

UNIVERZITET U NOVOM SADU PRIRODNO–MATEMATIČKI FAKULTET DEPARTMAN ZA FIZIKU

KOINCIDENTNO SUMIRANJE γ - FOTONA U NaI(Tl) DETEKTORU OBLIKA JAME

-diplomski rad-

Student: Agota Kosoruš 116/10 FDI Mentor: prof. dr Miodrag Krmar

Novi Sad, 2014.

Agota Kosoruš Koincidentno sumiranje gama fotona u Nal(Tl) detektoru oblika jame

Sadržaj

1.UVOD 4 2.INTERAKCIJA ZRAČENJA SA MATERIJOM 6 2.0.INTERAKCIJA GAMA ZRAČENJA SA MATERIJOM 7
2.1.FOTOELEKTRIČNI EFEKAT
2.2.KOMPTONOVO RASEJANJE
2.3.STVARANJE PAROVA9
2.4.UKUPNI PRESEK ZA INTERAKCIJU GAMA ZRAČENJA SA MATERIJOM
3.DETEKTORI 11 3.1.OSNOVNE KARAKTERISTIKE DETEKTORA ZRAČENJA 11
3.1.1.EFIKASNOST DETEKTORA
3.1.2.ENERGETSKA REZOLUCIJA DETEKTORA12
3.1.3.VREMENSKA REZOLUCIJA DETEKTORA
3.1.4.EFIKASNA ZAPREMINA DETEKTORA 13
3.2.SCINTILACIONI DETEKTOR
3.2.1.SCINTILACIONI MATERIJALI
3.2.2.KONSTRUKCIJA SCINTILACIONOG DETEKTORA 14
3.2.3.FORMIRANJE SIGNALA
3.2.4.DOBIJANJE SPEKTRA 15
3.3.NaI(TI) detektor oblika jame
3.4.GEOMETRIJSKA EFIKASNOST. RAČUNANJE PROSTORNOG UGLA
4.KOINCIDENCIJA
5.2. <i>Co</i> – 60
5.3. <i>Na</i> – 22
5.4 In – 116
6.ZAKLJUČAK

Zahvaljujem se mentoru prof. dr Miodragu Krmaru na podršci i pomoći prilikom izrade ovog diplomskog rada. Janu Hansmanu sa zahvaljujem na pomoći u vezi sa eksperimentalnim delom rada.

Veliku zahvalnost dugujem prijateljici i koleginici Brankici Anđelić koja mi je pomogla pri izradi ovog rada, kao i svojoj porodici i prijateljima koji su me podržavali u toku studiranja.

1. UVOD

Zbog mogućnosti postojanja velike koncentracije radionuklida u vodi za piće, životnim narirnicama, stočnoj hrani, lekovima, predmetima opšte upotrebe i građevinskom materijalu. vrši se njihova gama spektroskopija.

Sadržaj radionuklida uzoraka koje se ispituju u Laboratoriji za nuklearnu fiziku se reguliše Pravilnikom o granicama radionuklida u vodi za piće, životnim narirnicama, stočnoj hrani, lekovima, predmetima opšte upotrebe, građevinskom materijalu i drugoj robi koja se stavlja u promet. Na građevinske materijale se odnose Član 13, Član 14 i Član 15.

Član 13.stav 1 Granice sadržaja radionuklida u građvinskom materijalu koji se upotrebljava u visokoj gradnji za enterijer, iznose:

za radijum (226 Ra): $3 \cdot 10^2$ Bq/kg zaa torijum (232 Th): $2 \cdot 10^2$ Bq/kg za kalijum (40 K): $3 \cdot 10^3$ Bq/kg

Član 14, stva 1 Granice sadržaja radionuklida u građevinskom materijaluu koji se upotrebljava u visokoj gradnji i za eksterijer iznose: za radijum (226 Ra): $4 \cdot 10^2$ Bq/kg zaa torijum (232 Th): $3 \cdot 10^2$ Bq/kg za kalijum (40 K): $5 \cdot 10^3$ Bq/kg

Član 15, stav 1

Granice sadržaja radionuklida u građevinskom materijalu koji se koristi u niskogradnji i podloga za puteve, igrališta i ostalu niskogradnju (ispod sloja za prekrivanje) tako da ne utiče na povećanje jačine apsorbovane doze gama zračenja u vazduhu iznose:

za radijum (²²⁶Ra): $7 \cdot 10^2$ Bq/kg zaa torijum (²³²Th): $5 \cdot 10^2$ Bq/kg za kalijum (⁴⁰K): $8 \cdot 10^3$ Bq/kg

Zbog potrebe za brzim i efikasnim merenjem rutinskih uzoraka koristi se veliki 9''x9'' NaI(Tl) detektor. Masa osetljive zapremine ovog detektora je 41.4 kg. Radioaktivnost uzoraka iz okruženja se obično određuje pomoću HPGe detektora. Međutim, velika efikasnot NaI(Tl) detektora oblika jame i relativno kratko vreme merenja ga čine pogodnijim za merenje uzoraka iako ima manju energetsku rezoluciju od germanijumskog detektora. [1] S druge strane da bi se odredila koncetracija ovih radionuklida u materijalnima potrebno je analizirati njihove gama linije koje su singleti, pa manja energetska rezolucija NaI(Tl) detektora u odnosu na HPGe ne prestavlja problem.

Zbog velike efikasnoti NaI(Tl) detektora kod uzoraka sa velikom koncentracijom aktivnosti različitih radionuklida, može doći do koincidentnog sumiranja gama fotona, do problema razlaganja linija usled

njihovog preklapanja, i do sakrivanja male aktivnosti zbog velike komptonkse ivice [9]. Koincidentno sumiranje je nepoželjan efekat koji vodi do gubljenja događaja iz linije totalne apsorpcije koji se analizira u spektrima a saim tim do pogrešnih rezulata koji se dobijaju analizom tih pikova.

U ovom radu se ispituje zavisnost koincidentnog sumiranja gama fotona u NaI(Tl) detektoru oblika jame od pozicije i aktivnosti tačkastog izvora. Merenja su vršena za različite položaje izvora Mn-54, Co-60, Na-22, In-116 u jami detektora. Rezultati dobijeni obradom spektara su upoređeni i prikazani grafički.

2. INTERAKCIJA ZRAČENJA SA MATERIJOM

Detektovanje zračenja,-i određivanje njegovih osobina se u potpunosti bazira na interakciji zračenja sa materijalnom sredinom kroz koju prolazi. Pod opštim pojmom zračenja se ovde podrazumevaju fotoni gama i zakočnog zračenja, kao i naelektrisane i nenaelektrisane čestice koje poseduju određenu kinetičku energiju. [2] Jasno je da naelekrisane i nenaelektrisane čestice drugačije interaguju sa atomima sredine. Prilikom prolaska kroz neki medijum, zračenje putem interakcija gubi svoju energiju. Naelektrisane čestice kao što su elektroni, pozitroni i alfa čestice mogu vršiti direktnu jonizaciju dok nenaelektrisano zračenje indirektno jonzuje atome sredine koju prolaze. Postoje još neki procesi koji igraju važnu ulogu u detekciji zračenja, a to su emisija zakočnog zračenja i stvaranje elektron-pozitronskog para. U ovim procesima ne dolazi do direktne jonizacije atoma medijuma kroz koji se zračenje prostire, ali emitovano zakočno zračenje i elektron-pozitronski par mogu imati dovoljnu energiju da vrše jonizaciju.[2] Kao što se vidi, u krajnjem bilansu se ipak u najvećoj meri putem jonizacije vrši inetrakcija zračenja sa materijom.

Neutroni ne interaguju putem elektromagnetne interakcije već se moraju približiti jezgru na rastojanje na kojoj deluje nuklearna sila. To znatno otežava njihovo detektovanje.

Procesi putem kojih se ostvaruje interakcija zračenja sa materijom su:

- Neelastični sudari sa atomskim elektronima materijala
- Elastično rasejanje na jezgrima
- Emisija Černkovljevog zračenja
- Nuklearne reakcije
- Zakočno zračenje

Prva dva procesa imaju veći značaj u spektroskopiji od ostalih, jer je verovatnoća odigravanja ovih inerakcija mnogo veća. U elastičnim rasejanjima ne dolazi do razmene energije između zračenja i atoma sredine, a to znači da zračenje ne gubi energiju pa ne ostavlja trag u detektoru.

S obzirom da se u ovom radu analiziraju spektri gama zračenja, njihova inetrakcija sa materijalnom sredinom će biti detaljnije opisana.

2.0. INTERAKCIJA GAMA ZRAČENJA SA MATERIJOM

Gama zračenje je elektromagnetno zračenje male talasne dužine. Fotoni su neutralne čestice tako da ne mogu delovati na elektrone putem Kulonove sile. Do interakcije između fotona i elektrona, kao i fotona i jezgra dolazi tek u uskoj oblasti Komptonove talasne dužine. Ovo rastojenje je reda velicine 10⁻¹² m za elektrone i oko 10⁻¹⁴ m za jezgra. Procesi koji se odvijaju pri prolasku elektromagnetnog zračenja kroz materiju su:

- Fotoelektrični efekat
- Komptonovo rasejanje
- Kreacija parova i
- Reakcije nuklearne disocijacije

Poslednja interakcija je veoma retka i nije od velikog značaja za dalje razmatranje.

Verovtnoća dešavanja ovih procesa jako zavisi od energije fotona, gustine materijala i rednog broja materijala koja ispunjava osetljivu zapreminu detektora.

2.1. FOTOELEKTRIČNI EFEKAT

Fotoelektrični efekat je proces prilikom kog foton elektromagnetnog zračenja preda svu svoju energiju atomskom elektronu (biva apsorbovan od strane elektrona), koji u ovoj interakciji stekne dovoljnu energiju da napusti atom i udaljava se od njega energijom:

$$E_e = E_f - E_v \tag{2.1}$$

 E_e - kinetička energija elektrona E_f - energija koju je posedovao foton E_v - energija veze orbitalnog elektrona

Fotoelektrični efekat je moguć samo na vezanom elektronu(Slika 2.1.), to je uslovljeno zakonom održanja impulsa. Teoretski u ovom procesu mogu učestovati svi orbitalni elektroni, ali se verovatnoća da se fotoefekat može odigrati razlikuje od elektrona do elektrona. Što je energija veze elektrona bliža energiji fotona to je verovatnoća interakcije putem fotoefekta veća. Efikasni presek kao verovatoća odvijanja fotoefekta u zavisnoti od energije E i rednog broja materijala Z se matematički može prikazati na sledeći način:

$$\sigma_{fe} = const. \frac{Z^5}{E^{7/2}} \operatorname{za} E_f > E_v^K$$

$$\sigma_{fe} = const. \frac{Z^5}{E} \operatorname{za} E_f \gg E_v^K$$
(2.2)

 E_v^k - energija veze K elektrona σ -efikasni presek za interakciju Ako je energija upadnog fotona dovoljno visoka, elektron izbačen iz atomskog omotača može imati energiju dovoljnu da i sam vrši jonizaciju.

Nakon što jedan elektron biva izbačen iz atoma njegovo upražnjeno mesto može biti popunjeno elektronom sa viših orbitala. Tom prilikom se emituje elektromagnetno zračenje, to je takozvano karakteristično zračenje koje uvek neizbežno prati proces fotoelektričnog efekta.

2.2. KOMPTONOVO RASEJANJE

Komptovono rasejanje je rasejanje fotona na slobodnom elektronu ili na vezanom elektronu čija je energija veze mnogo manja od upadnog fotona (Slika 2.2.). Ovo rasejanje je tipičan primer nekoherentnog rasejanja. Energija fotona koji se rasejao pod uglom θ se može izraziti kao

$$E_f = \frac{E_{f0}}{1 + \frac{E_{f0}}{mc^2}(1 - \cos\theta)}$$
(2.3)

 E_{f0} -predstavlja energiju upadnog fotona pre interakcije *m*-masa mirovanja elektrona

Prilikom interakcije gama zračenja sa medijumom koji predstavja osetljivu zapreminu detektora putem Komptonovog efekta detektuje se samo onaj iznos energije koji je predat elektornu. Taj foton koji nakon interakcije ima manju energiju sa određenom verovatnoćom može da napusti detektor.

Energija koju foton može predati elektonu se može opisati sledećom formulom:

$$E_{e} = E_{f0} \frac{\frac{E_{f0}}{m_{e}c^{2}}(1 - \cos\theta)}{1 + \frac{E_{f0}}{m_{e}c^{2}}(1 - \cos\theta)}$$
(2.4)

Elektron dobije najveću energiju ako se foton rasejava pod uglom od 180°. U tom slučaju se energija elektrona može opisati na sledeći način:

$$E_e \approx E_{f0} - \frac{1}{2}m_e c^2 \tag{2.5}$$

Pri čemo se pretpostavlja da je $E_{f0} \gg m_e c^2$.

Diferencijalni efikasni presek za Komptonovo rasejanje je jedna od prvih formula koja je dobijena kvantnom elektrodinamikom i poznato je kao Klein-Nišinova formula:

$$\frac{d\sigma}{d\Omega} = \frac{r_e^2}{2} \frac{1}{\left(1 + \frac{h\nu}{m_e c^2} (1 - \cos\theta)\right)^2} \left(1 + \cos^2\theta + \frac{(\frac{h\nu}{m_e c^2})^2 (1 - \cos\theta)^2}{1 + \frac{h\nu}{m_e c^2} (1 - \cos\theta)}\right)$$
(2.6)

 r_e -klasični radijus elektrona

Na osnovu ove formule se može dobiti i ukupni efikasni presek za interakciju. Zavisnost ukupnog efikasnog preseka od energije upadnog fotona i rednog broja materijala sredine se može predstavi kao:

$$\sigma_C \sim \frac{Z}{E} \tag{2.7}$$

2.3. STVARANJE PAROVA

Stvaranje para elektron-pozitron je proces prilikom kog foton u potpunosti nestaje. Ovaj proces se može odigrati u polju jezgra kada foton ima energiju koja je veća od dvostruke vrednosti energije mirovanja elektrona (1.022 *MeV*). Ukoliko je energija fotona veća od te vrednosti višak energije se može izraziti kao:

$$\Delta E = E_{\gamma} - 2m_e c^2 \tag{2.8}$$

i raspojeđuje se između elektrona i pozitrona kao njihova kinetička energija. Elektron i pozitron koji nastaju bivaju emitovani u pravcu kretanja fotona, a ugao između njih zavisi od energije fotona.

Elektron dalje interaguje sa atomima putem elektromagnetne interakcije i na kraju biva zahvaćen od strane atoma materija sredine, dok se pozitron kada izgubi svoju kinetičku energiju anihilira u kontaktu sa elektronom pri čemu obe čestice nestaju uz emisiju dva fotona od 0.511 MeV pod uglom od 180°[3].

Izraz za efikasni presek za stavranje elektron-pozitronskog para u energetskom inervalu od praga pa sve do 1000 $m_e c^2$ se može opisati formulom:

$$\sigma_p \sim Z^2 ln \frac{E}{m_e c^2} \tag{2.9}$$

Na višim energijama efikasni presek za ovu interakciju poprima prilično konstantnu vrednost:

$$\sigma_p \approx 0.08 \cdot Z^2 \cdot r_e^2 \tag{2.10}$$

Gde je r_e klasični prečnik elektrona.

2.4. UKUPNI PRESEK ZA INTERAKCIJU GAMA ZRAČENJA SA MATERIJOM

Ukupni presek za interakciju gama zračenja sa materijom se dobije kada uzmemo u obzir da se sa oderđenom verovtnoćm mogu odigrati svi gore navedeni procesi. Na taj način se dolazi do sledeće jednačine:

$$\sigma = \sigma_{fe} + \sigma_C + \sigma_p \tag{2.11}$$

Linearni atenuacioni koeficijent se dobija kao proizvod broja atoma po jedinice zapremine posmatranog materijala i ukupnog atenuacionog koeficijenta:

$$\mu = n \cdot \sigma \tag{2.12}$$

Ili preciznije:

$$\mu = n\sigma_{fe} + nZ\sigma_C + n\sigma_p \tag{2.13}$$

Svi ovi procesi zavise od energije upadnog zračenja i od vrste materijala ali naravno na drugačiji način. Na slici 2.2. je prikazan grafik na kom se jasno vidi da postoje oblasti energija i rednih brojeva materijala u kojima dominira jedna vrsta inetarakcije.

Slika 2.2

3. DETEKTORI

Detektori su uređaji koji vrše registrovanje jonizujućeg ili neutronskog zračenja. U njihovoj aktivnoj zapremini se odvija interakcija zračenja sa materijom, a kao rezultat te interakcije dobija se signal ili slika. Obradom signala ili slike se dolazi do informacija o osobinama zračenja. Tako može da se odredi intenzitet zračenja, energija fotona, brzina i enegrija čestica, njihova masa, naelektrisanje, magnetni moment, spin i druge osobine. Materija u kojoj se odvija interakcija sa zračenjem može biti običan gas, poluprovodnik, scintilator, filmska emulzija, pregrejana tečnost, podhlađena para i slično. Razlikuju se dva tipa detektora, a to su integralni i diferencijalni. Integralni detektori mere ukupan efekat prolaska zračenja kroz materiju dok diferencijalni detektori imaju mogućnost da registruju pojedinačne čestice zračenja. Još jedna podela bi bila u zavisnosti koji tip informacija o zračenju dobijamo. Električni signal se dobija pomoću električnih detektora, dok se slika dobija pomoću optičkih detektora.

3.1. OSNOVNE KARAKTERISTIKE DETEKTORA ZRAČENJA

Zahvaljujući detektorskoj tehnici danas imamo obilje informacija koje se odnose na strukturu jezgra i neke procese koji se odvijaju u jezgru, kao i informacije o elementarnim česticama. Realizovani su detektori različitog tipa i dizajna koji se dalje prilagođavaju potrebama istraživanja. Jasno je da napredak nuklearne fizike i fizike elementarnih čestica u velikoj meri zavisi od mogućnosti detektora, pa je zato jako bitno da se radi na poboljšanju osnovnih karakteristika detektora kao što su na primer:

- efikasnost
- osetljivost
- energetska rezolucija
- vremenska rezolucija
- efikasna zapremina

3.1.1. EFIKASNOST DETEKTORA

Pod ovim pojmom podrazumeva se verovatnoća da čestica zračenja bude detektovana. Od detektora se zahteva da registruje što je moguće veći broj čestica koje su na njega pale. Apsolutna ili totalna efikasnost definiše se kao odnos broja registrovanih događaja i broja događaja emitovanih iz izvora:

$$\varepsilon = \frac{N_R}{N_E} \tag{3.1}$$

gde je:

 N_R - ukupan broj registrovanih događaja N_E – ukupan broj emitovanih događaja

Ovako definisana efikasnost zavisi od geometrijske efikasnosti i sopstvene efikasnosti detektora. Geometrijska efikasnost zavisi od geometrijskih uslova eksperimenta i može se definisati kao odnos broja čestica koje padnu na detektor i ukupnog broja čestica emitovanih iz izvora. U slučaju kada je emisija izotropna, geometrijska efikasnost bi predstavljala odnos prostornog ugla Ω pod kojim čestice iz izvora padaju na detektor i ukupnog ugla od 4π steradijana.

Agota Kosoruš Koincidentno sumiranje gama fotona u Nal(TI) detektoru oblika jame

$$\varepsilon_{g} = \frac{\Omega}{4\pi} = \frac{S}{L^{2}4\pi}$$
(3.2)

Slika3.1.Geometrija položaja izvora

Verovatnoća da čestica koja je dospela do detektora bude i registrovana pod pikom totalne apsorpcije predstavlja sopstvenu ili unutrašnju efikasnost detektora. Ona zavisi od energije upadnog zračenja i od atenuacionih svojstava detektora. Nazovimo odnos broja registrovanih čestica N_R i ukupnog broja čestica koje padnu na detektor N_u .

$$\varepsilon_s = \frac{N_R}{N_u} \tag{3.3}$$

Prema tome, totalna efikasnost je data kao:

$$\varepsilon = \varepsilon_s \varepsilon_g \tag{3.4}$$

Sve ovo se odnosi na efikasnost tačkastih izvora. Dok kod voluminoznih uzoraka ovo izgleda malo komplikovanije.

3.1.2. ENERGETSKA REZOLUCIJA DETEKTORA

Energetska rezolucija se odnosi na sposobnost detektora koji radi u diferencijalnom režimu da razlikuje dve čestice bliskih energija. Ako bismo poslali monoenergetski snop zračenja u detektor, očekivali bismo da dobijemo oštar pik (delta funkciju). Međutim, ono što se u stvarnonsto dobija je gausijan (Slika 3.3)

Slika 3.3. Fotopik

Fotopik ima određenu širinu koji je posledica fluktuacija u jonizacionim i ekscitacionim procesima. Kako su sve bitne informacije sadržane pod ovim pikom, kao meru za rezoluciju uzimamo širinu na polovini visine fotopika. Dve energije koje su u ovom intervalu se ne mogu razložiti. Ako rezoluciju određujemo u energijskoj skali i izražavamo u procentima onda je možemo predstaviti na sledeći način:

$$R = \frac{\Delta E}{E_{\gamma}} \cdot 100[\%] \tag{3.5}$$

gde je:

 ΔE - širina fotopika na polovini visine (FWHM – full width at half maximum)

 E_{γ} - energija upadnog γ zraka

Rezolucija zavisi od energije koja se deponuje u detektoru i bolja je kada se radi o višim energijama. Poznato je da germanijumski detektori imaju najbolju energetsku rezoluciju.[3]

3.1.3. VREMENSKA REZOLUCIJA DETEKTORA

Kada detektor registruje jednu česticu potrebno je da prođe određeno vreme pa da bi bio u stanju da registruje i sledeću koju bi tretirao kao nezavisan događaj. Ovo vreme, tokom kog detektor nije u mogućnosti da detektuje sledeću česticu, naziva se mrtvo vreme detektora. U aktivnoj zapremini detektora zračenje će da vrši jonizaciju. Prikupljanjem nastalog naelektrisanja u detektoru električnog tipa stvara se naponski signal. Vreme potrebno da se nastalo naelektrisanje sakupi određuje vremenku rezoluciju. Ako bi za to vreme naišla druga čestica, naelektrisanje koje ona stvori bi se pridodalo prethodnom i izgledalo bi kao da je registrovana samo jedna čestica, a ne dve[3].

3.1.4. EFIKASNA ZAPREMINA DETEKTORA

Pod ovim pojmom podrazumeva se zapremina onog dela prostora koji nakon interakcije sa zračenjem može da proizvede neki signal ili da za slučaj optičkih detektora, pokaže trag kojim su se čestice zračenja kretale. Često je potrebno da ova zapremina bude što je moguće veća. Iz tog razloga danas imamo detektore velikih dimenzija[3].

3.2. SCINTILACIONI DETEKTORI

3.2.1. SCINTILACIONI MATERIJALI

Pronalazak materijala koji su prozirni za sopstvenu svetlost omogućio je konstruisanje i razvoj scintilacionih detektora. Kod njih je bitno da je cela zapremina upotrebljena za registraciju jonizujućeg zračenja, a ne samo njihova površina kao što je bio slučaj sa prethodno korištenim tankim slojevima cinksulfida koji su se nanosili na karton. To je bilo posebno značajno za beta i gama zračenje jer imaju veću prodornost u odnosu na alfa zračenje[2]. Razlikujemo scintilacione materijale organskog i neorganskog porekla.

Organski scintilacioni materijali koji se pojavljuju u kristalnoj formi su naftalin, antracen, stilben i drugi. Ksilen i toluen su tečne supstance koje su takođe scintilatori. Kod molekula ovih jedinjenja, u okviru svakog energetskog stanja postoji još i veliki broj vibracionih i rotacionih stanja[2]. Kada se jedan ovakav molekul pobudi na neko više elektronsko stanje, deo energije pobude se potroši i na prelaze između vibracionih nivoa tog pobuđenog elektronskog stanja. Prilikom prelaska molekula na osnovno elektronsko stanje, može se desiti da energija emitovanog fotona bude manja od energije sa kojom je molekul prethodno bio pobuđen. Zbog ovoga se dešava da opseg talasnih dužina svetlosti koji se emituje biva pomeren u odnosu na opseg talasnih dužina apsorbovane svetlosti, uz malo preklapanje. Emitovana svetlost će uspeti da izbegne apsorpciju i izađe iznoseći informaciju o interakciji koja se dogodila. Neorganski scintilatori se koriste u obliku monokristala, a neki od njih su LiI, CsI, CsF, KI i naravno najčešće korišteni NaI. Da bi ovi kristali bili prozirni za svetlost koju emituju potrebno im je u malim količinama dodati primese. Ove primese nazivamo aktivatorima, a najčešće su u pitanju telur (Tl) i talijum (Ta). Uloga primesa je da stvaraju luminescentne centre. Zračenje koje prolazi kroz kristal stvara elektrone i šupljine koji se pomeraju duž kristalne rešetke. Šupljine mogu da budu popunjene elektronima iz luminescentnog centra, pa on biva pobuđen i emituje svetlost pri prelasku na osnovno stanje. Na taj način se energija pobude kristala predaje luminescentnom centru, a svetlost koju on emituje ne biva apsorbovana[2].

Razlikujemo plastične i tečne scintilatore. Plastični scintilatori se dobijaju rastvaranjem organskih scintilatora u čvrstoj prozirnoj plastici. Rastvaranjem scintilacionih materijala u organskim tečnostima nastaju tečni scintilatori. I jedni i drugi su pogodni za pravljenje detektora raznih oblika i zapremina.

Prednost scintilacionih detektora je velika brzina brojanja. Srednje vreme trajanja scintilacije kod NaI(Tl) je 10^{-7} s a kod nekih drugih je čak i kraće. Deo energije detektovane čestice koja se pretvori u svetlost se naziva konverziona efikasnost i najveća je za NaI(Tl).

3.2.2. KONSTRUKCIJA SCINTILACIONOG DETEKTORA

U scintilacionom materijalu dolazi do formiranja svetlosnih signala i potrebno ih je na neki način pretvoriti u električni signal. Ovo se najjednostavnije izvodi uz pomoć fotomultiplikatora (Slika3.4). Potrebno je samo ostvariti optički kontakt između scintilacionog materijala i prozora fotomultiplikatora. Ova veza mora da bude izvedena tako da spoljašnja svetlost nikako ne može da prodre do fotokatode, tako da signali koji se dobiju na izlazu fotomultiplikatora potiču samo od svetlosti stvorene interakcijom zračenja sa kristalom. Da bi se izbegle refleksije i gubici na granicama kristala obično se uzima scintilator u obliku monokristala. NaI(Tl) se najčešće reže u obliku cilindra, jedna baza se spaja sa fotomultiplikatorom pomoću viskoznih materijala velikog indeksa prelamanja, a ostale (neprozirne) površine se oblažu aluminijumom da bi što više zračenja dospelo do kristala. I unutrašnjost ovih obloga je prekrivena odgovarajućim materijalom koji ima zadatak da difuznom refleksijom što je moguće veću količinu svetlosti koja se emituje u svim pravcima usmeri ka prozoru fotomultiplikatora. U slučaju NaI koji je vrlo higroskopan, jako je bitno da bude hermetički zatvoren.

Slika 3.4. Fotomultiplikator

3.2.3. FORMIRANJE SIGNALA

Kada se čestica zračenja, najčešće j foton, kreće kroz scintilacioni materijal, dolazi do kratkotrajne emisije svetlosti. Kada ova svetlost padne na fotokatodu, napravljenu od materijala sa malim izlaznim radom, dolazi do emisije elektrona. Oni se pomoću električnog polja ubrzavaju i usmeravaju ka prvoj dinodi iz koje izbijaju od 3 do 10 novih elektrona. Svaka dinoda je postavljena na višem potencijalu od prethodne, tako da će se ovi elektroni kretati ka drugoj dinodi i iz nje ponovo izbiti nove elektrone. Ovaj proces se dalje nastavlja do poslednje dinode, a ukupan broj elektrona se umnožava za nekoliko redova veličine. Iza poslednje dinode je anoda koja ima najviši potencijal i ona prikuplja sve elektrone. Ovo dovodi do kratkotrajnog pada napona na radnom otporniku i signal se prenosi na pojačavačku elektroniku. Dakle, visina signala odgovara količini svetlosti koja je pala na fotokatodu, a ona je proporcionalna energiji koju je zračenje ostavilo u scintilatoru. Iz ovog sledi da je visina signala direktno proporcionalna energiji koju je zračenje ostavilo u scintilatoru. Jasno je da se scintilacionom detektorima mogu meriti energije detektovanih čestica pod uslovom da su svoju kompletnu energiju ostavile u scintilatoru. Neorganski scintilatori su napravljeni od materijala relativno visokog rednog broja (I, Cs) što povećava verovatnoću interakcije, pa stoga oni imaju dobru efikasnost i široku primenu i gama spektroskopiji. Tečni i plastični scintilatori imaju veoma dobru vremensku rezoluciju. Kod njih je trajanje emisije luminescentne svetlosti najkraće, što omogućava detekciju velikog broja čestica. Organski scintilatori se ređe koriste u gama spektroskopiji jer se većina njihovih interakcija odvija preko Komptonovog efekta (zbog malog rednog broja), pa se energija fotona ne može tačno ustanoviti. Oni su vrlo pogodni za spektroskopiju beta čestica.

3.2.4. DOBIJANJE SPEKTRA

Gama zračenje koje prodire u kristal intereaguje sa atomima kristala preko jednog od tri osnovna mehanizma interakcije – fotoefekat, Komptonovo rasejanje ili stvaranje parova. Svaki od ovih procesa je u stanju da izazove scintilacije koje dalje dovode do formiranja krajnjeg električnog signala. Sada ćemo razmotriti svaki od ovih mehanizama posebno.

U slučaju kada se interakcija u aktivnoj zapremini odvija putem fotoefekta dolazi do potpune apsorpcije gama kvanta i do izbacivanja jednog elektrona iz atoma. Najveća je verovatnoća da će se taj elektron

emitovati iz neke unutrašnje ljuske koja je jako blizu jezgra. Na tom mestu ostaje šupljina koju popunjava jedan od elektrona koji se nalazi na višem energetskom nivou. Ovo naravno dovodi do emisije karakterističnog rendgenskog zračenja. Emitovano zračenje se reapsorbuje u samom kristalu stvarajući nove elektrone (izbačene sa viših orbitala). Kako je energija gama zračenja diskretna i strogo određena, u analiziranom spektru će se pojaviti pik koji ima oblik Gausove funkcije, a njegovom širinom je određena energetska rezolucija detektora. Što je pik uži, to je veća mogućnost detektora da razlikuje fotone bliskih energija. Pored fotoefekta, gama kvant se može i da Komptonovski rasejati u kristalu. Nakon rasejanja, gama kvant ima mogućnost da izađe iz kristala odnoseći deo energije. Dakle, ako je u pitanju interakcija u aktivnoj zapremini detektora putem Komptonovog efekta, samo deo energije će da ostane u kristalu. Impuls stvoren na ovaj način ima manju amplitudu nego impuls koji je posledica fotoefekta. Pošto se ernergija može raspodeliti u različitim proporcijama, na spektru se ovo uočava kao kontinuirana distribucija koja se nalazi na nižim energijama u odnosu na fotopik.

Na slici 3.5 je dat primer spektra Cs-137 snimljen sa NaI(Tl) detektorom. Na spektru uočavamo pik sa energijom od 32keV koji odgovara x zračenju, potom sledi kontinuirana distribucija koja je posledica Komptonovog rasejanja i na energiji od 662keV primećujemo fotopik.

Slika 3.5 Spektar Cs-137

3.2. NaI(Tl) detektor oblika jame

Scintilacioni detektor koji se nalazi u Laboratoriji za nuklearnu fiziku u Novom Sadu, šematski je prikazan na slici 3.6. Navedene dimenzije predstavljaju spoljašnje dimenzije detektora a ne dimenzije kristala NaI(Tl). U NaI(Tl) detektoru oblika jame dimenzija 9``x 9`` ubačen je jedan manji NaI(Tl) detektor dimenzija 3``x 3``. Na ovaj sistem je povezano šest fotomultiplikatora (Slika 3.6).[6]

Slika 3.6.Šema Detektora NaI(Tl)

Slika 3.7.Detektor NaI(Tl) u Laboratoriji za nuklearnu fiziku

Agota Kosoruš Koincidentno sumiranje gama fotona u Nal(Tl) detektoru oblika jame

Signali iz velikog i malog detektora se preko fotomultiplikatora sakupljaju u pojačavaču Canberra model 2022 i kao jedan zajednički signal se vode u Canberra Multiport II Multichanell Analyzer i dalje u kompjuter sa softverom Genie 2000. Pre montiranja ovog sistema, svi fotomultiplikatori su provereni posebno i prilagođeni pomoću tačkastog izvora Cs-137 tako da daju signal na istom kanalu u spektru. Visoki napon na 9``x 9`` NaI(Tl) detektoru je podešen na 1000 V a na 3``x 3`` NaI(Tl) detektoru na 680 V. Bitno je da se ovi naponi tačno podese jer i namjanje odstupanje od 1V može da dovede do širenja i razmazivanja linija u spektru. Da bi se redukovalo ili eliminisalo pozadinsko zračenje ovaj detektor je smešten u olovnu zaštitu cilindričnog oblika sa širinom zidova15cm. Zaštita je sklopljena od segmenata u obliku prstenova i poklopca. Ukupna masa zaštite iznosi 2622kg. Na slici 3.7 a) je prikazan detektor za fotomultiplikatorima okrenutim na gore. Takođe na slici 3.7 b) može da se vidi i olovna zaštita detektora. [6]

NaI(Tl) detektori oblika jame su veoma korisni u niskoenergetkoj spetroskopiji zbog velikog prostornog ugla (približno 4π) pod kojim se mogu detektovati događaji. Upravo zbog geometrije detektora, prvo mora da se odredi zavisnost efikasnosti detekcije ne samo od energije fotona već i od visine izvora u jami. [7]

3.3. GEOMETRIJSKA EFIKASNOST. RAČUNANJE PROSTORNOG UGLA

U ovom radu se analiziraju spektri snimljeni za različite položaje izvora. To znači da se menjala geometrijska efikasnost detektovanja događaja. Pojednostavljena slika jame i jednog tačkastog izvora zračenja je prikazana na slici 3.8.

Slika 3.8.Geometrija jame

Geometrijska efikasnost detektora se određuje za slučaj kada se izvor nalazi na sredini detektora i menja se njegovo rastojanje od dna jame. Prostorni ugao pod kojim tačkasti izvor vidi otvor na detektoru je određen za sve visine izvora počevši od 0cm pa sve do 22cm po koracima od 1cm. Ovaj prostorni ugao Ω' odgovara onoj frakciji zračenja koja izbegne detekticju.

Prvo treba da se odredi prostorni ugao Ω' , koji se lako dobije na osnovu geometrije jame detektora (slika 3.8).

Agota Kosoruš Koincidentno sumiranje gama fotona u Nal(TI) detektoru oblika jame

$$d\Omega' = \sin\theta \ d\theta \ d\varphi \tag{3.6}$$

Kada integralimo ovu jednačinu dobije se

$$\Omega' = -2\pi \cos\theta \tag{3.7}$$

jer inetgral po uglu φ daje 2 π . Ugao θ se dobije na sledeći način: na slici se vidi da je θ ugao između *h* koji označava visinu ozvora i *r* koji označava poluprečnik jame detektora, pa se može napisati sledeća zavisnost:

$$tan\theta = \frac{r}{h} \tag{3.8}$$

Iz (3.8) jednačine sa lako dobije ugao θ pa i $cos\theta$.

Ovaj prostorni ugao koji je ovde označen sa Ω' je prostorni ugao pod kojim zračenje može da izbegne detekciju. Prostorni ugao koji je nama od interesa se dobije kao:

$$\Omega = 4\pi - \Omega' \tag{3.9}$$

Pod ovi prostornim uglom je detektro u stanju da registruje zračenje. Veza između prostornog ugla pod kojim se može detektovati zračenje i geometrijske efikasnosti je:

$$\varepsilon_g = \frac{\Omega}{4\pi} \tag{3.10}$$

Geometrijska efikasnost detekcije je određen za tačkasti izvor koji se nalazi u centru jame. Rezultati su predstavljeni u tabeli 3.1.

oa visine				
H [cm]	Efikasnost			
18	0,89646			
17	0,89065			
16	0,88418			
15	0,87691			
14	0,8687			
13	0,85938			
12	0,84869			
11	0,83636			
10	0,82198			
9	0,80508			
8	0,78501			
7	0,76097			
6	0,73197			
5	0,69695			
4	0,65515			
3	0,60716			
2	0,55729			
1	0,51638			
0	0,5			
-1	0,48362			
-2	0,44271			
-3	0.39284			

Tabela 3.1. Zavisnost efikasnosti

Slika 3.9. Zavisnost prostornog ugla od visine

U tabeli 3.9. *h* prestavlja rastojanje od vrha jame detektora. Na visine od 0cm, efikasnost je 0.5, jer je prostorni ugao pod kojim se može detektovati zračenje tačno 2π . Na osnovu dobijenih vrednosti je nacrtan grafik koji je predstavljen na slici 3.9

4. KOINCIDENCIJA

Ako se u osetljivoj zapremini detekora detektuje više od jednog fotona u vremenskom intervalu koji je kraći od vremenske rezolucije detektora, tada se registruje zbir energija detektovanih fotona.

Ovaj efekat se naziva koincedetno sumiranje i može da se opiše pomoću sledeće formule:

$$E_{sum} = E_1 + E_2 + \dots + E_n \tag{4.1}$$

 E_k -energija k-tog fotona

Jasno je da se ispod pika koji odgovara energiji E_k registruje manje događaja zbog koincidentanog sumiranja a pojavljuje se i nova linija u spektru koja odgovara zbiru sumiranih energija.[4]

Koincidentno sumiranje je veoma izraziti efektak kod detektora oblika jame jer se pod velikim prostornim ugom detektuju događaji. Kao posledica ovog sumiranja, javlja se problem određivanje ukupnog broja fotona i efikasnosti i aktivnosti izvora.[6]

Postoje prave koincidencije, koje se javljaju u slučaju kada jedan izvor emituje fotone u veoma kratkom vremenskom intervalu, i slučajne koincidencije kada fotoni stižu iz različitih izvora i istovremeno se detektuju u osetljivoj zapremini detektora[7].

Koincidentno sumiranje ima veliki značaj u spektrometriji. Kao što je poznato, u gama spektroskopiji se na osnovu analize pikova u snimljenom spektru mogu identifikovati radionuklidi, može da se izračuna aktivnost izvora ili ako su poznati izvori radijacije onda se može odrediti energetska kalibracija spektra.

Aktivnost poznatog izvora se pomoću spektroskopskog merenja može odrediti relativnom metodom. Snimaju se spektri izvora poznate i nepoznate aktivnosti. Koristeći vrednosti odbroja ispod pika totalne apsorpcije gama linija nepoznata aktivnost se računa pomoću formule:

$$A = \frac{N(E)}{N_p(E)} A_p \tag{4.2}$$

 N_p -odbroj ispog gama linije izvora poznate aktivnosti N-odbroj ispod gama linije izvora nepoznate aktivnosti A_p -poznata aktivnost A-nepoznata aktivnost

U slučaju kada se javlja koincidencija odbroji N_p i N se ne mogu tačno odrediti, i na taj način koincidento sumiranje onemogućuje određivanje aktivnosti.

Efikanost detekcije na energiji *E* se bazira na dobro poznatoj formuli:

$$\varepsilon(E) = \frac{N(E)}{A \cdot p_{\gamma}(E)} \tag{4.3}$$

gde je *A* -trenutna aktivnost izvora *N*-odbroj ispod pika totalne apsorpcije $\varepsilon(E)$ -efikasnost detekcije na energiji E $p_{\gamma}(E)$ -kvanti prinos

Kao i u predhodnom slučaju i ovde se javlja problem zbog gubljenja događaja iz fotovrha zbog sumiranja gama fotona.

5. EKSPERIMENT

U ovom radu se proučava pojava koincinentnog sumiranja. Kao što je opisano u poglavju 4, ovaj nepoželjan efekat vodi do gubitaka detektovanih impulsa iz linije totalne apsorpcije koji se analizira u spektrima a samim tim do pogrešnih rezulata koji se dobijaju analizom tih pikova. U ovom delu rada će biti predstavljeni eksperimentalni rezultati koji su dobijeni snimanjem spektara radioaktvnih izvora u NaI(Tl) detektoru oblika jame. Merenja su vršena za različite položaje izvora u jami detektora. Rezultati dobijeni obradom spektara su upoređeni i prikazani grafički. U zavisnosti od jačine raspoloživih izvora, snimanje spektara se vrši na samoj kapi detektora (unutar jame detektora) ili na nekom određenom rastojanju (10 cm, 25 cm...).

Da bismo dobili preliminarnu informaciju o mogućoj zavisnosti registrovanih odbroja od geometrijskih uslova merenja, snimljeni su spektri tačkastih izvora Mn-54,Co-60, Na-22 na različitim rastojanjima od dna jame detektora, za slučaj kada je izvor bio na sredini detektora kao iza slučaj kada je izvor bio pored zida jame detektora, i na taj način su određene zavisnosti promene odbroja od položaja tačkastog izvora.[7] Kao držač izvora unutar jame detektora su poslužile dve cevi od debelog kartona, od kojih je jedna služila kao držač izvora a druga kao marker sa obeleženim rastojanjem od dna jame detektora (u cm). Položaj izvora In-116 se ne menja u jemi detektora. Zbog relativno kratkog perioda poluraspada, ovaj izotop je pogodan za posmatranje zavisnosti verovatnoće za koincidentno sumiranje od aktivnosti izvora.

Prva stvar koja treba da se odredi je energetska kalibracija. Pomoću programa Aptec se može kalibrisati spektar ukoliko se zadaju određeni parametri, brojevi nekih kanla i njima odgovarajuće energije. Za ovu kalibraciju su se koristili u svim slučajevima isti parametri (Tabela 5.0). U spektru In-116 se lako identifikuje linija koja se dobije detekcijom gama zračenja energija 416.92 keV. Mn-54 emituje gama zračenje energije 834.83 keV i kao treći parametar koristi se gama linija Na-22. Zabeleže se kanali u kojima se registuju ovi fotoni i na osnovu poznatih vrednosti energija i broja kanala se vrši energetska kalibracija. S obzirom da je zavisnost kanal-energija lenearna dooljne su tri taček za zadovoljavajuću kalibraciju.

Izvor	Energija	Broj kanala
In-116	416.92	43
Mn-54	834.826	85
Na-22	1274.52	132

Tabela 5.0) Energetska	kalibracija
------------	--------------	-------------

U slučaju analize spektra Co-60 se pojavila potreba za kalibracijom na oblik pika. Kalibrisanje spektara na oblik pika će detaljnije biti opisano u konkretnim slučajevima. Tu je bilo neophodno razdvojiti dve linije u dubletu.

Snimanje spektara je izvršeno za sva četiri izvora u koracima po 1 cm, počevši od 0 cm (izvor na kapi unutrašnjeg 3``x3`` NaI(Tl) detektora) pa sve do 20 cm kada se izvor već nalazi na 2 cm izvan jame detektora. U nekim slučajevima zbog oblika izvora su se merenja vršila od 2cm do 22cm.

U daljem radu će se pojedinačno analizirati rezultati dobijeni snimanjem spektara izvora Mn-54, Co-60, Na-22, In-116.

5.1. Mn - 54

Mn -54 je radiaktivni izotop mangana. Pozitronskim raspadom i zahvatom elektrona se raspada na Cr-54 koji nakon zahvata elektona nastaje u pobuđenom stanju sa spinom 2+ dok se pozitronskim rapsadom dobije Cr-30 u osnovnom stanju(Slika 5.2). Kad Cr-54 sa 2+ stanja prelazi u osnovno stanje emituje se gama zračenje energije 834.848 *keV* (Tabela 5.2).

Slika 5.2. Šema raspada Mn-54

Aktivnost izvora Mn-54 se računa preko dobro poznatog zakona radiaktivnog raspada (formula 4.11). Svi potrebni podaci su predstavljeni u tabeli 5.3.

$$A = A_0 e^{-\frac{\ln 2}{T_{1/2}}t}$$
(4.11)

gde je: A_0 -početna aktivnost izvora $T_{1/2}$ -period poluraspada t-proteklo vreme

Mn-54				
datum	13.11.2013.			
pozicija izvora	centriran			
vreme merenja	600s			
datum proizvodnje	15.02.2005.			
proteklo vreme	8.756 god			
period poluraspada	0.8556 god			
početna aktivnost	473 kBq			
trenutna aktivnost	453.265 Bq ¹			

Tabela 5.3. Podaci o izvoru Mn-54

Rezultatai su prikazani u tabeli 5.4. Na osnovu tabele 5.4 je nactran grafika zavisnosti odbroja od visine izvora u jami detektora (slika 5.3).

	100010 5.1. 1111 51					
l[cm]	Ν					
0	134790					
1	131174					
2	127146					
3	126431					
4	125429					
5	124138					
6	122537					
7	121205					
8	119138					
9	115738					
10	111475					
11	107879					
12	103995					
13	96618					
14	89157					
15	81358					
16	71055					
17	63588					
18	55030					
19	48348					
20	40988					

Slika 5.3. Zavisnot efikasnsti detektora od visine za Mn-54

Pomoću dobijenog grafika lako možemo da zaključimo da je odbroj najveći u slučaju kada je izvor duboko unutar jame, zatim sledi sporiji pad do 10 cm visine, a potom odbroj naglo opada sa povećanjem visine. Upoređujuću grafike 3.9 i 5.3 može da se zaključi da se odbroj ispod pika totalne apsorpcije izvora Mn-54 opada na isti način kao geometrijska efikasnost.

5.2. *Co* – 60

Co-60 je radioaktivni izotop kobalta, koji se β^- raspadom raspada na Ni-60. Nakon ovog beta raspada nastaje Ni-60 u pobuđenom stanju sa spinom 4+. Osnovo stanje se dobije emisijom gama zračenja. Pošto postoje 2 pobuđena nivioa emituju se gama zraci sa dve različite energije, $E_{\gamma 1} = 1173.2 \ keV$ i $E_{\gamma 2} = 1332.5 \ keV$ (slika 5.4). Energije i kvantni prinosi ovih i još nekih prelaza su prikazani u tabeli 5.5.

Slika 5.4. Šema raspada Co-60

Na osnovu podataka sa šeme raspada Co-60, očekuje se da će se u spektru pojaviti 2 gama linije (slika 5.5)

Slika 5.5. Spektar Co-60

Izvor zračenja je nepoznate aktivnosti, ali se na osnovu poznatog datuma proizvodnje i početne aktivnosti može odrediti trenutna aktivnost po formui:

$$A = A_0 e^{-\lambda t} \tag{5.1}$$

A-trenutna aktivnost λ -konstanata raioaktivnog raspada A_0 -početna aktivnost t-proteklo vreme

Tabela 5.6. Podaci o izvoru Co-60				
Co-60				
datum	11.11.2013.	18.11.2013.		
pozicija izvora	centriran	sa strane		
vreme merenja	500s	500 s		
datum proizvodnje	01.06.1976.	01.06.1976.		
proteklo vreme	37.45 god	37.45 god		
period poluraspada	5.271 god	5.271 god		
početna aktivnost	384,8 kBq	384,8 kBq		
trenutna aktivnost	2.795 kBq	2.795 kBq ²		

Svi podaci o izvoru i o aktivnosti su predstavljeni u tabeli 5.6.

Dve gama linije Co-60 su bliske i - u spektru nisu razdvojene. Da bi se odredio odbroj ispod ta dva pika pojedinačno mora se koristiti složenija kalibracija. U ovom slučaju sem energetske izvršena je i kalibracija na oblik pika. Kao što je napisano u poglavju 3.1.2 svaki pik ima odgovarajući FWHM (širina na polovini visine). Ova vredost se menja sa promenom energije tj. povećava se sa porastom energije. Dakle, potrebne su bar 2-3 vrednosti FWHM na određenim energijama. Ove vrednosti su određene iz jednostavnih spektara jer se sa sigurnišću zna da su to singletne linije. Takave spektre imaju Mn-54, Na-22 na visini od 20 cm gde se najbolje vidi linija energije 1274 keV, i In-116 koji ima jedan pik na energiji od 416 keV. Na osnovu tih podataka se dobijaju parametri za kalibraciju. (Tabela 5.7). S obzirom da je zavisnost kanalenergija lenearna dooljne su tri taček za zadovoljavajuću kalibraciju. Kalibracija se vrši pomoću pregrama Aptec.

Tabela 5.7 Kalibracija spektre Co-60

The end end Thanke Herbit Spennie Co so					
Izvor	Energija	Broj kanala	FWHM		
In-116	416.92	43	6.60132		
Mn-5	834.826	85	7.095		
Na-22	1274.52	132	8.2817		

Dobijena je sledeća kalibracija:

FWHM (Channels) = 5.678776456064111 +0.01900650133139668(ch) +0(ch)² +0(ch)³ +0(ch)⁴ +0(ch)⁵

Point	Centi Channel	roid keV	FWHM ((Measured	Calculated	FWHM (H Measured	(eV) Calculated	Deviation
1	43.00	420.92	6.601	6.496	63.601	62.587	1.59 %
2	85.00	825.58	7.095	7.294	68.357	70.278	-2.81 %
3	132.00	1278.40	8.282	8.188	79.791	78.884	1.14 %
					Average	e Deviation	1.85 %

Slika 5.6 Kalibracija Co60

U snimljenom spektru Co-60 su se pojavili pikovi koji odgovaraju gama linijama ovog radionuklida, i zbog velike verovatnoće detektovanja ta dva fotona u vremenskom intervalu koji je manji od vremenske rezolucije detektora pojavlao se i fotolinija energije 2505 keV (slika 5.7). Imamo slučaj koincidentnog sumiranja. Oređeni su intenziteti pikova od 1173 keV, 1332 keV kao i od sumeranog pika 2505 keV. Rezultati merenja su predstavljeni u tabeli 5.8, i na osnovu ove tabele su nacrtani grafici na slici 5.8.

Slika 5.7 Dobijeni spektar Co-60

Visina [cm]	1173 keV	1332 keV	2505 keV	1173 keV	1332 keV	2505 keV
		Sa strane		Na sredini		
0				124309	105986	272174
1	133423	116759	271669	132504	113249	253979
2	133639	111373	263291	140735	117758	244965
3	139604	123657	265250	147837	126764	238411
4	141033	122607	262545	160059	141959	233397
5	145872	132548	261156	158603	139664	232620
6	147562	132870	258388	159750	138481	228068
7	149242	133979	252763	163212	144659	222372
8	154749	140061	241923	166760	147589	211860
9	157403	142058	234140	169510	151089	203634
10	163131	148332	217678	174421	155765	192524
11	166614	151205	200143	179422	162506	175970
12	169962	153420	182922	182698	164669	161499
13	175978	158204	162719	187098	168524	142304
14	179403	161176	139207	190301	169826	121757
15	190437	180354	111895	189737	170235	102174
16	179539	160027	83828	185891	165741	80515
17	171234	151518	59575	177927	159464	62786
18	172293	155194	44597	169340	151870	49078
19	148994	131996	29466	159142	142467	35969
20	133264	118328	21387	143407	128290	26774
21	121714	108258	16531			

Tabela 5.8. Zavisnost odbroja od visine izvora Co-60

Slika 5.8. a) Zavisnost odbroja od visine izvora Co-60 za sve linije kada se izvor nalazi na sredini datektora; b) sa strane detektora ;c) zavisnost odbroja od visine za slučaj linije energije 1173 keV ;d) za energiju 1332 keV; e) upoređivanje odbroja na energiji 2505 keV; f) razlike odbroja za sve 3 linije

Agota Kosoruš Koincidentno sumiranje gama fotona u Nal(Tl) detektoru oblika jame

Pomoću dobijenih grafika (sliak 5.8) se može zaključiti da je na dnu jame najveća verovatnoća sumiranjadva gama fotona Co-60 jer je geometrijska efikasnost za detektovanje fotona energija 1173 keV i 1332 keV najveća. U ovom slućaju se javlja prava koincidencija. Sa smanjenjem geometrijske efikasnosti smanjuje se i broj registovanih događaja u kanalu kojoj odgovra energija od 2502 keV.(Slika 5.7.a) i b))

Broj detektovanih događaja ispod gama pikova Co-60 se prvo povećava sa visinom i postiže svoj maksimum na visini od 14 cm , dok na većim visinama opada. Kada su izvršena merenja na visinama od 19cm i 20 cm izvor se nalazio van jame detektora (dubina jame je 18 cm). Upravo je zbog toga zanimljiv rezultat koji pokazuje da je odbroj praktično isti kao pri dnu jame.

Na grafikonima c) i d) na slici 5.7 su upoređeni odbroji gama linija Co-60 na različitim rastojanjima izvora od dna jame za slučaj kada je izvor bio na sredini i na obodu jame. Oni se menjaju na isti način, razlikuju se samo u odbroju.

Na slici f) se vidi da je verovatnoća sumiranja dva gama fotona veća kada se izvor nalazi na sredini detektora do 15 cm, na većim rastojanjima izvora od dna jame se izjednače odbroji.

Može se zaključiti, da u ovakvom slučaju, najbolji položaj izvora je negde između 12-15 cm visine, gde broj detektovanih događaja ispod gama pikova Co-60 postižu maksimum a verovatnoća koincidentnog sumiranja linija mala i slabo utiče na pojedinačne linije u spektru.

Na - 225.3.

Na-22 je radioaktivni izotop natrijuma, koji pozitronskim raspadom i elektronskim zahvatom raspada na Ne-20. Nakon ovog raspada se Ne-20 nalazi u pobuđenom stanju sa spinom 2+. Da bi prešao u osnovno stanje emituje gama zračenje energije 1274.53 keV(Slika 5.9). Kao što je rečeno Na-22 je pozitronski emiter. Emitovana antičestica se na kraju svoje putanje kada izgubi svu svoju kinetičku energiju anihlira. Pri tome se kao što je opisano u polavlju 2.3 emituju 2 fotona energija 511 keV pod uglom od 180°. U spektru se očekuje pojava pika koja odgovara anihilaciji. Ona se prepoznaje po velikoj širini u poređenju sa pikovima koji odgovaraju gama zračenju. Spektar Na-22 snimljen malim detektorom bez sumiranja je predstavljen na slici 5.10.

Podaci o energiji gama zračenja i kvantni prinosi Na-22 su prikazani u tabeli 5.10.

7	abel	la 5	.9 N	la-22

Slika 5.9. Šema raspada Na-22

Slika 5.10 Spektar Na-22 Izvor Na-22, čiji spektar treba da se analizira je nepoznate aktivnosti. Aktivnost ovog izvora se ne može

odrediti po formuli 5.1, jer ne postoje podaci o datumu prozvodnje i o početnoj aktivnosti. Izvor se može smatrati tačkastim. U tom slučaju poznavajući efikasnost detekcije na energiji emitovanog gama zračenja i za geometrijske uslove pod kojim se snimaju spektri, moguće je odrediti nepoznatu aktivnost izvora.

U germanijumskom detektoru je snimljen spektar Na-22 na visini od 15cm.

Aktivnost ovog kalibracionog izvora se određuje po formuli 5.1, isto kao i u prethodna 2 slučaja. Svi podaci o ovom izvoru su prikazani u tabeli 5.10

	Na-22	
datum	15.11.2013.	15.11.2013.
pozicija izvora	centriran	sa strane
vreme merenja	500s	500s
datum proizvodnje	15.02.2005.	15.02.2005.
proteklo vreme	8.745 god	8.745
period poluraspada	2.6019 god	2.6019 god
početna aktivnost	499 kBq	499 kBq
trenutna aktivnost	48.645	48.645 kBq ³

Aktivnost izvora nepoznate aktivnosti se može odrediti i po fomuli:

$$A = \frac{N}{\varepsilon \cdot p_{\gamma} \cdot T} \tag{5.2}$$

 ε -efikasnost detektora *N*-intenzitet gama linije, određuje se sa spektra p_{γ} -kvantni prinos za fotone posmatrane energije *A*-aktivnost izvora

Ako je kalibracioni izvor istog oblika (tačkast) kao onaj izvor čija se aktivnost određuje, onda samo treba podesiti vremena merenja da budu ista, čime se postiže da se formule oblika 5.2 za ova dva izvora razlikuju samo u vrednostima intenziteta gama linije i aktivnosti izvora.

Iz spektra kaibracionog izvora se dobijaju se sledeći podaci:

Tabela 5.11 Na-22		
Ν	<i>A</i> [kBq]	$p_{\gamma}[\%]$
41275	48.646	99.944 14

Usput se može odrediti i efikasnost detekcije fotona energije 1274.53 keV:

$$\varepsilon = 0.0017 = 0.17\%$$

U istom germanijumskom detektoru na visini od 15 cm od dna šuljine detektora e pod istim uslovima snimljen spektar Na-22 nepoznate aktivnosti.

Aktivnost ovog izvora se određuje po sledećoj formuli:

 $A_x = \frac{N_x}{N}A \tag{5.3}$

A-aktivnost kalibracionog izvora

N-intenzitet gama linije kalibracionog izvora (tabela 5.12)

 A_x -nepoznata aktivnost

 N_x -intenzitet gama linije izvora nepoznate aktivnosti (određuje se iz spektra)

Tabela 5.12 Odbroj izvora Na-22 poznate aktivnosti		
Ν	ε [%]	p_{γ} [%]
23707	0.17	99.944 14

Aktivnost izvora Na-22: $A_x = 27.940 \ kBq$

Ispostavilo se da je spektar najkomleksniji u sličaju izvora Na-22. Zbog konfiguracije detektora (oblika jame) u spektrima snimanim na 9^xx9^x NaI(Tl) u spektrima su prisutne i linije 1022 keV(2 x 511 keV), 1785 keV(gama+511 keV) i slabe linije na 763 keV(gama-511 keV), 1533 keV(3 x 511 keV), 2037 keV(2 x gama - 511 keV) i 2296 keV (763 keV+ gama).

Na slici 5.10 je prikazan spektar tačkastog izvora Na-22 u centru jame. Sperktar je snimljen na visini od 0cm pa sve do 20 cm po koracimo od 1 cm. Sa slike je sasvim jasno da je ovde problem pri obradi predstavljalo razdvajanje pikova u spektru.

Slika 5.11 Spektar Na-22 snimljen kada je izvor bio na dnu jame detektora

visina [cm]	511 keV	763 keV	1022 keV	1274 keV	1785 keV	2037 keV	2296 keV	1533 keV
0	266744	154036	1,17E+06	595199,00	620933	170171	2,18E+06	
1	311815	157920	1,19E+06	648435,00	653593	196304	2,07E+06	
2	357752	175079	1,27E+06	665937,00	631370	228421	1,82E+06	
3	366892	177084	1,28E+06	723084,00	586041	196803	1,80E+06	
4	398026	184023	1,27E+06	667882,00	593858	177908	1,74E+06	
5	427599	168906	1,29E+06	687891,00	607512	184427	1,78E+06	
6	445905	185587	1,38E+06	665431,00	627407	181169	1,71E+06	
7	485232	200533	1,33E+06	609444,00	701744	165282	1,78E+06	
8	607831	184582	1,36E+06	608617,00	763815	143419	1,60E+06	
9	782738	183972	1,27E+06	602283,00	867275	166630	1,40E+06	
10	923313	199166	1,29E+06	567384,00	1,01E+06	173888	1,29E+06	
11	1,20E+06	245544	1,19E+06	607552,00	1,17E+06	198205	998698	
12	1,48E+06	339368	1,08E+06	558085,00	1,25E+06	169845	909209	
13	1,88E+06	363265	924813	570493,00	1,41E+06	157884	750394	63161,00
14	2,44E+06	390076	711645	533609,00	1,51E+06	171507	417885	71559,00
15	3,10E+06	441040	482405	524277,00	1,62E+06	182935		84325,00
16	3,89E+06	434431	148606	553447,00	1,58E+06	68736		73507,00
17	4,12E+06	227462		646551,00	1,16E+06			86941,00
18	4,19E+06	194489		646551,00	1,06E+06			127307,00
19	4,03E+06	177845		727449,00	864113			129541,00
20	3,79E+06	151045		815848,00				131047,00

U tabeli 5.13 su prikazani rezultati dobijeni za odbroj na različitim visinama izvora.

Tabela 5.13 Na-22 -sredina detektora

Kao što se vidi linija energije 1022 keV nestaje kada je izvor na visini od 17 cm. To znači da na toj visini praktično nema sumiranja anihilacionih linija ili je verovatnoća da se to desi jako mala. Pik energije 1785 keV koji odgovara koincidentnom sumiranju anihilacione linije i gama linije Na-22 nestaje tek na visini od 20 cm. Dakle, čak i kada se izvor nalazi 1cm iznad jame, postoji verovatnoća za sumiranje te dve linije. Sabiranjem gama linije Na-22 i linije na energiji od 763keV nastaje linija koja se pojajvljuje na energiji 2037 keV. Ona je prisutna u spektru sve do visine od 17 cm. Pik energije 2296 keV koji nasaje kao zbir linija energije 1274 keV i 1022 keV, nestaje prvi sa spektra već na visini od 15 cm. Kada je izvor na rastojanju od 13 cm od dna jame detektora pojavljuje se linija energije 1533 keV, koji je naravno bio prisutan i na nižim rastojanjima, ali je njen intenzitet mali i bila je sakrivena ispod mnogo intenzivnijih pikova.

U tabeli 5.14 su predstavljeni rezultati koji se dobijeni u slučaju kada je izvor bio pored zida jame detektora.

	-		101 22 501 51		
visina	511 keV	1022	1274	1785	2296
[cm]	JIIKev	keV	keV	keV	keV
2	269220	1,12E+06	615581	419762	2,15E+06
3	364669	1,20E+06	676739	440090	2,18E+06
4	305854	1,21E+06	700344	490216	2,25E+06
5	321923	1,49E+06	589925	546005	1,99E+06
6	385187	1,15E+06	598282	571096	2,03E+06
7	390258	1,19E+06	636239	628527	1,94E+06
8	414136	1,21E+06	599439	661983	1,71E+06
9	551506	1,27E+06	621932	793006	1,67E+06
10	655941	1,26E+06	534893	790088	1,37E+06
11	738965	1,20E+06	506877	643873	1,22E+06
12	983869	1,10E+06	509182	993756	1,07E+06
13	1,25E+06	1,06E+06	502408	1,06E+06	890574
14	1,27E+06	1,02E+06	458828	1,12E+06	843478
15	2,09E+06	734162	418082	1,20E+06	422189
16	3,04E+06	362938	452628	1,42E+06	149715
17	3,90E+06	241043	436415	1,41E+06	
18	3,89E+06	183338	479466	1,09E+06	
19	3,54E+06		614820	840289	
20	3,19E+06		715677	541416	
21	2,84E+06		707533	407069	
22	2,62E+06		707072	284682	

Tabela 5.14 Na-22 sa strane

Linija 1022 keV je rezultat pravih koincidencija dok su ostali pikovi slučajne koincidencije a jako su izraženi zbog relativno visoke aktivnosti izvora.

Linija energije 1022 keV, koja odgovara sumiranju anihilacionih linija je prisutna i na visini od 18 cm, kad je izvor pri vrhu jame detektora, dakle detektuje se na većoj visini nego u predhodnom slučaju, kao i linija energije 2296 keV.

Na osnovu podataka iz tabele 5.14 su nacrtani grafici koji su predstavljeni na slici 5.12.

Slika 5.12 a) i b) zavisnost odbroja svih linija od visine u slučaju kada je izvor bio u centru detektora i sa starane c) upoređivanje odbroja ispod gama linije Na-22 d) upoređivanje anihilacionih linija

Na osnovu dobijenih rezultata možeme da se zaključi da:

- Linija 1022 keV ravnomerno opada slično kao i 2505 keV. Sumiranje je sve slabije kada visina raste, jer jedan od fotona energije 511 keV izbegne detekciju.
- Linija 511 keV raste do određene visine, slično kao 1173 keV i 1332 keV kod Co-60 ali mnogo izraženije. Na dnu jame je mala verovatnoća da jedan foton pobegne pa se skoro sve sumira. Zato je mala verovatnoća da se registruje foton energije 511 keV.
- Linija 1274 keV se ne menja toliko koliko linija 511 keV. Fotoni energije 511 keV kasne u odnosu na gama liniju Na-22, njihovo sumiranje je slučajna koincidencija. Na velikim visinama raste intenzitet linije 1274 keV jer se gama fotoni slabije sabiraju sa fotonima energije 511 keV.
- Linija 1785 keV (1274 keV+511 keV) pri kraju raste verovatno jer na velikim visinama postoje fotoni 511 keV koji su sami jer je drugi foton od 511 keV pobegao iz jame detektora. Na velikim visinama rastu samo oni pikovi koji nastaju sabiranjem sa fotonima energije 511keV slučajnom koincidencijom.
- Linija 1022 keV+1274 keV opada kao i linija energije 1022 keV

5.4. In – 116

Tanka ploča indijuma je bila izložena zračnju u fototnskom snopu akceleratora. Tom prilikom je došlo do stvaranja In-116 zahvatom fotoneutrona kojih ima u okolini akceleratora. Period poluraspada ovog izotopa indijuma je 54,29 minuta. Izvršeno je 5 merenja u NaI(Tl) detektoru oblika jame gde je izvor bio . Jasno je da je aktivnost uzorka bila najveća kada se snimao prvi spektar a najmanja pri snimanju petog spektra. Rezultati merenja su prikazani u tabeli 5.15.

			01	3
Redni 416 keV	1097	1293	2390	
broj	416 KeV	keV	keV	keV
merenja		Odl	oroj	
1	33977	55687	76193	146514
2	23640	23236	37576	94518
3	12750	21730	28353	62091
4	9626	16284	20801	48820
5	4659	10112	12288	29494

Tabela 5.15. Podaci iz snimljenog spektra indijuma

Na osnovu prikazanih rezultata se dobijaju grafici koji su predstavljeni na slici 5.12. Na slici 5.13 a) - se vidi kako se menja odbroj ispod pikova koji odgovaraju gama linijama indijuma (416 keV, 1097 keV i 1293 keV) i linije koja odgovara koincidentnom sumiranju fotona energija 1097 keV i 1293 keV. Analiza ovih spektara nije bio jednostavan zadatak i koristila se i kalibracija na oblik pikova (poglavje 5.2, slika5.6). Nacrtan je grafik 5.12 b), na kojoj je predstavljena odnos između linije koja odgovara koincidentom sumiranju ta dva fotona i zbira odbroja dve gama linije In-116 (1097 keV i 1293 keV).

Broj detektovanih događaja se smanjuje sa opadanjem aktivnosti, kao što se očekuje (Slika 5.13 a)) kao i verovatnoća da dođe do koincidentnog sumiranja. Na grfiku 5.12 b) -se vidi kako odnos odbroja između između sumarnog pika i zbira odbroja dve gama linije In-116, energije 1097 keV i 1293 keV pokazuje spori rast ovag odnosa, što ukazuje na to da odbroj ispod pika sumiranja ne opada toliko brzo kao rispod gama linija In-116.

b)

Slika 5.13 a)zavisnot odbroja ispod gama linija In-116 i pika koja odgovara sumiranju dve gama linije od aktivnosti izvora b) odnos između zbira odbroja pika koji nastaje sumiranjemi dva gama pika In-116 (1093 keV i 1293 keV)

6. ZAKLJUČAK

Kao što je pokazano, broj detektovanih događaja u velikom NaI(Tl) detektoru oblika jame zavisi od pozicije izvora unutar jame detektora, od aktivnosti samog izvora, broja fotopikova u spektru a i od šeme raspada snimanog izvora. Osnovni uzrok ovome je koincidento sumiranje fotona.

Kad je radioaktivni izvor relativno slab, sa malom brzinom brojanja, tada postoji veoma mala verovatnoća sumiranja gama linija u spektru ili, kao što je pokazano na primeru Mn-54, ponekad uopšte ne dolazi do sumiranja fotona, pa se dobijaju relativno jednostavni spektri.

Sada će biti navedeni najbitniji zaključci:

- U slučaju Mn-54 se nije javljala slučajna koincidencija. Izvor Co-60 je bio slab. Upravo zbog toga se javlja samo prava koincidencija dva gama fotona. Prave koincidencije opadaju sa visinom jer se smanjuje geometrijska efikasnost.
- Obrnuta zavisnost intenziteta linije 511 keV u spektru Na-22 od geometrijske efikasnosti javlja zbog veće verovatnoće detektovanja jednog fotona energija 511 keV. Čist fotopik, bez koincidentnih sumiranja može se dobiti samo u slučaju da se radioaktivni izvor nalazi van jame detektora.
- Zbog istih geometrijskih uslova eksperimenta pri merenju In-116 ne dolazi do značajne promene odbroja ispod pika koji odgovara pravim koincidencijama.

Na osnovu analize snimljenih spektara može se zaključi da je opadanje intenziteta linije koincidentnog sumiranja u slučaju pravih koincidencija prvenstveno poruzrokovano promenom geomtrijske efikasnosti detektora, i da jeveliki NaI(Tl) detektor oblika jame najpogodniji za snimanje spektara izvora male aktivnosti i relativno jednostavne šeme raspada. U ostalim slučajevima verovatnoća koincidentnog sumiranja može da postane značajna i na taj način se otežava određivanje efikasnosti detektora i aktivnosti uzoraka.

7. LITERATURA

[1] Jan Hansman, Dusan Mrdja, Istvan Bikit, Jaroslav Slivka, Kristina Bikit, Jovana Nikolov, Sofija Forkapic, Natasa Todorovic- ENVIRONMENTAL RADIOACTIVITY MEASUREMENT BY NaI(Tl) *CALIBRATED WITH GEANT4 SIMULATION*

[2]Krmar, Miodrag "Uvod u Nuklearnu Fiziku" Univerzitet u Novom Sadu, Prirodno-Matematički Fakultet, Departman za Fiziku, Novi Sad (2013)

[3]Pivnički, Tatjana "Određivanje efikasnosti HPGe detektora u niskoenergetskom opsegu", Diplomski rad, Departman za fiziku, Novi Sad (2012)

[4] Octavian Sina-True Coincidence Summing Corrections – Theory, Workshop, Metodi avanzati di spettrometria gamma, Milano, Italia

[5] http://www.ehs.washington.edu/rso/calculator/activity_calc.shtm (20.11.2013)

[6]Jan Hansman, Miodrag Krmar, Ágota Koszorús, Brankica Andjelic - Dependence of well type NaI(Tl) detector efficiency from source position, IV. Terrestrial Radionuclides in Environment International Conference on Environmental Protection, Veszprem, Hungary

[7] Jan Hansman, Dusan Mrdja, Jaroslav Slivka, Miodrag Krmar, Istvan Bikit -Efficiency study of a big volume well type NaI(Tl) detector by point and voluminous sources and Monte-Carlo simulation

[8] http://nucleardata.nuclear.lu.se/toi/ (20.11.2013)

[9] Jan Hansman, Ištvan Bikit, Jaroslav Slivka, Miroslav Vesković, Miodrag Kramar, Nataša Todorović, Dušan Mrđa, Sofija Forkapić, Jovana Nikolov-Testiranje 9``x 9`` NaI(Tl) spektrometra oblika jame

8. BIOGRAFIJA

Agota Kosoruš je rođena 20. avgusta 1991. godine u Zrenjaninu, Srbija. Osnovnu školu je pohađala u Novom Bečeju. Gimnaziju opšteg smera je završila u Bečeju. Po završetku srednje škole 2010. godine upisala je studije fizike na Departmanu za fiziku Prirodno-matematičkog fakulteta u Novom Sadu.

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET

KLJUČNA DOKUMENTACIJSKA INFORMACIJA

Redni broj:	
RBR	
Identifikacioni broj:	
IBR	
Tip dokumentacije:	Monografska dokumentacija
TD	
Tip zapisa:	Tekstualni štampani materijal
TZ	
Vrsta rada:	Diplomski rad
VR	
Autor:	Agota Kosoruš
AU	
Mentor:	Prof. dr Miodrag Krmar
MN	
Naslov rada:	Koincidentno sumiranje γ fonota u Nal(Tl) detektoru oblika jame
NR	
Jezik publikacije:	srpski (latinica)
JP	
Jezik izvoda:	srpski/engleski
II	
Zemlja publikovanja:	Srbija
ZP	

Agota Kosoruš	Koincidentno sumiranje gama fotona u Nal(Tl) detektoru oblika jame
---------------	--

Uže geografsko područje:	Vojvodina
UGP	
Godina:	2014
GO	
Izdavač:	Autorski reprint
IZ	
Mesto i adresa:	Prirodno-matematički fakultet, Trg Dositeja Obradovića 4, Novi Sad
MA	
Fizički opis rada:	
FO	
Naučna oblast:	Fizika
NO	
Naučna disciplina:	Nuklearna fizika
N D Predmetna odrednica/ ključne reči:	gama spektroskopija, Nal(Tl) detektor oblika jame, koincidentno sumiranje
PO	
UDK	
Čuva se:	Biblioteka departmana za fiziku, PMF-a u Novom Sadu
ČU	
Važna napomena:	nema
VN	
Izvod:	U ovom radu se proučava pojava koincidentog sumiranja gama fotona u
IZ	izvora Mn-54, Co-60, Na-22, In-116 u jami detektora. Rezultati dobijeni obradom spektara su upoređeni i prikazani grafički.

Datum prihvatanja teme od NN veća:

DP

Agota Kosoruš Koincidentno sumiranje gama fotona u Nal(Tl) detektoru oblika jame

Datum odbrane:

DO

Članovi komisije:

ко

Predsednik:	Prof. dr. Stevica Đurović
član:	Prof dr. Nataša Todorović
član:	Porf dr. Miodrag Krmar

Agota Kosoruš Koincidentno sumiranje gama fotona u Nal(Tl) detektoru oblika jame

UNIVERSITY OF NOVI SAD

FACULTY OF SCIENCE AND MATHEMATICS

KEY WORDS DOCUMENTATION

Accession number:	
ANO	
Identification number:	
INO	
Document type:	Monograph publication
DT	
Type of record:	Textual printed material
TR	
Content code:	Final paper
сс	
Author:	Agota Kosoruš
AU	
Mentor/comentor:	
MN	
Title:	Coinicidence summing of gamma photons in well type NaI(TI) detector
ті	
Language of text:	Serbian (Latin)
LT	
Language of abstract:	English
LA	
Country of publication:	Serbia

СР	
Locality of publication:	Vojvodina
LP	
Publication year:	2014
РҮ	
Publisher:	Author's reprint
PU	
Publication place:	Faculty of Science and Mathematics, Trg Dositeja Obradovića 4, Novi Sad
РР	
Physical description: PD	
Scientific field:	Physics
SF	
Scientific discipline:	Nuclear physics
SD	
Subject/ Key words:	Gamma spectroscopy, well type Nal(Tl) detector, coincidence summing
SKW	
UC	
Holding data:	Library of Department of Physics, Trg Dositeja Obradovića 4
HD	
Note:	none
Ν	
Abstract:	This paper describes how well type NaI/TI) detector detects photons of
АВ	radioactive point source and shows how the number of detected events depends on the position of the source. To avoid large dead time, because large detector efficiency, it were used old/weak point sources with relatively small radioactivity of couple thousands Bq. Point sources with desirable are Mn-54, Co-60 and Na-22 and In-116. Results for single gamma lines and also for coincidence summing gamma lines are presented.

Accepted by the Scientific Board:

ASB

Defended on:

DE

Thesis defend board:

DB

President:	Prof. dr. Stevica Đurović
Member:	Prof dr. Nataša Todorović
Member:	Porf dr. Miodrag Krmar