

Univerzitet u Novom Sadu Prirodno-matematički fakultet Departman za fiziku

Suzana Mijić

Master rad

Novi Sad, 2017

Univerzitet u Novom Sadu Prirodno-matematički fakultet Departman za fiziku

Karakterizacija fonskog spektra planarnog HPGe detektora bez zaštite

-master rad-

Mentor : Prof dr Dušan Mrđa Kandidat: dipl.prof.fizike SuzanaMijić

Novi Sad, 2017

Ovom prilikom želim da se zahvalim mom mentoru, profesoru na Prirodno-matematičkom fakultetu, **Dr Dušanu Mrđi**, prije svega na izboru master teme, predivnoj saradnji, sugestijama i savjetima koje su mi pomogli da poboljšam realizaciju master rada.

Ovaj rad posvećujem porodici koja predstavlja najveći oslonac u mom životu.

Autor

SADRŽAJ

1. Uvod	. 1
2. Interakcija zračenja sa materijom	. 3
2.1 Gama zračenje	. 3
2.2 Fotoelektrični efekat	. 5
Slika 5, Atenuacioni koeficijent različitih materijala	. 7
kao funkcija energije gama zračenja	. 7
2.3 Komptonovo rasijanje	. 7
2.4 Kreacija parova	. 9
2.5 Totalni atenuacioni koeficijent	10
3. Radioaktivnost	12
3.1 Zakon radioaktivnog raspada	12
3.2 Aktivnost	13
3.3 Prirodni radioaktivni nizovi	14
3.4 Sekularna ravnoteža1	15
4. Kosmičko zračenje	17
4.1 Primarno kosmičko zračenje	17
4.2 Sekundarno kosmičko zračenje	20
5. Poluprovodnički detektori	21
5. 1 Polurovodnici	21
5.2 Princip rada poluprovodničkih detektora	23
5.2 Princip rada poluprovodničkih detektora 5.3 Germanijumski poluprovodnički detektori	23 23
 5.2 Princip rada poluprovodničkih detektora	23 23 23 24
 5.2 Princip rada poluprovodničkih detektora	23 23 24 24
 5.2 Princip rada poluprovodničkih detektora	 23 23 24 24 27
 5.2 Princip rada poluprovodničkih detektora	 23 23 24 24 27 29
 5.2 Princip rada poluprovodničkih detektora	23 23 24 24 27 29 31
 5.2 Princip rada poluprovodničkih detektora	 23 23 24 24 27 29 31 34

7.4 Fonski spektar snimljen bez poklopca i bez zaštite40
7.5 Spektar 17051743
7.6 Spektar 1.0 mm Cu 47
7.7 Spektar 1.5mm Cu
7.8 Spektar 2.0mm Cu
7.9 Spektar 2.5mm Cu51
7.10 Spektar 3.0mm Cu53
7.11 Spektar 3.5mm Cu54
7.12 Spektar 4.0mm Cu55
7.13 Spektar 4.5mm Cu56
7.14 Relativni odnos intenziteta spektralnih linija i kontinuuma u energetskoj regiji 30-300
keV57
7.15 Poređenje spektara58
8. Monte-Karlo simulacije fonskog spektra planarnog HPGe detektora62
9. Zaključak65
10. Literatura

1. Uvod

Detektorima zračenja smatramo sve one uređaje koji mogu da registruju, odnosno da detektuju jonizujuće, ali i neutronsko zračenje. Do danas se razvio i proizveo veliki broj različitih detektora, u zavisnosti od njegove namjene. Klasifikaciju detektora možemo izvršiti na više načina. Prema jednom načinu klasifikovanja, odnosno prema režimu rada, detektore možemo podijeliti na diferencijalne i integralne. Druga klasifikacija se može izvršiti na osnovu tipa informacija koje dati detektor nudi, pa ih onda možemo u tom smislu podijeliti na detektore vizuelnog tipa i električne detektore.

Detektori diferencijalnog tipa registruju pojedinačne čestice zračenja koje padnu na zapreminu detektora, dok detektori integralnog tipa registruju ukupan broj prolaska zračenja kroz određenu sredinu.

Detektori vizielnog tipa omogućuju prikaz putanje kojom se neka čestica zračenja kretala, a kod električnih detektora jonizujuće zračenje interaguju sa osjetljivom zapreminom detektora, pa se registruju električni signali koji se poslije analiziraju.

Pomoću detektora se može mjeriti intenzitet zračenja, energija pojedinačnih čestica, brzina, masa, naelektrisanje, mogu se dobiti podaci o interakcijama čestica, njenom pravcu kretanja, raspadu itd.

Osnovne karakteristike svakog detektora su energetska rezolucija, vremenska rezolucija i efikasnost. Ako kažemo da neki detektor ima dobru energetsku rezoluciju, to znači da je detektor u mogućnosti da razliku dvije čestice bliskih energija; vremenska rezolucija detektora se odnosi na sposobnost detektora da nakon registrovanja prethodne čestice registruje novu česticu kao nezavisnu; efikasnost detektora podrazumijeva mogućnost detektovanja što većeg broja čestica i najčešće se izražava u procentima.

Jasno je da na osnovu klasifikacije koja je grubo izvršena i navedena, i datih karakteristika detektora, da je prozveden veliki broj različitih detektora koji služe za različite namjene. Električni detektore možemo podijeliti u tri grupe, u zavisnosti od radne sredine unutar detektora: gasne, scintilacione i poluprovodničke. Navešćemo i nekoliko optičkih detektora: Vilsonova maglena komora, varnička komora i mjehurasta komora.

Detektor koji je korišten za mjerenje fonskog spektra jeste planarni visoko besprimjesni germanijumski poluprovodnički detektor koji se koristi najčešće za analiziranje spektara niskih energija. Snimljeno je trinaest različitih spektara koji su detaljno izanalizirani i biće predstavljeni u radu.

U drugom poglavlju ovog rada će biti riječi o gama i X zračenju, interakciji materije sa zračenja i efekti putem kojih fotoni bivaju uklonjeni iz snopa.

Sljedeće, odnosno treće poglavlje je posvećeno radioaktivnosti, tj. prirodnim radioaktivnim nizovima, koji će se nakon detaljnog opisa, provlačiti u toku predstavljanja podataka analiziranih spektara, gdje će biti prikazan veliki broj radionuklida sa odgovarajućim energijama.

Primarno i sekundarno komičko zračenje je opisano u četvrtom poglavlju.

U petom poglavlju su detaljno opisana svojstva i karakteristike poluprovodničkih detektora, kao i njihove performanse. Navedeni su različiti tipovi poluprovodničkih detektora koji se koriste za različita mjerenja, a najviše ćemo se posvetiti opisu germanijumskih detektora.

Šesto poglavlje je posvećeno specifikaciji našeg detektora, tj. planarnom HPGe detektoru GPD-80 720, poput operacionog moda, tehničkih karakteristika itd.

Sedmo poglavlje posvećeno je karakterizaciji fonskog spektra snimljen planarnim HPGe detektorom bez zaštite. Takođe, izvršena je i karakterizacija fonskog spektra kada se na detektor postave različiti apsorberi. Urađena je detaljna analiza svakog spektra, što će biti i prikazano u radu.

U osmom poglavlju su prikazani rezultati koji su dobijeni primjenom Monte Karlo simulacije, dok u devetom poglavlju je predstavljen zaključak i u desetom poglavlju je dat spisak literature koja je korištena prilkom izrade ovog rada.

2. Interakcija zračenja sa materijom

2.1 Gama zračenje

Gama zračenje spada u elektromagnetno zračenje, kao i radio-talasi, mikrotalasi, vidjljiva svjetlost. U orgomnom energetskom opsegu elektromagnetnog zračenja, gama zračenje spada u visokoenergetsko i kratkotalasno zračenje (slika 1).

Slika 1, Elektromagnetni spektar

Talasna dužina λ , odnosno frekvencija v, obje veličine se koriste kao energetske jedinice za karakterizaciju zračenja (2) i pretežno se ove dvije veličine koriste i za ostale dijelove elektromagnetnog spektra. Veza između energije i frekvencije je data relacijom (1):

$$E = h\nu \tag{1}$$

(2)

Gdje je h-Plankova konstatna i iznosi h=6,627 \cdot 10⁻³⁴ J \cdot s, a c-brzina svjetlosti u vakuumu i iznosi c=3 \cdot 10⁸ m/s.

Postoji preklapanje između visokoenergetskih X-zraka i niskoenergetskih gama zraka. Različita imena koja se koriste samo ukazuju na različito porijeklo zraka. Energija 10⁸ eV nikako nije gornja granica (slika 1). Astronomi su otkrili kosmičke gama zrake na mnogo višim energijama. Gama zrake reda veličine oko 1 MeV nazivamo "meki" gama zraci, a iznad toga su srednjeenergetski gama zraci do 30 MeV , visokoenergetski do 10 GeV, veoma visokoenergetski do 10 TeV, ultra visokoenergetski veći od 100 TeV.

Gama zračenje, kao i X- zračenje tretiramo kao snopove fotona koji se kreću brzinom svjetlosti, a razlikujemo ih samo na osnovu mjesta nastanka. X-zračenje nastaje u procesima koji se odvijaju u polju jezgra, dok gama zračenje potiče iz jezgra.

Prilikom prolaska zračenja kroz određenu sredinu, broj fotona će se smanjiti, i sa porastom debljine materijala, slabi intenzitet zračenja (slika 2).

Slika 2, Prolazak zračenja kroz materijal

Neka svi fotoni u snopu imaju istu energiju (posmatramo najjednostavniji slučaj) i neka je dx debljina materijala kroz koji zračenje prolazi. Obilježimo sa N broj fotona, a sa nbroj atoma u jedinici zapremine materijala, a sa σ-efikasni presjek. Broj fotona koji je nestao iz snopa dat je relacijom (3):

$$dN = \sigma \cdot N \cdot n \cdot dx \tag{3}$$

Proizvod broja atoma po jedinici zapremine materijala kroz koje zračenje prolazi i efikasnog presjeka predstavlja linearni atenuacioni koeficijent i obilježava se najčešće sa μ . Kada integralimo izraz (3), i uvrstimo μ , umjesto proizvoda $\sigma \cdot n$, dobijamo izraz (4):

$$N = N_0 e^{-\mu x} \tag{4}$$

Koji predstavlja atenuacioni zakon.

Postoje tri osnovna mehanizma putem kojeg zračenje interaguje sa materijom, a to su : fotoelektrični efekat, Komptonovo rasijanje (uključujući Relijevo i Tomsonovo rasijanje) i stvaranje parova.

2.2 Fotoelektrični efekat

Fotoelektrični efekat podrazumijeva interakciju gama zraka (fotona) i elektrona koji se nalazi u vezanom stanju u atomu. Eletkron biva izbačen iz omotača, tj.sa ljuske na kojoj se nalazio, sa kinetičkom energijom E_e, datom relacijom (5):

$$E_e = E_{\gamma} - E_b \tag{5}$$

Gdje je Eγ-energija upadnog fotona, a Eb je energija vezanog elektrona na ljusci. To se može i vizuelno prikazati (slika 3).

Slika 3, Fotoelektrični efekat

Nakon što elektron napusti atom, atom kao takav se nalazi u ekscitovanom stanju sa viškom energije Eb i postoje dva načina da se atom vrati ravnotežno stanje. Atom može da deescitira tako što će preraspodijeliti energiju ekscitacije između ostalih elektrona u atomu. Ovo može da rezultira oslobađanje drugih elektrona iz atoma, koje prenosi dodatni dio ukupne energije gama zraka detektoru. Prazno mjesto nakon izbačenog fotoelektrona može popuniti visokoenergetski elektron koji pada na to prazno mjesto, emitujući karakteristično X-zračenje, koje se još naziva fluorescentno X-zračenje (slika 4).

Slika 4, Emisija karaterističnog X-zračenja

Energetski nivo sa kojeg je elektron izbačen zavisi od energije upadnog gama zraka. Najčešći slučaj jeste da K-eletkron biva izbačen. Ukoliko nije moguće izbaciti K-elektron sa datom energijom, onda će L ili M-elektron biti izbačen umjesto K-elektrona. To izaziva povećanje diskontinuiteta kod krivih za fotoelektrični efekat. Ove apsorpcione ivice se javljaju na energijama koje odgovaraju energijama veze koje se odnose na odgovarajuće elektronske ljuske. Na krivoj za germanijum, npr. K apsorpciona ivica se javlja na 11,1 keV (slika 5).

Vjerovatnoća da foton doživi fotoelektrični efekat može biti izražena pomoću efikasnog presjeka o. Efikasni presjek zavisi od rednog broja materijala i energije fotona. Ukoliko je energija fotona veća od energije veze K-elektrona, onda važi sljedeća relacija (6):

$$\sigma_{fe} \sim \frac{Z^5}{E^{7/2}} \tag{6}$$

Gdje je Z-redni broj materijala, a E-energija fotona. Za energije fotona mnogo veće od energije veze K-elektrona, važi aproksimacija (7)

$$\sigma_{fe} \sim \frac{Z^5}{E} \tag{7}$$

Slika 5, Atenuacioni koeficijent različitih materijala kao funkcija energije gama zračenja

2.3 Komptonovo rasijanje

Komptonovo rasijanje (prikazano na slici 6) predstavlja direktnu interakciju gama sa elektronom, i tom prilikom upadni gama foton predaje dio svoje energije elektronu, dok foton mijenja svoj pravac kretanja. Foton nakon interakcije sa elekronom ima manju energiju, odnosno veću talasnu dužinu.

Slika 6. Mehanizam Komptonovog rasijanja

Dio energije koju elektron dobija data je relacijama (8) i (9):

$$E_e = E_{\gamma} - E_{\gamma}' \tag{8}$$

$$E_{e} = E_{\gamma} \left\{ \left(1 - \frac{1}{\left[1 + E_{\gamma} (1 - \cos\theta) / m_{0} c^{2} \right]} \right\}$$
(9)

Ako uvrstimo različite vrijednosti ugla θ u datu relaciju, vidjećemo kako se energija koja je apsorbovana varira sa promjenom ugla rasijanja. Navešćemo nekoliko primjera. Neka je $\theta=0^{\circ}$, odnosno cos $\theta=1$, rasijanje ide direktno naprijed sa mjesta interakcije, Ee je jednako nuli i energija ne stiže do detektora. Drugi slučaj jeste kada je $\theta=180^{\circ}$, odnosno kada se gama foton rasijava unazad nakon interakcije, dio jednačine u zagradi je manji od jedinice i taj iznos energije gama fotona biće predata elektronu. Energija koju elektron dobija od strane upadnog gama fotona se nalazi između ova dva ekstrema, a to je i prikazano na slici 7.

Slika 7, Predata energija apsorberu putem Komptonovog rasijanja u zavisnosti od ugla rasijanja

Neizbiježan zaključak sleduje; uzevši sve uglove rasijanja u obzir, dobija se da je energija gama fotona koja se apsorbuje u detektoru manja od 100%.

Napomenimo i to da se interakcija odvija na slobodnom elektronu. Komptonovo rasijanje je primjer nekoherentnog rasijanja. Nekoherentno rasijanje podrazumijeva da je energija fotona mnogo viša od od energije orbitalnih elektrona. Sa druge strane, jasno je da postoji i koherentno rasijanje, odnosno pojava kada foton ima manju energiju od energije veze i tada se interakcija odvija na orbitalnom elektronu i fotom tom prilikom skrene za mali ugao, ali mu energija ostaje ista. Ovakvo rasijanje se naziva Tomsonovo rasijanje.

Vidjeli smo da se energija gama fotona mijanja ukoliko dodje do Komptonovog rasijanja, samim time se onda i talasna dužina gama fotona mijenja. Naime, razlika između talasnih dužina nakon rasijanja i prije rasijanja može se napisati u obliku (10):

$$\Delta \lambda = \lambda - \lambda_0 = \Lambda \left(1 - \cos\theta \right) = 2\Lambda \sin^2\left(\frac{\theta}{2}\right) \tag{10}$$

Kao što možemo da vidimo iz prethodne relacije, razlika između talasnih dužina ne zavisi od upadne energije, niti od rasijane energije, niti od atomskog rednog broja datog materijala, već samo od ugla pod kojim se foton rasijao. A predstavlja Kompotonovu talasnu dužinu i iznosi Λ =2.42·10⁻¹² m.

Efikasni presjek za Komptonovo rasijanje, odnosno vjerovatnoća da se Komptonovo rasijanje odvije na slobodnom elektronu obrnuto je proprcionalan njegovoj energiji (11), odnosno:

$$\sigma_{Ke} = \frac{Z}{E} \tag{11}$$

Sa porastom energije fotona se smanjuje vjerovatnoća Komptonovog efekta.

2.4 Kreacija parova

Za razliku od fotoelektričnog efekta (apsorpcije) i Komptonovog rasijanja, kreacije parova je rezultat interakcije gama fotona sa atomom kao cjelinom. Ovaj proces se odvija u sklopu Kulonovog polja u jezgru i kao rezultat imamo konverziju gama fotona u elektronpozitron par. Kao što možemo primijetiti, gama foton nestaje, a pojavljuju se elektron i pozitron kao par. Da bi se ovo "čudo" dogodilo, potrebno je da foton ima energiju koja odgovara kombinaciji dvije čestice po 511 keV, tj. 1022 keV. Dokaz o kreaciji parova se u praksi ispoljava u gama spektru energija veća od 1022 keV. Kreacija parova se može odigrati i u polju elektrona, ali u tom slučaju je onda neophodno da foton ima energiju koja odgovara četiri mase elektrona u mirovanju. Na osnovu zakona održanja energije, elektron i pozitron koji su kreirani, dijele višak energije podjednako, izgubivši je na detektorskom medijumu kao da su usporeni. Kada je energija pozitrona smanjena do energija koje odgovaraju termalnim energijama, neizbiježno dolazi do anihilacije para elektron-pozitrona i tom prilikom se emituju dva fotona pod uglom od 180° i energijama od 511 keV po fotonu. Ovo se dešava najvjerovatnije 1 ns nakon stvaranja para, a imajući u vidu činjenicu da je vrijeme sakupljanja naelektrisanja kod većine detektora od 100 ns do 700 ns, pa se anihilacija može smatrati trenutnim događajem stvaranja para. Poptpuna sekvenca je ilustrovana na slici 8.

Slika 8, Mehanizam kreacije parova

Efikasni presjek za kreaciju elektron-pozitronskih parova je dosta složena funkcija, ali se može aproksimirati za vrijednosti od praga do orijentaciono 1000 m_ec^2 (12):

$$\sigma_{par} \sim Z^2 ln \frac{E}{m_e c^2} \tag{12}$$

2.5 Totalni atenuacioni koeficijent

Linearni atenuacioni koeficijent smo definisali kao proizvod broja atoma po jedinici zapremine datog materijala i ukupnog efikasnog presjeka σ za uklanjanje fotona iz snopa zračenja (13):

$$\mu = n \cdot \sigma \tag{13}$$

Pored linearnog atenuacionog koeficijenta, postoji i maseni atenuacioni koeficijent koji se može izraziti kao količnik linearnog atenuacionog koeficijenta μ i gustine materijala kroz koji zračenje prolazi napravljen (14), tj.

$$\mu_m = \frac{\mu}{\rho} \tag{14}$$

Naveli smo tri načina putem kojih fotoni mogu biti uklonjeni iz snopa (Komptonovo rasijanje, stvaranje parova i fotoelektrični efekat). Ukoliko želimo da objedinimo ova tri efekta pomoću linearnog atenuacionog koeficijenta, onda dobijamo relaciju za totalni atenuacioni koeficijent, i to:

$$\mu_{tot} = \mu_{fe} + \mu_{Ke} + \mu_{par}$$

Zbir ova tri atenuaciona koeficijenta se može grafički predstaviti, u zavisnosti od energije i izgleda kao na slici 9:

Slika 9, Maseni atenuacioni koeficijenti za pojedinačne interakcije i ukupni maseni atenuacioni koeficijent

Na slici 9 se može vidjeti kako fotoelektrični efekat dominira na niskim energijama, Komptonov efekat na srednjim i kreacija parova na visokim energijama, počev od 1022 keV, pa nadalje.

3. Radioaktivnost

Pod radioaktivnošću se podrazumijeva proces u kome dolazi do spontane transformacije atomskog jezgra, i jezgro tada mijenja svoj sastav u odnosu na početni. Ukoliko je energija krajnjeg sistema manja od početnog, može doći do spontanog prelaza. Što je veća energetska razlika, to je veći prelaz između početnog i krajnjeg sastava jezgra. Ukoliko energija krajnjeg sistema premašuje energiju početnog sistema, prelaz se javlja samo ako se dodijeli energija početnom sistemu.

Nekoliko godina nakon otkrića radioaktivnosti, pokazano je da radioaktivni nuklidi emituju jedan ili više, od tri tipa radijacije, koji su svrstani na osnovu probojnosti:

- Alfa čestice
- Beta čestice
- Gama zraci

Genijalni i pažljivi eksperimenti su izvedeni od strane mnogih naučnika, pa je utvrđeno da alfa čestice predstavljaju jezgro ⁴He, beta čestice su zapravo elektroni, i da gama zraci predstavljaju elektromagnetno zračenje.

U nuklearnoj fizici je uobičanjno da se početno jezgro, tj.jezgro koje se raspada da se zove predak, odnosno roditelj (eng. parent), a novonastalo jezgro koje se raspada putem radioaktivnog raspada, potomak ili ćerka (eng. daughter).

3.1 Zakon radioaktivnog raspada

Osnovna eksperimentalna činjenica radiaktivnog raspada jeste da vjerovatnoća za bilo koje jezgro u malom vremenskom intervalu dt je nazvisna od spoljašnjih uticaja, poput temperature, pritiska, magnetnog ili električnog polja, uključujući i raspad drugih jezgara. Uvodimo veličinu koja se naziva konstanta radioaktivnog raspada i kažemo da predstavlja vjerovatnoću da se neko jezgro raspadne u jedinici vremena i ima različite vrijednosti za različita jezgra (16):

$$\lambda = \frac{\Delta N}{N} \cdot \frac{1}{\Delta t} \tag{16}$$

Gdje Δ N-broj jezgara koji se raspao u vremenskom intervalu Δ t, N-ukupan broj radioaktivnih jezgara u posmatranom uzorku u početnom trenutku. Ovaj izraz možemo drugačije zapisati ukoliko imamo N radioaktivnih jezgara u trenutku t, pa je broj raspada u određenom vremenskom intervalu dt (17):

$$dN = -\lambda \cdot N \cdot dt \tag{17}$$

Primijetimo da je sa desne strane jednakosti negativan predznak. Negativni preznak nam ukazuje da se smanjuje broj radioaktivnih jezgara. Integralimo gore navedeni izraz (17) i nakon integracije imamo:

$$\int \frac{dN}{N} = -\lambda \int dt \tag{18}$$

$$lnN = -\lambda t + C \tag{19}$$

$$lnN = lnN_0 - \lambda t \tag{20}$$

$$N = N_0 e^{-\lambda t} \tag{21}$$

Posljednji izraz predstavlja zakon radioaktivnog raspada.

3.2 Aktivnost

Aktivnost je definisana kao broj raspada koji je direktno proporcionalan broju radionuklida koji se trenutno nalaze u atomima (22):

$$A = -\frac{dN}{dt} = \lambda \cdot N \tag{22}$$

Jedinica za aktivnost je Bekerel (1Bq) i jednaka je aktivnosti nekog jezgra datog radioaktivnog izvora kome se svake sekunde raspadne tačno jedno jezgro. Aktivnost možemo zapisati i kao:

$$A = A_0 e^{-\lambda t} \tag{23}$$

Gdje je Ao početna aktivnost radioaktivnog izvora.

Navešćemo primjer za aktivnost Co-60, sa sljedećim osobinama:

 \circ $\lambda = 3.6 \cdot 10^{-4} \text{ dana}^{-1}$

o t=2777.9 dana

Ukoliko želimo sada grafički da prikažemo aktivnost u zavisnosti od vremena, onda grafik izgleda ovako (slika 10):

Slika 10, Grafički prikaz zakona radioaktivnog raspada Co-60

Na slici 10 (a) je prikazano kako se aktivnost mijenja u zavisnosti od vremena ukoliko imamo eksponencijalnu zakonistost, a na slici 10 (b) je prikazana u logaritamskoj skali.

Period poluraspada je još jedna veličina koja karakteriše radioaktivnost, a to je ono vrijeme koje je potrebno da se radioaktivno jezgro raspade tačno na polovinu. Relacija koja povezuje period poluraspada i konstanu radioaktivnog raspada data je kao:

$$T_{1/2} = \frac{ln2}{\lambda} \tag{24}$$

3.3 Prirodni radioaktivni nizovi

Usvojeno je da se ukoliko period poluraspada jezgra ima donju granicu približno 10⁻¹² s, smatra radioaktivnim jezgrom. Po načinu nastanka jezgra možemo podijeliti u dvije grupe: prirodna i vještačka. Smatra se da postoji negdje oko šezdesetak prirodnih radioaktivnih izotopa u prirodi, a vještačkih jezgara (kreiranih u laboratorijama) ima negdje oko dvije hiljade.

Postoje jezgra čiji period poluraspada iznose 10¹⁰ godina, i nalaze se na našoj planeti Zemlji, dakle ta jezgra se još uvijek nisu raspala. Starost planete Zemlje se procjenjuje na 4.5 milijardi godina. Tri radioaktivna elementa imaju približan red veličine koji smo sada spomenuli, odnosno riječ je o milijardama godina perioda poluraspada. To su: izotopi uranijuma, ²³⁵U, ²³⁸U i ²³⁴Th sa periodima poluraspada od 7.1·10⁸ godina, 4.5·10⁹ godina i 1.4·10¹⁰ godina, respektivno. Može se naslutiti da onda postoje tri prirodna radioaktivna niza, uran-aktinijumov, uran-radijumov i toronijumov niz. Pored ova tri prirodna radioaktivna niza, postoji još jedan radioaktivni niz, dobijen vještačkim putem, a to je neptunijumov niz.

Jako važno je istaći da svaki od ovih navedenih nizova prati sukcesivni raspadi, odnosno alfa i beta raspad, dok se ne dobije jezgro koje je stabilno. Stabilna jezgra koja se dobiju putem raspada su izotopi olova i to :²⁰⁸Pb za toronijumov niz, ²⁰⁹Pb za neptunijumov, ²⁰⁷Pb za uran-aktinijumov i ²⁰⁶Pb za uran-radijumov niz.

3.4 Sekularna ravnoteža

Ukoliko imamo složen raspad jednog od četiri radioaktivna niza od n-članova, onda se takav raspad može opisati sistemom on n diferencijalnih jednačina:

$$\frac{dN_1}{dt} = -\lambda_1 N_1(t) \tag{25}$$

$$\frac{dN_2}{dt} = \lambda_1 N_1(t) - \lambda_2 N_2(t) \tag{26}$$

$$\frac{dN_n}{dt} = \lambda_{n-1} N_{n-1}(t) - \lambda_n N_n(t)$$
⁽²⁷⁾

Dolazimo do zaključka da je posljednji član niza stabilan. Od početnog trenutka, t=0 do t imamo:

$$N_1(0) = N_1(0)e^{-\lambda_1 t}$$
(28)

$$N_{2} = \lambda_{1,2} \left\{ \frac{N_{1}(0)e^{-\lambda_{1}t}}{\lambda_{2} - \lambda_{1}} + \frac{N_{1}(0)e^{-\lambda_{2}t}}{\lambda_{1} - \lambda_{2}} \right\}$$
(29)

Posmatrajmo pojednostavljen slučaj radioaktivnog raspada uključujući samo tri radionuklida, N_1 , N_2 i N_3 . Nuklid 1 se raspada i dobijamo nuklid 2 koji se raspada u nuklid 3. Nuklid 1 je predak nuklidu 2. Na osnovu relacije koju smo ranije naveli (29), broj atoma nuklida 2 je dat jednačinom (30), (31):

$$N_2 = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_1(0) \cdot \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right)$$
(30)

$$=\frac{\lambda_1}{\lambda_2 - \lambda_1} N_1 \left(1 - e^{-(\lambda_1 - \lambda_2)t}\right) \tag{31}$$

Iz ove jednačine se može vidjeti da vrijeme koje je potrebno da se postigne ravnoteža zavisi od perioda poluraspada pretka i potomka. Ukoliko je period poluraspada pretka mnogo veći od perioda poluraspada (32):

$$\frac{N_2}{N_1} = \frac{\lambda_2}{\lambda_1} \text{ ili,} \tag{32}$$

$$A_1 = A_2 \tag{33}$$

Gdje je A-aktivnost definisana kao proizvod konstatne radioaktivnosti i broja radioaktivnih jezgara. Na slici 11 je prikazan shematski prikaz sekularne ravnoteže između pretka ²²²Ra i njegovog potomka ²²²Rn:

Slika 11, Shematski prikaz sekularne ravnoteže

4. Kosmičko zračenje

Veoma široka oblast astročestične fizike predstavlja kosmičko zračenje. Klasično kosmičko zračenje se sastoji jonizovanih jezgara koji pristižu do Zemlje približno 1000 događaja cm⁻² s⁻¹ i prvobitno su otkriveni od strane Hess-a 1912.godine, koji je koristio let balona. Budući da kosmičko zračenje ima energetski raspon od dvanaest redova veličine, različiiti eksperimentalni pristupi su neophodni da bi se uzeli u obzir svi aspekti ovog fenomena. Navešćemo osnovne osobine primarnog i sekundarnog kosmičkog zračenja.

4.1 Primarno kosmičko zračenje

Klasično kosmičko zračenje sadrži oko 98% jezgara i oko 2% elektrona; jezgra su podijeljena na 87% na protone, 12% α -čestice i 1% na teže elemente. Sastav elementa kosmičkog zračenja je eksperimentalnim putem direktno određeno da je u energetskoj oblasti od nekoliko MeV do nekoliko TeV.

Elementarna zastupljenost kosmičkog zračenja je prikazana na slikama 12 i 13 u poređenju sa hemijskim sastavom solarnog sistema koji je normiran na Si=10⁶.

Slika 12, Zastupljenosti elemenata primarnig kosmičkog zračenja za 1<Z<28

Slika 13, Zastupljenost elemenata primarnog kosmičkog zračenja za 1<Z<100

Jasno se primijete razlike u zastupljenosti litijuma, berilijuma i bora (Z=3-5) i elementi koji su ispod grupe gvožđa (Z<26). Veća zastupljenost litijuma, berilijuma i bora kod kosmičkog zračenja se jednostavno može razumjeti fragmentacijom težih jezgara ugljenika (Z=6), i posebno kiseonika u galateičkoj materiji na putu od izvora ka Zemlji.

Za primarno kosmičko zračenje važi stepeni zakon (34):

$$\frac{dN}{dE} = AE^{-\gamma} \tag{34}$$

Gdje je dN / dE fluks gama zračenja, A-konstanta, a γ -spektralni indeks (nagib). Na slici 14 je prikazana zavisnost dN / dE od energije

Slika 14, Energetski spektar svih naelektrisanih čestica primarnog kosmičkog zračenja

Spektar nije idealan, i podijeljen je na više segmenata, od kojih "koljeno" ima energiju reda veličine 10¹⁵ eV i važi do "koljena"

$$\frac{dN}{dE} \propto E^{-2.7} \tag{35}$$

a od "koljena" do "članka" (enerija reda veličine 10¹⁹ eV) po zakonu:

$$\frac{dN}{dE} \propto E^{-3.1} \tag{36}$$

A poslije "članka" :

$$\frac{dN}{dE} \propto E^{-\gamma},\tag{37}$$

 $gdje je 1 \le \gamma \le 2$. Spektar koji prikazuje sve ove regije je prikazan na slici 15.

Slika 15, Umjetnički prikaz različitih regija kod primarnog kosmičkog zračenja

4.2 Sekundarno kosmičko zračenje

U regiji ispod 100 TeV je moguće direktno mjeriti primarno kosmičko zračenje, ali u regiji ispod nekoliko TeV fluks postaje toliko mali, da se direktne metode ne mogu primijeniti za detektovanje kosmičkog zračenja. Indirektni dokazi zasnivaju se na interakciji primarnog kosmičkog zračenja sa našom atmosferom, i to na visinama manjim od dvadeset kilometara. Na taj način se stavraju sekundarni produkti koji su poznati pod nazivom "extended air shower" (slika 16), koji uključuju gama-zrake, mione, protone, pione, elektrone i neutrone.

Slika 16, Razvoj "air shower-a"

5. Poluprovodnički detektori

Poluprovodnički detektori, kao što i sam naziv govori, zasnivaju se na kristalnim poluprovodničkim materijalima, i najčešće su to silicijum i germanijum. Ovi detektori se pretežno odnose na detektore u čvrstom stanju, koji je malo stariji izraz prisjetivši se perioda kada su se uređaji u čvrstom stanju počeli pojavljivati u elektronskim kolima. Prve ideje o izradi detektora sa kristalima i sama izvedba potiče jos iz 1930-te godine, ali pravi razvoj ovih instrumenata je zapravo započet kasnih 1950ih godina. Prvi prototipi su brzo napredovali kako bi bili spremni za rad i u komercijalne svrhe su bili dostupni 1960ih godina. Ovi uređaji su obezbijedili prvu visoku rezoluciju detektora za mjerenje energije i vrlo brzo su usvojeni u isttraživanjima u nuklearnoj fizici za detekciju naelektrisanih čestica i gama sprektroskopiju.

5. 1 Polurovodnici

Poluprovodnici su kristalni materijali koji se nalaze između izolatora i poluprovodnika. Na slici 12 je prikazana shematska ilustracija osnovne strukture koja se sastoji iz valentne zone, zabranjene zone i provodne zone. Energetske zone su zapravo regije mnogih diskretnih nivoa koji se nalaze na jako malim udaljenostima jedni od drugih da se mogu posmatrati kao kontinuum, dok je energija zabranjene zone regija u kojoj ne postoje slobodni energetski nivoi.

Širina zabranjene zone za poluprovodnike iznosi 1 eV i nalazi se između valentne i provodne zone , a to podrazumijeva da elektroni mogu prelaziti iz valentne zone u provodnu ukoliko imaju energiju 1eV. Valentna zona predstavlja zonu u kojoj se nalaze nepobuđeni elektroni koji su vezani kovaletnim vezama. Kod izolatora širina zabranjenje zone iznosi približno 6 eV, a kod provodnika ni ne postoji, kao što je i prikazano na slici 17.

Slika 17, Struktura energetskih zona izolatora, poluprovodnika i metala

Naveli smo dva najpoznatija poluprovodnička materijala, silicujum i germanijum. To su četvorovalentni elemetni koji se nalaze u kristalnom stanju. Ukoliko bismo dodali primjese ovim kristalima, onda bi se provodna svojstva znato poboljšala. To se može postići na sljedeći način. U čistom poluprovodničkom kristalu imamo jednak broj elektrona i šupljina u provodnoj zoni. Odnos može biti izmijenjen ukoliko se doda mali iznos nečistoća, odnosno atoma koji imaju jedan valentni elektron više ili manje u svojoj ljusci. U ovom slučaju su to ili petovalentni ili trovalentni elementi. Nečistoće se integrišu u kristalnoj rešeci da bi se dobio dopirani poluprovodnik.

Ukoliko se dodaje petovalentni element, onda imamo situaciju kao na slici 18 (a). U osnovnom stanju elektroni popunjavaju valentnu zonu koja sadrži dovoljno prostora za četvorovalentne elektrone po atomu. Budući da nečistoća ima petovalentne elektrone, dodatni elektron se ne uklapa u sastav i napušta atom. Ovaj elektron se nalazi na diskretnom energetskom nivou, i nalazi se ispod donorskog nivoa i odvojen je 0,01 eV u germanijumu, a 0,05 eV u silicijumu. Pri normalnoj temperaturi, dodatni elektron biva lako ekscitovan u provodnu zonu i na taj načain se postiže poboljšanje provodnih osobina poluprovodnika. Osim toga, dodatni elektron će popuniti šupljine koje se formiraju, čime se smanjuje koncentracija šupljina. U takvim materijalima je struja posljedica kretanja elektrona. Primjesni poluprovodnici u kojima su elektroni nosioci naelektrisanja nazivaju se poluprovodnici n-tipa.

Slika 18, poluprovodnici n i p tipa

Ako je nečistoća sada trovalentna, sa jednim manje valentnim elektronom, onda neće biti dovoljno elektrona da ispune valentnu zonu, pa postoji višak šupljina u kristalu. Trovalentne nečistoće takođe perturbuju strukturu zone, stvaranjem dodatnog nivoa u energetskom procjepu, ali ovaj put bliže valentnoj zoni, kao što je prikazano na slici 18 (b). Elektroni u valentnoj zoni lako prelaze u ovaj dodatni nivo, ostavljajući višak šupljina. Ovaj višak šupljina takođe smanjuje koncentraciju slobodnih elektrona, tako da šupljine postaju većinski nosioci naelektrisanja u poluprovodniku. Ovakav tip poluprovodnika se naziva poluprvodnik p-tipa.

U praksi se kao donori koriste arsen, fosfor, antimon se koriste da bi se dobio poluprovodnik n-tipa, dok galijum, bor, indijum se koriste da bi se dobio poluprovodnik p-tipa.

Ukoliko se spoje poluprovodnici n i p tipa, dobija se pn spoj, koji se još naziva i poluprovodnička dioda. Elektroni iz n-tipa difunduju ka p-tipu poluprovodnika da bi popunili šupljine koje se nalaze u p-tipu. Na ovaj način se stvara višak elektrona, odnosno negativnog naelektrisanja u poluprovodniku p-tipa. Javlja se nedostatak elektorna u poluprovodniku n-tipa, pa taj dio sada biva pozitivno naelektrisan u oblasti koja je blizu spoja. Oblast u kojoj se odvija proces difuzije naziva se oblast prostornog naelektrisanja.

5.2 Princip rada poluprovodničkih detektora

Osnovni princip rada poluprovodničkih detektora je analogan principu rada gasnih jonizacionih komorama. Umjesto gasa kao radne sredine, međutim, sada je radna sredina poluprovodnički materijal. Jonizacija stvara parove elektron-šupljinu (umjesto elektron-jon parova), koje pri tome bivaju prikljupljeni električnim poljem. Prednost poluprovodnika jeste ta što je srednja energija koja je potrebna da se stvori elektron-šupljina je oko deset puta manja nego što je potrebna za jonizaciju gasa. Tako iznos proizvedene jonizacije za datu energiju omogućava da se postigne mnogo bolja energetska rezolucija. Štaviše, zahvaljujući njihovoj visokoj koncentraciji imaju veću zaustavnu snagu nego gasni detektori.

5.3 Germanijumski poluprovodnički detektori

Za detekciju gama zračenja preferira se korištenje germanijumskog detektora u odnosu na silicijumske detektore, i to zbog mnogo većeg atomskog broja germanijuma (Z_{Si}=14, Z_{Ge}=32). Presjek za fotoelektrični efekat je oko šezdest puta veći kod germanijuma nego kod silicijuma. Međutim, germanijumski detektori moraju da rade u režimu nižih temperatura zbog njihove male zone procjepa. Ovaj nedostatak se nadoknađuje jako visokom efikasnošću, koja može da dostigne i 100%.

Germanijumski detektori se takođe mogu koristiti za detekciju naelektrisanih čestica, djelimično zbog visoke zaustavne moći, ne nudi nikakvu prednost u odnosu na silicijumske detektore, i zapravo njihova najveća mana jeste što se moraju hladiti.

6. Besprimjesni germanijumski detektori

Posljednjih godina napredak poluprovodnika sa razvojem tehnologije omogućio je izradu germanijuma sa vrlo viskom čistoćom, sa koncentracijom nečistoća manjom od 10¹⁰ atoma/cm³. Prednost ovih detektora ogleda se u činjenici da ovi detektori se ne moraju čuvati na niskim temperaturama sve vrijeme. Hlađenje je neophodno samo kada se primjenjuju visoki naponi.

Besprimjesni germanijumski detektori ili HPGe detektori (High Purity Germanium) su konstruisani i funkcionišu poput Ge (Li) detektora i polako ih zamjenjuju. Koriste se u koaksijalnoj geometriji da bi se postigla maksimalna osjetljivost zapremine. Veoma mali prozor može biti stvoren od strane jonske implantacije da bi se povećala osjetljivost koaksijalnog detektora ispod 10 keV.

Ovi detektori su osjetilji na jonizujuće zračenje, naročito na gama i X-zračenje.

6.1 Planarni HPGe detektor

Detektor koji je korišten za realizaciju ovog master rada jeste planarni HPGe detektor GDP-80 720. Dizajniran je za različite operacije koje se odvijaju u laboratorijskim uslovima, kao i za registraciju radijacije u horizontalnom položaju. Ovaj set se sastoji iz:

- P-tipa germanijumskog poluprovodničkog detektora visoke čistoće (HPGe detector)
- Predpojačavača sa hladnom ulaznom fazom
- Vertikalnim kriostatom
- Djuarovim sudom od 30l
- Setom kablova

Poprečni presjek planarnog HPGe je prikazan na slici 19. Tečni azot se koristi za rashlađivanje sistema. Detektor i ulazna faza predpojačavača su smješteni u vakumskoj komori kriostata i hlade se dok se ne dostigne temperatura približna temperaturi tečnog azota (77K). Nerashlađeni dio predpojačavača je izvan zapremine vakuuma u odvojenom dijelu i zatvara se pomoću poklopca.

Za razliku od tradicionalne postavke krajeva poklopa detektora koji su napravljeni ili od aluminijuma ili od magnezijuma, kod planarnog HPGe detektora krajevi poklopca su napravljeni od karbonskih vlakana koji imaju veoma nisku aktivnost i nisku koncentraciju, a to podrazumijeva mnogo veću transmisiju gama zračenja i veću efikasnost na niskim energijama.

Slika 19, Poprečni presjek planarnog HPGe detektora

	Naziv parametra	Teorijska vrijednost	Izmjerena vrijednost
1.	Energetski opseg (keV)	10-2000	5-2000
2.	Energetska rezolucija (širina na poluvisini		
	pika) za energiju (ne veću od):		
	5.9 keV (Fe-55 konstantno vrijeme	480	384
	oblikovanja je 6µs), eV		
	122 keV (Co-57 konstatno vrijeme	720	599
	oblikovanja je 6µs), eV		
	1332 keV (Co-60, konstantno vrijeme	1950	1765
	oblikovanja je 6µs), eV		
3.	Optimalna operativna pozitivna voltaža		+1200
	detektora (V)		
4.	Osjetljiva površina detektora (mm^2)	5000	5064
	Visina detektora (mm)	35	35.3
	Dijametar detektora (mm)	80	80.3
5.	Faktor konverzije (mV/keV) ne manja od	0.5	0.6

Izmjerene vrijednosti osnovnih parametara ovog detektora date su u tabeli 1.

Tabela 1

Tehničke karakteristike parametara za detekciju su date u tabeli 2:

Polaritet izlaznog signala	negativan
Debljina ulaznog karbonskog prozora (mm)	0.6
Maksimalni ulazni odbroj od strane statističkog pulsa od izvora Co-57 (odbroj/s) ne veći od	50 <i>x</i> 10 ³
Integralna nelinearna funkcija konverzije (%), ne više od	0,04
Snadbijevanje snage predpojačavača	$\pm 12V$
Izlazni otpor predpojačavača (Ω), ne veći od	50
Dužina spojnih kablova (m)	3
Vrijeme hlađenja (h)	8
Zapremina Djuarovog suda (I)	30
Vrijeme između ponovnog punjenja tečnog azota (dan), ne više od	15
Masa sa praznim Djuarovim sudom (kg), ne veća od	18

6.2 Specifikacioni list planarnog HPGe detektora GPD-80 720 Serija N 2445-16

Pozitivna operativna voltaža iznosi 1200V, karakteristike detektora su date u tabeli 3 sa odgovarajućim spektrima prikazanim na slikama 20, 21 i 22 respektivno za svaki radionuklid.

Energija (keV)	5.9 (Fe-55)	122 (Co-57)	1332 (Co-60)
Izmjerena širina na poluvisini pika (eV)	384	599	1765
Širina na desetini pika/Širina na poluvisina pika	-	-	1.86

Tabel	a 3
-------	-----

Uslovi mjerenja:

- Spektralni analizator: Multispectrum HYBRID, BSI Ltd.
- Vrijeme oblikovanja: t=6µs
- Odbroj : N=1000 cps (counts per sec)

Slika 20, spektar Fe-55

Slika 21, spektar Co-57

Slika 22, spektar Co-60

7. Analiza i obrada podataka

Na samom početku, u uvodnom dijelu je rečeno da je analizirano trinaest spektara pomoću planarnog HPGe detektora (slike 23 i 24) od kojih je jedan upotrijebljen da bi se izračunala efikasnost detekcije. Mjerenje je započeto u martu mjesecu, a završeno u junu 2017.godine. Neki spektri su mjereni preko dvadeset sati, dok su neki spektri mjereni desetak dana, čak i više.

Program koji je korišten za analiziranje spektara jeste Aptec i bilo je potrebno kalibrisati svaki spektar pojedinačno. Energetska kalibracija je urađena na sljedeći način. Prvobitno su spektri snimljeni u programu Ortec, a zatim su prebačeni u program Aptec. Nakon što se unesu Real Time i Live Time iz programa Ortec u program Aptec, potrebno je unijeti poznate energije radionuklida koji imaju jako izražene pikove. Radionukli koji su upotrijebljeni za energetsku kalibraciju su intenzivne linije K-40 sa energijom od 1460.8 keV, Bi-214 sa energijom od 609 keV, Pb-214 sa energijom 352 keV itd. Tek nakon izvršene energetske kalibracije bilo je moguće detaljno analizirati spektre, što je i urađeno.

Slika 23, Planarni HPGe detektor

Slika 24, Planarni HPGe detektor

7.1 Određivanje efikasnosti detekcije planarnog HPGe detektora pomoću izvora Co-60

Imali smo izvor Co-60 na udaljenosti od 25cm od detektora (slika 25). Na detektor je postavljen plastični poklopac. Period poluraspada je, $T_{1/2}$ (Co-60)= 5,27 godina, dok je aktivnost A=10,4 µCi bila 1.6.1976.godine. Mjerenje je početo 16.3.2017.godine i trajalo je 697,4s.

Slika 25, Izvor Co-60 udaljen 25cm od planarnog HPGe detektora

Ao =
$$10,4\mu$$
Ci= $10,4\cdot10^{-6}\cdot3,7\cdot10^{10}$ s⁻¹= 384 800 Bq= 384 800 s⁻¹ (38)

$$\Delta t = 40,7 \text{ god} \tag{39}$$

$$T_{1/2}$$
 (Co-60)= 5,27 god (40)

$$A = A_0 2^{\frac{-\Delta t}{T_{1/2}}}$$
(41)

Kada se uvrste vrijednosti odgovarajućih članova iz formule, dobija se da je aktivnost Co-60 dana 16.3.2017. godine bila

$$A=1821,1 s^{-1}$$
(42)

Nakon što smo odredili aktivnost, sada možemo izračunati totalnu efikasnost detektora za datu energiju. Energija pika Co-60 iznosi 1332,2 keV i nalazi se na 10 520-om
kanalu, a odbroj na ovoj energiji iznosi 1,02533 cps. Live time iznosi 697,4s. Formula za totalnu efikasnost detektora izgleda ovako:

$$\varepsilon = \frac{N}{t \cdot p_{\gamma} \cdot A} \tag{43}$$

Gdje je N-odbroj, a pγ-kvatni doprinos za fotone posmatrane energije. Nakon unošenja vrijednosti u gore navedenu formulu, dobija se da je totalna efikasnost detektora

Relativna efikasnost detektrora se računa na sljedeći način: Dobijenu vrijednost efikasnosti detekcije poredimo sa vrijednošću efikasnosti detekcije Nal detektora, pod istim mjernim uslovima, dimenzija 3x3 inča. Efikasnost Nal detektora iznosi 0,0012, pa relativna efikasnost iznosi:

$$\varepsilon_R = \frac{\varepsilon}{\varepsilon_{NaI}} = \frac{0,00056}{0,0012} = 0,46 \tag{45}$$

Nakon određivanja relativne efikasnosti detektora, analiziran je spektar Co-60 i prikazan je u tabeli 4, gdje su date vrijednosti energija i radionuklida koji odgovaraju tim energijama i broj kanala u spektru. Iz tabele se može vidjeti da su prisutni nuklidi koji pripadaju prirodnim radioaktivnim nizovima koje smo naveli u odjeljku 3.3.

Broj kanala	E(keV)	Radionuklid
Co-60		
575	74,577	PbKa1
631	81,653	Th-231
654	84,559	PbKb1
677	87,465	PbKb2
692	89,36	BiKb2
774	99,721	Ac-228
956	112,719	Th-234
1210	154,815	Ra-223
1457	186,028	Ra-226
1873	238,6	Pb-212
2318	294,84	Pb-214
2661	338,19	Ac-228
2768	351,71	Pb-214
3043	389,47	Bi-214
4026	510,745	anihilacija
4597	582,937	TI-208
4806	609,393	Bi-214
5216	661,206	Cs-137
5737	727,56	Ac-228
6364	806,385	Bi-214
7192	911,114	Ac-228
7261	919,84	Rn-207
7366	934,124	Bi-214
7495	949,695	Ac-228
7614	964,469	Ac-228
7651	968,73	Ac-228
8843	1119,9	Bi-214
9262	1173	Co-60
9850	1247,41	Ac-228
10110	1280,31	Bi-214
10520	1332,2	Co-60
10875	1337,13	Bi-214
11536	1460,8	K-40
11816	1496,26	Ac-228
12539	1587,78	Ac-228
13932	1764,16	Bi-214

Tabela 4, Prikaz datih radionuklida sa odogovarajućim energijama

7.2 Fonski spektar 2017 A- "standrard"

Samo u prethodnom slučaju smo imali izvor zračenja postavljen na određenoj udaljenosti od detektora, tj. Co-60, dok svi ostali snimljeni spektri zasnivaju se na mjerenju fonskog zračenja. Snimanje fonskog zračenja trajalo je približno jedanaest dana, odnosno 941 333,2s i to je najduže vrijeme mjerenja fonskog zračenja, pa je njegov spektar deklarisan kao "standard". Detektor nije imao nikakvu zaštitu, osim plastičnog poklopca, postavljenog iznad (slika26).

Slika 26, Postvaka detektora (detektor je bez zaštite, i posjeduje samo plastični poklopac)

Normiranje spektara je izvršeno u odnosnu na "standard", a samo normiranje se vrši na da bismo mogli da odredimo intenzitete određenih pikova. Suština normiranja se ogleda u tome da se dobiju približno ista vremena, odnosno Live Time da bi se onda mogli porediti pikovi i analizirati. U principu, kada imamo približno ista vremena, to bi predstavljalo kao da smo sve spektre mjerili podjednako. Normiranje se postiže na sljedeći način: podijeli se vrijeme mjerenja nekog spektra (Live Time) sa "standardom" (spektar 2017A) i dobije se broj kojim je potrebno pomnožiti cio spektar da bi se vremena približno izjednačila. Navešćemo primjer kako je to rađeno:

 Live Time standarda iznosi 941 333,2 s, dok nekog drugog spektra, npr. kod spektra 170517 Live Time iznosi 503 751,5s i spektar se normira tako što podijelimo 941333,2/503751,5 i dobijemo 1,86, a to znači da se spektar mora 1,86x mulitplicirati da bi se dobilo približno isto vrijeme mjerenja.

• Vrijeme (Live Time) koje je prikazano kod svakog spektra predstavlja vrijeme koje je normirano u odnosu na standard

Pored normiranja je rađen i relativni odnos spektralnih linija. Relativni odnos spektralnih linija se dobija tako što se intenzitet spektralnih linija datog spektra podijele sa intenzitetom spektralnih linija kod "standarda" i očekujemo da taj odnos bude manji od jedinice.

Broj kanala	E (keV)	Radionuklid
314	72,489	PbKa2
325	74,912	Pb-X
372	82,282	Th-231
381	85,06	Pb-X
393	87,93	Pb-X
566	128,086	Ac-228
682	153,68	Ac-228
827	185,674	Ra-226
933	209,064	Ac-228
1066	238,411	Pb-212
1081	241,721	Pb-214
1211	270,407	Ac-228
1243	277,469	TI-208
1324	295,343	Pb-214
1347	300,418	Pb-212
1473	328,223	Ac-228
1519	338,375	Ra-223
1581	352,057	Pb-214
1807	401,932	Rn-219
1843	409,877	Ac-228
2043	454,017	Bi-212
2085	463,286	Ac-228
2362	511,18	Anihilacija
2576	571,657	Ac-228
2630	586,576	TI-208
2748	609,545	Bi-214
2985	661,936	Cs-137
3004	666,13	Bi-214
3174	703,657	Bi-214
3283	727,719	Bi-212
3351	742,73	Bi-214
3409	755,534	Ac-228
3468	768,559	Bi-214

Snimljen je i spektar sa odgovarajućim radionuklidima i njegovim energijama (tabela 5) :

3486	772,554	Ac-228
3548	786,222	Bi-214
3588	795,051	Ac-228
3750	830,815	Pb-211
3772	835,672	Ac-228
3794	840,529	Ac-228
3885	860,62	TI-208
4115	911,4	Ac-228
4218	934,142	Bi-214
4357	964,832	Ac-228
4377	969,248	Ac-228
5061	1120,28	Bi-214
5595	1238	Bi-214
5792	1281,72	Bi-214
6628	1378,02	Bi-214
6662	1460,63	К-40
7979	1764,18	Bi-214
11821	2614,04	TI-208

Tabela 5, Prikaz radionuklida i njihovih energija za "standard"

U programu kao što je Aptec je moguće odrediti intenzitete pikova bez ikakvog računanja. Naime, preporučljivo je selektovati pet, šest kanala i sa lijeve i sa desne strane, kao i sam pik, kako bi se dobila što preciznija vrijednost intenziteta linije. Rađeno je isti za dvadesetak intenzivnih linija u svakom spektru ponaosob. Detaljniji prikaz je u tabeli 6:

E (keV)	Radionuklid	Intenzitet (cps)
72,486	PbKa2	$0,076 \pm 0,004$
74,912	BiKa1	0,130 ± 0,003
185,674	Ra-226	0,077 ± 0,003
209,064	Ac-228	0,044 ± 0,003
238,411	Pb-212	0,462 ± 0,003
295,343	Pb-214	0,222 ± 0,003
338,375	Ra-223	$0,120 \pm 0,002$
352,058	Pb-214	0,429 ± 0,002
511,18	Anihilacija	0,188 ± 0,002
583,576	TI-208	0,322 ± 0,002
609,622	Bi-214	0,493 ± 0,002
911,4	Ac-228	$0,251 \pm 0,001$
969,248	Ac-228	$0,144 \pm 0,001$
1120,28	Bi-214	$0,144 \pm 0,001$
1460,63	K-40	1,451 ± 0,003
1764,18	Bi-214	0,134 ± 0,001
2614,04	TI-208	$0,263 \pm 0,001$

Tabela 6, Intenziteti radionuklida sa odgovarajućim energijama

Takođe, analizirani su i kontinualni dijelovi spektra koji se dobijaju tako što prvo onačimo kontinualni dio (dolinu) od jednog pika do drugog i očitamo vrijednost odbroja i tu vrijednost dijelimo sa vremenom mjerenja (Live Time), i totalni odbroj u spektru koji se dobija kada podijelimo gross (od početka spektra, tj.od 0keV, pa do kraja) sa vremenom mjerenja, odnosno Live Time. Tabela sa određenim kontinualnim dijelovima, i energetskim rasponima, kao i totalnim odbrojem je data u tabeli 7:

Kontinuum-energetski	Gross	Live time=941333,2s
raspon u normiranom spektru		Totalni odbroj (s-1)
30-300 keV	86239289	91,61
301-327 keV	2503185	2,659
355-407 keV	3680589	3,9
411-461 keV	2839403	3,01
465-508 keV	2016076	2,142
586-608 keV	736144	0,782
612-660 keV	1430700	1,519
0-3623 keV	130061584	138,167

Tabela 7, Kontiunualne regije za "standard"

7.3 Spektar CuCyl-0.5mm

Spektar je nazvan CuCyl-0.5mm zvog toga što je oko detektora postavljen bakarni cilindar širine 9mm, a na detektor je postavljen apsorber napravljen od bakra debljine 0.5mm (slika 27).

Slika 27, Snimanje fona (spektar CuCyl-0.5mm)

Lista radionuklida sa datim energijama prikazana je u tabeli 6:

Broi kanala	F(ke)/)	Radionuklid
247	72 0/	PhKa2
247	74 221	PbKa1
401	114,221	
401	105 422	!
749	208.605	0235/Rd-220
/48	208,005	AL-228
857	238,321	PD-212
870	241,865	PD-212
976	270,766	AC-228
1000	277,309	11-208
1066	295,305	PD-214
1085	300,485	Pb-212
1186	328,025	Ac-228
1224	338,387	Ac-228
1274	352,012	Pb-214
1682	463,29	Ac-228
1878	511,023	anihilacija
2122	583,312	TI-208
2218	609,502	Bi-214
2410	661,886	Cs-137
2650	727,373	Bi-212
2801	768,58	Bi-214
2864	785,773	Bi-212
2898	795,052	Ac-228
2940	806,514	Bi-214
3048	835,99	Ac-228
3139	860,828	TI-208
3323	911,052	Ac-228
3407	933,982	Bi-214
3519	964,557	Ac-228
3535	968,925	Ac-228
3653	1001,14	Pa-234
4089	1120,19	Bi-214
4217	1155,14	Bi-214
4520	1237,9	Bi-214
4678	1281,05	Bi-214
5032	1377,76	Bi-214
5142	1407,81	Bi-214
5335	1460,55	K-40
5462	1495,25	Ac-228
5513	1509,19	Bi-214

5801	1587,9	Ac-228
5817	1592,54	DESC-Th-232/Tl-238
5919	1620,42	Pb-212
5956	1630,26	Ac-228
6068	1660,88	Bi-214
6319	1729,49	Bi-214
6446	1764,21	Bi-214
6750	1847,33	Bi-214
8052	2203,47	Po-214
9553	2614,33	TI-208

Tabela 8, Radionuklidi koji se javljaju u datom spektru sa određenim energijama

Intenzitet normiranog spektra za spektar CuCyl-0.5mm dat je u tabeli 9, dok su opsezi kontinuuma dati u tabeli 10:

E (keV)	Radionuklid	Intenzitet (cps)
72,04	РbКа2	0,004 ± 0,002
74,221	BiKa1	$0,012 \pm 0,002$
185,433	U235/Ra-226	0,042 ± 0,003
208,605	Ac-228	0,009 ± 0,002
238,321	Pb-212	0,191 <u>+</u> 0,003
295,305	Pb-214	0,094 <u>+</u> 0,002
338,387	Ac-228	0,057 ± 0,002
352,012	Pb-214	0,191 <u>+</u> 0,002
511,023	Anihilacija	0,114 ± 0,002
583,312	TI-208	0,156 <u>+</u> 0,001
609,502	Bi-214	0,237 ± 0,001
911,052	Ac-228	0,135 <u>+</u> 0,001
968,925	Ac-228	0,075 ± 0,001
1120,19	Bi-214	0,085 <u>+</u> 0,001
1460,55	K-40	0,908 ± 0,002
1764,21	Bi-214	0,093 <u>+</u> 0,001
2614,33	TI-208	0,190 <u>+</u> 0,001
	Talasla O	

Tabela 9

Kontinuum-energetski		Live time=904261,6s
raspon u normiranom spektru	Gross	Totalni odbroj (s-1)
30-300 keV	45515987	50,33
302-337 keV	2206160	2,439

340-350 keV	5054450	0,558
355-505 keV	5409085	5,981
517-580 keV	1498992	1,657
588-606 keV	376787	0,416
612-660 keV	882387	0,975
0-4488 keV	73017703	80,748

7.4 Fonski spektar snimljen bez poklopca i bez zaštite

Kao što i sam naziv kaže, fonsko zračenje je snimljeno detektorom koji nije imao nikakvu zaštitu, niti plastični poklopac. (Slika 28). Live Time iznosi 66680,8 sekundi.

Intenziteti spektralnih linija su date u tabeli 11, a kontinualni opseg sa totalnim odbrojem u tabeli 12:

E (keV)	Radionuklid	Intenzitet (cps)
72,780	PbKa2	$0,072 \pm 0,003$
74,989	BiKa1	0,096 ± 0,003
91,536	Th-234	0,351 ± 0,004
185,528	Ra-226	0,070 ± 0,003
209,358	Ac-228	0,032 ± 0,002
238,485	Pb-212	0,453 ± 0,003
295,418	Pb-214	$0,206 \pm 0,002$
338,450	Ra-223	$0,124 \pm 0,002$
352,133	Pb-214	$0,411 \pm 0,002$
511,045	Anihilacija	$0,174 \pm 0,002$
583,447	TI-208	0,323 ± 0,002
609,469	Bi-214	0,495 ± 0,002
911,319	Ac-228	0,252 ± 0,001
969,179	Ac-228	0,148 <u>+</u> 0,001
1120,250	Bi-214	$0,142 \pm 0,001$
1460,700	K-40	1,443 ± 0,003
1764,140	Bi-214	0,134 ± 0,001
2614,240	TI-208	0,258 ± 0,001

Tabel	a 11
-------	------

Kontinuum-energetski		Live time=933531,2s
raspon u normiranom spektru	Gross	Totalni odbroj (s-1)
30-300 keV	85409030	91,490
302-325 keV	2246510	2,406
355-410 keV	3670450	3,932
412-460 keV	2656836	2,840
465-507 keV	1983828	2,125
515-580 keV	2552760	2,730
588-606 keV	647962	0,694
612-660 keV	1371958	1,464
0-3625 keV	128655156	137,815

U tabeli 13 su prikazani radionuklidi sa odgovarajućim energijama:

Broj kanala	E (keV)	Radionuklid
314	72,78	PbKa2
325	74,9899	PbKa1
372	85,359	Pb-X
400	91,536	Th-234
826	185,528	Ra-226
934	209,358	Ac-228
1066	238,485	Pb-212
1081	241,765	Pb-214
1211	270,482	Ac-228
1243	277,543	TI-208
1324	295,418	Pb-214
1346	300,272	Pb-212
1473	328,299	Ac-228
1519	338,45	Ra-223
1581	352,133	Pb-214
1842	409,735	Ac-228
2085	463,368	Ac-228
2301	511,04	anihilacija
2629	583,447	TI-208
2747	609,469	Bi-214
2983	661,59	Cs-137
3282	727,607	Bi-212
3408	755,427	Ac-228
3468	768,67	Bi-214
3486	772,65	Ac-228
3545	785,67	Bi-212
3587	794,949	Ac-228
3772	835,799	Ac-228
3885	860,75	TI-208
4114	911,319	Ac-228
4217	934,06	Bi-214
4355	964,54	Ac-228
4376	969,179	Ac-228
4519	1000,76	Pa-234
5060	1120,25	Bi-214
5218	1155,15	Bi-214
5594	1238,21	Bi-214
5786	1280,63	Bi-214
6224	1377,4	Bi-214
6362	1407,89	Bi-214

6601	1460,7	K-40
6750	1495,39	Ac-228
6820	1509,09	Bi-214
6951	1538	Bi-214
7178	1588,2	Ac-228
7323	1620,25	Bi-212
7369	1630,42	Ac-228
7816	1729,21	Bi-214
7974	1764,14	Bi-214
9962	2203,69	Po-214
11818	2614,24	TI-208

7.5 Spektar 170517

U bakarni cilindar širine 9mm smješten je detektor iznad kojeg se nalazi plastični poklopac (slika 29) . Live Time iznosi 503751,5s, odnosno fonsko zračenje je mjereno približno šest dana. Sam naziv spektra govori kada je snimanje započeto.

Slika 29, Postavka detektora

Tabela 14 daje prikaz radionuklida i odgovarajućih energija za date radionuklide:

Broj kanala	E(keV)	Radionuklid
FON+CuCyl		
247	71,854	PbKa2
256	74,307	PbKa1
293	84,39	Th-231
402	114,107	Th-234
663	185,26	U-235/Ra-226
750	208,979	Ac-228
858	238,425	Pb-212
870	241,697	Pb-214
974	270,054	Ac-228
1003	277,961	TI-208
1067	295,412	Pb-214
1085	300,32	Pb-212
1188	328,406	Ac-228
1228	338,768	Ra-223
1274	352,402	Pb-214
1487	409,943	Ac-228
1683	463,397	Ac-228
1860	511,127	Anihilacija
2051	563,77	Cs-134
2125	583,683	TI-208
2218	609,87	Bi-214
2411	661,975	Cs-137
2426	666,067	Bi-212
2652	727,725	Ac-228
2755	755,827	Ac-228
2803	768,923	Bi-214
2818	773,016	Ac-228
2866	786,113	Bi-212
2900	759,39	Ac-228
2942	806,85	Pb-206
3051	836,593	Ac-228
3065	840,413	Ac-228
3140	860,879	TI-208
3298	903,995	Ac-228
3324	911,637	Ac-228
3409	934,228	Bi-214
3467	950,116	K-40
3499	958,85	Ac-228
3521	964,854	Ac-228

3539	969,221	Ac-228
3659	1001,7	Pa-234
3842	1052,47	Bi-214
3940	1079,22	Bi-212
4091	1120,43	Bi-214
4219	1155,38	Bi-214
4409	1207,25	Bi-214
4523	1238,37	Bi-214
4679	1280,96	Bi-214
5034	1377,9	Bi-214
5145	1408,21	Bi-214
5337	1460,64	K-40
5467	1496,15	Ac-228
5486	1501,34	Ac-228
5515	1509,26	Bi-214
5623	1538,75	Bi-214
5812	1590,38	Ac-228
5924	1620,97	Bi-212
5960	1630,81	Ac-228
6670	1660,85	Bi-214
6155	1684,07	Ac-228
6323	1729,97	Bi-214
6451	1764,4	Bi-214
6752	1847,18	Bi-214
8056	2203,58	Po-214
9563	2614,03	TI-208

U tabelama 15 i 16 su prikazani intenziteti spektralnih linija, kao i kontinualni opsezi, respektivno

Energija (keV)	Radionuklid	Intenzitet (cps)
71,854	PbKa2	0,019 ± 0,002
74,307	BiKa1	0,030 ± 0,002
185,26	Ra-226	0,034 ± 0,003
208,979	Ac-228	0,018 ± 0,002
238,4	Pb-212	0,188 ± 0,002
295,412	Pb-214	0,094 ± 0,002
338,768	Ra-223	0,053 ± 0,002
352,402	Pb-214	0,186 ± 0,002
511,127	Anihilacija	0,105 ± 0,001
583,683	TI-208	$0,141 \pm 0,001$
609,87	Bi-214	$0,228 \pm 0,001$
911,637	Ac-228	0,129 ± 0,001
969,221	Ac-228	0,069 ± 0,001
1120,43	Bi-214	$0,080 \pm 0,001$

1460,64	K-40	0,875 ± 0,002
1764,4	Bi-214	$0,085 \pm 0,001$
2614,03	TI-208	$0,183 \pm 0,001$

Kontinuum-energetski raspon u normiranom spektru		Live time=936977,79s
	Gross	Totalni odbroj (s-1)
30-300 keV	50018577	53,38
302-337 keV	2273516	2,426
354-408 keV	2489647	2,657
412-461 keV	1753136	1,87
465-507 keV	1244039	1,327
516-578,5 keV	1546064	1,65
587-606 keV	402340	0,429
0-4483 keV	75524103	80,6

Tabela 16

Nakon snimljenih ovih pet, snimljeno je još osam spektara, a postavka detektora je sljedeća. Detektor je smješten u bakarni cilindar širine 9mm i na njega je postavljen plastični poklopac. Takođe, na detektor postavljeni su dva, tri, četiri, ukupno osam apsorbera napravljena od bakra (bakarne folije) debljine 0.5mm (slika 30). Za svaki spektar je urađena detaljna analiza, kao i u prethodnim spektrima.

Slika 30, Detektor koji sadrži dva bakarna apsorbera

7.6 Spektar 1.0 mm Cu

Fonsko zračenje snimljeno planarnim germanijumskim detektorom je registrovano i detaljno izanalizirano. Postavljena su dva apsorbera od 0.5mm i onda je uslijedilo snimanje koje je trajalo približno dvadesest i dva časa. I ove spektre smo normirali u odnosnu na standardni spektar. Pažljivo je urađena detaljna analiza ovog, ali i ostalih spektara. U tabelama 17 i 18 su prikazani intenziteti spektralnih liniija, ali i kontinuumi za određene energetke ospege u spektru, respektivno.

E(keV)	Radionuklid	Intenzitet (cps)
71,093	PbKa2	0,009 ± 0,002
114,135	?	0,131 ± 0,003
184,491	Ac-228	$0,012 \pm 0,002$
208,219	Ac-228	0,008 ± 0,002
238,016	Pb-212	0,170 ± 0,003
295,129	Pb-214	0,086 ± 0,002
338,446	Ra-223	0,049 ± 0,002
351,965	Pb-214	0,175 ± 0,002
511,162	Anihilacija	0,123 ± 0,002
583,173	TI-208	0,141 <u>+</u> 0,001
609,66	Bi-214	0,237 <u>+</u> 0,002
911,5	Ac-228	$0,134 \pm 0,001$
969,164	Ac-228	0,111 ± 0,001
1120,36	Bi-214	0,083 <u>+</u> 0,001
1460,55	K-40	0,913 <u>+</u> 0,008
1764,05	Bi-214	0,090 <u>+</u> 0,008
2613,82	TI-208	0,188 ± 0,001

Tabela 17

Kontinuum-energetski raspon	Gross	Live time=940891,59s
u normiranom spektru		i otaini odbroj (s-1)
30-300 keV	44053170	46,82
302-336 keV	2246048	2,387
356-457 keV	4211626	4,476
467-507 keV	1218043	1,294
516-580 keV	1654096	1,758
588-607 keV	430287	0,457

618-660 keV	818969	0,87
0-4526 keV	73132657	77,727
	Tabela 18	

Radionuklid K-40 ne pripada ni jednom od tri navedenih prirodnih radioaktivnih nizova, ali je zanmljiv zbog toga što je njegov period poluraspada 1.4·10⁹ godina, dakle nije uspio još uvijek da se raspadne, i kao što je bilo demonstrirano i u prethodnim spektrima, moguće ga je detektovati. Energija ovog radionuklida iznosi 1.46 MeV, a njegov pik je snimljen pomoću HPGe detektora na kojem su se nalazila dva apsorbera. Prilikom snimanja ovog spektra, javio se problem sa pojačavačem, što se može vidjeti na slici 31.

Slika 31, Linija K-40 snimljena uz prisustvo dva apsorbera ukupne debljine 1.0mm koji su postavljeni na detektor. Proširenje linije uzrokovano je nestabilnošću rada pojačavača.

U spektru fonskog zračenja lako je prepoznati dvije karakteristične spektralne linije, jer se njihovi pikovi nalaze jedan pored drugog. Riječ je o karakterističnim linijama TI-208 sa energijom od 583 keV i Bi-214 sa energijom od 609 keV, a izgled ove dvije spektralne linije prikazan je na slici 32:

Slika 32, Linije Tl-208 i Bi-214

7.7 Spektar 1.5mm Cu

U ovom slučaju imamo tri folije od bakra postavljene na detektor. Snimanje je trajalo preko dvadeset sati i onda je uslijedila analiza spektra. Karakteristike fonskog zračenja su date u tabelama 19 i 20 za intenzitet spektralnih linija i kontinuume određenkih energetskih ospega, respektivno.

E(keV)	Radionuklid	Intenzitet (cps)
113,077	Th-227	$0,133 \pm 0,003$
185,176	Ra-226	0,026 ± 0,003
238,157	Pb-212	0,156 ± 0,002
294,963	Pb-214	$0,0088 \pm 0,0002$
338,386	Ac-228	$0,0043 \pm 0,0001$
352,041	Pb-214	$0,174 \pm 0,002$
511,259	Anihilacija	0,119 <u>+</u> 0,001
583,631	TI-208	$0,146 \pm 0,001$
609,849	Bi-214	0,236 <u>+</u> 0,001
911,899	Ac-228	$0,138 \pm 0,001$
969,523	Ac-228	$0,061 \pm 0,001$
1120,82	Bi-214	$0,091 \pm 0,001$
1461,22	K-40	0,915 ± 0,002
1764,9	Bi-214	$0,091 \pm 0,0007$
2613,94	TI-208	0,191 <u>+</u> 0,001

Kontinuum-energetski raspon	Gross	Live time=941088,24s
u normiranom spektru		Totalni odbroj (s-1)
30-300 keV	43166482	45,868
301-336 keV	2330196	2,476
340-350 keV	555520	0,59
355-459 keV	4382444	4,656
466-507 keV	4271075	1,351
515-584 keV	1718264	1,826
586- 607 keV	479399	0,509
613-660 keV	932820	0,991
0-4478 keV	72559776	77,102

7.8 Spektar 2.0mm Cu

Jasno je da sada imamo četiri folije od bakra koje su postavljene na detektor. Karakteristike ovog spektra su date u tabelama 21 i 22 za intenzitete spektralnih linija i kontinuume za odgovarajuće energetske opsege.

E(keV)	Radionuklid	Intenzitet (cps)
113,239	?	0,147 ± 0,003
185,083	Ra-226	0,0263 ± 0,0002
238,037	Pb-212	0,151 ± 0,002
295,086	Pb-214	$0,084 \pm 0,002$
338,486	Ac-228	$0,045 \pm 0,001$
352,134	Pb-214	$0,160 \pm 0,002$
511,27	Anihilacija	$0,118 \pm 0,002$
583,605	TI-208	$0,133 \pm 0,001$
609,809	Bi-214	0,219 ± 0,001534
911,703	Ac-228	$0,130 \pm 0,001$
969,571	Ac-228	$0,072 \pm 0,001$
1120,79	Bi-214	$0,009 \pm 0,001$
1460,9	K-40	$0,870 \pm 0,002$
1764,43	Bi-214	$0,0870 \pm 0,0007$
2613,07	TI-208	0,183 <u>+</u> 0,001

Tabela 2	1
----------	---

Image: Constant of the system Totalni odbroj (s-1) 30-300 keV 39778439 42,257 30-336 keV 2107988 2,239 340-350 keV 542168 0,575 355-461 keV 4197391 4,459 465-508 keV 1252083 1,330 515-581 keV 1604320 1,704 587- 607 keV 426097 0,449 614-660 keV 860054 0,913 0-4476 keV 67441227 71,645	Kontinuum-energetski raspon u normiranom spektru	Gross	Live time=941323,964s
30-300 keV 39778439 42,257 30-336 keV 2107988 2,239 340-350 keV 542168 0,575 355-461 keV 4197391 4,459 465-508 keV 1252083 1,330 515-581 keV 1604320 1,704 587- 607 keV 426097 0,449 614-660 keV 860054 0,913 0-4476 keV 67441227 71,645			Totalni odbroj (s-1)
30-336 keV 2107988 2,239 340-350 keV 6 <td< th=""><th>30-300 keV</th><th>39778439</th><th>42,257</th></td<>	30-300 keV	39778439	42,257
340-350 keV 542168 0,575 355-461 keV 4197391 4,459 465-508 keV 1252083 1,330 515-581 keV 1604320 1,704 587- 607 keV 426097 0,449 614-660 keV 860054 0,913 0-4476 keV 67441227 71,645	30-336 keV	2107988	2,239
355-461 keV 4197391 4,459 465-508 keV 1252083 1,330 515-581 keV 1604320 1,704 587- 607 keV 426097 0,449 614-660 keV 860054 0,913 0-4476 keV 67441227 71,645	340-350 keV	542168	0,575
465-508 keV 1252083 1,330 515-581 keV 1604320 1,704 587- 607 keV 426097 0,449 614-660 keV 860054 0,913 0-4476 keV 67441227 71,645	355-461 keV	4197391	4,459
515-581 keV 1604320 1,704 587-607 keV 426097 0,449 614-660 keV 860054 0,913 0-4476 keV 67441227 71,645	465-508 keV	1252083	1,330
587- 607 keV 426097 0,449 614-660 keV 860054 0,913 0-4476 keV 67441227 71,645	515-581 keV	1604320	1,704
614-660 keV 860054 0,913 0-4476 keV 67441227 71,645	587- 607 keV	426097	0,449
0-4476 keV 67441227 71,645	614-660 keV	860054	0,913
	0-4476 keV	67441227	71,645

7.9 Spektar 2.5mm Cu

Karakteristike fonskog zračenja snimljenih detektorom na kojem je postavljeno pet apsorbera od bakra su date u tabelama 23 i 24, a odnose se na intenzitete spektralnih linija i kontinuume određenih energetskih ospega, respektivno:

E(keV)	Radionuklid	Intenzitet (cps)
113,105	Th-227	$0,121 \pm 0,003$
185,173	Ra-226	$0,024 \pm 0,002$
238,083	Pb-212	0,163 ± 0,002
295,115	Pb-214	$0,0890 \pm 0,0001$
338,290	Ac-228	$0,053 \pm 0,002$
351,873	Pb-214	$0,172 \pm 0,001$
511,234	Anihilacija	$0,123 \pm 0,002$
583,546	TI-208	0,143 ± 0,001
609,742	Bi-214	$0,233 \pm 0,001$
911,545	Ac-228	$0,134 \pm 0,001$
969,395	Ac-228	$0,077 \pm 0,001$
1120,570	Bi-214	$0,009 \pm 0,001$
1460,570	K-40	$0,924 \pm 0,002$
1764,010	Bi-214	$0,0932 \pm 0,0007$
2613,760	TI-208	$0,194 \pm 0,001$

Tabela 2	23
----------	----

Kontinuum-energetski raspon	Gross	Live time=941323,964s
u normiranom spektru		Totalni odbroj (s-1)
30-300 keV	41262966	43,835
302-335 keV	2194325	2,331
340-350 keV	526658	0,559
355-461 keV	4440906	4,717
466-508 keV	1304714	1,386
515-581 keV	1729772	1,837
587- 607 keV	465201	0,494
614-660 keV	918727	0,976
0-4477 keV	70662650	75,067

Na slici 33 je prikazan intenzitet spektralne linije Pb-214 koja se nalazi na energiji od 295 keV.

Slika 33, Linija Pb-214 na 295keV

7.10 Spektar 3.0mm Cu

Intenziteti spektralnih linija dati su u tabeli 25, a kontinuumi za odgovarajuće energetske opsege u tabeli 26:

E(keV)	Radionuklid	Intenzitet (cps)
114,662	Th-227	$0,138 \pm 0,003$
185,973	Ra-226	$0,018 \pm 0,002$
238,603	Pb-212	0,168 ± 0,003
295,331	Pb-214	0,094 ± 0,002
338,506	Ac-228	$0,049 \pm 0,001$
351,815	Pb-214	$0,174 \pm 0,002$
510,556	Anihilacija	0,111 ± 0,002
582,66	TI-208	$0,138 \pm 0,001$
609,065	Bi-214	0,235 ± 0,001
911,236	Ac-228	$0,130 \pm 0,001$
969,820	Ac-228	0,0737 <u>+</u> 0,0009
1120,610	Bi-214	$0,008 \pm 0,001$
1460,330	К-40	0,893 ± 0,002
176,810	Bi-214	0,0899 ± 0,0007
2613,680	TI-208	0,1904 ± 0,0009

Tabela 25

Kontinuum-energetski raspon	Gross	Live time=940854,441s
u normiranom spektru		Totalni odbroj (s-1)
30-300 keV	40922253	43,494
302-335 keV	2154098	2,289
340-349 keV	500617	0,532
354-460 keV	4367735	4,642
465-507 keV	1273022	1,353
515-581 keV	1668973	1,773
581- 601 keV	466404	0,495
612-659 keV	905679	0,962
0-4478 keV	69607722	73,984

Tabela 26

7.11 Spektar 3.5mm Cu

Na planarni HPGe detektor je sada postavljeno sedam apsorbera debljine 0.5mm od bakra i karakteristike fonskog zračenja su date u tabelama 27 i 28 za intenzitete spektralnih linija, kao i za kontinuume dati energetskih opsega, respektivno.

E(keV)	Radionuklid	Intenzitet (cps)
113,645	Th-227	0,132 ± 0,003
185,303	Ra-226	0,0193 ± 0,0003
238,166	Pb-212	0,154 ± 0,002
295,123	Pb-214	0,088 <u>+</u> 0,002
338,186	Ac-228	$0,047 \pm 0,001$
352,087	Pb-214	0,159 <u>+</u> 0,002
511,017	Anihilacija	0,122 ± 0,002
583,274	TI-208	$0,147 \pm 0,001$
609,453	Bi-214	0,226 <u>+</u> 0,001
911,147	Ac-228	0,138 ± 0,001
968,723	Ac-228	$0,073 \pm 0,001$
1120,200	Bi-214	0,0084 ± 0,0009
1460,150	K-40	0,891 <u>±</u> 0,002
1763,970	Bi-214	0,0893 <u>+</u> 0,0002
2614,080	TI-208	0,1890 <u>+</u> 0,0009

Tabel	a 27
-------	------

Kontinuum-energetski raspon	Gross	Live time=940693,476s
u normiranom spektru		Totalni odbroj (s-1)
30-300 keV	40140530	42,671
301-336 keV	2214574	2,354
340-350 keV	564364	0,599
354-460 keV	4354924	4,629
465-507 keV	1277864	1,358
516-579 keV	1605847	1,707
586- 606 keV	440410	0,468
614-660 keV	902827	0,959
0-4486 keV	68733619	73,067

7.12 Spektar 4.0mm Cu

Inteziteti karakterističnih pikova su dati u tabeli 29, a kontinuumi određenih energetskih opsega su dati u tabeli 30.

E(keV)	Radionuklid	Intenzitet (cps)
113,518	Th-227	0,121 ± 0,003
185,046	Ra-226	$0,021 \pm 0,002$
238,010	Pb-212	0,145 ± 0,002
295,069	Pb-214	$0,082 \pm 0,002$
338,477	Ac-228	$0,040 \pm 0,001$
351,292	Pb-214	$0,160 \pm 0,002$
511,292	Anihilacija	0,121 ± 0,002
583,639	TI-208	$0,140 \pm 0,001$
609,848	Bi-214	$0,223 \pm 0,001$
911,795	Ac-228	0,131 ± 0,001
969,400	Ac-228	$0,076 \pm 0,001$
1120,920	Bi-214	0,082 ± 0,00
1460,820	K-40	0,877 ± 0,002
1764,400	Bi-214	$0,087 \pm 0,001$
2614,270	TI-208	0,184 ± 0,006

Tabela 29

Kontinuum-energetski raspon	Gross	Live time=939528,506s		
u normiranom spektru		Totalni odbroj (s-1)		
30-300 keV	39270687	41,798		
30-332 keV	2061318	2,193		
337-345 keV	496737	0,528		
352-456 keV	4243735	4,516		
463-503 keV	1202254	1,279		
513-578 keV	1633727	1,738		
584- 605 keV	455628	0,484		
610-658 keV	925813	0,985		
0-44781keV	67839103	72,205		

Tabela 30

7.13 Spektar 4.5mm Cu

Ovaj spektar je snimljen posljednji i sniman je jako dugo, s obzirom da je faktor mulitipliciranja kod ovog spektra 3.6, dok je kod većine spektara kod kojih smo stavljali apsorbere taj faktor približno iznosio 11. Postavljeno je devet apsorbera na detektor i mjereno je fonsko zračenje. Intenziteti spektralnih linija su dati u tabeli 31, a kontinuumi određenih energetskih opsega u tabeli 32.

E(keV)	Radionuklid	Intenzitet (cps)
113,518	?	0,129 ± 0,003
184,773	Ra-226	$0,025 \pm 0,002$
238,283	Pb-212	0,139 ± 0,002
295,069	Pb-214	0,078 <u>+</u> 0,002
338,477	Ac-228	$0,043 \pm 0,002$
351,855	Pb-214	0,153 ± 0,002
511,017	Anihilacija	$0,120 \pm 0,001$
583,366	TI-208	0,139 <u>+</u> 0,001
609,575	Bi-214	0,214 ± 0,002
911,522	Ac-228	0,129 <u>+</u> 0,001
969,400	Ac-228	$0,063 \pm 0,001$
1120,137	Bi-214	$0,079 \pm 0,001$
1460,820	K-40	0,863 ± 0,002
1764,130	Bi-214	0,088 <u>+</u> 0,001
2613,730	TI-208	0,184 <u>+</u> 0,001

Tabela 31

Kontinuum-energetski raspon	Gross	Live time=939333,212s			
u normiranom spektru		Totalni odbroj (s-1)			
30-300 keV	39042322	41,564			
300-321 keV	1374463	1,463			
337-346 keV	494585	0,526			
352-458 keV	4259439	4,534			
462-502 keV	1196544	1,274			
512-576 keV	1592102	1,695			
584- 604 keV	436349	0,464			
610-657 keV	891320	0,948			
0-4481 keV	67208023	71,548			

Iz priloženog se može vidjedi da je svaki spektar detaljno izanaliziran i da je određen intenzitet linija kod svakog spektra ponaosob, kao i totalni odbroj cijelog spektra. Nakon toga je određen relativni odnos intenziteta spektralnih linija.

7.14 Relativni odnos intenziteta spektralnih linija i kontinuuma u energetskoj regiji 30-300 keV

Već je spomenuto u radu kako je urađen relativni odnos spektralnih linija. Poredili smo intenzitete datih spektralnih linija sa "standardom." Sa I₁ smo označili spektar CuCyl0.5mm, sa I₂ spektar 170517, I₃ spektar bez zaštite i plastičnog poklopca, I₄ spektar sa 1mm apsorberima, I₅, I₆, I₇, I₈, I₉, I₁₀ i I₁₁ dodavajući po 0.5mm tanke folije od bakra (apsorber) za svaki spektar. Relativni odnos intenziteta spektralnih linija je prikazan tabelarno, u tabeli 33.

- (1) ()	T	T	T	T	T	T	T	T	T	T	T
E (keV)	$\frac{I_1}{I_1}$	$\frac{I_2}{I_2}$	$\frac{I_3}{I_3}$	$\frac{I_4}{I_4}$	$\frac{I_5}{I_5}$	$\frac{I_6}{I_6}$	$\frac{I_7}{I_7}$	$\frac{I_8}{I_8}$	$\frac{I_9}{I_1}$	$\frac{I_{10}}{I_{10}}$	$\frac{I_{11}}{I_{11}}$
	Is	Is									
72,486	/	0,25	0,96	0,11	/	/	/	/	/	/	/
74,912	/	0,23	0,40	/	/	/	/	/	/	/	/
185,674	0,54	0,44	0,90	0,16	0,33	0,34	0,31	0,24	0,25	0,28	0,32
209,064	0,21	0,40	0,73	0,18	/	/	/	/	/	/	/
238,411	0,41	0,41	0,98	0,37	0,34	0,33	0,35	0,36	0,33	0,31	0,30
295,343	0,42	0,43	0,93	0,39	0,04	0,38	0,40	0,42	0,40	0,37	0,35
338,375	0,48	0,44	1,02	0,40	0,03	0,38	0,44	0,40	0,39	0,33	0,36
352,058	0,44	0,43	0,96	0,40	0,41	0,38	0,40	0,40	0,37	0,37	0,36
511,18	0,61	0,56	0,93	0,65	0,63	0,63	0,67	0,59	0,65	0,64	0,64
583,576	0,48	0,44	1	0,44	0,45	0,42	0,44	0,43	0,45	0,43	0,43
609,622	0,48	0,46	1	0,48	0,48	0,44	0,47	0,48	0,46	0,45	0,43
911,4	0,54	0,51	1	0,53	0,55	0,52	0,53	0,52	0,55	0,52	0,51
969,248	0,59	0,48	1,03	0,77	0,43	0,50	0,53	0,29	0,50	0,53	0,44
1120,28	0,58	0,55	0,98	0,58	0,63	0,06	0,06	0,06	0,06	0,57	0,55
1460,63	0,63	0,60	0,99	0,63	0,63	0,60	0,63	0,62	0,61	0,60	0,59
1764,18	0,69	0,63	0,99	0,67	0,68	0,65	0,69	0,67	0,66	0,64	0,65
2614,04	0,72	0,70	0,98	0,71	0,73	0,69	0,72	0,72	0,72	0,70	0,70

Tabela 33, Relativni odnos intenziteta spektralnih linija

Vrijednosti koje su prikazane u tabeli 33 su one koje smo i očekivali da ćemo dobiti, manje od jedinice. Takođe, primijetimo da imao vrijednosti koje su približne jedinici odgovara spektru koji je snimljen pomoću detektrora bez zaštite i bez poklopca. U tabeli 33 su ove vrijednosti obilježene crvenom linijom. Za linije TI-208, Bi-214 i Ac-228 iznosi tačno jedan.

Kada je riječ o kontinualnim regijama u spektru, posebnu pažnju ćemo posvetiti energetkoj regiji 30-300 keV. Vrijednost odbroja svake kontinualne regije (kontinuuma) je dat u tabeli 34 i kontinualne regije su označene kao i u prethodnom pasusu, respektivno.

$I(s^{-1}), I_S = 91, 61 s^{-1}$
$I_1 = 50, 33$
$I_2 = 53,38$
<i>I</i> ₃ = 91, 49
$I_4 = 46,82$
$I_5 = 45,87$
$I_6 = 42, 26$
$I_7 = 43,84$
$I_8 = 43, 45$
$I_9 = 42,67$
$I_{10} = 41,80$
$I_{11} = 41,56$
Tabela 34

U tabeli 35 je prikazan relativni odnos kontinuuma u energetskoj regiji 30-300 keV za svaki spektar u odnosu na kontinuum "standarda":

$\frac{I_1}{I_s}$	$\frac{I_2}{I_s}$	$\frac{I_3}{I_s}$	$\frac{I_4}{I_s}$	$\frac{I_5}{I_s}$	$\frac{I_6}{I_s}$	$\frac{I_7}{I_s}$	$\frac{I_8}{I_s}$	$\frac{I_9}{I_s}$	$\frac{I_{10}}{I_s}$	$\frac{I_{11}}{I_s}$
0,55	0,58	0,99	0,51	0,50	0,46	0,48	0,47	0,46	0,46	0,45

Tabela 35, Komparacija kontinuuma u odnosu na kontinuum "standarda" u energetskoj regiji 30-300 keV

I u ovom slučaju su vrijednosti koje smo dobili manje od jedinice, osim u slučaju kada je postavka detektora bila takva da nismo imali nikakvu zaštitu, niti plastični poklopac i odnos ova dva kontinuuma je približno jednak jedinici i u tabeli 35 je označen crvenom bojom.

7.15 Poređenje spektara

Pored karakterizacije fonskog zračenja pomoću planarnog HPGe detektora, zanima nas i niskoenergetski opseg, naročito 30-300 keV. U vezi s tim, urađeno je i poređenje

određenih spektara na navedenom energetskom opsegu. Prvo poređenje je urađeno između spketra označenog kao "standard" i spektra 170517 (HPGe detektor bočno opkoljen sa Cu cilindrom debljine zida 9mm) i prikazano je na slici 34. Na x-osi je označena energija u keV, a na y-osi broj upadnih fotona. Na narednoj slici 35 je prikazana komparacija 4 spektra i to: spektar koji predstavlja standard, spektar koji je snimljen bez poklopca, spektar koji je imao 1.5mm i 3mm debljinu apsorbera od bakra. Najintenzivnije spektralne linije ima spektar koji smo usvojili da je standard.

Napravljeno je i poređenje od šest spektara, tako što smo dodali na prethodno poređeje spektara još dva: spektar koji sadrži pet apsorbera (2.5 mm debljina) i spektar 170517 i to možemo vidjeti na slici 36.

Slika 34, Poređenje spektara: braon bojom je obilježen "standard", a bež bojom spektar 170517 na energetskom rasponu od 30-300 keV

E (keV)

E (keV)

Slika 35, Poređenje spektara: sivom bojom je predstavljen spektar koji sadrži sedam apsorbera (3.5mm), žutom bojom je obilježen spektar koji sadrži tri apsorbera (1.5mm), crvenom bojom spektar bez zaštite i poklopca, i braon bojom standard

Slika 36: Poređenje šest različitih spektara: roze bojom je označen spektar 3.5 mm debljina tanke folije, plavom bojom spektar 2.5mm debljina tanke folije, žutom bojom 1.5mm debljina tanke folije, bež bojom spektar 170517, crvenom bojom spektar snimljen bez poklopca i zaštite, i spektar braon bojom standard

8. Monte-Karlo simulacije fonskog spektra planarnog HPGe detektora

Monte-Karlo simulacije fonskog spektra planarnog HPGe detektora su realizovane pomoću softverskog paketa Geant4 (v.4.9.5). U simulacijama je gama zračenje porijeklom iz prirodnih radioaktivnih nizova U-238 i Th-232, kao i usljed raspada K-40 generisano izotropno iz sferne površine poluprečnika 0.5 m, u čijem centru je bio smješten detektor (Slika 37). Na slici 37 je vidljiv Ge kristal detektora prečnika 80 mm i visine 35 mm, aluminijumski endcap koji okruzuje kristal, kao i prozor na endcap-u koji odgovara kompozitnim ugljeničnim vlaknima. Simulirana je emisija gama kvanata koja potiče iz 10⁷ raspada Ra-226 i 10⁷ raspada Th-232 (uz pretpostavku da su radioaktivni potomci u ravnoteži sa Ra-226, odnosno Th-232), kao i gama emisija iz 13.2 x 10⁷ raspada K-40.

Slika 34, Planarni HPGe detektor u simulacijama. Zelene linije predstavljaju emitovane gama kvante (radi vizualizacije je prikazano samo 100 događaja)

Na slici 38 je prikazan spektar koji je u simulacijama registrovan od strane planarnog germanijumskog detektora, dok je na slici 39 vidljiv niskoenergetski deo pomenutog spektra (0-350 keV).

Slika 38, Simulirani fonski spektar planarnog HPGe detektora

Slika, 39 Niskoenergetski region simuliranog fonskog spektra planarnog HPGe detektora

U dobijenom simuliranom spektru se jasno vidi da nema intenzivnog niskoenergetskog kontinuuma, koji je inače veoma izražen kod eksperimentalnih spektara koji su predmet analiza ovog master rada. Razlog tome jeste što u simulacijama nisu bili uključeni efekti kosmičkog zračenja (koje je prisutno u realnosti), niti je bilo simulirano prisustvo podloge, zidova i plafona laboratorije iz kojih u realnosti ovi gama zraci i potiču (i na kojima dolazi do Komptonskog rasejanja emitovanog gama zračenja). Ovo ukazuje da u eksperimentalnim spektrima niskoenergetski kontinuum potiče od fotona kosmičkog porijekla, kao i od rasijanog gama zračenja emitovanog usljed raspada prirodno prisutnih radionuklida.

9. Zaključak

Izvršena je karakterizacija fonskog gama zračenja pomoću planarnog HPGe detektora. Korišten je jedan fonski spektar kao "standard" i poređeni su ostali sprektri (snimljeni u prisustvu tankih Cu apsorbera) u odnosu na taj spektar, pri čemu je dobijeno da je intenzitet spektralnih linija ovih spektara u odnosu na spektralne linije "standarda" manji od jedinice. Takođe, ukoliko se postavi tanka zaštita, odnosno apsorberi koji su napravljeni od bakra u formi tanke folije, uočeno je da će intenzitet niskoenergetskog fonskog gama zračenja sa kontinualnom energetskom raspodelom koje padne na zapreminu detektora biti znatno slabiji, što je naročito izraženo u spektralnom regionu 30-300 keV.

Ovo ukazuje na činjenicu da niskoenergetskom regionu domintan doprinos ne dolazi od Komptonski rasijanih fotona viših energija (E~1 MeV) u detektoru, već upravo od fotonskog fluksa niskih energija koji kao takvi egzistiraju u okruženju detektora. Ovakav emisioni spektar dijelom potiče od rasijanja gama zračenja u okolini detektora, uključujući i efekat "backscattering-a" (rasijanje unazad) i u vazduhu. Pored toga, doprinos ovom regionu daje i niskoenergetsko zračenje kosmičkog porijekla, obzirom da obje ove niskoenergetske komponente (rasijano zračenje i zračenje kosmičkog porijekla) pokrivaju identičan spektralni region i nije jednostavno odrediti pojedinačni doprinos svake komponente.

Primjena Monte-Karlo simulacija može da dovede do odgovarajućeg kvantitativnog rezultata, kao rješenja ovog problema.

Korištenjem tankih folija od bakra je moguće je u značajnoj meri redukovati odbroj u fonskom spektru HPGe detektora kada je u pitanju spektralni region ispod 500 keV, što može da ima važnu praktičnu primenu.

Generalno, poznavanje porijekla i intenziteta niskoenergetskog fotonskog zračenja je značajno i sa aspekta doprinosa godišnjoj dozi jonizujućeg zračenja za stanovništvo.

10. Literatura

1. William R. Leo-Tecniques for Nuclear and Particle Physics Experiments, Springer-Verlag, 1994.

2. Kenneth S.Krane-Introductory Nuclear Physics, Wiley, 1987.

3. Gordon Gilmore-Practical gamma ray spectrometry, Wiley, 2008.

4. Walter E. Meyerof-Elements of Nuclear Physics, McGraw Hill, 1967.

5. Joseph Magill, Jean Galy- Radioactivity, Radionuclides, Radiation, Springer, 2005

6. Miodrag Krmar-Uvod u nuklearnu fiziku, Novi Sad, 2014.

7. Zoran Mijatovic, Stevica Đirović-Osnovi elektronike i digitalne elektronike, Novi Sad, 2011.

8. Gamma and X-Ray Detection, Canberra Catalog, Canberra Industries, 2011.

9. Baltic Scientific Instruments- Semiconductors Detectors and Nuclear Electronics for Radiation Measurments, 2015

10. P.Bossew-A very long-term HPGe-background gamma spectrum, University of Salzburg, 2004

11. Klapdor-Kleingtothaus, K.Zuber-Particle Aatrophysics, Institute of Physics Publishing Bristol and Philadelphia, 1997, 2000

12. Claus Grupen-Astroparticle Physics, Springer, 2005

13. Baltic Scientific Instruments-Gamma and X-ray detection unit based on planar HPGe detector GDP-80 720, Riga, 2017

Biografija

Suzana Mijić rođena je 28.6.1991. u Bijeljini gdje je završila Gimnaziju "Filip Višnjić" i Nižu muzičku školu "Stevan Stojanović Mokranjac", odsjek za klavir. Kao odličan đak u obje škole, upisuje 2010.godine Fiziku, profesoriski smjer, na Prirodno-matematičkom fakultetu u Novom Sadu. Prisustvovala je na sedam Internacionalnih konferencija koje su namijenjene studentima fizike, od koijh su najznačajnije

konferencije na Oxfordu, u CERN-u i na Max Plancku. Master studije upisuje 2016.godine na Katedri za nuklearnu fiziku na Prirodno-matematičkom fakultetu u Novom Sadu.
UNIVERZITET U NOVOM SADU

PRIRODNO-MATEMATIČKI FAKULTET

KLJUČNA INFORMACIJSKA DOKUMENTACIJA

Redni broj:

RBR	
Identifikacioni broj:	
IBR	
Tip dokumentacije:	Monografska dokumentacija
TD:	
Tip zapisa:	Tekstualni štampani materijal
TZ	
Vrsta rada:	Master rad
VR	
Autor:	Suzana Mijić
AU	
Mentor:	prof. dr Dušan Mrđa
MN	
Naslov rada:	Karakterizacija fonskog spektra planarnog HPGe detektora bez zaštite
NR	
Jezik publiakcije:	srpski (latinica)
JR	
Jezik izvoda:	srpski/engleski
II	
Zemlja publikovanja:	Srbija

ZΡ

Uže geografsko područje:	Vojvodina
UGP	
Godina:	2017
GO	
Izdavač:	Autorski reprint
IZ	
Mjesto i adresa:	Prirodno-matematički fakultet, Trg Dositeja Obradovića 4, Novi Sad
МА	
Fizički opis rada:	10 poglavlja/ 74 strana/35 tabela/39 slika
FO	
Naučna oblast:	Fizika
NO	
Naučna disciplina:	Nuklearna fizika
ND	
Predmetna odrednica, ključne riječi:	Niskofonska gama spektroskopija, radionuklidi, intenziteti gama pikova, Komptonovo rasijanje, kosmičko zračenje, planarni HPGe detektor, efikasnost detektora
РО	
Čuva se:	Biblioteka departmana za fiziku, PMF-a u Novom Sadu
ČU	
Važna napomena:	Nema
VN	
Izvod:	U ovom master radu izvršena je karakterizacija fonskog spektra pomoću planarnog HPGe detektora. Analizirano je trinaest

različitih spektara pomoću ovog detektora. Fonski spektar 2017A je izabran za "standard", i na osnovu ovog spektra je izvršena normalizacija ostalih spektara, određeni su intenziteti spektralnih linija, kao i relativni odnosi intenziteta spektralnih linija u odnosu na "standard". Urađena je i komparacija određenih spektara, da bi se vidjela razlika spektara koji su snimljeni kada se na detektor postavi zaštita u vidu tanke folije napravljene od bakra debljine 0.5 mm i kada detektor nema nikakvu zaštitu ili je postavljen u cilindar napravljen od bakra širine 9mm. Spektar koji je dobijen pomoću Monte Karlo simulacije ne prikazuje kontinuum u niskoenergetskom opsegu koji se javlja u spektrima koji su dobijeni eksperimentalnim putem, jer u simulaciju nisu uključeni doprinosi kosmičkog zračenja i zračenja koje potiče od gama fotona.

ΙZ

Datum prihvatanja od NN vijeća:

DP

Datum odbrane	22.9.2017.
DO	
Članovi komisije:	
КО	
Predsednik:	Prof. dr Radomir Kobilarov
Član:	Prof. dr Dušan Mrđa, mentor
Član:	Doc. dr Jovana Nikolov

UNIVERSITY OF NOVI SAD FACULTY OF SCIENCE AND MATHEMATICS KEY WORDS DOCUMENTATION

Accession number:

ANO Identification number: INO Document type: Monograph publication DT Type of record: Textual printed material TR Content code: Master thesis СС Suzana Mijić Author: AU Dr Dušan Mrđa Mentor/comentor MN Title: Characterization of background spectrum of planar HPGe detector without shield ТΙ Language of text Serbian (Latin) LT Language of abstract English LA

Country of publication Serbia

СР

Locality of publication	Vojvodina
LP	
Publication year:	2017
РҮ	
Publisher:	Autor's reprint
PU	
Publication place:	Faculty of Science and Mathematics, Trg Dositeja Obradovića 4, Novi Sad
РР	
Physical description:	10 chapters/ 74 pages/ 35 tables/ 39 figures
PD	
Scientific field:	Physics
SF	
Scientific discipline:	Nuclear Physics
SD	
Subject/key words:	Low-background gamma spectroscopy, radionuclides, intensity of gamma rays, Compton scattering, cosmic rays, planar HPGe detector, efficiency of detector
SKW	
Holdig data:	Library of Department of Physics, Trg Dositeja Obradovića 4
HD	
Note:	None
Ν	
Abstract:	Characterization of background spectrum of planar HPGe detector without shield is presented in this paper. Thirteen

different spectra were analyzed using this detector. The background spectrum named 2017A was chosen to be the "standard". Normalization was based on this "standard" and after a normalization of spectra, we were able to determine all intensities in spectra and also to calculate relative ratio of the intensities of spectral lines. We compared certain spectra to see the difference between spectra where detector had protection made by copper 0.5mm tickness at least, or even more, and background spectrum withoud shield and also when detector was appointed into a copper cylinder 9mm thick walls. The spectrum obtained by the Monte-Carlo simulation did not show contiuum in low enery range because we did not include effects of cosmic rays and gamma rays, but this continuum appears in experiment.

AB

Accepted from scientific Board:	
ASB	
Defended on:	09/22/2017
DE	
Thesis defended Board	
DB	
President:	Dr Radomir Kobilarov
Member:	Dr Dušan Mrđa, mentor
Member:	Doc. dr Jovana Nikolov