maksimalnom dozom od 50 mSv u bilo kojoj godini. Profesionalna izložena lica su u obavezi da nose dozimetre pri profesionalnom izlaganju zračenju i dužnosti svakog pojedinca koji se približi godišnjoj ili kumulativnoj dozi se menjaju tako da limiti ne budu prekoračeni. S obzirom da članovi javnosti ne nose dozimetre, postrojenja su tako dizajnirana, rukovođena i nadgledana da nijedan pojedinac ne može primiti dozu koja prevazilazi preporučen limit.

Podaci koji su objavljeni ukazuju da srednja profesionalna izlaganja u stomatologiji predstavljaju obično samo mali deo limita i manja su nego kod profesionalno izloženih lica u drugim zdravstvenim oblastima (Tabela 4). Razumno je pretpostaviti da nijedan član stomatološkog osoblja neće primiti veću dozu od doznog limita, sem ukoliko postoje problemi u dizajnu postrojenja, radu opreme, ili operativne procedure.

<table>
<thead>
<tr>
<th>Occupational Subgroup</th>
<th>Number of Workers</th>
<th>Mean Annual Whole-Body Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total<sup>b</sup></td>
<td>Exposed<sup>c</sup></td>
</tr>
<tr>
<td>Hospital</td>
<td>126,000</td>
<td>86,000</td>
</tr>
<tr>
<td>Medical offices</td>
<td>155,000</td>
<td>87,000</td>
</tr>
<tr>
<td>Dental</td>
<td>259,000</td>
<td>82,000</td>
</tr>
<tr>
<td>Podiatry</td>
<td>8,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Chiropractic</td>
<td>15,000</td>
<td>6,000</td>
</tr>
<tr>
<td>Veterinary</td>
<td>21,000</td>
<td>12,000</td>
</tr>
<tr>
<td>Total</td>
<td>584,000</td>
<td>276,000</td>
</tr>
</tbody>
</table>

Tabela 4. – srednja profesionalna izlaganja po zdravstvenim profesijama
Nijedan profesionalno izložen pojedinac ne sme primiti efektivnu dozu veću od 50 mSv u jednoj godini. Vrednost efektivne doze koju profesionalno izložena osoba primi tokom svog radnog staža, mora biti ograničena dozom od 10 mSv puta broj godina života te osobe.

Efektivna doza za stanovništvo, odnosno javnost, koje je kontinualno ili učestalo izloženo zračenju ne sme preći 1 mSv (isključujući doze koje potiču od prirodnih izvora zračenja ili medicinskog tretmana). Stanovništvo koje je retko izloženo zračenju ne sme primiti veću dozu od 5 mSv u bilo kojoj godini.

Dizajn stomatoloških postrojenja, rad rendgenske opreme i operativne procedure moraju biti takve da nijedan pojedinac ne primiti veću dozu od preporučene. [7]

8.2. Pravilnik o uslovima za dobijanje licence za obavljanje radijacione delatnosti

(„Sl. Glasnik RS“, br. 61/2011)

I OSNOVNE ODREDBE

Član 1

Ovim pravilnikom se uređuju:

1. Bliži uslovi koje mora da ispunjava pravno lice, odnosno preduzetnik za obavljanje radijacione delatnosti;
2. Vrsta i stepen stručne sreće lica odgovornog za zaštitu od jonizujućeg zračenja, radno iskustvo u oblasti zaštite od jonizujućih zračenja i dopunska osposobljenost i obučenost u zavisnosti od radijacione delatnosti;
3. Stepen stručne sreće, osposobljenost za rad i sprovođenja mere zaštite od jonizujućih zračenja i zdravstveni uslovi profesionalno izloženih lica;
4. Dokumentacija koju je pravno lice, odnosno preduzetnik dužan da priloži uz zahtev za dobijanje dozvole za promet izvora jonizujućih zračenja.
Uslovi o načinu korišćenja i merama zaštite za rendgen aparate u stomatologiji dati su u prilogu. [8]

8.3. Pravilnik o primeni izvora jonizujućih zračenja u medicini

(“Sl. glasnik RS”, br. 1/2012)

I OSNOVNE ODREDBE

Član 1

Ovim pravilnikom se propisuju:

1. Uslovi za obavljanje radijacione delatnosti, odnosno nuklearne aktivnosti u medicini, kao i način zaštite pacijenata prilikom medicinskog izlaganja radi sprovođenja dijagnostičkog ili terapijskog postupka;
2. Vrste i način merenja za procenu nivoa medicinskog izlaganja jonizujućim zračenjima.

Član 23

Medicinsko izlaganje u radioterapiji i dijagnostičkoj i terapijskoj nuklearnoj medicini odvija se uz obavezno učešće stručnjaka iz oblasti fizike primenjene u medicini.

Za ostala medicinska izlaganja (u koje spada i stomatološka dijagnostika) nosilac licence je obavezan da uključi stručnjake iz oblasti fizike ako je potrebno, radi konsultacija u vezi sa optimizacijom, uključujući i dozimetriju pacijenta i osiguranje kvaliteta sa kontrolom kvaliteta i takođe da bi po potrebi savetovao u vezi sa pitanjima zaštite od zračenja usled medicinskog izlaganja.

Uslovi za obavljanje radijacione delatnosti u stomatologiji i način zaštite pacijenata dat je u prilogu. [9]
9 Testovi kontrole kvaliteta i prezentacija rezultata

oRTIgo ima velik broj predefinisanih standardnih templata. Ne može se menjati ono što je izmereno ili izračunato u ovim templatima. Ipak, može se definisati generator, vrednosti merača, kao i mnogi drugi parametri koji kontrolišu način na koji se test izvodi. Standardni templati se dele na tri glavne grupe [11]:

- Osnovni
- AEC (Automatic Exposure Control)
- Specijalni

S obzirom da je u svrhu ovog merenja korišten detektor R-100B, biće opisani isključivo testovi gde je R-100B zahtevani detektor kao i rezultati tih merenja.

Merenja u cilju kontrole kvaliteta izvršena su u stomatološkoj ordinaciji “NS Dental Studio”, Zorana Radmilovića 10, Novi Sad. Kao test mašina korišten je Satelec® rendgen aparat “X-MIND AC” koji je u aktivnoj upotrebii. Sva merenja su obavljena pri standardnim uslovima pritiska i temperature (P=101,2 kPa i T=20°C). Za svaki tip merenja odabran je odgovarajući obrazac iz baze postavki softvera “oRTIgo”.

9.1. Osnovni testovi

9.1.1. Poludebljina slabljenja snopa (Half Value Layer)

Ovaj test se koristi za proveru vrednosti poludebljine slabljenja snopa na svim vrstama rendgenskih sistema. Kao što smo već spomenuli, HVL predstavlja debljinu nekog materijala (najčešće aluminiijuma) koja atenuira zračenje na polovinu njegove vrednosti, bez prisustva atenuacionog materijala. U mogućnosti smo da kreiramo HVL templat gde koristimo ekspozicije ili brzinu doze da bismo procenili HVL. Neophodno je specifikovati tačnu vrednost kVp-a u izboru obrasca, kao što se vidi na slici 15 (70 kVp). Ova vrednost se koristi kada se procenjuje totalna filtracija, kao i za korekciju energije.
Najmanje jedna ekspozicija mora biti izvršena sa 0 mm dodatne filtracije. Na taj način se proverava stabilnost napona. Takođe, najmanje jedna ekspozicija mora biti blizu 50% vrednosti. Al filteri se postavljaju redom i nakon dodavanja svakog pojedinačnog filtera vrši se merenje.

Čim je merena doza manja od polovine početne, HVL se računa. Ono što softver radi tokom merenja korespondira postupku crtanja logoritamskog grafika doze i debljine filtracije. Nakon završetka merenja softver vrši ekstrapolaciju rezultata određujući koliku filtraciju treba
još dodati da bi se doza smanjila na polovinu početne. Zbirna filtracija koja je smanjila intenzitet na polovinu početne vrednosti predstavlja HVL. HVL se računa pomoću sledeće formule:

\[HVL = \frac{(T_b \cdot \ln(2 \cdot E_a/E_0) - T_a \cdot \ln(2 \cdot E_b/E_0))}{\ln(E_a/E_b)} \] (9.1)

gde je:

\(\ln \) = prirodni logaritam

\(E_0 \) = direktna ekspozicija bez filtracije

\(E_a \) = očitana ekspozicija iznad 50%

\(E_b \) = očitana ekspozicija ispod 50%

\(T_a \) = filtracija korištena kada je merenje \(E_a \) izvršeno

\(T_b \) = filtracija korištena kada je mernje \(E_b \) izvršeno

Kriterijum prihvatanja/neprihvatanja se može podesiti u Regulations – HVL limits prozoru. [11][4]

Slika 17. – Izgled templata i rezultati merenja

Slika 18. – Grafik zavisnosti i rezultat testa

Kao što vidimo test je prošao, za HVL je dobijena vrednost od 2,54 mm Al, dok totalna filtracija iznosi 2,8 mm Al.
9.1.2. Linearnost

Ovaj test se koristi za proveru linearnosti rendgenskih sistema i može biti podešen za proveru najvećih/najmanjih mGy/mAs. Veoma važan aspekt pouzdanosti cevi je njena sposobnost da se primljena doza sa promenom mAs-a menja linearno, pod uslovom da se kVp i udaljenost izvora i detektora slike ne menjaju. Može se specifikovati granica maksimalne prihvatljivosti za ovu proveru. Kao što se vidi na slici 19, mi smo podesili tu vrednost na 30 mR/mAs.

Slika 19. – Obrazac merenja linearnosti

Vrednosti izmerenih doza se stižu automatski posle svake ekspozicije i program sam priprema merač za sledeću ekspoziciju. [11][4]

Kao što je rečeno, testiranje linearnosti služi proceni konzistentnosti ekspozicije/mAs i prihvatljive vrednosti koeficijenta linearnosti su ispod 0,1. Linearnost se računa prema formuli [4]:

\[
L_{1-2} = \frac{|X_1 - X_2|}{X_1 + X_2}
\]

(9.2)
9.1.3. Reproducibilnost

Ovaj test služi za proveru reproducibilnosti rendgenskih sistema. Ukoliko se od ekspozicije do ekspozicije vrednosti parametara menjaju u većem opsegu od prihvatljivog, pouzdanost svih testova kontrole dovedeni su u pitanje, a što je još važnije, sigurnost pacijenata je kompromitovana. Da bi se izbegle takve situacije neophodno je sprovedi test reproducibilnosti. [4] [11]

Test Setup (obrazac merenja) nam pokazuje kako je test konfigurisan. Vrednosti se mogu menjati. Izmerene doze se stiču automatski takođe, tako da sam program priprema merač za sledeću ekspoziciju.

Ovaj test će pasti svaki put ako se bilo koja ekspozicija nade izvan ±n%. Test takođe ne prolazi ukoliko koeficijent varijacije prevaziđe vrednost koju smo izabrali u Test Setup-u [11]. Prihvatljive vrednosti koeficijenta promenljivosti su <0,08 mR.
Test je prošao, koeficijent varijacije je mnogo manji od 0,08 mR, tačnije 0,005 mR.

9.1.4. Tačnost tajmera (Timer Accuracy)

Ovaj test služi za proveru tačnosti tajmera rendgenskih sistema. Generator rendgenskog sistema mora biti sposoban da završi ekspoziciju posle izabranog vremenskog intervala. Meri se kVp i upoređuje sa vrednošću podešenom na generatoru. Ono što se računa jeste razlika izmerenog i podešenog vremena. [3][11]

U **Test Setup-u** može se specifikovati maksimalno dozvoljena devijacija. Sa slike 24 vidimo da je u našem slučaju ona 15%. Takođe, moguće je specifikovati apsolutnu vrednost najmanje devijacije za padanje testa. Kao i u slučaju probe linearnosti i reproducibilnosti, izmerene vrednosti vremena se stiču automatski tako da nema potrebe za klikanjem na **Prepare meter** dugme.
Rekli smo da ovaj test upoređuje zadato vreme sa merenim. Formula prema kojoj se određuje maksimalna netačnost je:

\[
\text{Maksimalna netačnost} = \text{Zadato vreme} \times \frac{\text{Granica tačnosti u procentima}}{100}
\]

(9.3)
Maksimalna netačnost nikada neće pasti ispod *Minimum timer accuracy* vrednosti koju smo specifikovali u *Test Setup-u*.

Primer [11]:

Zadato vreme = 10 ms

Podešena maksimalna devijacija (%) 10

Tačnost se ne očekuje da bude bliža od: (ms) 5

Ekspoziciono vreme se može naći u opsegu: 5 - 15 ms

![Slika 26. – izgled templata i rezultati merenja](image)

![Slika 27. – grafik zavisnosti i rezultat testa](image)

Test je prošao zadate uslove, maksimalna devijacija iznosi 11,16%.

9.2. AEC

AEC sistem treba idealno da obezbedi konstantnu optičku gustinu bez obzira koji je napon izabran, struja, ili debljina dela tela koji treba snimiti. AEC automatski određuje
ekspoziciju na osnovu transmitovane radijacije koja je detektovana putem radiacionog monitora smeštenog ili iza rešetke ili iza receptora slike. U zavisnosti od karakteristika detektora i kvaliteta i sofisticiranosti AEC kola, mogućnosti sistemaće značajno varirati. AEC sistem bi trebao biti sposoban u korigovanju kV zavisnosti, kvaliteta snopa, i narušenog zakona reciprociteta pri dugim ekspozicionim vremenima. [3]

9.2.1. AEC korekcija gustine

Ovaj test se koristi za proveru korekcije gustine automatskom ekspozicionom kontrolom. Ne postoje predefinisani parametri za ovaj test. Vrednosti se stiču automatski i program priprema merač za sledeću ekspoziciju.

Slika 28. – obrazac merenja AEC gustine

9.2.2. AEC balans polja

Ovo je specijalan test koji nema templat. Može se izabrati kada kreiramo sesiju. Služi za proveru balansa polja za komore korišćene u AEC sistemu. Da bi se postigle konzistentne ekspozicije, AEC čelije moraju biti izbalansirane. Proizvođači rendgenskih sistema koriste više različitih šema za AEC balans.

Komora se bira pomoću Field Selection-a. Posle ekspozicije, dvaput se kline na izabrano polje (zelenu pozadinu) da bi se dobila vrednost sa brojača. Procedura se ponavlja dok sve kombinacije ne budu izmerene. Test se završava kliktanjem na Save dugme.

9.2.3. AEC kV kompenzacija

Ovaj test služi za proveru kV zavisne kompenzacije za AEC. Predefinisani parametri za ovaj test ne postoje. Izmerene vrednosti doza se stiču automatski posle svake ekspozicije i program priprema brojač za sledeću ekspoziciju. Nema potrebe za klikanjem na dugme Collect exposure.

Slika 31. – obrazac merenja AEC kVp kompenzacije

Ukoliko se testiranje AEC-a proverava uz pomoć optičke gustine, test će pasti ukoliko se bilo koje od merenja nade izvan dozvoljene razlike od prosečne. Ali, ukoliko se test ne proverava optičkom gustinom, test će pasti ako bilo koja vrednost se nade izvan dozvoljene procentualne razlike od prosečne. [11]

Slika 32. – izgled templata i rezultati merenja
Test je prošao, najveća % devijacija od srednje je 2,57% s obzirom da je najveća dozvoljena % devijacija 10%.

9.2.3. AEC mA kompenzacija

Ovaj test koristimo za proveru mA zavisne kompenzacije za AEC. Ne postoje predefinisani parametri i podaci se stiču automatski. Kriterijumi za prolazak/padanje testa su isti kao i kod AEC kV kompenzacije. [11]
I ovaj test je prošao, maksimalno dozvoljena % devijacija od srednje je 10 %, a mi smo dobili 0,30%.

9.2.3. AEC reciprocitet

Test služi za proveravanje AEC reciprociteta. Sve što važi za prethodno opisana dva testa važi i za ovaj. [11]
Slika 37. – obrazac merenja AEC reciprociteta

Slika 38. – ekspozicionalni prozor za proveru AEC reciprociteta

Slika 39. – izgled templata i rezultati merenja
Test je prošao, za najveću % devijaciju od srednje dobili smo 1,20%.

9.2.4. AEC reproducibilnost

Slika 42.- ekspozicioni prozor za proveru AEC reproducibilnosti

<table>
<thead>
<tr>
<th>#</th>
<th>Comment</th>
<th>Meas mT</th>
<th>Diff (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>36,59</td>
<td>-0,25</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>36,60</td>
<td>-0,20</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>36,85</td>
<td>+0,46</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>36,72</td>
<td>+0,13</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>36,62</td>
<td>-0,13</td>
</tr>
</tbody>
</table>

Slika 43. – izgled templata i rezultati merenja

Slika 44. – grafik zavisnosti i rezultat testa

Test je prošao, za koeficijent varijacije dobili smo 0,003 što je mnogo manje od granice koja iznosi 0,08. Za najveću % devijaciju od srednje dobili smo 0,46% što takođe zadovoljava kriterijume.
9.3. Specijalni testovi

9.3.1. Ekspozicioni limiti kod stomatoloških rendgenskih aparata

Ovo je specijalan test koji nema templat. Može se izabrati prilikom kreiranja sesija. Ovo je manuelni test (što znači da se podaci ne transferuju automatski sa brojača) u ovoj verziji oRTIgo-a.

Prihvaćeni ekspozicioni limiti su specifikovani u Regulations. [11]

10 Merenja radi kontrole radne sredine

Pored kontrole kvaliteta aparata, koja je neophodna da bismo zaštitili pacijenta od velikih doza zračenja, neophodno je zaštititi i profesionalno izložena lica. U tu svrhu, obavljaju se merenja jačine ambijentalnog ekvivalenta doze na mestima gde ta lica mogu boraviti u toku rada uređaja (na mestu rukovaoca, hodnik, ordinacija,...).

Ako se efektivna doza određuje na osnovu merenja ambijentalnog ekvivalenta doze, lični ekvivalent doze se izračunava primenom konverzijnih koeficijenata datih u publikacijama Međunarodne komisije za zaštitu od zračenja (ICRP – International Commission on Radiation Protection). Meri se vrednost jačine ambijentalnog ekvivalenta doze u značajnim tačkama u kojima se može nalaziti izloženo lice. U proračun se moraju uzeti u obzir i drugi parametri kao što je vreme zadržavanja, tako da ne dođe do potcenjivanja efektivne doze.

Određivanje izloženosti profesionalno izloženih radnika i drugih lica koja se nalaze u susednim prostorijama, sprovođi se pod istim radnim uslovima merenjem jačine ambijentalnog ekvivalenta doze na 1 m od površine zida, vrata ili prozora. Na osnovu rezultata merenja, primene odgovarajućih konverzijnih faktora (između ambijentalnog i ličnog ekvivalenta doze) i broja dijagnosticiziranih procedura koje profesionalno izložena lica obave u toku jedne godine, određuje se vrednost ličnog ekvivalenta doze. [10]
Za potrebe ovog rada, merenja su vršena u stomatološkoj ordinaciji “NS Dental Studio” instrumentom Inspector Alert.

10.1. Opšti principi proračuna efektivne doze

Ukupna efektivna doza dobija se sabiranjem efektivne doze koja potiče od izlaganja spoljašnjem zračenju i od zračenja radionuklida unetih ingestijom i inhalacijom:

\[E = E_s + \sum_j e(g)_{j,ing} \cdot I_{j,ing} + \sum_j e(g)_{j,inh} \cdot I_{j,inh} \] \hspace{1cm} (10.1)

gde su:

- \(E_s \) – doprinos spoljašnjeg zračenja ukupnoj efektivnoj dozi;
- \(e(g)_{j,ing} \) i \(e(g)_{j,inh} \) – očekivane efektivne doze po jediničnom unošenju radionuklida \(j \) unetog hranom ili udisanjem za pojedinca u starosnoj grupi \(g \);
- \(I_{j,ing} \) i \(I_{j,inh} \) – odgovarajuće aktivnosti radionuklida unetih putem hrane ili udisanja.

Vrednosti \(e(g) \) zavise od faktora \(f_1 \). Ovi faktori opisuju uticaj radionuklida prisutnog u crevima na druge organe i tkiva. Vrednosti \(f_1 \) i \(e(g)_{j,ing} \) se za određene elemente unete ingestijom menjaju u zavisnosti od hemijske forme, što mora biti uzeto u obzir prilikom procene doze od ingestije.

Pri inhalaciji radionuklida, takođe je važno uzeti u obzir faktor \(f_1 \) za inhalaciju koji uračunava zavisnost doze od veličine inhaliranih čestica i hemijskog oblika jedinjenja. [10]

U našem slučaju efektivna doza potiče samo od izlaganja spoljašnjem zračenju. Ono što instrument meri jeste u stvari brzina doze (dH/dt) merena u \(\mu \text{Sv}/\text{h} \), s toga je potrebno izvršiti nekoliko transformacija da bi se došlo do efektivne doze koju profesionalno izloženo lice primi u godinu dana. Izmerene jačine ambijentalnog ekvivalenta doze oko RTG aparata date su u tabeli 5:
1. Na mestu rukovaoca (iza zaštitnog paravana)
 ➢ Na olovnom staklu
 ➢ Ruke
 0,12 µSv/h

2. Hodnik
 ➢ Naspram RTG aparata
 ➢ Zid od prostorije sa RTG aparata
 ➢ Čekaonica
 12,2 µSv/h

3. Ordinacija I
 ➢ Zid naspram prostorije sa RTG aparatom
 0,12 µSv/h

4. Ordinacija II
 ➢ Vrata ka čekaonicici
 ➢ Na mestu zubarske stolice
 0,12 µSv/h

Tabela 5. – Izmerene jačine ambijentalnog ekvivalenta doze oko RTG aparata

Kao što se može videti, doze su vrlo niske sa izuzetkom one koja je izmerena u hodniku na mestu naspramnom RTG aparatu. Razlog tome jesu vrata koja ne naležu dovoljno čvrsto na okvir.

Uzimajući u obzir da je ekspozicija trajala 0,5 s i da je broj ekspozicija do 10 nedeljno, izražavajući ekvivalentnu dozu u µSv/god, primenom formule 6.10 dobija se efektivna doza koju profesionalno izloženo lice primi u toku godine dana. Težinski faktor je jednak jedinici, s obzirom da je u pitanju efektivna doza za celo telo. U tabeli 6 prikazane su odgovarajuće efektivne doze:

1. Na mestu rukovaoca (iza zaštitnog paravana)
 ➢ Na olovnom staklu
 ➢ Ruke
 8,67·10^{-3} µSv/god

2. Hodnik
 ➢ Naspram RTG aparata
 ➢ Zid od prostorije sa RTG aparata
 ➢ Čekaonica
 8,67·10^{-3} µSv/god

3. Ordinacija I
 ➢ Zid naspram prostorije sa RTG aparatom
 8,67·10^{-3} µSv/god

4. Ordinacija II
 ➢ Vrata ka čekaonicici
 ➢ Na mestu zubarske stolice
 8,67·10^{-3} µSv/god

Tabela 6. – Primljene efektivne doze u toku jedne godine

62
Kompletan izveštaj o dozimetrijskoj kontroli i merenjima jačine ambijentalnog ekvivalenta doze oko rendgen aparata dat je u prilogu.

11 Zaključak

Uzimajući u obzir rezultate testova kontrole kvaliteta kao i merenja jačine ambijentalnog ekvivalenta doze, zaključujemo da je ispitivani stomatološki RTG aparat bezbedan za upotrebu kako po pacijenta, tako i po profesionalno izloženo osoblje. Kao što smo već napomenuli, oRTIgo softver poseduje set standardizovanih testova što znači da su kriterijumi prolaska/neprolaska istih ustanovljeni prema preporukama ICRP-a i NCRP-a.

S druge strane, upoređujući izmerene vrednosti za godišnju efektivnu dozu koju primi profesionalno izloženo osoblje sa onima koje preporučuje NCRP, vidimo da su one daleko ispod doznih limita. Jedan od razloga tome jeste kratko vreme ekspozicije, kao i mali broj ekspozicija u toku nedelje. Kada bi broj ekspozicija bio veći, a vreme eksponiranja bilo duže efektivna doza koju izloženo lice primi za godinu dana u hodniku naspram RTG aparata bi bila značajna, stoga se ne preporučuje duže zadržavanje na tom mestu, a vrata treba popraviti.
Literatura

3. AAPM Report No. 74 “Quality Control in Diagnostic Radiology”
5. Todorović, dr Nataša (2009.) “Dozimetrija i zaštita od jonizujućeg zračenja“
8. Pravilnik o uslovima za dobijanje licence za obavljanje radijacione delatnosti (Sl. gl. RS 61/11 od 19.08.2011.)
9. Pravilnik o primeni izvora jonizujućeg zračenja u medicini (Sl. gl. RS 1/12 od 11.01.2012.)
10. Pravilnik o granicama izlaganja jonizujućem zračenju i merenjima radi procene nivoa izlaganja jonizujućem zračenju (Sl. gl. RS 86/11 od 18.11.2011.)
PRILOG
PRILOG 2.

BLIŽI USLOVI O NAČINU KORIŠĆENJA I MERAMA ZAŠTITE ZA IZVORE JONIZUJUĆIH ZRAČENJA ČIJE KORIŠĆENJE JE USLOVLJENO POSEDOVANJEM LICENCE ZA ODGOVARAJUĆU RADIJACIONU DELATNOST

RENDGEN APARATI I AKCELERATORI

Prostorija u kojoj se koristi rendgen-aparat za snimanje zuba čiji visoki napoon rendgenske cevi ne prelazi 60 kV mora imati površinu od najmanje 4m².

Prostorija u kojoj se koristi rendgen-aparat za snimanje zuba čiji visoki napon rendgenske cevi prelazi 60 kV kao i rendgen-aparat za snimanje zuba i statusa vilice mora imati površinu od najmanje 10m².

Stomatološki rendgen-aparat se može koristiti i u ordinaciji pod uslovom da su u trenutku snimanja u ordinaciji prisutni samo stomatolog i pacijent.

Vremenski prekidač koji se koristi kod rendgen-aparata za snimanje zuba mora omogućiti uključivanje izvora zračenja sa mesta iza zaštitnog paravana ili iz susedne prostorije.

Veličina ozračenog polja na kontaktu tubusa sa kožom pacijenta, rendgen-aparata koji se koriste za intraoralna snimanja zuba, ne sme biti veća od 60 mm u prečniku za kružno polje, odnosno ne veća od 30x40 mm za pravougaono polje.

Kod rendgen-aparata koji se koriste za panoramsko snimanje vilice prorez za prolaz snopa zračenja na kućištu kao i pokretni mehanizmi i držači kasete moraju biti tako podešeni da veličina ozračenog polja ne prelazi ivice kasete više od 10 mm.
Pravilnik o primeni izvora jonizujućih zračenja u medicini (Sl. gl. RS 1/12 od 11.01.2012.)

II USLOVI ZA OBAVLJANJE RADIJACIONE DELATNOSTI U MEDICINI I NAČIN ZAŠTITE PACIJENATA

Rendgen dijagnostika i interventna radiologija

Član 32

Pri rendgenskom snimanju zuba pacijenti moraju biti zaštićeni zaštitnim keceljama ili štitnicima čija je zaštitna moć najmanje 0,25 mm debljine olova. Kecelje i štitnici moraju biti takvog oblika i veličine da za vreme snimanja štite štitastu žlezdu, grudnu kost i gonade pacijenta.

Rastojanje fokus-koža pacijenta (ili fokus-nosača pacijenta) u uslovima prosvetljivanja i snimanja mora biti u skladu sa važećim standardom.

Rastojanje između fokusa i kože pacijenta ne sme biti manje od 150 mm kod rendgen-aparata za panoramsko snimanje vilice i 100 mm kod rendgen aparata za intraoralna snimanja.

Prijemna i periodična ispitivanja izvora jonizujućih zračenja u medicinskoj primeni

Prijemna i periodična ispitivanja rendgen-aparata, akceleratora i drugih uređaja koji proizvode jonizujuće zračenja u medicini i stomatologiji obuhvataju sledeće:

1. Proveru podataka o rendgen-aparatu ili akceleratoru;
2. Vizuelni pregled prostorija u kojima je smešten rendgen-aparat ili akcelerator u smislu bezbednosti njihovog korišćenja;
3. Ispitivanje funkcionalne ispravnosti sigurnosnih uređaja rendgen-aparata ili akceleratora naročito za uključivanje i isključivanje rada, signalnih uređaja i uređaja za daljinsko upravljanje, mogućnost korišćenja u skladu sa specifikacijama proizvođača i
4. Ispitivanja određenih parametara rendgen-aparata ili akceleratora u cilju provere da li je obezbeđen zadovoljavajući kvalitet dijagnostičke informacije ili terapijskog efekta uz minimalno izlaganje pacijenta.
Ovi parametri za stomatološke rendgen-aparate dati su u Tabeli 7:

<table>
<thead>
<tr>
<th>Redni broj</th>
<th>Veličina koja se ispituje</th>
<th>Parametar koji se proverava</th>
<th>Granice dopuštenih odstupanja</th>
<th>Periodi proveravanja</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Napon rendgenske cevi</td>
<td>Ponovljivost</td>
<td>±10%</td>
<td>Godišnje</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tačnost</td>
<td>±10%</td>
<td>Godišnje</td>
</tr>
<tr>
<td>2.</td>
<td>Vreme ekspozicije</td>
<td>Ponovljivost</td>
<td>±10%</td>
<td>Godišnje</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tačnost</td>
<td>±10%</td>
<td>Godišnje</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linearnost</td>
<td>±10%</td>
<td>Godišnje</td>
</tr>
<tr>
<td>3.</td>
<td>Izlazna doza na vrhu tubusa</td>
<td>Ponovljivost</td>
<td>±10%</td>
<td>Godišnje</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tačnost</td>
<td>±10%</td>
<td>Godišnje</td>
</tr>
<tr>
<td>4.</td>
<td>Debljina poluslabljenja</td>
<td>Za napon < 70 kV</td>
<td>≥ 1.5 mmAl</td>
<td>Godišnje</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Za napon > 70 kV</td>
<td>≥ 2.5 mmAl</td>
<td>Godišnje</td>
</tr>
<tr>
<td>5.</td>
<td>Veličina polja na vrhu tubusa</td>
<td></td>
<td></td>
<td>Godišnje</td>
</tr>
</tbody>
</table>

Tabela 7- Parametri ispitivanja, dozvoljene granice odstupanja i periodi proveravanja stomatoloških rendgen-aparata
IZVEŠTAJ

o dozimetrijskoj kontroli i merenjima jačine ambijentalnog ekvivalenta doze
oko rendgen aparata

NAZIV I MESTO KORISNIKA:
STOMATOLOŠKA ORDINACIJA “NS DENTAL STUDIO”
ZORANA RADMILOVIĆA 10, NOVI SAD

Izvršena su merenja jačine ambijentalnog ekvivalenta doze, saglasno Pravilniku o granicama izlaganja jonizujućim zračenjima i merenjima radi procene nivoa izlaganja jonizujućim zračenjima (Službeni Glasnik RS 86/11). Merenja su izvršena intrumentom: Inspector Alert.

Datum merenja: 15.7.2016.

1. Podaci o rendgen-aparatu:

<table>
<thead>
<tr>
<th>Tip uređaja: X-MIND AC</th>
<th>Proizvođač: SATELEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serijski broj zračne cevi: 12774, TOSHIBA DG 073B</td>
<td></td>
</tr>
<tr>
<td>Filracija: 0.8 mm Al / 70 kV inherentna, 2 mm Al/70 totalna filtracija</td>
<td></td>
</tr>
<tr>
<td>Parametri: 70 kV, 8mA, 0.63s</td>
<td></td>
</tr>
</tbody>
</table>

2. Opis prostorije u kojoj je smešten aparat:

<table>
<thead>
<tr>
<th>Površina: 4 m²</th>
<th>Visina: 3 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokacija prostorije: prizemlje</td>
<td>Pod: vinaz</td>
</tr>
<tr>
<td>Ojačanje zidova i vrata: ne</td>
<td>Veštačka ventilacija: ne</td>
</tr>
<tr>
<td>Rastojanje RTG cevi od zidova: 1 m</td>
<td>Kabina za svlačenje: ne</td>
</tr>
</tbody>
</table>

3. Zaštitna sredstva:

<table>
<thead>
<tr>
<th>Zaštitna sredstva za zaštitu osoblja: da</th>
<th>Pb gumena resa:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zaštitna stolica</td>
<td>Paravan: da</td>
</tr>
<tr>
<td>Olovne rukavice</td>
<td>Olovna kecelja: da</td>
</tr>
<tr>
<td>Da li je snop centriran: da</td>
<td></td>
</tr>
</tbody>
</table>
4. Evidencija o korišćenju RTG aparata:

<table>
<thead>
<tr>
<th>Datum poslednjeg pregleda aparata:</th>
<th>2015.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidencija o rezultatima ličnih dozimetra:</td>
<td>-</td>
</tr>
<tr>
<td>Ime lica odgovornog za bezbednost i zdravlje:</td>
<td>dr Melinda Puškaš</td>
</tr>
</tbody>
</table>

5. Izmerene jačine ambijentalnog ekvivalenta doze:

<table>
<thead>
<tr>
<th></th>
<th>Na mestu rukovaoca (iza zaštitnog paravana)</th>
<th>0,12 µSv/h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Na olovnom staklu</td>
<td>0,12 µSv/h</td>
</tr>
<tr>
<td></td>
<td>Ruke</td>
<td>0,18 µSv/h</td>
</tr>
<tr>
<td>2. Hodnik</td>
<td>Naspram RTG aparata</td>
<td>12,2 µSv/h</td>
</tr>
<tr>
<td></td>
<td>Zid od prostorije sa RTG aparatom</td>
<td>0,12 µSv/h</td>
</tr>
<tr>
<td></td>
<td>Čekaonica</td>
<td>0,11 µSv/h</td>
</tr>
<tr>
<td>3. Ordinacija I</td>
<td>Zid naspram prostorije sa RTG aparatom</td>
<td>0,12 µSv/h</td>
</tr>
<tr>
<td>4. Ordinacija II</td>
<td>Vrata ka čekaonici</td>
<td>0,12 µSv/h</td>
</tr>
<tr>
<td></td>
<td>Na mestu zubarske stolice</td>
<td>0,12 µSv/h</td>
</tr>
</tbody>
</table>

Kombinovana merna nesigurnost instrumenta iznosi 20% na nivou poverenja 95% (k=2).

7. Primenje: Eksponiranje vršiti isključivo iza zaštitnog paravana. Za vreme eksponiranja ne preporučuje se zadržavanje u hodniku naspram RTG aparata.

Merenje izvršio:

Izveštaj odobrava:

__________________ (Slavko Todorović)
dozimetrista

__________________ (Prof. dr Nataša Todorović)
dozimetrista
BIOGRAFIJA
UNIVERZITET U NOVOM SADU
PRIRODNO-MATEMATICKI FAKULTET
KLJUČNA DOKUMENTACIJSKA INFORMACIJA

Redni broj:
RBR

Identifikacioni broj:
IBR

Tip dokumentacije: Monografska dokumentacija
TD

Tip zapisa: Tekstualni štampani materijal
TZ

Vrsta rada: Diplomski rad
VR

Autor: Ana Martinović
AU

Mentor: dr Nataša Todorović
MN

Naslov rada: Kontrola kvaliteta stomatološkog RTG aparata
NR

Jezik publikacije: srpski (latinica)
JP

Jezik izvođa: s/en
JI

Zemlja publikovanja: Republika Srbija
ZP

Uže geografsko područje: Vojvodina
UGP

Godina: 2016
GO
Izdavač: autorski reprint
IZ
Mesto i adresa: Novi Sad, Trg D. Obradovića 4
MA
Fizički opis rada: (10/47/8/8/29/0/0)
FO
Naučna oblast: Zaštita od jonizujućeg zračenja
NO
Naučna disciplina: Nuklearna fizika
ND
Predmetne odrednice, Kontrola kvaliteta, jonizujuće zračenje,
Ključne reči: zaštita od zračenja, dozimetrijska kontrola
PO stomatološki RTG aparat
UDK
Čuva se: Biblioteka departmana za fiziku,
ČU Trg D. Obradovića 4, Novi Sad
Važna napomena: nema
VN
Izvod: U radu je stavljen akcenat na kontrolu kvaliteta
IZ stomatološkog RTG aparata R-100B detektorom
Datum prihvatanja teme septembar 2016.
od strane NN veća: septembar 2016.
DP
DO
Članovi komisije:
KO Predsednik: dr Jovana Nikolov
Član: dr Nataša Todorović
Član: dr Maja Stojanović
Accession number: ANO
Identification number: INO
Document type: Monograph documentation
Type of record: Textual printed material
Contents code: Graduation thesis
Author: Ana Martinović
Mentor: dr Nataša Todorović
Title: Quality control of dental X-ray machine by R-100B detector
Language of text: Serbian (Latin)
Language of abstract: en/s
Country of publication: Republic of Serbia
Locality of publication: Vojvodina
Publication year: 2016
Abstract: Final paper focuses on quality control of dental X-ray machine by R-100B detector.