

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA FIZIKU

Merenje aktivnosti uranijuma u uzorcima nepoznatog sastava

– Master rad –

Mentori: prof. dr Jovana Nikolov dr Đorđe Lazarević Kandidat: Aleksandar Rikalo

Novi Sad, 2020.

Ovaj rad je uradjen u Sektoru za razvoj i primenu nuklearnih tehnologija u Javnom preduzeću Nuklearni objekti Srbije. Zato kolektivu Javnog preduzeća Nuklearni ibjekti Srbije dugujem veliku zahvalnost za uslove koje sam imao tokom izrade master rada i na ogromnoj tehničkoj podršci bez koje izrada ovog rada ne bi bila moguća.

Veliku zahvalnost dugujem svojim mentorima prof. dr Jovani Nikolov i dr Đorđu Lazareviću na mnogobrojnim savetima koji su mi pomogli tokom izrade ovog rada.

Posebno se zahvaljujem Miodragu Miloševicu na prenetom znanju i podršci tokom izrade ovog rada.

Sadržaj

1	Uvod			
2	Pre	dmet rada	7	
	2.1	Germanijumski detektori	7	
		2.1.1 Energetska struktura u čvrstim telima	7	
		2.1.2 Poluprovodnici	7	
		2.1.3 Princip rada poluprovodničkih detektora	9	
		2.1.4 Konstrukcija HPGe detektora	10	
	2.2	Pravo koincidentno sumiranje	11	
		2.2.1 Zavisnost pravih koincidencija od geometrijske postavke eksperimenta	13	
		2.2.2 Teorija pravog koincidentnog sumiranja	14	
		2.2.3 Peak to Total (P/T) kalibracija	15	
		2.2.4 Aproksimacija korekcionih faktora za pravo koincidentno sumiranje za		
		rasprostranjeni izvor	15	
	2.3	Zakon radioaktivnog raspada	18	
		2.3.1 Prirodni radioaktivni nizovi	19^{-5}	
		2.3.2 Badioaktivna ravnoteža	19	
		2.3.3 Badioaktivno grananje	$\frac{10}{20}$	
	2.4	Merenie aktivnosti uranijuma	$\frac{-0}{20}$	
	$\frac{2.1}{2.5}$	Fluorescentro X zračenje	$\frac{-0}{22}$	
3	Met	todologija rada	25	
	3.1	Određivanje gustine uzorka	25	
	3.2	Kalibracija efikasnossti pomoću softvera <i>LabSOCS</i>	28	
	3.3	${ m Efektivno}$ rastojanje uzorka od detektora i njena veza sa aksijalnim rastojanjem .	29	
		3.3.1 Efektivno rastojanje uzorka od detektora	29	
		3.3.2 Zavisnost aksijalnog rastojanja tačkastog uzorka od njegovog efektivnog		
		rastojanja	30	
	3.4	Određivanje korekcionih faktora	32	
	3.5	Određivanje aktivnosti i sastava uzorka	36	
4	Rez	ultati sa diskusijom	38	
-	4.1	Uzorak 1	38	
		4 1 1 Kalibracija efikasnossti u prvoj iteraciji	38	
		4.1.2 Određivanje korekcionih faktora u prvoj iteraciji	40	
		4.1.3 Određivanje aktivnosti ^{238}U u prvoj iteraciji	$\frac{10}{42}$	
		4.1.4 Određivanje aktivnosti ^{235}U u prvoj iteraciji	46	
		4.1.5 Druga iteracija u postupku određivanja sastava uzorka i njegove aktivnosti	49	
		4.1.6 Određivanje aktivnosti ²³⁸ U u drugoj iteraciji	51	
		4.1.7 Određivanje otežane srednje aktivnosti ^{238}U i njegove mase u uzorku	52	
		4.1.1 Određivanje otezane srednje aktivnosti U i njegove mase u uzorku \therefore	52	
	12	Uzorak 9	56	
	4.4	A > 1 Kalibracija efikasnosti pomoću softvera $LabSOCS$	50 56	
		4.2.1 Kanbracija enkasnosti pomocu sonvera Lausocos	50 57	
		4.2.2 Noterolom larton $1.2.2$ Adredivenie estimate 2 a precipitare $1.2.2$	60 60	
		4.2.4 Određivanje aktivnosti uzorka 2 u prvoj iteraciji	60 60	
		4.2.5 Odrođivanje aktivnosti U u prvoj iteraciji	ບບ ດາ	
		$\pi_{2,0}$ Outcutvalije aktivitosti – U u prvoj tietaciji –	0^{2}	

	4.2.6	Druga iteracija u postupku određivanja sastava uzorka i njegove aktivnosti	65
	4.2.7	Određivanje aktivnosti ^{238}U u drugoj iteraciji	65
	4.2.8	Određivanje aktivnosti ^{235}U u drugoj iteraciji	70
	4.2.9	Diskusija rezultata	75
5	Zaključak		76
A	Određivan sastava uz	je greške usled definisanja geometrijske postavke eksperimenta i orka	81
A B	Određivan sastava uz Određivan	je greške usled definisanja geometrijske postavke eksperimenta i orka je aktivnosti torijuma u uzorku 2	81 82

1 Uvod

Razvoj Nuklearne fizike započinje Bekerelovim otkrićem prirodne radioaktivosti 1896. godine. Par godina kasnije Vilard je uočio da je radioaktivni raspad jezgra propraćen emisijom komponente koja se ne može lako zaustaviti i koja se ne može skrenuti u magnetnom polju. Ova komponenta je dobila naziv gama zrak. Ovim otkrićem stvoreni su uslovi za nastanak nove metodoligije koja za cili ima izučavanje jezgra - gama spektrometrije. Gama spektrometrija je nedestruktivna metoda koja ne zahteva hemijsku pripremu uzorka pre analize i može vrlo brzo da identifikuje i precizno da odredi aktivnost uzorka i iz tog razloga je vodeća metodoligoja u ovom naučnom polju. Ona je bazirana na detektkciji gama zračenja koje se emituje usled deeksitacije jezgra posle spontanog radioaktivnog raspada. Razvitak gama spektrometrije išao rame uz rame sa razvojem detektora gama zračenja. Prvi detektori koji su se koristili su bili fotografske ploče i jonizacione komore ispunjene gasom. Jonizacione komore su imale prednost u odnosu na fotografske ploče jer su mogle vrlo brzo da detektuju zračenje kao i da ga kvantitavno odrede. Otkrićem NaI(Tl) scintilacionih detektora, koji bili u stanju da prikažu spektar u širokom energetskom opsegu, došlo je do velikog napretka u kvantitativnom merenju gama zračenja. Ove detektora je odlikovala dobra rezolucija, hemijska stabilnost i visoka efikasnost. Ove detektore su vremenom zamenili germanijumski detektori, čija odlična energetska rezolucija nosi najveće zasluge za munjevit razvitak gama spektrometrije. [1] Germanijumski detektori se intenzivno koriste za detekciju i analizu gama zračenja, prvenstveno zbog njihove odlične energetske rezolucije. Njihova široka rasprostranjenost u različitim naučnim disciplinama proizvela je potrebu za uvođenje standadizovanih procedura prilikom njihovog korišćenja da bi postignuti rezultati imali isti smisao i značaj za sve proizvođače i korisnike. [2,3] Glavni zadatak gama spektrometrije je detekcija i određivanje osobina X i gama zračenja kao što je određivanje energije i verovatnoće njihove emisije nakon radioaktivnog raspada jezgra. Merenjem ovih veličina dolazi se do fundamentalnih saznanja o strukturi jezgra iz kojeg su emitovani gama zraci. Gama spektrometrija se koristi i za određivanje koncentracije radionuklida i određivanje sastava uzorka na osnovu karakteristika gama i X zračenja. [1,4,5]

Aktivnost u uzorcima prirodnog porekla, poput zemlje i vode, se meri da bi se odredio spektar pozadinskog zračenja ili da bi se odredio stepen kontaminacije usled ljudskog uticaja. Kosmogeni radionuklidi ${}^{40}K$, ${}^{232}Th$, ${}^{235}U$ i ${}^{238}U$ se najčešće susreću u prirodnim uzorcima. Navedeni izotopi uranijuma i torijuma predstavljaju praroditelje prirodnih radioaktivnih nizova i njihova egzistencija u uzorku je propraćena i prisustvom njihovih potomaka. Prirodni materijali koji u sebi sadrže ove radionuklide nose akronim iz engleskog jezika NORM (*Naturally Occurring Radioactive Materials*). Gama spektrometrija NORM-a se susreće sa mnogim poteškoćama. Aktivnost detektovanih radionuklida je mala, te da bi se došlo do statistički relevantnih podataka potrebno je vršiti duga merenja. Takođe pozadinsko zračenje koje potiče od okoline može značajno da utiče na merenje. [5] Stvar dodatno komplikuju efekti koincidentnog sumiranja [6], efekti interferencije gama zračenja bliskih energija. [7] Pored ovih poteškoća gama spektroskopija je najpouzdanija i najefikasnija metoda za određivanje aktivnosti u uzorcima prirodnog porekla. [8]

Određivanje aktivnosti ²³⁸U zasnovano je na radioaktivnom ekvilibrijumu između ²³⁸U i njegovih potomaka ²³⁴Th i ^{234m}Pa. Prilikom odrećivanja aktivnosti ²³⁸U koriste se tri pika na energijama $\approx 63 \text{ keV}$, $\approx 1001 \text{ keV}$ i dublet na energiji $\approx 92.5 \text{ keV}$. Prodedura u referenci [9] je bazirana na pikovima 63 keV i 1001 keV, dok su autori u referenci [10] koristili pikove 92.5 keV i 1001 keV. Iako su merenja bila pouzdana aktivnosti koje su se dobijele pomoću ovih pikova su se značajno razlikovale. Slični problemi su se javljali i prilikom određivanja aktivnosti ²³⁵U preko linija 143.76 keV, 163.33 keV i 185.72 keV. [11] Ovaj problem je rešen uvođenjem korekcionih faktora za koincidentno sabiranje i oduzimanje broja impulsa u Ge detektoru na pomenutim energijama. [6] Pored efekata koincincidentnog sumiranja postoje i drugi efekti koji otežavaju određivanje aktivnosti uzoraka. Najveći problem prilikom odrećivanja aktivnosti uranijuma pomoću pika na energiji 63 keV predstavljaju efekti samoapsorpcije na nisko-energetskom delu spektra. Razvijene su različite procedure koje se bave ovim problem ali one unose dodatnu mernu nesigurnost koja je proporcijalna samom korekcionom faktoru. [12] Pored efekta samoapsorpcije na na ovom piku su prisutni i efekti interferencije gama zrakova koji nastaju raspadima jezgara koja se nalaze u sva tri prirodna radioaktivna niza ^{232}Th , ^{235}U i ^{238}U . Postupak određivanja aktivnosti pomoću ovog pika je obrađen u referenci [7]. Određivanje aktivnosti pomoću pika energije 1001 keV se smatra najpreciznijim, zbog odsustva efekata inteferencije i nižeg komptonskog pozadinskog zračenja u tom delu spektra. [13] Međutim mala verovatnoća emisije ovog zračenja i relativno niska efikasnost Ge detektora na ovim energijajama u nekim slučajevima zahteva nešto duža merenja (više od 2 dana). [8] Iz tog razloga autori neretko daju prednost piku energije 63 keV prilikom određivanja aktivnosti ^{238}U u uzorcima zemlje. [14,15] Dublet na energiji 92.5 keV ima najveći prinos od sva tri navedena pika, nlazi se u delu spektra gde je efikasnost Ge detektora najveća i gama zračenje ove energije ima značajno veću transmiju kroz uzorak od zračenja energije 63 keV te efekti samoapsorpcije imaju mnogo manji uticaj. [16, 17] Veliki problem u određivanju aktivnosti preko ovog pika predstavlja interferencija sa Fluorescentnim X zračenjem. Fluorescentno X zračenje predstavlja anomaliju u spektru, jer je prisutno samo na određenim energetskim opsezima. Određivanje korekcionih faktora u ovom delu gama spektra može da doprinese stvaranju brze i efikasne metode za merenje aktivnosti NORM uzoraka. [8]

Nuklearna forenzika je naučna disciplina koja za cilj između ostalog ima i precizno određivanje koncentracije ^{235}U kao frakcije u udelu uranijuma u uzorku što je veoma bitan podatak za međunarodnu i državnu nuklearnu bezbednost. [18,19] U referenci [19] su opisane metode za određivanje stepena obogaćenja ^{235}U . Najpopularnije metode na bazi masene spektrometrije su TIMS [20], ICP-MS [21] i Laser Ablation ICP-MS [22]. Ove metode su destruktivne, ali količina uzorka koja je potrebna za merenja je jako mala. U odnosu na druge metode imaju najveću preciznost ispod $\pm 0.1 - 0.2$ wt%. Ovde je izdvojena metoda laserske ablacije iz razloga što za razliku od drugih metoda masene spektrometrije ne zahteva posebnu pripremu uzorka, karakteriše je kratko vreme merenja i dobra prostorna rezolucija. Mana ove metode je njena visoka cena. Najpreciznija gama spektrometrijska metoda za određivanje stepena obogaćenja ^{235}U je ASTM [18]. Ona je zasnovana na odrećivanju površine pika 185.7 keV i njegovim poređenjem sa standardom. Ova metoda je podrazumeva linearnu zavisnost površine pika i stepena obogaćenja i ima preciznost od ± 0.015 wt%. Prednost ove metode je to što ne zahteva pripremu uzorka, nije skupa, nije destruktivna, a mana joj je što zahteva dobro pripremljen standard. U slučaju da odgovarajući standard nije dostupan primenju može se odrediti stepen obogaćenja ^{235}U pomoću kodova za modelovanje FRAM [23] i MGAU [24]. Mana ovog metoda je slabija preciznost od ostalih metoda ± 1.0 wt%.

Mnoge gama spektrometrijske analize su zasnovane na korišćenju standarda poznate aktivnosti ili uzoraka pravilnog oblika. U praksi se vrlo često mere uzorci nepoznatog sastava za koje standard nije na raspolaganju. Nabavka standarda različitih karakteristika može biti veoma skupo i iz tog razloga postoji potreba za metodom koja nije bazirana na upotrebi standarda i koja može da odredi aktivnost uzorka nepoznatog sastava. U ovom radu će biti prikazana metoda pomoću koje su određene aktivnosti dva uzorka zemlje nepoznatog sastava. Metoda je bazirana na iterativnom postupku određuje aktivnost ²³⁵U pomoću pikova energija 143.76 keV, 163.33 keV i 185.72 keV i aktivnost ²³⁸U pomoću pikova energija 62.29 keV, 92.59 keV i 1001.03 keV. Aktivnosti dobijene ovom metodom pokazuju veoma dobro slaganje i relativne merne nesigurnosti ovog metoda su u opsegu 1.8% – 2.9%. Kalibracija efikasnosti je izvršena pomoću komercijalno dostupnog softvera LabSOCS (Laboratory Sourceless Calibration Software) koji ne zahteva korišćenje kalibracionog izvora i koji ima pristup bazi podataka sa korekcionim faktorima za efekte samoapsorpcije u uzorcima različitih sastava. [25] Poznavanje fenomena i verovatnoća njihovog odigravanja omogućava postavku jednačina, čijim rešavanjem se mogu odrediti korekcioni faktori za koincidentno sumiranje za tačkaste uzorke [26]. U referencama [27,28] je opisana procedure kojom se mogu odrediti korekcioni faktori i za zapreminski rasp *LabSOCS* [29], *EFF-TRAN* [30] koji omogućavaju brzo i precizno određivanje korekcionih faktora za efekte koincidentnog sumiranja. Korekcione faktore je moguće odrediti i eksperimentalno [11]. U ovom radu za određivanje korekcionih faktora za koincidentno sumiranje je korišćena poluempirisjka metoda. Korekcioni faktori su izračunati pomoću teorijskog modela za zapreminski rasprostanjene izvore iz reference [27]. Ovaj model je baziran na podeli uzorka na određen broj delova zanemarljive zapremine, a korekcioni faktor za zapreminski rasprostranjen uzorak se računa integracijom po celoj zapremini. U integraciji učestvuju korekcioni faktori za tačkaste delove izvora, koji se smatraju poznatim. U ovom radu su prilikom njihovog određivanja iskorišćeni eksperimentalni rezultati iz reference [11].

2 Predmet rada

2.1 Germanijumski detektori

2.1.1 Energetska struktura u čvrstim telima

U slobodnom atomu elektroni su raspoređeni po tačno određenim energetksim nivoima. Dva atoma mogu da se vežu posredstvom elektromagnetne interakcije i da izgrade stabilniju strukturu. Tom prilikom dolazi do cepanja energetskih nivoa i umesto jednog energetskog nivoa nastaju dva nivoa bliskih energija. Prilikom izgradnje stabilnih struktura materije dolazi do sjedinjavanja velikog broja atoma. U takvim strukturama atomi se nalaze na malim rastojanjima te interaguju putem elektromagnetne interakcije sa svojim susedima. Ukoliko atom interaguje sa N suseda, jedan njegov nivo će se podeliti na N novih nivoa. Njihove energije su veoma bliske i često ih je nemoguće razlikovati, te se može reći da se formiraju energeske zone u kojima se može naći određen broj elektrona. Između energetskih zona se nalaze zabranjeni energetski regioni (zabranjene zone) u kojima nema elektrona. Najviša energetska zona u kojoj obitavaju elektroni se naziva valentna zona i ona je odgovorna za ostvarivanje hemijskih veza. Da bi se elektron kretao kroz materijal on mora da primi određenu količinu energije da bi napustio valentnu zonu i da bi prešao u provodnu zonu, koja se nalazi iznad valentne zone. Elektroni u ovoj zoni doprinose električnoj provodljivosti materijala. Između valentne i provodne zone nalazi se zabranjena zona i u zavisnosti od njene širine materijali se mogu podeliti u provodnike, poluprovodnike i izolatore. Kod izolatora širina zabranjene zone je reda veličine 10 eV, kod poluprovodnika ona iznosi 1 eV. Provodnici i poluprovodnici imaju tačno onoliko elektrona koliko je potrebno da im se u celosti popuni valentna zona. U odsutvu termalnih eksitacija provodna zona ovih materijala je u potpunosti prazna te se kod njih neće registrovati nikakva električna provodljivost. Kod metala valentna zona nije u potpunosti popunjena, te dolazi do preklapanja valentne i provodne zone. Termalne eksitacije osiguravaju da će provodna zona uvek biti delimično popunjena te će i prisustvo najmanjeg električnog polja doprineti protoku naelektrisanja. Zbog ovog efekta metali su nepogodni u gama spektrometrijskim merenjima jer je struja koja nastaje usled uticaja gama zračenja zanemarljivo mala u poređenju sa strujom koja nastaje usled termalnih eksitacija. Energetske zone različitih materijala su prikazane na slici 1. Širina zabranjene zone kod izolatora iznosi oko 10 eV i termalne ekscitacije ne mogu da je premoste. Iz tog razloga su elektroni u izolatorima nepokretni i izolatori ne mogu da provode struju čak ni u prisustvu jakog električnog polja. Izolatori i poluprovodnici se razlikuju po širini zabranjene zone izmedju valentne i provodne zone. Zabranjena zona kod poluprovodnika iznosi oko 1 eV i u njima je moguće termalno pobudjeni elektroni premoste zabranjenu zone i da iz valentne zone pređu u provodnu. U normalnim uslovima kod poluprovodnika će uvek biti određen broj elektrona u provodnoj zoni i oni će imati ograničena provodna svojstva. Verovatnoća da elektron pređe iz valentne u provodnu zonu jako je zavisna od temperature:

$$p(T) \propto T^{3/2} e^{-E_g/2kT}$$
 (2.1)

Hlađenjem materijala dolazi do smanjenja broja elektrona u provodnoj zoni, a samim tim i do smanjenja pozadinskih smetnji u gama spektru što dovodi do lakše detekcije interakcije gama zračenja sa paluprovodničkim detektorskim materijalom. [4,5]

2.1.2 Poluprovodnici

Prilikom prelaska elektrona iz valentne u provodnu zonu u valentnoj zoni ostaje upražnjeno mesto pozitivnog naelektrisanja koje se naziva šupljina. Drugi elektroni mogu da dodju na upražnjeno mesto, ali samim tim mesto koje su ranije zauzimali ostaje upražnjeno te se stiče

Slika 6. Shema energetskih zona izolatora, provodnika i poluprovodnika [5]

utisak da se šupljina pomerila. Šupljine i elektroni su naelektrisane čestice koje se kreću se u prisustvu električnog polja. To znači da će obe vrste čestica imati doprinos provodnim osobinama materijala. Treba imati na umu da su šupljine fiktivne čestice i da ne postoje izvan materijala. Prilikom interakcije gamma zračenja sa poluprovodnikom dolazi do stvaranja parova elektron-šupljina sa energijama koje su mnogo veće od termalnih. To znači da će neki od elektrona iz nižih zona preći u provodnu zonu. Preostali elektroni i šupljine iz nižih zona teže da se redistribuiraju tako da će se šupljine naći na vrhu valentne zone. Broj ovako nastalih parova elektron-šupljina direktno zavisi od apsorbovane energije gama zračenja.

$$n = E_{abs}/E_{sr} \tag{2.2}$$

 E_{abs} predstavlja apsorbovanu energiju, a E_{sr} srednju energiju potrbnu za stvaranje para šupljinaelektron. Da bi se neki materijal koristio za izgradnju detektora mora da ima:

- Što je moguće veći apsorpcioni koeficijent za gama zračenje (što veći atomski broj);
- Što manju E_{sr} da bi se obezbedilo što više parova elektron-šupljina po jedinici energije;
- Dobru pokretljivost elektrona i šupljina;
- da ima skoro savršen kristalni oblik (da je čist poluprovodnik);
- da bude dostupan u dovljnoj količini i da cena njegove proizvodnje ne bude prevelika.

Kod poluprovodničkih materijala termalne eksitacije dovode do prelaska elektrona iz valentne u provodnu zonu. Ukoliko je u pitanju potpuno čist poluprovodnik broj termalno eksitovanih elektrona će biti jednak broju nastalih šupljina. Poluprovodnici koji imaju jednak broj šupljina i elektrona se još nazivaju intrinsični poluprovodnici. U praksi je nemoguće napraviti potpuno čist poluprovodnik, on će uvek imati određenu količinu nečistoća ko je će značajno uticati na provodljivost. Germanijum je trenutno najrasprostranjeniji detektorski materijal za gama spektrometriju. Germanijum je četvorovalentan i u njegovoj kristalnoj rešetki je okužen sa 4 atoma germanijuma gde svaki atom doprinosi isti broj elektrona u kovalentne veze. Ukoliko se poluprovodniku nalaze male količine primesnih atoma različite valence, tada će pojedini atomi germanijuma biti zamenjeni priemsnim atomima što će uticati na elektrnoski bilans kristalne rešetke. U slučaju kada se u kristalnoj rešetki nalaze primesni, petovalentni atomi poput fosfora (slika 2. levo). Na poziciji primesnog atoma postojaće višak od jednog elektrona koji je slabo vezan. Ovaj elektron se lako otkida, ali pošto nije deo kristalne rešetke on može da se nađe u stanjima koja pripadaju zabranjenoj zoni. Njegova energija je bliska energiji provodne zone i energije reda veličine meV su dovoljne da ga pobude u provodnu zonu. Primese ovog tipa se nazivaju donorskim, a poluprovodnici su poluprovodnici n-tipa. Sa druge strane ukoliko su primese trovalentne poput bora (slika 2. desno), nastaje situacija gde primesni atom bora može da ostvari samo tri kovalentne veze sa susednim atomima germanijuma, što znači da jedan elektron ostalje nesparen. Smatra se da je na poziciji primesnog atoma šupljina koju može popuniti jedan od susednih elektrona, pri čemu za sobom ostavlja novu šupljinu. Primese ovog tipa se nazivaju akceptorskim, a poluprovodnici su poluprovodnici p-tipa. Akceptorske primese doprinose nastajanju novih energetskim stanjima unutar zabranjene zone koje se bliže valentnoj zoni. Glavni nosioci naelektrisanja u provodnicima n-tipa su elektroni, a u provodnicima p-tipa su \hat{s} upljine. [5, 31]

Slika 7. Kristalna struktura dopiranog poluprovodnika sa donorskim i akceptorskim primesama [31]

2.1.3 Princip rada poluprovodničkih detektora

Ukoliko se spoje provodnici p-tipa i n-tipa dolazi do formiranja p-n spoja. Pošto su u poluprovodniku n-tipa elektroni glavni nosioci naelektrisanja, a u poluprovodniku p-tipa šupljine dolazi do difundovanja elektrona iz n-tipa u p-tip gde dolazi do njihove rekombinacije. Usled ovog procesa dolazi do stvaranja viška negativnog naelektrisanja u poluprovodniku p-tipa, a u poluprovodniku n-tipa usled odsustva elektrona nastaje pozitivno naelektrisana oblast u blizini spoja. Ovaj proces se odvija dok se ne uspostavi dovoljno jako električno polje (kontaktni potencijal) koje onemogućava dalji protok naelektrisanja. Ova oblast u blizini spoja poluprovodnika se naziva oblast prostornog naelektrisanja koja predstavlja aktivni element detektora. Oblast prostornog naelektrisanja je veoma tanka, ali se može povećati ukoliko se izvrši inverznapolarizacija spoja. Drugim rečima, na p-n spoj se dovede napon takav da se na p-delu nalazi negativan potencijal, a na n-delu pozitivan. To dovodi do povlačenja elektrona iz materijala ka anodi na n-delu, a šupljina ka katodi na p-delu čime se povećavaju regioni naelektrisanja na mestu spoja(slika 3.).

Slika 8. p-n spoj u ravnotežnom stanju i inverzno polarizovan p-n spoj [31]

Ukoliko kroz oblast prostornog naelektrisanja prođe neko zračenje, dolazi do jonizacije, a ovako nastale šupljine i elektroni se prikupljaju na elektrodama efikasnije nego kada je p-n spoj u ravnotežnom stanju. Sakupljeno naelektrisanje stvara naponski signal iz kojeg se precizno može odrediti energija zračenja koja je prošla kroz detektor. Širina oblasti prostornog naelektrisanja je opisana izrazom:

$$d \approx \sqrt{2\kappa\mu\rho(V_0 + V_b)} \tag{2.3}$$

gde su V_0 i V_b kontaktni i inverzno polarizovan potencijal respektivno, κ dielektrična konstanta, ρ specifična otpornost a μ pokretljivost nosilaca naelektrisanja. Pošto je $V_b \gg V_0$ može se reći da je $d \propto V_b$. U gama spektrometriji poželjno je da je aktivna zapremina detektora što veća, te je potrebno povećati inverzno polarozovani potencijal bi se dobila oblast prostornog naelektrisanja duž cele zapremine detektora. Specifična otpornost i obrnuto proporcijalna koncentraciji dopiranih atoma, iz toga sledi da poluprovodnički materijal treba da bude što čistiji da bi širina obalsti prostornog naelektrisanja bila što veća a samim tim i aktivna zapremina detektora. Zasluge za povećanje efikasnosti germanijumskih detektora u skorije vreme može se pripisati povećanoj dostupnosti veoma čistog germanijuma. Detektori koji su napravljeni od veoma čistog germanijuma se nazivaju HPGe (*High Purity Germanium*) detektori. [5,31,32]

2.1.4 Konstrukcija HPGe detektora

Dopiranje poluprovodnika može se postići evaporacijom, difuzijom i implementacijom jona. Prilikom implementacije jona formiraju se n^+ i p^+ slojevi u poluprovodniku tako što se ubrzavaju joni fosfora ili bora respektivno. Pri fiksnom akceleratorskom naponu joni će prodirati u poluprovodnik do tačno određene dubine. Promenom potencijala, a samim tim i energije jona moguće je kontrolisati koncentracije dodatih nečistoća. Sledeći korak je proces žarenja da bi se smanjili efekti koji su nastali usled radiacione štete koju su prouzrokovali joni. Prednost jonske implementacije u odnosu na proces termalne difuzije je u tome što se proces žarenja odvija na temperaturi ispod 500°C. Ova temperatura je daleko niža od one koja je potrebna da bi se odigrao proces termalne difuzije dopanata prilikom formiranja difuzionog spoja. Struktura kristala je daleko manje narušena i ne dolazi do nepotrebnog smanjenja srednjeg života nosioca naelektrisanja. Kao što je prikazano u jednačini 2.3 širina sloja prostornog naelektrisanja se povećava sa porastom inverzno polarizovanog potencijala. Ako se ovaj napon dovoljno poveća, sloj prostornog naelektrisanja se može raširiti duž cele zapremine PN spoja. Ukoliko je koncentracija nečistoća u jednom delu spoja veća nego u drugom, tada postoji razlika u širini sloja prostornog naelektrisanja u različitim delovima spoja. Širina sloja prostornog naelektrisanja je veća u delu spoja sa manjom koncentracijom nečistoća. Na slici 4. je prikazan veoma čist germanijum ptipa koji je spojen sa veoma tankim n+ slojem sa velikim procentom nečistoća. Posledica velike razlike u koncentraciji nečistoća je sloj prostornog naelektrisanja koji se prostire duboko unutar p sloja. Ukoliko se dovede inverzno polarizovan potencijal na krajeve spoja sloj prostornog naelektrisanja se dodatno povećava i za dovoljno visok napon sloj prostornog naelektrisanja može da nastane duž celog p sloja. Na ovom principu je bazirana proizvodnja svih germanijumskih detektora. Ovaj tip detektora se naziva veoma čist germanijumski detektor (HPGe). [4,5]

Slika 8. Osnovna konstrukcija HPGe detektora [5]

2.2 Pravo koincidentno sumiranje

Radiaktivost je spontatni proces u kojem se jedno jezgro (predak) preobražava u neko drugo jezgro (potomak), uz emisiju jedne ili više čestica ili kvanta elektromagnetnog zračenja. Novonastalo jezgro se u većini slučajeva nalazi u pobuđenom stanju, te dolazi do spontane emisije gama zračenja i prelaska jezgra u osnovno stanje. Deeksitacija na osnovno stanje se može odigrati odjednom emisijom jednog gama zraka ili kaskadno emisijom nekoliko gama zraka različite energije. Emisija kaskadnih gama zraka se odigrava brzo, te može doći do njihove detekcije u toku vremena razlaganja spektrometra. U tom slučaju može se reći da su gama zraci detektovani u pravoj koincidenciji, što znači da ih detektor nije detektovao pojedinačno, nego ih je detektovao kao jedan gama kvant sa energijom koja je jednaka zbiru njihovih energija. Podaci o gama zracima koji su detektovani u pravoj koincidenciji su izgubljeni (summing out), a umesto njih se u spektru pojavljuje novi gama kvant (summing in). Svako određivanje aktivnosti uzorka iz spektra preko vrha ukupne energije će biti učinjeno sa greškom ukoliko se ne izvrše određene korekcije za ovaj efekat. Na slici 5. je dat najprostiji primer kaskadne emisije gama zračenja. Na ovom primeru će vrhovi ukupne energije γ_1 i γ_2 imati gubitak u odbroju na spektru usled kaskadnog sumiranja (summing out) a vrh ukupne energije γ_3 će imati višak odbroja zbog kaskadnog sumiranja(summing in). Gubici usled kaskadnog sumiranja nisu ograničeni samo na odbroj u vrhu ukupne energije. Koincidentni gama zraci mogu detektoru predati samo deo svoje energije putem komptonovog rasejanja i na taj način doprineti fonu spektra. Oni ne doprinose efikasnosti niti pikovima u spektru, te je potrebno odrediti totalnu efikasnost kaskadnih gama zraka da bi se izvršile potrebne korekcije i za gubitke ovog tipa.

Na slici 6. je prikazana uprošćena shema raspada ${}^{152}Eu$. Atom ovog radionuklida se se može raspasti na dva načina: emisijom β^- čestice na ${}^{152}Gd$ ili se može odigrati zahvat elektrona na

Slika 5. Kaskadna emisija gama zračenja

jezgru pri čemu nastaje ${}^{152}Sm$. Novonastala jezgra nastaju u pobuđenom stanju i raspad je praćen emisijom gama zračenja usled deeksitacije jezgra. Ovde je potrebno napomenuti da je raspad putem elektronskog zahvata praćen emisijom X-zaka. Životi energetskih nivoa ${}^{152}Sm$ su veoma kratki i manji su od vremena razlaganja spektrometrijskog sistema, što znači da će mnogi gama i x-zaci biti istovremeno detektovani. Kao posledica u detektoru nastaju efekti pravog koincidentnog sumiranja summing out i summing in. Prilikom deeksitacije jezgra ${}^{152}Eu$ može se uočiti nekoliko slučajeva pravog koincidentnog sumiranja. Prilikom deeksitacije nivoa od 1085.8 keV na nivo od 121.8 keV može vrlo brzo uslediti deeksitacija nivoa od 121.8 keV na osnovno stanje (vreme između dve deeksitacije je manje od vremna razlaganja spektrometra). U spektru će tada biti detektovan direktan prelaz sa 1085.8 keV na osnovno stanje to znači da je će vrh pune energije od 1085.8 keV imati višak odbroja a vrhovi pune energije na energijama 964 keV i 121.8 keV će imati manje odbroja u spektru. [33]

Slika 6. Uprošćena shema raspada ^{152}Eu

Slika 7. Geometrisjka postavka eksperimenta za tačkast izvor zračenja

2.2.1 Zavisnost pravih koincidencija od geometrijske postavke eksperimenta

Zastupljenost efekta pravih koincidencija zavisi od verovatnoće da će dva istovremeno emitovana gama zraka biti i istovremeno detektovani. Geometrijska postavka uzorka i detektora je veoma bitna i od nje zavisi uticaj efekta pravih koincidencija na spektar.Izvor sa jednakom verovatnoćom emituje gama zrake duž svih pravaca u prostoru, to znači da će samo mali broj njih doći do detektora i biti detektovan. Dve različite geometrijske postavke za tačkast izvor zračenja se mogu videti na slici 7. U prvom slučaju izvor se nalazi na kapi detektora, tada je verovatnoća da emitovani gama zrak dodje do detektora 42%,a verovatnoća da će dva simultano emitovana gama zraka doći do detektora je 17%. Što je udaljenost izvora od detektora veća to je verovatnoća za simultanu detekciju dva gama zraka manja, te je i efekat pravog koincidentnog sumiranja sve manje zastupljen sa povećanjem rastojanja.

Na slici 8. je prikazana verovatnoća za odigravanje efekta pravog koincidentnog sumiranja u funkciji rastojanja izvora od detektora, pri čemu je radius detektora r = 30mm, a kapa detektora debljine $d_0 = 5$ mm. Može se primetiti da je efekat pravih koincidencija veoma zastupljen na malom rastojanju i da sa njegovim povećavanjem naglo opada. Na određenom rastojanju koje zavisi od veličine detektora efekat pravih koincidencija se može zanemariti. [5]

Efekti pravih koincidencija zavise od rastojanja između izvora i detektora. Prilikom svakog merenja potrebno je imati na umu da svaki uzorak i detektor imaju tačno određene geometrijske dimenzije, te pojedini delovi izvora imaju različita rastojanja od pojedinih delova detektora. Iz tog razloga potrebno je izračunati efektivno rastojanje između detektora i uzorka, da bi se dobili što je moguće tačniji korekcioni faktori za koincidentno sumiranje. Numerički proračun kojim se određuju efektivna rastojanja za uzorak jako malih dimenzija (tačkast uzorak) i za uzorak cilindričnih dimenzija može se videti u prilogu.

Slika 8. Verovatnoća za odigravanje efekta pravih koincidencija u funkciji od rastojanja izvordetektor

2.2.2 Teorija pravog koincidentnog sumiranja

Neka je izvor radioaktivnog zračenja je sačinjen od izotopa aktivnosti A, koja je uniformno raspoređena unutar zapremine izvora V. Nakon nuklearnog raspada nastaju jezgra u pobuđenom stanju, a njihova deeksitacija se odvija kaskadnom emisijom nekoliko gama fotona γ_i sa energijom E_i u vremenskom intervalu koji je manji od vremena razlaganja spektrometra. Neka je tokom jednog raspada p_i verovatnoća za emisiju fotona γ_i , p_{ij} verovatnoća za emisiju para fotona (γ_i, γ_j) , p_{ijk} verovatnoća za emisiju tripleta $(\gamma_i, \gamma_j, \gamma_k)$... U odsustvu efekta koincidentnog sumiranja odbroj u spektru na energiji E_i bi bio

$$N_i = \frac{A}{V} p_i \int_V \varepsilon(E_i, \vec{r}) dV = A p_i \varepsilon(E_i; V)$$
(2.4)

gde je $\varepsilon(E_i; V)$ efikasnost pod vrhom ukupne energije za rasprostranjeni izvor, dok je $\epsilon(E_i, \vec{r})$ efikasnost pod vrhom ukupne energije za ekementarni izvor čiji je položaj definisan vektorom \vec{r} . $N_{i;j}^m$ je broj summing out događaja za foton γ_i usled koincidencija sa γ_j i definisan je kao:

$$N_{i;j}^{m} = \frac{A}{V} p_{ij} \int_{V} \varepsilon(E_{i}, \vec{r}) \cdot \varepsilon_{T}(E_{j}, \vec{r}) dV$$
(2.5)

ovde je $\varepsilon_T(E_j, \vec{r})$ totalna efikasnost za elementarni izvor fotona energije E_j koji je lociran na položaju \vec{r} . Totalna efikasnost za kompletan izvor je data kao:

$$\varepsilon_T(E_j; V) = \frac{1}{V} \int_V \varepsilon_T(E_j, \vec{r}) dV$$
(2.6)

Članovi koji opisuju koincidencije između dva fotona $(N_{i;j}^m)$ se nazivaju korekcioni članovi prvog reda. Gubitak usled pravih koincidencija koji nastaje u odbroju vrha pune energije na energiji

 E_i se dobija sabiranjem svih korekcionih faktora prvog reda $N_{i;j}^m$, $N_{i;k}^m$... Ovim su uključene sve koincidencije koje se odvijaju između fotona (γ_j, γ_k) koji su simultano emitovani sa fotonom γ_i . Korekcioni članovi drugog reda proizilaze iz simultane detekcije tri fotona $(\gamma_i, \gamma_j, \gamma_k)$ i definisani su kao

$$N_{i;jk}^{m} = \frac{A}{V} p_{ijk} \int_{V} \varepsilon(E_{i}, \vec{r}) \cdot \varepsilon_{T}(E_{j}, \vec{r}) \cdot \varepsilon_{T}(E_{k}, \vec{r}) dV$$
(2.7)

Unutar korekcionih članova drogog reda $N_{i;jk}^m$ su uračunati i unutar korekcionih članova prvog reda $N_{i;j}^m$ i $N_{i;k}^m$, te ih je potrebno oduzeti. Za precizan proračun koincidentnih gubitaka potrebno je uključiti sve korekcione članove višeg reda u koji su uključeni svi fotoni koji mogu biti emitovani zajedno sa γ_i . Koincidentni summing in nastaju prilikom simultane detekcije fotona γ_p i γ_q , uz uslov da $E_p + E_q = E_i$. Broj ovih događaja je definisan sa izrazom:

$$N_{p+q} = \frac{A}{V} p_{pq} \int_{V} \varepsilon(E_p, \vec{r}) \cdot \varepsilon_T(E_q, \vec{r}) \, dV \tag{2.8}$$

Ovde je potrebno izvršiti i dodatnu korekciju usled simultane detekcije fotona γ_p , γ_q sa γ_j što prouzrokuje summing out u odbroju $(N_{p+q;j}^m)$. [33,34] Ukupan odbroj ispod vrha ukupne energije E_i , sa uračunatim korekcionim članovima za koincidentno sumiranje je:

$$N_i^c = (N_i - N_{i;j}^m - N_{i;k}^m - \dots + N_{i;jk}^m + \dots) + (N_{p+q} - N_{p+q;j}^m - \dots)$$
(2.9)

 N_i^C predstavlja odbroj fotona u vrhu ukupne enrgije E_i , bez uračunatih korekcija na efekat pravog koincidentnog sumiranja. Korekcioni faktor za vrh ukupne energije (E_i) je definisan odnosom:

$$F_c(E_i) = \frac{N_i^c}{N_i} = \frac{N_i^c}{A \cdot p_i \cdot \varepsilon(E_i; V)}$$
(2.10)

2.2.3 Peak to Total (P/T) kalibracija

Peak to Total se definiše kao odnos merenog odbroja pod vrhom ukupne energije i odbroja u celom spektru za detektovane gama zrake, koje emituju radionuklidi iz izvora. [35] U idealnom slučaju za korekcije bi se koristili odnosi P/T za svaki položaj unutar nekog rasprostranjenog izvora. Međutim, u praksi se takav pristup ne koristi. Merenjem odnosa P/T pri različitim geometrijskim postavkama pokazano je da odnos efektivni P/T slabo zavisi od rastojanja između izvora i detektora kao i da ne zavisi od položaja izvora u odnosu na detektor. Promene u P/T odnosu za različite postavke eksperimenta su se pokazale kao neznatne, te različiti položaju izvora u odnosu na detektor neće uticati na korekcioni faktor za koincidentno sumiranje. [28] Preporuka je da se merenja vezana za P/T kalibraciju sprovedu pomoću seta tačkastih kalibracionih izvora na fiksnom rastojanju od detektora. [36] Kalibraciona P/T kriva se formira pomoću kompjuterskih softvera. Potrebno je snimiti spektar i obraditi odbroje ispod vrhova pune energije. Iterativnim postupkom se genereše kalibraciona kriva. [28] Primer kalibracione kriva je dat na slici 9.

Ukoliko su poznati efikasnost vrha ukupne energije i odnos P/T, može se odrediti totalna efikasnost na datoj energiji zračenja:

$$\varepsilon_T = \frac{\varepsilon}{P/T} \tag{2.11}$$

gde je ε efikasnost vrha ukupne energije. [33]

2.2.4 Aproksimacija korekcionih faktora za pravo koincidentno sumiranje za rasprostranjeni izvor

Određivanje korekcionih faktora za efekte koincidentnog sumiranja mnogo je zahtevnije izračunati za rasprostranjene izvore nego za elementarne. U ovom postupku izračunavanja korekcionih

Slika 9. P/T kalibraciona kriva za različite efikasnosti HPGe detektora [28]

faktora izvor će biti izdeljen na više elementarnih izvora, pričemu svi elementarni izvori imaju istu zapreminu i aktivnost.

Ukupna aktivnost radioaktivnog izvora se meri korišćenjem odbroja pod vrhom ukupne energije. Za računanje aktivnosti preko vrha na energiji E_i se koristi izraz:

$$A = \frac{N_i^c}{\varepsilon_i \cdot p_i}.$$
(2.12)

 N_i^c je odbroj pod vrhom ukupne energije E_i u jedinici vremena, ε_i je efikasnost detektora na energiji E_i i p_i je verovatnoća za emisiju gama zraka energije E_i . Ukoliko bi izvor podelili na n jednakih elementarnih izvora, aktivnost k-tog elementarnog izvora bi bila:

$$A_k = \frac{N_i^c}{\varepsilon_i \cdot p_i \cdot n},\tag{2.13}$$

a njegov udeo u ukupnom odbroju izvora u jedinici vremena pod vrhom ukupne energije se može zapisati kao:

$$N_{i(k)}^c = A_k \cdot p_i \cdot \varepsilon_{i(k)}, \qquad (2.14)$$

gde je A_k aktivnost k-tog elementarnog izvora, $\varepsilon_{i(k)}$ je efikasnost detektora na energiji E_i za k-ti elementarni izvor. Zanenom veličine A_k iz jednačine 2.13 u jednačinu 2.14 dobija se odbroj u spektru koji pripada k-tom elementarnom izvoru.

$$N_{i(k)}^{c} = \frac{N_{i}^{c} \cdot \varepsilon_{i(k)}}{n \cdot \varepsilon_{i}}, \qquad (2.15)$$

Znajući odbroj svakog elementarnog izvora i uz pretpostavku da su efikasnost i P/T odnosi konstantni za svaku γ liniju datog elementarnog izvora, mogu se izračunati korekcije za svaki elementarni izvor pojedinačno $(F_{i(k)}^c)$. Iz korekcija za pojedinačne elementarne izvore se može izračunati korekcija za ceo izvor. Korigovana vrednost odbroja na efekat koincidentnog sumiranja za elementarni izvor se može izračunati na sledeći način:

$$N_{i(k)} = \frac{N_{i(k)}^{c}}{F_{i(k)}^{c}}$$
(2.16)

Da bi se dobio ukupan korigovani odbroj na efekat kaskadnog sumiranja (N_i) potrebno je sumirati korigovane odbroje svih elementarnih izvora

$$N_i = \sum_{k=1}^n \frac{N_{i(k)}^c}{F_{i(k)}^c}$$
(2.17)

U jednačinu 2.17 uvrštava se jednačina 2.15 i dobija se:

$$N_i = \sum_{k=1}^n \frac{N_i^c \cdot \varepsilon_{i(k)}}{\varepsilon_i \cdot n \cdot F_{i(k)}^c} = \frac{N_i^c}{\varepsilon_i \cdot n} \sum_{k=1}^n \frac{\varepsilon_{i(k)}}{F_{i(k)}^c},$$
(2.18)

Iz definicije korekcionog faktora 2.10 i jednačine 2.18 dobija se totalni korekcioni faktor za rasprostranjeni izvor:

$$F_i^c = \frac{\varepsilon_i \cdot n}{\sum_{k=1}^n \frac{\varepsilon_{i(k)}}{F_{i(k)}^c}}.$$
(2.19)

Prelaskom na infinitezimalan elementarni izvor, suma prelazi u integraciju po celoj zapremini rasprostranjenog izvora [27,33]:

$$F_i^c = \frac{\varepsilon_i}{\int_V \frac{\varepsilon_i(\vec{r})}{F_i^c(\vec{r})} d^3 \vec{r}}.$$
(2.20)

gde je

$$\varepsilon_i = \int_V \varepsilon_i(\vec{r}) d^3 \vec{r} \tag{2.21}$$

2.3 Zakon radioaktivnog raspada

Zakon radiaktivnog raspada je izveden preko eksperimenta, ali se može prikazati i matematički. U sistemu sa velikim ali konačnim brojem atoma Nm se svakog sekunda raspadne određen broj atoma, ali se nikad ne zna tačno koji atomi su se raspali. U malom vremenskom intervalu Δt svaki atom ima šansu da se raspadne, pa je zato radioaktivni raspad slučajan događaj. Radioaktivni raspad se opisjuje matematičkim računom verovatnoće, pri čemu on ne zavisi od istorije atoma nego od dužine intervala Δt u kojem je sistem posmatran. Verovatnoća radioaktivnog raspada se može predstaviti izrazom:

$$p = \lambda \Delta t \tag{2.22}$$

gde je λ faktor proporcionalnosti, a Δt vremenski interval u kojem se vrši posmatranje. Verovatnoća da se radioaktivni raspad neće odigrati je:

$$\overline{p_1} = 1 - p = 1 - \lambda \Delta t \tag{2.23}$$

Veroovatnoća da se neki atom neće raspasi posle dva intervala Δt je:

$$\overline{p_2} = (1 - \lambda \Delta t)^2 \tag{2.24}$$

Veroovatnoća da se neki atom neće raspasi ni posle n intervala Δt je:

$$\overline{p_n} = (1 - \lambda \Delta t)^n \tag{2.25}$$

Kada broj vremenski intervala n teži beskonačnosti izraz 2.25 se može predstaviti graničnom vrednošću:

$$\overline{p} = \lim_{n \to \infty} \overline{p_n} = \lim_{n \to \infty} (1 - \lambda \Delta t)^n = e^{-\lambda t}$$
(2.26)

Ovaj izraz je dobijen na bazi statističkog razmatranja nekog sistema koji u početnom trenutku $t_0 = 0$ ima N_0 atoma, a u nekom intervalu Δt svaki atom ima istu verovatnoću da doživi radioaktivni raspad. Međutim samo određeni deo atoma će se raspasti, a broj preostalih neraspadnutih atoma posle vremena t se može prikazati kao:

$$N = N_0 e^{-\lambda t} \tag{2.27}$$

gde je N_0 broj atoma u početnom trenutku posmatranja t = 0, N je broj atoma nakon vremena t, λ je konstanta radiaktivnog raspada i jedinstvena je za svaki radioizotop. Promena broja atoma dN u vremenu dt je data kao:

$$\frac{dN}{dt} = -\lambda N_0 e^{-\lambda t} \tag{2.28}$$

gde $\frac{dN}{dt}$ predstavlja brzinu radiaktivnog raspada ili aktivnost. Aktivnost se izražava kao:

$$A = \lambda N \tag{2.29}$$

Za sve radioaktivne supstance karakteristične su tri veličine: period poluraspada $t_{1/2}$, srednji život jezgra τ i konstanta raspada λ . Konstanta raspada predstavlja verovatnoću da se neko jezgro raspadne u jednici vremena. Jedinica konstante raspada je s^{-1} . Period poluraspada predstavlja vreme za koje se broj radioaktivnih jezgara prepolovi. Iz izraza 2.27 može da se dobije veza između perioda poluraspada i konstantne raspada:

$$t_{1/2} = \frac{0.639}{\lambda}$$
(2.30)

Srednji život jezgra se definiše kao suma vremenskih egzistencija svih atoma podeljena sa brojem atoma N_0 u početnom trenutku posmatranja t_0 . Lako se može pokazati da je:

$$\tau = \frac{1}{\lambda} \tag{2.31}$$

Ovim su definisane sve najvažnije veličine koje opisuju radioaktivni raspad. [37,38]

2.3.1 Prirodni radioaktivni nizovi

Većina prirodnih radionuklida se može grupisati u tri radiaktivna niza ili familije. Oni se redom nazivaju uranijumski niz čiji je praroditelj ²³⁸U, aktinijumski niz čiji je praroditelj ²³⁵U i torijumski niz čiji je praroditelj ²³²Th. Praroditelji imaju jako dugačke periode poluraspada i još uvek se nalaze u prirodi, njihovim sukcesivnim radioaktivnim raspadima nastaju njihovi potomci sve do stabilnog izotopa olova. Praroditelji i njihovi potomci zajedno čine prirodne radioaktivne nizove ili familije. Pošto praroditelji imaju ekstremno duge periode poluraspada, koji su mnogo duži od perida poluraspada njihovih potomaka dolazi do uspostavljanja sekularne radioaktivne ravoteže u nizovima. U slučaju sekularne radioaktivne ravoteže između dva radionuklida, aktivnost potomka će biti jednaka aktivnosti roditelja. Sekularna radioaktivna ravoteža duž prirodnog radioaktivnog niza za posledicu ima istu aktivnost pretka i praroditelja. Međutim, za svaki niz karakteristična je pojava grananja niza gde neki potomci mogu da nastanu preko dva kanala raspada α -raspadom ili β -raspadom. Aktivnost nastalog potomke tada ima konstantnu frakciju aktivnosti praroditelja, koja zavisi od verovatnoće raspada njegovog pretka po kanalu raspada u kojem nastaje. [39]

2.3.2 Radioaktivna ravnoteža

U radioaktivnim nizovima dolazi do sukcesivnog raspada radioizotopa sve dok ne nastane stabilan radioizotop. Aktivnost pojedinih članova niza moguće je odrediti ukoliko je poznato vreme njihovog poluraspada $T_{1/2}$ ili konstanta raspada λ . Za radioaktivni niz od n članova proces sukcesivnog radioaktivnog raspada njegovih članova može se opisati sledećim izrazima:

$$\frac{dN_1}{dt} = -\lambda_1 N_1$$

$$\frac{dN_2}{dt} = \lambda_1 N_1 - \lambda_2 N_2$$

$$\frac{dN_3}{dt} = \lambda_2 N_2 - \lambda_3 N_3$$

$$\vdots$$

$$\frac{dN_n}{dt} = \lambda_{n-1} N_{n-1} - \lambda_n N_n \qquad (2.32)$$

Pod pojmom radioaktivne ravoteže se podrazumeva da se broj atoma bilo kojeg člana niza ne menja, odnosno stvara se isti broj atoma koji se i raspadne. To se može lako pokazati primenom uslova $\frac{dN}{dt} = 0$ na izraze koji su numerisani sa 2.32. Strogo matematički uslov radioaktivne ravnoteže nikad neće biti ispunjen, jer bi to podrazumevalo da je kontanta raspada rodonačelnika niza jednaka nuli što bi predstavljalo neaktivan materijal. U praksi nastaju stanja koja su bliska radioaktivnoj ravnoteži. Period poluraspada ²³⁸U je $t_{1/2} = 4.5 \cdot 10^9 godina$ i mnogo je veći od perioda poluraspada njegovih potomaka, te se može reći da teži beskonačnosti. U tom slučaju

konstanta radioaktivnog raspada teži nuli $\lambda = \frac{0.693}{t_{1/2}} \rightarrow 0$ i uslov za ravnotežu je ispunjen. Kada je ispunjena ova vrsta ravnoteže, može se pisati sledeći uslov:

$$\lambda_1 \ll \lambda_2 \tag{2.33}$$

tada je

$$\lambda_1 N_1 = \lambda_2 N_2 = \dots = \lambda_n N_n \tag{2.34}$$

Proizvod konstante raspada i broja jezgrara predstavlja aktivnost, te se iz izraza 2.34 može zaključiti da su aktivnosti svih članova radiaktivnog niza jednake [37].

2.3.3 Radioaktivno grananje

Pojedini članovi prirodnog radioaktivnog niza uranijuma se ne raspadaju samo putem emisije jedne čestice. Njihov radioaktivni raspad može da se odvija na dva načina; emisijom α - ili β -čestice. Ova dva načina raspada predstavljaju dva nezavisna procesa koji su jedan drugom konkurentni. Sa λ_{α} su označene verovatnoće emisije α -čestice, a sa λ_{β} verovatnoća emisije β -čestice prilikom radioaktivnog raspada, tada je totalna verovatnoća raspada jezgra u jedinici vremena data sa $\lambda = \lambda_{\alpha} + \lambda_{\beta}$. Aktivnost ili brzina raspada se može predstaviti na sledeći način:

$$\frac{dN}{dt} = -(\lambda_{\alpha} + \lambda_{\beta})N \tag{2.35}$$

Srednji živog ovakvog jezgra se definiše kao vreme u kojem se njegova početna aktivnost smanji e puta, pri čemu je e-osnova prirodnog logarima. Srednji život se može predstaviti kao:

$$\tau = \frac{1}{\lambda} = \frac{1}{\lambda_{\alpha} + \lambda_{\beta}} \tag{2.36}$$

Odnos određenog radioaktivnog raspada prema ukupnom radioaktivnom raspadu naziva se odnos grananja i dat je odnosom konstanti radioaktivnog raspada, za konkretan slučaj α -raspada odnos grananja je: $\frac{\lambda_{\alpha}}{\lambda_{\alpha}+\lambda_{\beta}}$. Isti izraz se može napisati i za beta raspad. [37] U referenci [40] se nalazi lista radinuklida, raznih roditelja i njihovih potomaka. Usled raznih vrednosti perioda poluraspada i grananja u radiaktivnom nizu, odnos grananja između roditelja i potomaka nije uvek jednak jedinici. Ovi odnosi grananja su takođe dati referenci [40].

2.4 Merenje aktivnosti uranijuma

Uranijum je hemijski element atomskog brpja Z = 92 koji se nalazi u III-B grupi i pripada aktinoidima. Uranijum je slabo radioaktivan element koji se može naći u prirodi u malim koncentracijama u vodi, zemlji i komercijalnim metodama se može idvojiti iz minerala kao što je uranitit. [41] u Prirodi se nalazi u obliku tri izotopa ²³⁸U (99.2739 – 99.2752%), ²³⁵U (0.7198 – 0.7202%) i ²³⁴U (0.0050 – 0.0059%) [42]. Svi njegovi izotopi su nestabilni i vreme vreme njihovih poluživota varira od 159200 godina do 4.5 milijarde godina. Uranijum se raspada putem α -raspada. U skorije vreme uranijm je počeo da se primenjuje usleed njegovih nuklearnih osobina. ²³⁵U je jedini prirodni fisioni izotop, te je u širokoj upotrebi u nuklearnim elektranama i u vojnoj industriji. Pošto je ovaj izotop uranijuma slabo rasprostranjen, uranijum mora da prođe kroz proces obogaćenja da bi ²³⁵U bio zastupljen u dovoljnoj koncentraciji. [43] Uranium koji se koristi za nuklearnu energiju i u vojne svrhe se izdvaja iz ruda i prerađuje. U srednjem koraku obrade uranijum se nalazi u obliku praha koji se dobija iz rastvora i se naziva žuti kolač U_3O_8 . Žuti kolač se proizvodi mlevenjem i hemijskim procesuiranjem rude uranijuma. [44,45] Prilikom hemijskog izdvajanja uranijuma dolazi do narušavanja sekularne radiaktivne ravnoteže jer se

sa uranijom ne izdvajaju i svi njegovi potomci. Unutar separatisane frakcije uranijuma ^{234}Th i ^{234m}Pa će relativno brzo dostići sekularni ekvilibrijum sa ^{238}U . Međutim, ^{230}Th , dugoživeći potomak ^{234}U , je zauvek izgubljen. To znači da će u hemijski separatisanom uzorku biti prisutna samo prva četiri člana uranijumskog radiaktivnog niza. Radionuklidi poput ^{226}Ra , ^{214}Bi i ^{214}Pb , čiji se prinosi u spektru vrlo često koriste za određivanje aktivnosti uranijuma, neće biti prisutni u uzorku. Iz tog razloga procedura odrećivanja aktivnosti uranijuma u prirodnim uzorcima se značajno razlikuje nego u prerađenim uzorcima. [5] Iz tog razloga postoji potreba da se razvije metoda koja može precizno da odredi aktivnost uranijuma preko pikova na energijama 62.29 keV, 92.59 keV i 1001.03 keV koji potiču od prva četiri radionuklida iz uranijumskog radiaktivnog niza. Ovaj problem je i tema ovog rada.

2.5 Fluorescentno X zračenje

Fotoelektrični efekat predstavlja interakciju gama zračenja sa elektronima koji su vezani u atomu. Prilikom te interakcije elektron prima dovoljno energije i napušta atom. Kinetička energija (E_k) koju odnosi elektron jednaka je razlici energije gama zračenja (E_{γ}) i njegove vezivne energije u atomu (E_V) .

$$E_k = E_\gamma - E_V \tag{2.37}$$

Nastaje atom u pobuđenom stanju. Viška energije atom može da se oslobodi tako što je preraspodeli između preostalih elektrona. Tada može da dodje do ponovne emisije elektrona što dovodi do dodatnog deponovanja energije u detektor. Drugi način na koji se atom oslobođa viška energije je prelazom elektrona na upražnjeno mesto u atomu, sa kog je izbijen elektron. Prilikom ovog prelaza elektron sa više atomske orbitale prelazi na nižu. Ovaj prelaz je praćen emisijom karakterističnog X zračenja koji nosi još i naziv flourescentno X zračenje. Energetski nivo na kojem dolazi do fotoefekta zavisi od energije gama zračenja. Najčešće je to najniži elektronski nivo koji nosi oznaku K. Ukoliko energija gama zračenja nije dovoljno velika da izbije elektron sa K novioa, tada dolazi do izbijanja elektrona sa L ili M nivoa. X zraci i gama zraci su fotoni koji se razlikuju samo po načinu nastanka. Gama zraci potiču iz jezgra, a X zraci su nastali prelaskom elektrona sa višeg na niži energetski nivo u atomu. Detektor ih ne razlikuje tako da će se u detektovanom spektru pojavljivati i pikovi koji potiču od gama zračenja i pikovi koju potiču od X zračenja. [5] Zakočno zračenje je zračenje koje se emituje usled usporavanja naelektrisane čestice. Usporavanje najčešće nastaje usled odbijanja naelektrisane čestice od neke druge naelektrisane čestice što je odbijanje elektrona od atomskog jezgra. Zakočno zračenje je kontinualnog spektra i što je energija elektrona veća i što je atomski broj materijala sa kojim se elektroni sudare veći emitovaće se veći doprinos zakočnog X zračenja. U nekim slučajevima usled sudara elektrona i atoma može da dodje do izbijanja elektrona iz elektronskog omotača atoma. Upražnjeno mesto može biti popunjeno sa elektronom, koji se nalazio na višem elektronskom nivou u omotaču, uz emisiju x zračenja tačno određene energije. Ovo zračenje je diskretnog tipa i u spektru se mogu uočiti pikovi na ovim energijama. Što je u uzorku veća koncentracija uranijuma to će biti i veća koncentracija njegovih potomaka poput ^{234}Th i ^{234m}Pa . Prilikom njihovog radioaktivnog raspada dolazi do emisije beta čestice (elektrona). Pošto svi potomci uranijuma imaju velik atomski broj usled njihovih sudara sa elektronima doći do emisije zakočnog zračenja koje će pruzrokovati značaj doprinos u spektru. Prilikom sudara elektrona sa atomima Th doći će do izbijanja elektrona sa njegovog najnižeg nivoa što će biti propraćeno sa emisijom karakterističnog X zračenja energije 93.35 keV što će prouzrokovati inteferenciju sa pikom energije 92.59 keV. Ova činjenica predstavlja veliki problem u određivanju aktivnosti preko pika energije 92.59 keV. Fluorescentno X zračenje predstavlja anomaliju u spektru, jer je prisutno samo na određenim energetskim opsezima. U ostalim energetskim opsezima X zračenje nije prisutno i određivanje površina pikova pomoću softvera kao što su ANGES i Genie2K ne predstavlja problem. Međutim ukoliko je prisutno i X zračenje ovi softveri će u odbroj pika uračunati i njegov doprinos. Iz ovih razloga je potrebno odrediti korekcioni faktor za flourescentno X zračenje u ovom delu spektra da bi se pouzdano mogla odrediti aktivnost uranijuma i torijuma preko pika energije 92.59 keV u kratkom vremenskom periodu. Najveći doprinos efektima fluorescencije u ovom delu spektra ima X zrak Th $K_{\alpha 1}$ (93.35 keV).

Ukoliko bi intenzitet ovog X zračenja bio zavistan od aktivnosti Th, bilo bi jako teško odrediti korekcione faktore za inteferenciju koja nastaje na piku 92.59 keV i određivanje aktivnosti Th bilo bi gotovo nemoguće preko ovog pika. U referenci [8] je pokazano da to nije slučaj i da ovo zračenje potiče usled deeksitacije pobuđenih atoma Th. Ovo X zračenje nastaje usled popunjavanja upražnjenog mesta u najnižoj atomskoj orbitali Th sa elektronom iz više orbitale. To znači da će do njegove emisije doći posle svakog raspada u kome nastaje Th. Dva najznačajnija

raspada u kojima dolazi do emisije Th $K_{\alpha 1}$ su raspad ²³⁵U i ²²⁸Ac koji prirada prirodnom radioaktivnom nizu ²³²Th. U referenci [8] je pokazano da interferecija usled X zračenja na energiji 92.5 keV neće dodatno komplikovati analizu spektra u većini uzoraka iz prirode jer je Th rasprostranjen širom uzorka u malim koncentracijama. Značajnije komplikacije nastaju izučavanjem rude Th čija je debljina veća od 1 mm, što znači da će značaj interferencije usled fluorescentnog X zračenja zavisiti od sastava materijala. Potrebno je napomenuti da su emisije gama zračenja i fluorescentnog X zračenja nezavisne od stastava uzorka. Njihova emisija na određenim energijama prestavlja fundamentalno svojstvo svakog radionuklida.

U uzorcima koji su ispitivani u ovom radu se nalazi dovoljna količina uranijuma da izazove efekte interferencije sa fluorescentnim X zračenjem u okolini pikova na energijama 63.29 keV i 92.59 keV. Zadatak rada će biti da se odrede aktivnosti i stepen obogaćenja uranijuma u uzorku. Prilikom raspada ²³⁴Th, potomka ²³⁸U dolazi do emisije gama zraka 92.38 keV i 92.80 keV. Useld nedovoljne rezolucije Ge detektora na ovim energijama doprinosi ovih linija će u spektru biti prikazani u vidu pika energije 92.59 keV. Na slici 10. jer prikazan deo spektra od 88 do 100 keV, koji je snimljen pomoću planarnog Ge detektora *Handy* (proizvođač BSI) u u Sektoru za razvoj i primenu nuklearnih tehnologija u Javnom preduzeću Nuklearni objekti Srbije. Crvenom bojom je obeležen pik energije 92.59 keV, tirkiznom bojom je obeležen pik na energiji 93.35 keV koji nastaje raspadom ²³⁵U, a tamnoplavom bojom su prikazani fluorescentni X zraci koji potiču od ²³⁴Th. Kao što se može videti dolazi do preklapanja ovih pikova i iz tog razloga je otežano odrećivanje aktivnosti uzorka i stepen obogaćenja ²³⁵U.

Slika 10. Spektar u opsegu od 88 keV do 100 keV

Detaljnije izučavanje fluorescentnog X zračenja prevalizi opsege ovog rada. Međutim, potrebno ga je uzeti u obzir da bi se tačno odredile aktivnosti uranijuma preko pikova na 63.29 keV i 92.59

keV. Zato je u ovom radu primenjeno istraživanje vezano za interferencije usled fluorescentnog X zračenja, koje se odvija u sektoru za razvoj i primenu nuklearnih tehnologija u javnom preduzeću Nuklearni objekti Srbije u toku je izučavanje. Izvršeno je snimanje gama spektra pomoću standarda na različitim rastojanjim od detektora. Primećeno je da se za isti uzorak dobijaju različite aktivnosti kada se on nalazi na različitim rastojanjima od detektora. Što je uzorak bliži detektoru veći broj elektrona će se odbijati od detektora i interagovaće sa uzorkom što će povećati uticaj fluorescentnog X zračenja u spektru. Iz tog razloga je potrebno uvesti odrećene korekcione faktore koji će uticati na odbroj pikova na energijama 63.29 keV i 92.59 keV. U poglavlju 4.1.2 će biti deteljno opisan pristup po kojem su odredili korekcione faktore za koincidentno sumiranje. Pozivajući se na rad naučno istraživačkog tima iz nuklearnih objekata Srbije, uzeto je u obzir da je gustina uzoraka u ovom radu manja od 4 q/cm^3 i da se velik deo njihovihovog masenog udela sastoji iz zemlje. Korekcioni faktori za koincidentno sumiranje na energijama 63.29 keV i 92.59 keV su dodatno podeljeni sa faktorom K_f . Uvođenjem ovog faktora uzeti su u obzir i efekti interferencije koji se odvijaju na pomenutim energijama. Ovaj faktor zavisi od koncentracije ^{238}U u uzorku, kao i od koncentracije ostalih konstituenata uzroka. U slučaju uzorka koji se sastoji iz čistog ²³⁸U ili čistog žutog kolača faktor $K_f = 1$. U ovim uzorcima je pored žutog kolača prisutna i zemlja te je uzeto da je $K_f = 1.125$.

Interesantno je pomenuti i reference [13] i [46] gde su autori koristeći drugačiji pristup odredili stepen obogaćenja ^{235}U pomoću MGAU softvera. MGAU je softver pomoću kojeg se može odrediti stepen obogaćenja ^{235}U u različitim uzorcima, sa preciznošću od 1-2%, analizom spaktra u energetskom opsegu od 88 kev do 100 keV. Ovaj softver ne zahteva kalibraciju i može biti korišćen za uzorke različitih oblika. Softver daje dobre rezultate kako za osiromašćen uranijum tako i za uranijum sa stepenom obogaćenja do 93%. Softver daje najoptimalnije rezultate za uzorke sa stepenom obogaćenja u ospegu 3 - 20%. Prednost ovog softvera je to što može da prikaže rezultate posle svega nekoliko minuta rada. MGAU softver zahteva korišćenje Ge detektora velike efikasnosti, sekularni ekvilibrijum između torijuma i uranijuma, i izostanak plutonijuma i nekih radionuklida iz uzorka. [47] Detaljniji opis MGAU softvera može se naći u referenci [48]. MGAU pristup je pokazao nešto slabije rezultate u prirodnim uzorcima ruda uranijuma gde je povećana koncentracija različitih radionuklida. U tom slučaju autori su predložili nešto drugačiji pristup u kojem su odredili stepen obogaćenja ^{235}U pomoću inteziteta fluorescentnih X zraka ^{238}U . Oni su pomoću standardnih uzoraka odredili linearnu zavisnost odnosa inteziteta pika energije 92.59 keV i inteziteta fluorescentnih X zraka od stepena obogaćenja ^{235}U . Ovaj pristup daje obećavajuće rezultate ali ga je potrebno dodatno testirati na većem broju različitih uzoraka.

3 Metodologija rada

Uzorci zemlje koji su ispitivani u ovom radu su uzeti iz rudnika Mazdreja u istočnoj Srbiji (slike 11 i 12). Uzorci su pripremljeni u posudama oblika zarubljenog konusa, a merenje aktivnosti je izvršeno pomoću Ge detektora GX5020 u Sektoru za razvoj i primenu nuklearnih tehnologija u Javnom preduzeću Nuklearni objekti Srbije. Poluprovodnički Ge detektor GX5020 aktivne zapremine od $200 cm^3$ karakteriše efikasnost od oko (50%), rezolucija oko 2 keV na energiji gama zračenja od 133 keV i efikasna olovna zaštita debljine 16.5 cm koja obezbeđuje srazmerno nizak integralni fon (oko 1 cps, tj. jedan registrovan impuls u sekundi) [49]. Ovaj detektor se može koristiti za merenja niskih aktivnosti tečnih i čvrstih uzoraka. Merenje se odvija tako što se uzorci postave na Marinelli posudu, koja ima ulogu držača uzorka, koja će se modelovati kao absorper jer se nalazi između uzorka i detektora. Ukoliko bi se uzorci postavili direktno na detektor odigrao bi se velik broj događaja koje detektor ne bi bio u stanju da registruje, usled mrtvog vremena detektora. Vreme merenja uzorka iznosi 3600 s, a rastojanje uzorka od detektora je 6.6 cm. Postavka eksperimenta može da se vidi na slici 13. Za određivanje površine pikova koji potiču od prirodnih radioaktivnih nizova ^{238}U i ^{235}U u spektru, koji je snimljen pomoću detektora GX5020, mogu se koristiti dva numerička algoritma: Genie2K [36] i ANGES [50]. U okolini linije 92.59 keV koja potiče od uranijuma ^{234}Th postoje i doprinosi drugih radionuklida. Usled nedovoljno male rezolucije detektora u tom energetskom opsegu dolazi do preklapanja pomenitih linija u spektru. Numerički algoritam Genie2K ne može dovoljno precizno da odredi površinu pika koji potiče od ^{234}Th usled preklapanja sa ostalim doprinosima. Za potrebe ovog rada bolje se pokazao ANGES koji omogućava optimalan izbor parametara u iterativnom postupku fitovanja krivih Gauss-ovog oblika, što omogućava pouzdano određivanje površina pikova bliskih energija [11]. U tabeli 1. su prikazani odbroji u spektru za po tri pika koji potiču od radioaktivnih nizova ^{238}U i ^{235}U , kao i njihove neodređenosti za Genie2K i ANGES. Površine pomenutih pikova se koriste u gama spektrometrijskim metodama prilikom određivanja aktivnosti ^{238}U i ^{235}U .

		Uzorak 2		Uzorak 1	
Nuklid	Energija	ANGES	Genie2K	ANGES	Genie2K
	63.29	151939 ± 977	152000 ± 627	116754 ± 894	118000 ± 467
^{238}U	92.59	466768 ± 4687	499000 ± 793	239478 ± 1932	240000 ± 523
	1001.03	52553 ± 248	525000 ± 232	12366 ± 93	12400 ± 124
	143.76	34605 ± 462	35100 ± 194	19216 ± 289	19300 ± 167
^{235}U	163.33	19094 ± 288	19800 ± 427	9608 ± 171	9530 ± 218
	185.72	255295 ± 830	256000 ± 536	108646 ± 636	109000 ± 339

Tabela 1: Odbroji i neodređenosti pikova ^{238}U i ^{235}U u softverima Genie2K i ANGES

3.1 Određivanje gustine uzorka

Da bi se uspešno odredila aktivnost uzoraka potrebno je prvo odrediti njihov sastav. Merena je aktivnost dva uzorka iz rudnika Mazdreja. Prvi uzorak je naradžasta suva zemlja, a drugi uzorak je vlažna crna zemlja 12. Uzorci su uzeti nasumično i potpuno su nepoznatog stastava. Pre nego što su izmereni njihovi odbroj pomoću detektora, izmerene su njihove mase tako što su izmerene mase posuda sa i bez uzorka. Oduzimanjem ove dve mase dobju se mase uzoraka. Nakon toga su izmerene i njihove visine u posudama. Ovi podaci se nalaze u tabeli 2.

Slika 11. Uzorci zemlje

Slika 12. Pripremljeni uzorci zemlje

Uzorak	tara [g]	bruto [g]	neto [g]	visina [cm]
Narandžasta suva zemlja	16.66	37.38	20.72	1.5
Vlažna crna zemlja	16.34	65.93	49.59	1.3

Tabela 2: Mase i visine uzoraka

Prvi korak na putu određivanja sastava uzorka je da se odredi njegova gustina. Gustina uzorka se dobije tako što se masa njegova masa podeli sa zapreminom. Postupak određivanja mase uzorka je već opisan i preostaje da se odredi njegova zapremina. Za razliku od određivanja

Slika 13. Eksperimentalna postavka

mase, određivanje zapremine nije univerzalan proces, jer zavisi od oblika posude u kojoj se nalazi uzorak. U idealnom slučaju posuda treba da bude pravilnog geometrijskog oblika čija se zapremina izračunava pomoću proste formule. U ovom merenju je korišćena posuda koja je oblika zarubljenog konusa, koja ima malo udubljenje oblika cilindra na dnu. Ova činjenica otežava računanje zapremine uzorka i bilo je potrebno uvesti određene aproksimacije. Da bi se odredila zapremina uzorka, bilo je prvo potrebno izmeriti dimenzije posude i visinu uzorka. $H = 7 \text{ cm}, r_1 = 2.3 \text{ cm}, r_2 = 2.7 \text{ cm}, r_0 = 1.05 \text{ cm}, h_0 = 0.08 \text{ cm} h_1 = 1.5 \text{ cm} i h_2 = 1.3 \text{ cm} \text{ su}$ izmerene veličine koje predstavljaju visinu posude, poluprečnik dna posude, poluprečnik vrha posude, poluprečnik udubljenja, visina udubljenja visina narandžaste zemlje i visina crne zemlje respektivno. Gustina i zapremina uzorka se računaju na sledeći način:

$$V_2 = \int_0^h r_1 + \frac{(r_2 - r_1)z}{H} dz \tag{3.1}$$

$$V_1 = r_0^2 \pi h_0 \tag{3.2}$$

$$V = V_2 - V_1 \tag{3.3}$$

$$\rho = \frac{m}{V} \tag{3.4}$$

gde je V_1 zapremina uzorka i zapremina udubljena, V_2 zapremina udubljenja, V zapremina uzorka, m masa uzorka i ρ gustina uzorka. Prilikom izračunavanja zapremine posude uvedena je aproksimacija u kojoj se smatra da se uzorak nalazi u posudi cilindričnog oblika bez udubljenja

zapremine V. Ova aproksimacija uprošćava račun, a razlika u zapremini koja nastaje uvođenjem aproksimacije je zanemarljiva. Prečnik cilindričnog uzorka se računa rešavanjem jednačine:

$$V = \left(\frac{x}{2}\right)^2 \pi h \tag{3.5}$$

gde je x prečnik uzorka, a h njegova visina. Prečnik uzorka će biti potroban prilikom odredjivanja efikasnosti detektora za različite energije uz pomoć softvera LabSocs.

3.2 Kalibracija efikasnossti pomoću softvera LabSOCS

Softver LabSOCS je baziran na kombinaciji Monte Carlo simulacija i fabrički definisanih karakteristika detektora. Kod MCNP [51] izvršava simulaciju odziva detektora za velik broj tačkastih izvora gama zračenja koji se nalaze na različitim rastojanjima oko detektora. LabSOCS softver generiše fajl koji karakteriše efikasnost detektora za različite tačkaste izvore. Kalibracioni izvori nisu potrebni jer softver ima pristup biblioteci 2002 MCPLIB04 u kojoj se nalaze efikasni preseci reakcija za radionuklide [25]. Softver LabSOCS se može sumirati kao kombinacija karakteristika detektora koje su sačinjene pomoću MCNP koda, matematičkih reprezentacija geometrijskih šablona kao i fizičkih parametara uzorka omogućavaju korisniku da sprovede kalibraciju efikasnosti za različite uzorke bez potrebe za radioaktivnim izvorima. [31]. Da bi se odredilaenergetska kalibracija efikasnosti za detektor potrebno je da otvoriti softver Geometry composer i definisati geometrijsku postavku eksperimenta i uzorak u prvoj iteraciji. Uzorak se u softver definiše na sledeći način: potrebno je kliknuti na taster *Edit/materials library*, što otvara novi prozor u kome se sa desne strane nalazi se biblioteka različitih materijala koji se mogu koristiti pri definisanju novih materijala ili pri definisanju geometrijske postavke eksperimenta. Definisanje geometrijske postavke eksperimenta se započinje klikom na dugme File/new nakon čega će se pojaviti nov prozor u kojem se mogu odabrati različiti šabloni koji predstavljaju različite eksperimentalne postavke. Nakon odabira odgovarajuće postavke eksperimenta pojavljuje se nov prozor u kojem se vrši odabir detektora, čije su karakteristike fabrički instalirane u bazi softvera. Nakon što se odabere detektor na kojem vrši merenje, otvara se nov prozor u kojem se vrši odabir uzorka iz baze podataka i postoji opcija unosa različitih podataka vezanih za uzorak i geometrijsku postavku eksperimenta, kao što su rastojanje uzorka od detektora, debljina absorbera i materijal od kojeg su napravljeni, debljina i materijal posude u kojoj se nalazi uzorak, prečnik uzorka, visina uzorka, kao i gustine materijala od kojih su sačinjeni absorberi, posuda u kojoj se nalazi uzorak kao i gustinu uzorka. Nakon definisanja postavke eksperimenta potrebno je sačuvati fajl i izvršiti validaciju geometrije (*edit/efficiency curve/validate geometry*). softver je sada spreman i može da izvrši kalibraciju efikasnosti za određene energije (*edit/efficiency curve/Generate data* points). Softver će napraviti ecc fajl, u kojem se nalaze efikasnosti punih energetskih pikova za detektor u širokom energetskom opsegu, kao i njihove relativne merne nesigurnosti. U fajlu se nalazi ukupno 37 različitih energija za koje je softver odredio efikasnost,

U softveru *Origin* odrađen je fit svih 37 relativnih mernih nesigurnosti za efikasnost u funkciji od energije i dobjen je polinom:

$$un(e) = b_0 + e(b_1 + eb_2) \tag{3.6}$$

gde je $b_0 = 10.33683$, $b_1 = 0.00778$ i $b_2 = 2.17379 \cdot 10^{-6}$. Polinom un(e) predstavlja relativnu mernu nesigurnost za efikasnost detektora na različitim energijama, prilikom njenon određivanja pomoću softvera *LabSOCS*.

3.3 Efektivno rastojanje uzorka od detektora i njena veza sa aksijalnim rastojanjem

Prilikom merenja uzorak se postavlja direktno iznad detektora i njihovo rastojanje se meri od dna uzorka do površine detektora(z_1 na slici 14). Pošto u ovom radu uzorci nisu tačkasti (zanemarljivih dimenzija), pojedini delovi uzorka će biti na nešto većem rastojanju od dna posude u kojoj se nalazi uzorak. Ova činjenica se uzima u obrzir prilikom određivanja korekcionih faktora za koincidentno sumiranje tako što se uzorak deli na određen broj zona i za svaku deo ponaosob se određuje njeno efektivno rastojanje od detektora. U ovom prilogu će biti opisana procedura po kojoj će se računati efektivno rastojanje za uzorak u cilindričnom koordinatnom sistemu. Takođe će biti prikazana veza izmađeu efektivnog rastojanja i aksijalnog rastojanja tačkastog uzorka od detektora.

3.3.1 Efektivno rastojanje uzorka od detektora

Na slici 14. je sa krugom K s centrom u tački O i poluprečnikom R_0 , predstavljena površina detektora koja interaguje sa gama zračenjem, a cilindar predstavlja izvor gama zračenja. Osa simetrije cilindra s je ujedno i osa simetrije kruga. Na slici se može uočiti i pravougaonik ABCDčija se stranica AD nalazi na osi simetrije s. Neka su T i F nasumično odabrane tačke koje redom pripadaju pravougaoniku ABCD i krugu (K, O). Neka rastojanje tačke F od centra kruga O iznosi R. Tačka E predstavlja normalnu projekciju tačke T na krug. Njeno rastojanje od centra kružnice O je isto kao i rastojanje tačke T od ose simetrije s i neka je to rastojanje obeleženo sa x i neka je rastojanje između tačaka T i E obeleženo sa z. Pošto je trougao OFGpravougli, onda je $FG = R \sin \theta$, i $OG = R \cos \theta$. Rastojanje između dve proizvoljno izabrane tačke T i F se može označiti sa l i može se izračunati primenom Pitagorine teoreme na pravougli trougao EFT i tada je

$$l = \sqrt{TE^2 + EF^2}.\tag{3.7}$$

EF se može izračunati primenom pitagorine teoreme na pravougli trougao EFG:

$$EF = \sqrt{(R\cos\theta - x)^2 + (R\sin\theta)^2}.$$
(3.8)

Ako se jednačina 3.8 uvrsti u jednačinu 3.7, dobija se:

$$l = \sqrt{(R\cos\theta - x)^2 + (R\sin\theta)^2 + z^2}.$$
 (3.9)

Ovim je izračunato rastojanje između dve proizvoljne tačke unutar pravougaonika ABCD i kruga K. Ako se fiksira tačka T može se izračunati njeno rastojanje od bilo koje tače na krugu K. Rotacijom pravougaonika ABCD oko ose simetrije s opisuje se cilindar, a rotacijom tačke T se opisuje kružnica k slika14. Usled osne simetrije svaka tačka na kružnici k će imati identična rastojanja l od tačaka na krugu K. Da bi sve tačke cilindra obuhvatile potrebno je ovaj proces odrećivanja rastojanja ponoviti za svaku tačku pravougaonika ABCD i svaku tačku kruga K. Efektivno rastojanje uzorka od detektora se računa preko izraza:

$$d = \frac{\int_{r_1}^{r_2} 2\pi x \int_{z_1}^{z_2} \int_0^{R_0} 2\pi R \int_0^{2\pi} \sqrt{(x - R\cos\theta)^2 + z^2 + (R\sin\theta)^2} d\theta dR dz dx}{\int_{r_1}^{r_2} 2\pi x \int_{z_1}^{z_2} \int_0^{R_0} 2\pi R \int_0^{2\pi} d\theta dR dz dx}$$
(3.10)

Da bi se uračunale sve tačke uzorka koje emituju zračenje potrebno je integralom obuhvatiti celu površinu pravougaonika ABCD, to se postiže integraljenjem izraza 3.10 po z, u granicama od z_1 do z_2 i integraljenjem po x, u granicama od $r_1 = 0$ do $r_2 = r$ (r je poluprečnik cilindra). Integraljenjem je potrbno obuhvatiti i sve delove detektora, a to se postiže integraljenjem po R u granicama od 0 do R_0 i integraljenjem po θ u granicama od 0 do 2π .

Slika 14. Pomoćna slika za računanje efektivnog rastojanja cilindričnog uzorka od detektora

3.3.2 Zavisnost aksijalnog rastojanja tačkastog uzorka od njegovog efektivnog rastojanja

Da bi se precizno odredilo aksijalno rastojanje tačkastog uzorka od detektora prvo je potrebno definisati njihove dimenzije i geometrijski položaj u prostoru. Površina detektora koja interaguje sa zračenjem može se predstvati kao površina kruga poluprečnika $R_0 = 3.2$ cm. Tačkasti izvor se definiše cilindar poluprečnika r = 0.075 cm i visine h = 0.1 cm. Pošto je moguće izračunati efektivno rastojanje izvora od detektora preko jednačine 3.10 za bilo koju geometrijsku postavku, potrebno je dovesti u vezu efektivno rastojanje uzorka d sa njegovim aksijalnim rastojanjem. To se može postići računanjem efektivnih rastojanja uzorka od detektora po formuli 3.10 u slučajevima kad je izvor postavljen na različitim rastojanjima od detektora z. U tabeli 3 su prikazana različita rastojanja tačkastog uzorka od detektora i efektivna rastojanja koja se dobiju po formuli 3.10. Pri čemu se poluprečnik uzorka integrali u granicama od 0 do r, poluprečnih detektora se integrali u opsegu od 0 do 3.2, ugao θ se integrali u opsegu od 0 do 2π , a visina uzorka se integrali unutar granica $z_1 = z$ i $z_2 = z + h$.

$z [\mathrm{cm}]$	$d [\mathrm{cm}]$	$z [{ m cm}]$	$d [\mathrm{cm}]$
0	2.134829	8	8.361226
1	2.412634	9	9.328358
2	3.013579	10	10.30168
3	3.778429	11	11.27963
4	4.629347	12	12.26111
5	5.528442	13	13.24533
6	6.456382	14	14.23174
7	7.402666	15	15.21992

Tabela 3: efektivna rastojanja između uzorka i detektora za ratličite položaje uzorka

Ove vrednosti su unesene u softver za obradu podataka i crtanje grafika Origin. Origin omogućava fitovanje ovih tačaka polinomnom trećeg reda 3.11. pri čemu je $a_0 = -3.31501$, $a_1 = 1.93359$, $a_2 = -0.09315$ i $a_3 = 0.003$. Ovaj polinom je prikazan i grafički na slici 15.

$$z(d) = a_0 + d(a_1 + d(a_2 + da_3))$$
(3.11)

Jednačina 3.11 predstavlja direktnu vezu i aksijalnog rastojanja između uzorka i detektora.

Slika 15. Zavisnost aksijalnog rastojanja od efektivnog rastojanja

3.4 Određivanje korekcionih faktora

Kao što je već rečeno u poglavlju 2.2.1 efekti pravog koincidentnog sumiranja su zavisni od rastojanja između detektora i izvora. Pošto u ovom radu uzorci nisu "tačkasti" (zanemarljivih dimenzija), delovi uzorka koji se nalaze pri vrhu posude su na većem rastojanju od detektora, nego delovi uzorka koji su na njenom dnu. Iz tog razloga se uzorak deli na nekoliko zona i za svaku zonu se računa korekcioni faktor. Ukupni korekcioni faktor za ceo uzorak se računa po postupku prikazanom u odeljku 2.2.4. U praksi se uzorak ne deli na veliki broj "tačkastih" izvora da bi se odredili korekcioni faktori, takva procedura bi bila veoma dugačka, a razlika u preciznosti određivanja korekcionih faktora nije dovoljno velika da bi se opravdalo uloženo vreme. Iz tog razloga se uzorak deli na nekoliko zona jednake zapremine, a korekcioni faktor se određuje po uzoru na jednačinu 2.19:

$$F_g = \frac{\sum_{i=1}^n \varepsilon_{i,g} v_i}{\sum_{i=1}^n \frac{\varepsilon_{i,g}}{f_q(z_i)} v_i}$$
(3.12)

gde F_g predstavlja ukupni korekcioni faktor za uzorak na energiji g, v_i zapreminu i-te zone izvora, $\varepsilon_{i,g}$ efikasnost detektora za i-tu zonu uzorka na energiji g i $f_g(z_i)$ je korekcioni faktor za i-tu zonu na energiji g, u funkciji rastojanja od detktora z_i . U ovom radu su korekcioni faktori na koincidentno sumiranje određeni po poluempirijskom principu. Fukncije koje opisuju zavisnost korekcionih faktora, za tačkaste uzorke na različitim energijama, od rastojanja od detektora $f_g(z_i)$ su određeni eksperimentalno [11], a efikasnosti za pojedine zone uzorka $\varepsilon_{i,g}$ su određene pomoću softvera LabSOCS.

Slika 16. Uzorak izdeljen na šest delova jednake zapremine

Na slici 16. je prikazan uzorak, izdeljen na 6 delova jednakih zapremina i visina, na rastojanju L od detektora. Zone uzorka numerisane sa brojevima 1, 3 i 5 su cilindričnog oblika i one se bez problema mogu definisati u softveru *LabSocs* i mogu se odrediti njihove efikasnosti za različite energije. Međutim, zone uzorka numerisane brojevima 2, 4 i 6 su specifičnog oblika koji se ne mogu definisati u *LabSocs*-u. Iz tog razloga se efikasnost za ove zone ne može odrediti direktno. Ukoliko se posmatra cilindrična zapremina, koja je označena sa V_{12} , i koja se sastoji iz zona uzorka označenih sa 1 i 2, tada je opisana zapremina jednaka zbiru zapremina zona 1 i 2 i iznosi $V_{12} = V_1 + V_2$. Za registrovan odbroj vrha pune energije koji nastaje raspadom radionuklida koji se nalaze u zoni uzorka zapremine V_{12} važi:

$$N_{12} = N_1 + N_2 \tag{3.13}$$

gde su N_{12} , N_1 i N_2 redom odbroji pod vrhom ukupne energije koji potiču od zona uzorka zapremina V_{12} , V_1 i V_2 . Korišćenjem jednačine 2.13 dobija se

$$aV_1\varepsilon_1 p + aV_2\varepsilon_2 p = aV_{12}\varepsilon_{12} p \tag{3.14}$$

gde je a aktivnost uzorka po jedinici zapremine, a ε_1 , ε_2 i ε_{12} su redom efikasnosti u funkciji od energije za zone uzorka zapremina V_1 , V_2 i V_{12} . Daljim računom se može izraziti efikasnost ε_2 :

$$\varepsilon_2 = \frac{\varepsilon_{12}(V_1 + V_2) - \varepsilon_1 V_1}{V_2}$$
(3.15)

Pošto su zapremine V_1 i V_2 jednake, dalje sledi:

$$\varepsilon_2 = 2\varepsilon_{12} - \varepsilon_1 \tag{3.16}$$

Dakle definisanjem zona zapremina V_1 i V_{12} u softveru *LabSocs* se mogu dobiti njihove efikasnosti. Njihovim uvrštavanjem u jednačinu 3.16 dobija se efikasnost zone 2. Analognim postupkom se mogu odrediti i efikasnosti zona 4 i 6. Prečnici zona uzorka koji su označeni neparnim brojevima su jednaki i mogu se odrediti iz činjenice da je $V_1 = V_2$.

$$2\frac{x^2\pi}{4}\frac{h}{3} = \frac{d^2\pi}{4}\frac{h}{3} \tag{3.17}$$

gde je d prečnik uzorka i ujedno prečnik zapremine označene sa V_{12} , a x je prečnik zona koje su obeležene sa neparnim brojevima. Rešavanjem ove jednačine dobija se prečnik x. U softveru LabSOCS potrebno je definisati geometrijsku postavku šest zona koje su numerisane sa 1, 12, 3, 34, 5 i 56. Rastojanje zona-detektor računa kao zbir rastojanja posude od detektora, debljine dna posude i visine na kojoj se zona nalazi u posudi. U slučaju delova uzorka zapremine V_1 i V_{12} postoji samo 1 apsorber koji se sastoji iz dna posude, kape detektora i marineli posude koje su iste debljine. Kod ostalih delova uzorka pored pomenutog apsorbera, postoji još jedan apsorber koji se sastoji od delova uzorka koji se nalaze ispod posmatrane zone uzorka. Nakon što su uneti svi parametri softver izvršava kalibraciju efikasnosti kao što je opisano u poglavlju 3.2. Softver izbacuje *ecc* fajlove sa efikasnostima detektora na različitim enegijama za šest definisanih zona. Efikasnosti za zone 2, 4, 6 se računaju pomoću jednačine 3.16. U daljem procesu određivanja korekcionog faktora koristiće se samo efikasnost detektora na energiji 92.59 keV Postupak je u potpunosti identičan za ostale energije i može se lako reprodukovati.

Kao što se može videti u referenci [11], u Sektoru za razvoj i primenu nuklearnih tehnologija u javnom preduzeću Nuklearni objekti Srbije eksperimentalno su određeni korekcioni faktori za "tačkaste" izvore, sa radionuklidima ${}^{60}Co$, ${}^{152}Eu$, ${}^{126}Ra$, ${}^{235}U$, ${}^{238}U({}^{234}Th)$ i ${}^{238}U({}^{234m}Pa)$, u funkciji rastojanja od Ge detektora. Prilikom određivanja korekcionih faktora korišćeni su prinosi p_i iz reference [52]. Ovde je potrebno pomenuti pored baze podataka iz reference [52] postoje i druge baze podataka kao što je referenca [53]. U ovim bazama se razlikuju prinosi p_i , te će se razlikovati i dobijeni korekcioni faktori za koincidentno sumiranje u zavisnosti od korišćene baze podataka. Međutim, proizvod doprinosa p_i i korekcionog faktora F_g je konstantan bez obzira na to koja baza podataka je korišćena.

Na slikama 17. i 18 .
su grafički prikazane funkcije 3.18-3.23 koje redom opisuju zavisnost korekcionih faktora od rastojanja za tačkaste uzorke ^{235}U
i ^{238}U na njihovim karakterističnim energijama. Ovde su uvedeni indeksi $_{u51}$, $_{u52}$, $_{u53}$, $_{u81}$, $_{u82}$
i $_{u83}$, koji redom označavaju energije energije 143.8 keV, 163.3 keV, 185.7 keV, 63.29 keV, 92.59 keV i 1001.03 keV.

$$f_{u51}(z) = 0.73164 + z \cdot (0.05537 + z \cdot (-0.00286)) \tag{3.18}$$

$$f_{u52}(z) = 0.79848 + z \cdot (0.05262 + z \cdot (-0.00332)) \tag{3.19}$$

$$f_{u53}(z) = 0.82322 + z \cdot (0.04455 + z \cdot 0.00273) \tag{3.20}$$

$$f_{u81}(z) = 1.22682 - z \cdot (0.00247 + z \cdot 5.72202 \cdot 10^{-4})$$
(3.21)

$$f_{u82}(z) = 1.35473 - z \cdot (0.00467 + z \cdot 4.14789 \cdot 10^{-4})$$
(3.22)

$$f_{u83}(z) = 1.07775 - z \cdot (0.00198 + z \cdot 2.84111 \cdot 10^{-4})$$
(3.23)

Sa obzirom da je rastojanje uzorka i detektora 6.6 cm, da se primetiti, kako sa slike 17 tako i iz jednačina 3.18-3.20, da su korekcioni faktori za tačkaste uzorke na energijama karakterističnim za ^{235}U približno jednaki jedinici. Te iz jednačine 3.12 direktno sledi:

$$F_{u51} = 1$$

 $F_{u52} = 1$
 $F_{u53} = 1$

Da bi se odredili korekcioni faktori, za energije koje su karakteristične za radioaktivni niz ^{238}U , primenom jednačina 3.12 potrebno je odrediti efektivno rastojanje svih šest zona od detektora. Efektivna rastojanja se određuju preko jednačine 3.10 kao što je opisano u poglavlju 3.3.1. Nakon što se odredi efektivno rastojanje zone od detektora, može se odrediti i njeno aksijalno rastojanje od detektora preko izraza 3.24

$$z_i = a_0 + d_i(a_1 + d_i(a_2 + d_ia_3)) \tag{3.24}$$

gde idenks *i* ide od 1 do 6 i služi za numerisanje efektivnih i aksijalnih rastojanja zona od detektora. Vrednosti d_i predstavljaju efektivna rastojanja zona od detektora Postupak po kojem se dolazi do jednačine 3.24 je opisan u poglavlju 3.3.2. Nakon toga se određuju i korekcioni faktori za efekat koincidentnog sumiranja za sve zone na energijama od interesa $f_g(z_i)$ pomoću jednačina 3.18-3.23. Iz jednačine 3.25 dobijaju se korekcioni faktori za sve zone na energiji 92.59 keV u funkciji od njihovog aksijalnog rastojanja od detektora.

$$f_{u82}(z_i) = 1.35473 - z_i \cdot (0.00467 + z_i \cdot 4.14789 \cdot 10^{-4}) \tag{3.25}$$

Slika 17. Zavisnost korekcionih faktora za tačkasti izvor ^{235}U u funkciji rastojanja [11]

Slika 18. Zavisnost korekcionih faktora za tačkasti izvor ^{238}U u funkciji rastojanja [11]

Ukupan korekcioni faktor za koincidentno sumiranje na energiji 92.59 keV je prikazan u jednačini 3.26:

$$F_{u82} = \frac{\sum_{i=1}^{6} \varepsilon_i}{\sum_{i=1}^{6} \frac{\varepsilon_i}{f_{u82}(z_i)}}$$
(3.26)

gde su ε_i efikasnosti zona na energiji
92.59 keV. Efektivno rastojanje uzorka od detektor
a z_{eff} se
računa rešavanjem jednačine 3.27:

$$F_{u82} = f_{u82}(z) \tag{3.27}$$

Ukoliko se ovaj postupak ponovi za preostale energije, dobiće se bliske vrednosti za z_{eff} . Da bi se procedura pojednostavila ne računaju se efektivna rastojanja za ostale karakteristične energije prirodnih radioaktivnih nizom ²³⁸U i ²³⁵U, nego se uzima da je efektivno rastojanje uzorka za sve energije isto. Ovim se procedura značajno ubrzava pogotovo u slučajevima u kojima je potrebno izvršiti velik broj iteracija, a greške koje ovim postupkom nastaju su minimalne.

Na energijama 63.29 keV i 92.59 keV dolazi do interferencije sa fluorescentnim X zracima i potrebno je izvršiti dodatnu korekciju za ovaj efekat. To se postiže deljenjem korekcionih faktora za koincidentno sumiranje sa koeficijentom $K_f = 1.125$.

3.5 Određivanje aktivnosti i sastava uzorka

U prirodi uranijum se javlja u obliku tri izotopa ^{238}U (99.2742%), ^{235}U (0.7204%) i ^{234}U (0.0054%). Znajući zastupljenost izotopa uranijuma u prirodi i aktivnost jednog od njih moguće je odrediti aktivnosti preostalih izotopa pomoću izraza 3.28 i 3.29:

$$A_{u5} = \frac{0.007204\lambda_5}{0.992742\lambda_8} A_{u8} \tag{3.28}$$

$$A_{u4} = \frac{0.000054\lambda_4}{0.992742\lambda_8} A_{u8} \tag{3.29}$$

gde su A_{u4} , A_{u5} i A_{u8} redom aktivnosti izotopa uranijuma ²³⁴U, ²³⁵U i ²³⁸U, a λ_4 , λ_5 i λ_8 su redom njihove konstante radioaktivnog raspada. U iterativnom postupku aktivnost uzoraka će se određivati preko pikova različitih energija pomoću formule:

$$A = \frac{N}{t_m \varepsilon pF} \tag{3.30}$$

gde je A aktivnost uzorka, N odbroj pika pomoću kojeg se određuje aktivnost u spektru, t_m vreme merenja, ε efikasnost detektora na energiji na kojoj se nalazi pomenuti pik, p verovatnoća emisije gama zračenja pomenute energije i F je korekcioni faktor za odbroj pika u spektru. Ovako određene aktivnosti potrebno je uporediti. Ukoliko se njhiove vrednosti znatno razlikuju može se zaključiti da sastav uzorka nije dobro definisan, potrebno je definisati novi sastav i pokrenuti sledeću iteraciju. Novi sastav uzorka se definiše pomoću aktivnosti pika na energiji 1001.03 keV tako što se odredi nova masa uranijuma ²³⁸U, a potom i masa žutog kolača u uzorku. Masa ²³⁸U se određuje pomoću izraza:

$$m_{u8} = \frac{A_{u83} \cdot A_m(^{238}U)}{\lambda_8 \cdot N_A}$$
(3.31)

gde je λ_8 konstanta radiaktivnog raspada ²³⁸U, a $A_m(^{238}U) = 238.03u$ je atomska masa ²³⁸U i $N_A = 6.022 \cdot 10^{23} mol$ je Avogadrov broj, a A_{u83} je aktivnost određena preko linije 1001.03 keV. Atomska jedinica mase iznosi $u = 1.660540 \cdot 10^{-27} kg$. Masa žutog kolača se određuje preko izraza:

$$m_{U_3O_8} = \frac{m_{u8} \cdot (3 \cdot A_m(^{238}U) + 8 \cdot A_m(^{16}O))}{3 \cdot A_m(^{238}U)}$$
(3.32)

gde je $A_m(^{16}O) = 15.999u$. Kada je masa žutog kolača poznata, lako je odrediti mase ostalih konstituenata i ponoviti ceo proces u narednoj iteraciji. Iterativni postupci se izvode dok se

aktivnosti ${}^{235}U$ i ${}^{238}U$ koje su izražene pomoću različitih linija ne smire, odnosno dok im vrednosti ne budu dovoljno bliske. Aktivnosti ${}^{235}U$ i ${}^{238}U$ na kraju iteracije se određuju računanjem otežane srednje aktivnosti za sve tri linije prirodnog radioaktivnog niza.

4 Rezultati sa diskusijom

4.1 Uzorak 1

Uzorak 1 predstavlja suva zemlja narandžaste boje Gustina i prečnik uzorka su određeni jednačinama 3.4 i 3.5 iz postupka koji je opisan u poglavlju 3.1. Gustina prvog uzorka iznosi $\rho=0.8096~\frac{g}{cm^3},$ a prečnik uzorka je d=4.6608 cm. Tokom iterativnog postupka određivanja sastava uzorka i njegove aktivnosti gustina uzorka mora biti konstantna, a maseni udeli supstanci koje sačinjavaju uzorak će se menjati iz iteracije u iteraciju. U spektru uzorka nisu detektovane linije gama zračenja koje potiču od ^{214}Bi , što znači da se uranijum u uzorku nalazi samo u obliku žutog kolača U_3O_8 . Takođe nisu detektovane ni energije gama zračenja koje potiču iz prirodnog radiaktivnog lanca ^{232}Th , te neće biti efekata interferencije usled gama zračenja koje emituju radionuklidi iz radioaktivnog niza ^{232}Th . Pošto uzorak nije nabijen u posudi, deo zapremine uzorka će ispunjavati vazduh što se može videti i iz relativno male gustine uzorka. Zapremina uzorka se sastoji iz suve zemlje, žutog kolača i vazduha. Svaki od konstituenata uzorka zauzima određeni udeo zapremine. Pošto su od mernih veličina vezanih za sastav uzorka na raspolaganju samo gustine, može se postaviti samo jedna jednačina u kojoj će figurisati zapreminski udeo konstituenata. Zato se u prvoj iteraciji polazi od pretpostavke da uzorak sačinjavaju suva zemlja i vazduh. Treba imati na umu da je konstituent zemlje zapravo mešavina suve zemlje i žutog kolača, što se odražava na nešto većoj gustini zemlje u jednačini 4.1

$$x\rho_{zemlje} + (1-x)\rho_{vazduha} = \rho_{uzorka} \tag{4.1}$$

gde su $\rho_{zemlje} = 1.96 \frac{g}{cm^3}$, $\rho_{vazduha} = 0.00125 \frac{g}{cm^3}$ i $\rho = 0.8096 \frac{g}{cm^3}$ redom gustine suve zemlje, vazduha i uzorka, a x predstavlja zapreminski udeo zemlje u uzorku. Rešavanjem jednačine 4.1 dobija se x = 0.413, što znači da zemlja zauzima 41.3% zapremine uzorka, a vazduh 58.7% zapremine uzorka. Pošto su gustine i zapremine poznate, korišćenjem jednačine 3.4 mogu se izračunati mase konstituenata uzorka ($m_{zemlje} = 20.7$ g, $m_{vazduha} = 0.0188$ g). Deljenjem ovih vrednosti sa masom uzorka dobijaju se njihovi maseni udeli koji redom iznose $\mu_{zemlje} = 99.91\%$, $\mu_{vazduh} = 0.09\%$.

4.1.1 Kalibracija efikasnossti u prvoj iteraciji

Da bi se odredila energetska kalibracija efikasnosti za detektor u prvoj iteraciji potrebno je definisati geometrijsku postavku eksperimenta i sastav uzorka u softveru *LabSOCS* kao što je opisano u poglavlju 3.2. Nakon što se otvori biblioteka materijala u softveru može se definisati uzorak (slika 19.). Pošto je maseni udeo vazduha zanemarljiv u odnosu na maseni udeo zemlje, prilikom definisanja uzorka može se smatrati da se uzorak u celosti sastoji od zemlje gustine $0.8096 \frac{g}{cm^3}$. Odabirom materijala *earth* masenog udela od 100% i gustine $0.8096 \frac{g}{cm^3}$ uspešno je definisan uzorak 1 u prvoj iteraciji. Da bi se uzorak sačuvao u biblioteci potrebno je kliknuti na taster *save into library*.

Na slici 20. je definisana geometrijska postavka eksperimenta za uzorak 1 u prvoj iteraciji. Nakon pokretanja softvera dobija se *ecc* fajl u kojem se nalaze efikasnosti detektora na širokom energetskom opsegu. U tabeli 4 su prikazane efikasnosti iz generisanog fajla samo za energije od interesa za iterativni postupak.

Slika 19. Definisanje uzorka

Descri	OK						
Comm	Cancel						
Units:	Cmm €cm C	m Cin	⊂ ft				
No.	Description	d.1	d.2	Material	Density	Rel.	Apply
1	Side Walls	0.065	4.6608	polyprop 💌	0.91		
2	Bottom Wall	0.065		polyprop 💌	0.91		Help
3	Sample	1.5		mezd2 1i 💌	0.8096	1.00	
4	Absorber 1	0.065		polyprop 💌	0.91		View Drawing
5	Absorber 2	0.2		polyprop 💌	0.91		
6	Source - Detector	6.6	0	Ψ.			

Slika 20. Definisanje geometrijske postavke eksperimenta u softveru LabSOCS

Energija [keV]	efikasnost	$\Delta \varepsilon [\%]$
63.29	$2.43 \cdot 10^{-2}$	10.0
92.59	$2.45 \cdot 10^{-2}$	10.0
143.76	$2.17\cdot 10^{-2}$	9.0
163.33	$2.04\cdot10^{-2}$	9.0
185.71	$1.90\cdot10^{-2}$	9.0
1001.03	$5.25\cdot10^{-3}$	4.0

Tabela 4: efikasnosti i njihove relativne merne nesigurnosti na karakterističnim energijama za ^{235}U i ^{238}U energijama; uzorak naradžaste zemlje u prvoj iteraciji

4.1.2 Određivanje korekcionih faktora u prvoj iteraciji

Korekcioni faktori u prvoj iteraciji za uzorak 1 se odrećuju po proceduri iz odeljka 3.4. Uzorak 2 je potrebno podeliti na šest zona jednake zapremine (slika 16.) i korekcione faktore odrediti pomoću jednačine 3.12. Pošto su zone jednake zapremine, zapremine v_i koje odgovaraju pomenutim zonama i koje figurišu u jednačini 3.12 će se pokratiti. Efektivna rastojanja pojedinih zona se računaju preko izraza 3.10 iz odeljka 3.3.1. Prilikom računanja efektivnog rastojanja potrebno je obratiti pažnju na granice integracije koje zavise od dimenzija uzorka i detektora kao i od njihovog međusobnog rastojanja. Efektivna rastojanja pojedinih zona uzorka od detektora, kao i njihove granice integracije su date u tabeli 5. Aksijalno rastojanje zone od detektora je funkcija njenog efektivnog rastojanja od detektora. Ova zavisnost je prikaza izrazom 3.24, postupak kojim je određena ova zavisnost je dat u odlejku 3.3.2.

Tabela 5: Efektivna rastojanja zona od detektora i granice integracije u prvoj iteraciji za uzorak 1 zemlje

zona	$r_1 [\mathrm{cm}]$	$r_2 [\mathrm{cm}]$	$z_1 [\mathrm{cm}]$	$z_2[cm]$	$R_0 [\mathrm{cm}]$	$d [\mathrm{cm}]$
1	0	1.648	6.6	7.1	3.2	7.30047
2	1.648	2.33	6.6	7.1	3.2	7.47649
3	0	1.648	7.1	7.6	3.2	7.7723
4	1.648	2.33	7.1	7.6	3.2	7.93864
5	0	1.648	7.6	8.1	3.2	8.24734
6	1.648	2.33	7.6	8.1	3.2	8.4049

$$z_i = a_0 + d_i(a_1 + d_i(a_2 + d_i a_3))$$
(4.2)

gde indeks *i* ide od 1 do 6 i služi za numerisanje efektivnih i aksijalnih rastojanja zona od detektora. Vrednost d_i predstavlja efektivno rastojanje i-te zone od detektora, a z_i je njeno aksijalno rastojanje. Pošto se uvodi aproksimacija da su zone tačkasti izvori zračenja korekcioni faktori za efekat koincidentnog sumiranja za zone na energijama od interesa $f_g(z_i)$ se određuju pomoću jednačina 3.18-3.23. Iz jednačine 4.3 se dobijaju korekcioni faktori za svih šest zone na energiji 92.59 keV u funkciji od njihovog aksijalnog rastojanja od detektora.

$$f_{u82}(z_i) = 1.35473 - z_i \cdot (0.00467 + z_i \cdot 4.14789 \cdot 10^{-4}) \tag{4.3}$$

Da bi se odredio ukupan korekcioni faktor na energiji 92.59 keV pomoću jednačine 3.26 potrebno je izvršiti kalibraciju efikasnosti za svih šest zona. Pvo se određuju prečnici zona uzorka koji su označeni neparnim brojevima su jednaki i mogu se odrediti iz činjenice da je $V_1 = V_2$.

$$2\frac{x^2\pi}{4}\frac{h}{3} = \frac{d^2\pi}{4}\frac{h}{3} \tag{4.4}$$

gde je d prečnik uzorka i ujedno prečnik zapremine označene sa V_{12} . Rešavanjem ove jednačine dobija se prečnik x = 3.2957 cm.

Na slici 21. može da se videti kako su definisane geometrijske postavke zona uzorka 1 u softveru *LabSOCS* u prvoj iteraciji.

U tabeli 6 su prikazane efikasnosti detektora za energiju gama zračenja od 92.59 keV za različite zone uzorka. Efikasnosti ε_2 , ε_4 , i ε_6 su izračunate preko jednaćine 3.16. Ovde su prikazane samo efikasnosti na energiji 92.59 keV efektivno rastojanje za uzorak 1 će biti određeno samo za ovu energiju iz razloga navedenih u odeljku 3.4.

Descrip	ption: Narandzasta z	zemlja 1 it O	.8096 g/cm	3 zona 1			OK	Descr	iption: Narandzasta	zemlja 1 it 0	1.8096 g/cm	3 1it zona 12				OK
Comme	ent: zona 1						Cancel	Comm	ent: zona12							Cancel
Units:	⊂mm ∙cm ⊂	m Cin	C ft				Units: Cmm @ cm Cm C in C ft									
No.	Description	d.1	d.2	Material	Density	Rel.	Apply	No.	Description	d.1	d.2	Material	Der	sity	Rel.	Apply
1	Side Walls	0.065	3.2957	polyprop 💌	0.91			1	Side Walls	0.065	4.6608	polyprop	• 0.	91		
2	Bottom Wall	0		(none) 💌	0		Help	2	Bottom Wall	0		(none)	-)		Help
3	Sample	0.5		mezd2 1i 💌	0.8096	1.00		3	Sample	0.5		mezd2 1i	• 0.8	096	1.00	
4	Absorber 1	0.33		polyprop 💌	0.91		View Drawing	4	Absorber 1	0.33		polyprop	• 0.	91		View Drawing
5	Absorber 2	0		(none) 🔻	0			5	Absorber 2	0		(none)	-)		
6	Source - Detector	6.665	0	7				6	Source - Detector	6.665	0		~			
Deres	Newslow		0000 - /	2122				1								
Descri	ption: Interandzasta	zemija lit u	1.8096 g/cm	is fit zonas			OK	Descr	iption: Narandzasta	zemlja 1it C	1.8096 g/cm	i3 1it zona 34				OK
Comm	ent: zona3						Cancel	Comm	ent: zona 34							Connel
Units:	⊂mm ∙cm ⊂	m Cin	C ft					J 1 Units:	C mm • cm · C	m Cin	Cft					Cancel
No.	Description	d.1	d.2	Material	Density	Rel.	Apply		Description		42	Matorial	Dor	vitu	Pol	Apply
1	Side Walls	0.065	3.2957	polyprop 💌	0.91			1	Side Walk	0.065	4 6608	Platenal		01	NGI.	
2	Bottom Wall	0		(none) 💌	0		Help		Rottom Wall	0.005	14.0000			21		Help
3	Sample	0.5		mezd2 1i 💌	0.8096	1.00		2	Sample			(none)		006	1.00	
4	Absorber 1	0.5		mezd2 1i 💌	0.8096		View Drawing		Absorber 1	0.5	<u> </u>	mezd2 11		090	1.00	
5	Absorber 2	0.33		polyprop 💌	0.91				Absorber 2	0.3		mezd2 11		090		View Drawing
6	Source - Detector	7.165	0	~				5	Absorber 2	7 165	0	polyprop	- 0.	91		
									Source - Decector	1 7.105	1 0	-				
Descri	ption: Narandzasta:	zemlja 1 it C	1.8096 g/cm	i3 1it zona5			OK	Descri	ption: Narandzasta z	emlja 1 it 0	.8096 g/cm	3 1it zona 56				0K
Comm	ent: zona5						Cancel	Comme	ent: zona 56							Consul
Units:	Cmm €cm C	m Cin	C ft					J IUnits:	Cmm Ccm C	m Cin	Cit					Lancel
No.	Description	d.1	d.2	Material	Density	Rel.	Apply	No	Description	d.1	d.2	Material	Den	sity	Rel	Apply
1	Side Walls	0.065	3.2957	polyprop -	0.91			1	Side Walls	0.065	4.6608	nokoron	0.	91	rten	
2	Bottom Wall	0	<u> </u>	(none) •	0		Help	2	Bottom Wall	0		(none)				Help
3	Sample	0.5	<u> </u>	mezd2 1i 🔻	0.8096	1.00		3	Sample	0.5		mezd2_1i	0.8	096	1.00	
4	Absorber 1	1		mezd2 1i 🔻	0.8096		View Drawing	4	Absorber 1	1		mezd2 1i	0.8	096		View Drawing
5	Absorber 2	0.33		polyprop -	0.91			5	Absorber 2	0.33		polyprop	• 0.9	91		
6	Source - Detector	7.665	0	.				6	Source - Detector	7.665	0		·			

Slika 21. Geometrijska postavka za različite zone uzorka 1 u softveru LabSOCS

Tabela 6: Efikasnosti zona u prvoj iteraciji za uzorak 1 na energiji 92.59 keV

zona	efikasnost
1	0.0296
2	0.0282
3	0.0247
4	0.0236
5	0.0208
6	0.0199
12	0.0289
34	0.0242
56	0.0203

Ukupan korekcioni faktor uzorak 1 za pik energije 92.59 keV u prvoj iteraciji je dat u jednačini 4.5 $\,$

$$F'_{u82} = \frac{\sum_{i=1}^{6} \varepsilon'_{i}}{\sum_{i=1}^{6} \frac{\varepsilon'_{i}}{f_{u82}(z_{i})}} = 1.296$$
(4.5)

gde su ε'_i efikasnosti detektora na energiji 92.59 keV za zone koje su numerisane od 1 do 6. Ove efikasnosti su date u tabeli 6 Efektivno rastojanje uzorka 1 od detektora se može izračunati rešavanjem jednačine 4.7:

$$F'_{u82} = f_{u82}(z) \tag{4.6}$$

$$1.296 = 1.35473 - z \cdot (0.00467 + z \cdot 4.14789 \cdot 10^{-4}) \tag{4.7}$$

Dobija se da efektivno rastojanje uzorka od detektora za energiju 92.59 keV iznosi $z'_{eff} =$ 7.528 cm. Ukoliko se ovaj postupak ponovi za preostale energije, dobiju približno iste vrednosti za z'_{eff} . Da bi se procedura pojednostavila uzima se da je efektivno rastojanje uzorka od detektora $z'_{eff} =$ 7.528 cm univerzalno za uzorak 1. Ovim se procedura značajno ubrzava pogotovo u slučajevima u kojima je potrebno izvršiti velik broj iteracija, a greške koje ovim postupkom nastaju su minimalne. Iz činjenice da je $z'_{eff} =$ 7.528 cm može se zaključiti da su korekcioni faktori za pikove energija koje potiču od prirodnog radioaktivnog niza ²³⁵U jednaki jedinici. U izrazima 4.8 i 4.9 su izračunati korekcioni faktori za energije 63.29 keV i 1001.03 keV.

$$F'_{u81} = f_{u81}(7.528) = 1.176 \tag{4.8}$$

$$F'_{u83} = f_{u83}(7.528) = 1.047 \tag{4.9}$$

Na energijama 63.29 keV i 92.59 keV dolazi i do efekta interferencije sa fluorescentnim X zracima i potrebno je izvršiti dodatnu korekciju za ovaj efekat. To se postiže deljenjem korekcionih faktora za koincidentno sumiranje sa koeficijentom $K_f = 1.125$. Ovako dobijeni korekcioni faktori na enrgijama 63.29 keV i 92.59 keV će iznositi:

$$F'_{fu81} = \frac{F'_{u81}}{K_f} = 1.045 \tag{4.10}$$

$$F'_{fu82} = \frac{F'_{u82}}{K_f} = 1.152 \tag{4.11}$$

4.1.3 Određivanje aktivnosti ²³⁸U u prvoj iteraciji

Radi bolje preglednosti postupka u ovom pasusu uvode se oznake koje opisuju različite veličine kao što su aktivnosti, efikasnosti i odbroji na energijama karakterističnim za ^{238}U (63.29 keV, 92.59 keV i 1001.03 keV). Uvedeni su indeksi, koji stoje uz oznake koje opisuju gore pomenute veličine, $_{u81}$, $_{u82}$ i $_{u83}$; u8 označava da se indeks odnosi na ^{238}U , a brojevi 1, 2 i 3 redom označavaju njegove karakteristične energije 63.29 keV, 92.59 keV i 1001.03 keV. Aktivnosti koje su dobijene pomoću pikova na ovim energijama su označne sa A'_{u81} , A'_{u82} i A'_{u83} , a njihove greške redom sa $u(A'_{u81})$, $u(A'_{u82})$ i $u(A'_{u83})$. Pošto će se ove aktivnosti razlikovati, računaće se otežana srednja aktivnost koja je označena sa A'_{u8} . Odbroji pikova na karakterističnim energijama iz spektra, kao i njihove merne nesigurnosti su označene sa N_{u81} , N_{u82} , N_{u83} , $u(N_{u81})$, $u(N_{u82})$ i $u(N_{u83})$. Ove vrednosti se nalaze u tabeli 1. Efikanosti detektora su označene sa $\varepsilon'_{u81}, \varepsilon'_{u82}$ i ε'_{u83} , a njihove vrednosti su date u tabeli 4. Korekcioni faktori za odbroje u spektru na energijama karakterističnim za ^{238}U (63.29 keV, 92.59 keV i 1001.03 keV) su redom označeni sa F'_{fu81} , F'_{fu82} i F'_{u83} . Ovi korekcioni faktori su određeni u jednačinama 4.10, 4.11 i 4.9. Vreme merenja je označeno sa t_m i ono iznosi 3600 s. Sa p_{u81} , p_{u82} i p_{u83} su označene ukupne verovatnoće emisije gama zračenja energija 63.29 keV, 92.59 keV i 1001.03 keV prilikom raspada radionuklida iz prirodnog radioaktivnog lanca ^{238}U . Može se primetiti da su oznake koje opisuju efikasnosti, korekcione faktore, aktivnosti i njihove greške označene i sa apostrofom. Apostrof označava da se radi o prvoj iteraciji i on stoji samo uz oznake čije veličine će imati drugačije vrednosti

u narednim iteracijama. Oznake poput odbroja u spektru, vremena merenja i prinosa nemaju apostrof jer su to izmerene veličine i one su nezavisne od rednog broja iteracije. U drugoj iteraciji oznake će imati dva apostrofa da bi se naglasilo da je u pitanju druga iteracija, u troćoj tri itd.

Određivanje aktivnosti pomoću pika energije 1001.03 keV

Iako ima mali prinos $p_{u83} = 0.00842$ pik energije 1001.03 keV je veoma pogodan za određivanje koncentracije uranijuma u uzorku direktnim spektrometrijskim metodama. Ge detektori dobro razlažu Ovaj "čist pik" i pomoću njega je moguće veoma precizno odrediti koncentraciju uranijuma u uzorku bez upotrebe korekcija za samoapsorpciju. Ovaj pik je pogodan i iz razloga što njegov doprinos u spektru nastaje isključivo raspadom ^{234m}Pa, drugog potomka ²³⁸U, te je efekat interferencije sa drugim pikovima zanemarljiv, čak i kada u uzorku postoji velika koncentracija torijuma. [13] Za razliku od drugih pikova ²³⁸U na ovoj energiji nema potrebe za dodatnom korekcijom zbog fluoro efekta, što dodatno povećava prednost određivanja aktivnosti preko ovog pika. Aktivnost na energiji 1001.03 keV se dobija preko izraza 4.12:

$$A'_{u83} = \frac{N_{u83}}{t_m \varepsilon'_{u83} p_{u83} F'_{u83}} \tag{4.12}$$

Aktivnost ^{235}U se može odrediti preko izraza 3.28 pri čemu se za aktivnost ^{238}U uzima aktivnost A_{u83} koja je određena preko pika energije 1001.03 keV.

$$A'_{u5u83} = \frac{0.007204\lambda_5}{0.992742\lambda_8} A'_{u83} \tag{4.13}$$

gde su λ_5 i λ_8 redom konstante radiaktivnog raspada za ^{235}U i ^{238}U . Neodređenost merenja aktivnosti preko pika na 1001.03 keV je data sa izrazom 4.14

$$u(A'_{u83}) = \frac{A'_{u83}}{100} \sqrt{\left(100\frac{u(N_{u83})}{N_{u83}}\right)^2 + un_{u83}^2} \tag{4.14}$$

Polinomom 3.6 je opisano relativno odstupanje efikasnosti detektora koja je određena softverom *LabSOCS*. Ovako određeno relativno odstupanje se najmanje razlikuje od eksperimentalno određenog relativnog odstupanja efikasnosti na energiji 661.657 keV i iznosi 2.5%. Veličina un_{u83} je definisana kao:

$$un_{u83} = \frac{2.5un(1001.03)}{un(661.657)} \tag{4.15}$$

Određivanje aktivnosti pomoću pika energije 92.59 keV

Doprinos odbroju vrha pune energije na energiji 92.59 keV daju prirodno radioaktivni nizovi ^{238}U i ^{235}U . Doprinos ^{235}U ovom piku je označen sa N'_{u82u5} , a doprinos ^{238}U je razlika ukupnog odbroja u spektru i doprinosa ^{235}U : $N_{u82} - N'_{u82u5}$. Prilikom beta raspada jezgra ^{234}Th na ^{234m}Pa (metastabilno stanje protaktinijuma) dolazi do emisije gama zračenja energija 92.38 keV i 92.80 keV sa verovatnoćama 2.13% i 2.10% respektivno [52]. Pored emisije gama zračenja prilikom raspada ^{234}Th dolazi i do emisije X zračenja energije 92.282 keV sa verovatnoćom 0.0171%. Pošto se X zračenje i gama zračenje ne razlikuju ni po čemu osim po mestu nastanka i X zračenje će dati svoj doprinos odbroju u spektru. Ukupan prinos radiaktivnog niza ^{238}U na energiji 92.59 keV se računa kao:

$$p_{u82} = 0.0213 + 0.021 + 0.000171 = 0.0425 \tag{4.16}$$

Doprinos radiaktivnog niza ${}^{235}U$ piku energije 92.59 keV nastaje raspadom ${}^{231}Th$, pri čemu dolazi do emisije gama zračenja na energiji 93.02 keV sa verovatnoćom i 0.047%. Raspad torijuma je praćem i emisijom X zračenja energije 92.282 keV sa verovatnoćom 0.35%. Doprinos raspada ${}^{231}Th$ piku energije 92.59 keV prikazan izrazom:

$$N'_{u82u5} = A'_{u5u83} t_m \varepsilon'_{u82} \cdot (0.0035 + 0.00047) \tag{4.17}$$

Doprinos uranijuma ${}^{235}U$ odbroju na energiji 92.59 keV je označen i sa apostrofom jer on zavisi od aktivnosti uranijuma ${}^{238}U$ koja je određena preko pika koji se nalazi na energiji 1001.03 keV. u prvoj iteraciji i efikasnosti detektora na energiji 92.59 keV u prvoj iteraciji. Aktivnost ${}^{238}U$ preko pika energije 92.59 keV se dobija iz izraza 4.18:

$$A'_{u82} = \frac{N_{u82} - N'_{u82u5}}{t_m \varepsilon'_{u82} p_{u82} F'_{fu82}}$$
(4.18)

Neodređenost merenja aktivnosti preko pika energije 92.59 keV je data sa izrazom 4.19

$$u(A'_{u82}) = \frac{A'_{u82}}{100} \sqrt{\left(100\frac{u(N_{u82})}{N_{u82}}\right)^2 + un_{u82}^2}$$
(4.19)

gde je:

$$un_{u82} = \frac{2.5un(92.59)}{un(661.657)} \tag{4.20}$$

Određivanje aktivnosti pomoću pika energije 63.29 keV

Prilikom beta raspada jezgra ^{234}Th na ^{234m}Pa (metastabilno stanje protaktinijuma) dolazi do emisije gama zraka energija 62.86 keV i 63.29 keV sa verovatnoćama 0.016% i 3.7% respektivno [52]. Dalje se ^{234m}Pa raspada putem beta raspada na ^{234}U . Ovaj raspad se odigrava na dva načina: ^{234m}Pa može direktno da se raspadne na ^{234}U pri čemu se emituje gama zrak energije 62.70 keV sa verovatnoćom 0.0012%; u svega 0.16% slučajeva prvo će doći do deksticije metastabilnog stanja na osnovno, pa tek onda dolazi do beta raspada ^{234}Pa na ^{234}U pri čemu se emituje gama zrak energije 62.70 keV sa verovatnoćom 1.6%. Pošto su ove tri energije jako bliske, usled nedovoljno niske rezolucije detektora one će biti obuhvaćene pod pik na energiji 63.29 keV. Ukupan prinos radiaktivnog niza ^{238}U , na energiji 63.29 keV se računa kao

$$p_{u81} = 0.037 + 0.00016 + 0.000012 + 0.0016 \cdot 0.016 = 0.0372 \tag{4.21}$$

Prilikom raspada jezgra ^{231}Th , potomka ^{235}U , dolazi do emisije gama zračenja energije 63.86 keV sa verovatnoćom 0.023%. Detekcija ovog gama zračenja doprinosi odbroju pika u spektru na energiji 63.29 keV. Taj doprinos je u jednačini 4.23 označen sa N'_{u81u5} , a do njega se dolazi preko sledećeg izraza:

$$N'_{u81u5} = A'_{u5u83} t_m \varepsilon'_{u81} \cdot 0.00023 \tag{4.22}$$

 N'_{u81u5} predstavlja doprinos prirodnog radiaktivnog niza ^{235}U piku na energiji 63.29 keV. Aktivnost ^{238}U se pomoću pika energije 63.29 keV se dobija iz izraza 4.23:

$$A'_{u81} = \frac{N_{u81} - N'_{u81u5}}{t_m \varepsilon'_{u81} p_{u81} F'_{fu81}}$$
(4.23)

Neodređenost merenja aktivnosti preko pika energije 63.29 keV je data sa izrazom 4.24

$$u(A'_{u81}) = \frac{A'_{u81}}{100} \sqrt{\left(100\frac{u(N_{u81})}{N_{u81}}\right)^2 + un_{u81}^2} \tag{4.24}$$

gde je:

$$un_{u81} = \frac{2.5un(63.29)}{un(661.657)} \tag{4.25}$$

Određivanje otežane srednje aktivnosti $^{238}\!U$ i njegove mase u uzorku

Otežana srednja aktivnost ^{238}U se računa preko jednačine 4.26:

$$A'_{u8} = \frac{\frac{A'_{u81}}{u(A'_{u81})^2} + \frac{A'_{u82}}{u(A'_{u82})^2} + \frac{A'_{u83}}{u(A'_{u83})^2}}{\frac{1}{u(A'_{u81})^2} + \frac{1}{u(A'_{u82})^2} + \frac{1}{u(A'_{u83})^2}}$$
(4.26)

Merna nesigurnost aktivnosti ^{238}U je izračunata u jednačini 4.27

$$u(A'_{u8}) = \sqrt{\frac{1}{\frac{1}{u(A'_{u81})^2} + \frac{1}{u(A'_{u82})^2} + \frac{1}{u(A'_{u83})^2}}}$$
(4.27)

U tabeli 7 su date aktivnosti koje su izračunate za karakteristične energije radioaktivnog niza ^{238}U kao i otežana srednja aktivnost za uzorak u prvoj iteraciji. Mogu se videti razlike u dobijenim aktivnostima za pikove različitih energija, i one ne ulaze u opseg merne nesigurnosti. Iz toga se može zaključiti da početni sastav uzorka nije dovoljno dobro definisan te je potrebno izvršiti drugu iteraciju ovog postupka. Iz već navedenih razloga najpouzdaniji je rezultat koji je dobijen preko pika na energiji 1001.03 keV, te se novi sastav uzorka definiše tako što se uzima da je aktivnost ²³⁸U u uzorku jednaka sa A'_{u83} .

Tabela 7: Aktivnosti ^{238}U izračunate preko karakterističnih energija i srednja aktivnost

Radionuklid	Energija[keV]	Aktivnost $[10^4 Bq]$	Srednja aktivnost $[10^4 Bq]$
	63.29	3.43	
^{238}U	92.59	5.52	5.34 ± 0.10
	1001.03	7.76	

Masa ^{238}U u uzorku 1 može da se izračuna pomoću jednačine 4.28

$$m'_{u8} = \frac{A'_{u83} \cdot A_m(^{238}U)}{\lambda_8 \cdot N_A} = 6.24 \ g \tag{4.28}$$

gde je λ_8 konstanta radiaktivnog raspada ²³⁸U, a $A_m(^{238}U) = 238.03u$ je atomska masa ²³⁸U i $N_A = 6.022 \cdot 10^{23} mol$ je avogadrov broj. Atomska jedinica mase, $u = 1.660540 \cdot 10^{-27} kg$.

4.1.4 Određivanje aktivnosti ²³⁵U u prvoj iteraciji

Analogno odeljku 4.1.3 uvode se identične oznake koje se razlikuju samo po tome što u indeksima umesto broja 8 stoji broj 5 koji označava da se oznaka odnosi na ²³⁵U. Pikovi u spektru na energijama 143.76 keV, 163.33 keV i 185.72 keV potiču od radiaktivnog raspada nuklida koji pripadaju prirodnom lancu radioizotopa ²³⁵U, a ukupne verovatnoće emisije gama zraka ovih energija su označene kao p_{u51} , p_{u52} i p_{u53} . Oznake koje na energijama 143.76 keV, 163.33 keV i 185.72 keV opisuju aktivnosti, odbroje pikova, efikasnosti detektora kao i njihove merne nesigurnosti su date redom: A'_{u51} , A'_{u52} i A'_{u53} , N_{u51} , N_{u52} , N_{u53} (vrednosti su date u tabeli 1), ε'_{u51} , ε'_{u52} i ε'_{u53} (vrednosti su date u tabeli 4) $u(A'_{u51})$, $u(A'_{u52})$ i $u(A'_{u53})$, $u(N_{u51})$, $u(N_{u52})$ i $u(N_{u53})$ (vrednosti su date u tabeli 1). Vreme merenja je označeno sa t_m i iznosi 3600s. Kao što je već rečeno za našu eskperimentalnu postavku su korekcioni faktori za koincidentno sumiranje, na karakterističnim energijama ²³⁵U, jednaki jedinici.

Određivanje aktivnosti pomoću pika energije 143.76 keV

Aktivnost ^{235}U pomoću pika energije 143.76 keV se dobija iz izraza 4.29.

$$A'_{u51} = \frac{N_{u51} - N'_{u51u8}}{t_m \varepsilon'_{u51} p_{u51}}$$
(4.29)

Doprinos odbroju vrha pune energije na energiji 143.76 keV daju prirodno radioaktivni nizovi ^{238}U i ^{235}U . Doprinos ^{238}U ovom piku je označen sa N'_{u51u8} , a doprinos ^{235}U je razlika ukupnog odbroja u spektru i doprinosa ^{238}U : $N_{u51} - N'_{u51u8}$. Doprinos radiaktivnog niza ^{235}U piku energije 143.76 keV nastaje raspadom ^{235}U , ^{223}Ra i

Doprinos radiaktivnog niza ${}^{235}U$ piku energije 143.76 keV nastaje raspadom ${}^{235}U$, ${}^{223}Ra$ i ${}^{231}Pa$. Raspadom ${}^{235}U$ dolazi do emisije gama zrakova energija 142.40 keV i 143.76 keV sa verovatnoćama 0.005% i 10.96% respektivno. Raspadom ${}^{231}Pa$ emituje se gama zrak energije 144.4 keV sa verovatnoćom 0.015% i faktorom grananja 0.0021. Raspadom ${}^{223}Ra$ emituje se gama zrak energije 144.235 keV sa verovatnoćom 0.0327% i faktorom grananja 0.0015. Ukupan prinos radiaktivnog niza ${}^{235}U$ na energiji 143.76 keV se računa kao:

$$p_{u51} = 0.1096 + 0.00005 + 0.0015 \cdot 0.0327 + 0.0021 \cdot 0.00015 = 0.11 \tag{4.30}$$

Doprinos radiaktivnog niza ^{238}U piku energije 143.76 keV nastaje raspadom ^{234}Pa , pri čemu dolazi do emisije gama zračenja na energii 143.78 keV sa verovatnoćama $0.0016 \cdot 0.0033\%$. Ovaj doprinos je prikazan izrazom:

$$N'_{u51u8} = A'_{u8} t_m \varepsilon'_{u51} (0.0016 \cdot 0.0033) \tag{4.31}$$

Neodređenost merenja aktivnosti pomoću pika na 92.59 keV je data sa izrazom 4.32

$$u(A'_{u51}) = \frac{A'_{u51}}{100} \sqrt{\left(100\frac{u(N_{u51})}{N_{u51}}\right)^2 + un_{u51}^2}$$
(4.32)

gde je:

$$un_{u51} = \frac{2.5un(143.76)}{un(661.657)} \tag{4.33}$$

Određivanje aktivnosti pomoću pika energije 163.33 keV

Doprinos odbroju vrha pune energije na energiji 163.33 keV daju prirodno radioaktivni nizovi ^{238}U i ^{235}U . Doprinos ^{238}U ovom piku je označen sa N'_{u52u8} , a doprinos ^{235}U je razlika ukupnog odbroja u spektru i doprinosa ^{238}U : $N_{u52} - N'_{u52u8}$. Prilikom beta raspada jezgra ^{235}U na ^{231}Th dolazi do emisije gama zraka energija 163.356 keV, sa verovatnoćom 5.08% [52]. Takođe i raspadom ^{231}Th na ^{231}Pa dolazi do emisi gama zračenja energije 163.1 keV pri čemu je verovatnoća emusije 0.154% Ukupan prinos radiaktivnog niza ^{235}U na energiji 163.33 keV se računa kao:

$$p_{u52} = 0.0508 + 0.00154 = 0.05234 \tag{4.34}$$

Doprinos radiaktivnog niza ^{238}U piku energije 163.356 keV nastaje raspadom jezgra ^{234}Pa na jezgro ^{234}U , pri čemu dolazi do emisije gama zračenja na energijama 164.94 keV sa verovatnoćama 0.054% uz faktor grananja 0.0016, te je ukupan prinos 0.00054 · 0.0016. Ovaj doprinos je prikazan izrazom:

$$N'_{u52u8} = A'_{u8} t_m \varepsilon'_{u52} (0.0016 \cdot 0.00054) \tag{4.35}$$

Aktivnost ^{235}U koja je određena preko pika energije 163.33 keV se dobija iz izraza 4.36:

$$A'_{u52} = \frac{N_{u52} - N'_{u52u8}}{t_m \varepsilon'_{u52} p_{u52}}$$
(4.36)

Neodređenost merenja aktivnosti preko pika na 163.33 keV je data sa izrazom 4.37

$$u(A'_{u52}) = \frac{A'_{u52}}{100} \sqrt{\left(100\frac{u(N_{u52})}{N_{u52}}\right)^2 + un_{u52}^2} \tag{4.37}$$

gde je:

$$un_{u52} = \frac{2.5un(163.33)}{un(661.657)} \tag{4.38}$$

Određivanje aktivnosti pomoću pika energije 185.72 keV

Doprinos odbroju vrha pune energije na energiji 185.72 keV daju prirodno radioaktivni nizovi ^{238}U i ^{235}U . Doprinos ^{238}U ovom piku je označen sa N'_{u53u8} , a doprinos ^{235}U je razlika ukupnog odbroja u spektru i doprinosa ^{238}U : $N_{u53} - N'_{u53u8}$. Prilikom beta raspada jezgra ^{235}U na ^{231}Th dolazi do emisije gama zraka energija 185.715 keV, sa verovatnoćom 57.2% [52].Prinos radiaktivnog niza ^{235}U na energiji 185.72 keV je:

$$p_{u53} = 0.572 \tag{4.39}$$

Doprinos radiaktivnog niza ${}^{238}U$ piku energije 185.72 keV nastaje raspadom jezgra ${}^{234}Pa$ na jezgro ${}^{234}U$, pri čemu dolazi do emisije gama zračenja na energiji 186.15 keV sa verovatnoćom 1.85% uz faktor grananja 0.0016, te je ukupan prinos 0.0185 \cdot 0.0016. Ovaj doprinos je prikazan izrazom:

$$N'_{u53u8} = A'_{u8} t_m \varepsilon'_{u53} (0.0016 \cdot 0.0185) \tag{4.40}$$

Aktivnost ^{235}U preko pika energije 185.72 keV se dobija iz izraza 4.41:

$$A'_{u53} = \frac{N_{u53} - N'_{u53u8}}{t_m \varepsilon'_{u53} p_{u53}} \tag{4.41}$$

Neodređenost merenja aktivnosti preko pika na 185.72 keV je data sa izrazom 4.42

$$u(A'_{u53}) = \frac{A'_{u53}}{100} \sqrt{\left(100\frac{u(N_{u53})}{N_{u53}}\right)^2 + un_{u53}^2} \tag{4.42}$$

gde je:

$$un_{u53} = \frac{2.5un(185.72)}{un(661.657)} \tag{4.43}$$

Određivanje otežane srednje aktivnosti $^{235}\!U$ i njegove mase u uzorku

Otežana srednja aktivnost ^{235}U u prvoj iteraciji se računa preko jednačine 4.44:

$$A'_{u5} = \frac{\frac{A'_{u51}}{u(A'_{u51})^2} + \frac{A'_{u52}}{u(A'_{u52})^2} + \frac{A'_{u53}}{u(A'_{u53})^2}}{\frac{1}{u(A'_{u51})^2} + \frac{1}{u(A'_{u52})^2} + \frac{1}{u(A'_{u53})^2}}$$
(4.44)

Merna nesigurnost aktivnosti ^{235}U je izračunata u jednačini 4.45

$$u(A'_{u5}) = \sqrt{\frac{1}{\frac{1}{u(A'_{u51})^2} + \frac{1}{u(A'_{u52})^2} + \frac{1}{u(A'_{u53})^2}}}$$
(4.45)

U tabeli 8 su date aktivnosti koje su izračunate za karakteristične energije radioaktivnog niza ^{235}U kao i otežana srednja aktivnost za uzorak u prvoj iteraciji. U tabeli 8 se može uočiti neslaganje ovih vrednosti, kao i da njihove razlike ne ulaze u okvire predviđene greškom. Otežana srednja aktivnost ^{235}U iznosi $A'_{u5} = 2.48 \cdot 10^3$ Bq, dok aktivnost koja je određena pomoću jednačine 4.13 iznosi $A'_{u5u83} = 3.6 \cdot 10^3$ Bq. Ova velika razlika je posledica razlike u rezultatima koji su prikazani u tabeli 8. Prilikom određivanja mase ^{235}U u uzorku za aktivnost ^{235}U se uzima A'_{u5u83} jer je ona određena uz pomoć pika na energiji 1001.03 keV. Kao što je već ranije rečeno na ovoj energiji su naželjeni efekti najmanje zastupljeni te je ovako dobijena aktivnost najpouzdanija.

Tabela 8: Aktivnosti ^{235}U izračunate preko karakterističnih energija i srednja aktivnost

Radionuklid	Energija[keV]	Aktivnost $[10^3 Bq]$	Srednja aktivnost $[10^3 Bq]$
	143.76	2.24	
^{235}U	163.33	2.50	2.48 ± 0.06
	185.72	2.77	

Masa ^{235}U u uzorku 1 se računa pomoću jednačine 4.46

$$m'_{u5} = \frac{A'_{u5u83} \cdot A_m(^{235}U)}{\lambda_5 \cdot N_A} = 0.045 \ g \tag{4.46}$$

gde je λ_5 konstanta radiaktivnog raspada ²³⁵U, a $A_m(^{235}U) = 235.044u$ je atomska masa ²³⁵U i N_A je Avogadrov broj. Udeo mase ²³⁵U je manji od 1%, te se u poređenju sa masom ²³⁸U može zanemariti. Masa žutog kolača U_3O_8 u uzorku u prvoj iteraciji se račačuna na sldeći način:

$$m_{U_3O_8} = \frac{m'_{u_8} \cdot (3 \cdot A_m(^{238}U) + 8 \cdot A_m(^{16}O))}{3 \cdot A_m(^{238}U)} = 7.35g$$
(4.47)

4.1.5 Druga iteracija u postupku određivanja sastava uzorka i njegove aktivnosti

Pošto je u prvoj iteaciji odrediđena aktivnosti uranijuma ^{235}U i ^{238}U pomoću pikova različitih energijama i uočena su velika odstupanja, zaključeno je da početna pretpostavka o sastavu uzorka nije dobra. To je i očekivano jer je pretpostavljeno da se uzorak sastoji iz samo zemlje i vazduha. Uočeno je da to nije slučaj, tj u uzorku postoji i određena količina uranijama u obliku žutog kolača mase 7.35g. Maseni udeo žutog kolača u uzorku se računa na sledeći način:

$$\frac{m_{U_3O_8}}{m} = 0.356\tag{4.48}$$

gde je $m_{U_3O_8}$ masa žutog kolača, a m masa uzorka. Dobija se da se uzorak sastoji iz žutog kolača koji predstavlja 35.6% mase uzorka i zemlje koja predstavlja 64.4% mase uzorka. Ovim je definisan sastav uzorka u drugoj iteraciji i potrebno je definisati nov uzorak u bazi podataka softvera *Labsocs* kao što je opisano u poglavlju 3.2, imajući u vidu da se uzorak sastoji iz dve komponente, žutog kolača i zemlje u gore navedenim masenim udelima. Nakon što je definisan uzorak 1 u drugoj iteraciji potrebno ponovo izvršiti kalibraciju efikasnosti. Procedura je identična sa procedurom koja je opisana u poglavlju 3.2, stim da prilikom definisanja eksperimentalne postavke potrebno izvšiti jednu malu promenu. Geometrijska postavka se definiše kao što je prikazano na slici 20, ali je u polju koje se odnosi na materijal uzorka potrebno odabrati uzorak koji je definisan na početku druge iteracije. Nakon toga potrebno je izvršiti validaciju geometrije i pokrenuti softver. Softver će opet napraviti *ecc* fajl u kojem se nalaze efikasnosti detektora na različitim energijama karakterističnim za prirodne radioaktivne nizove ²³⁵U i ²³⁸U, kao i njihove merne nesigurnosti (tabela 9).

Energija [keV]	ε''	$\Delta \varepsilon'' [\%]$
63.29	$1.13 \cdot 10^{-2}$	10.0
92.59	$1.79 \cdot 10^{-2}$	10.0
143.76	$1.43\cdot 10^{-2}$	9.0
163.33	$1.50\cdot10^{-2}$	9.0
185.71	$1.52\cdot 10^{-2}$	9.0
1001.03	$5.23\cdot10^{-3}$	4.0

Tabela 9: efikasnosti i njihove relativne merne nesigurnosti na karakterističnim energijama ^{235}U i ^{238}U za uzorak 1 u drugoj iteraciji

Relativne merne nesigurnosti na svim energijama su iste kao i u prvoj iteraciji te se opet mogu aproksimirati polinomom iz izraza 3.6.

Korekcioni faktori se određuju na identičan način kao što je opisano u poglavlju 4.1.2. Pošto se ovde radi o drugoj iteraciji istog postupka sve veličine vezane za geometrijsku postavku su iste kao one koje su date u prvoj iteraciji, Uzorak se ponovo deli na šest zona jednakih zapremina kao što je pirkazano na slici 16. Dimenzije ovih zona, njihova efektivna i aksijalna rastorajanja od detektora su identična onim iz prve iteracije (videti tabelu 5). Ponovo se određuju efikasnosti detktora za svih šest zona uzorka pomoću softvera *LabSocs*. Parametre koji opisuju geometrijsku postavku eksperimenta su uneti kao što je prikazano na slici 21, pri čemu se vrši odabir uzorka koji je definisan na početku druge iteracije umesto definicije uzorka 1 koja je korišćena u prvoj iteraciji. Takođe prilikom kalibracije efikasnosti za delove uzorka, koji su numerisani sa 3, 4, 34 i 56, za materijal od kojeg je sačinjen absorber 1 potrebno je voditi računa da se odabere uzorak 1 definisan u drugoj iteraciji. Nakon izvršene kalibracije efikasnosti softver nam daje ecc fajlove u kojima se nalaze efikasnosti detektora na različitim energijama za različite zone uzorka. Efikasnosti zona numerisanih sa 2,4 i 6 dobijaju se pomoću jednačine 3.16. Efikasnosti na energiji 92.59, za zone numerisane od 1 do 6, u drugoj iteraciji su date u tabeli 10

Tabela 10: Efikasnosti zona u drugoj iteraciji za uzorak 1 na energiji 92.59 keV

ε_i''
0.0264
0.0250
0.0173
0.0164
0.0114
0.0108

Ukupan korekcioni faktor za uzorak u drugoj iteraciji računa se preko jednačine 4.49

$$F_{u82}'' = \frac{\sum_{i=1}^{6} \varepsilon_i''}{\sum_{i=1}^{6} \frac{\varepsilon_i''}{f_{u82}(z_i)}} = 1.297$$
(4.49)

gde je F''_{u82} korekcioni faktor ka koincidentno sumiranje u drugoj iteraciji, a sa ε''_i su označene efikasnosti detektora u drogoj iteraciji na energiji 92.59 keV za svih šest zona. Ove vrednosti su date u tabeli 10.

$$F_{u82}'' = f_{u82}(z_{eff}'') \tag{4.50}$$

$$F_{u82}'' = 1.35473 - z_{eff}'' \cdot (0.00467 + z_{eff}'' \cdot 4.14789 \cdot 10^{-4})$$
(4.51)

U drugoj iteraciji rešavanjem jednačine 4.50 dobija se da efektivno rastojanje uzorka od detektora za energiju 92.59 keV iznosi $z''_{eff} = 7.452$ cm . Na osnovu iskustva iz prve iteracije ovaj postupak se može pojednostaviti tako što se uzme da je efektivno rastojanje $z''_{eff} = 7.452$ univerzalno za uzorak u drugoj iteraciji. Korekcioni faktori za preostale energije su:

$$F_{u81}'' = f_{u81}(7.452) = 1.177 \tag{4.52}$$

$$F_{u83}'' = f_{u83}(7.452) = 1.047 \tag{4.53}$$

U poređenju korekcionih faktora iz prve i iz druge iteracije može se uočuti da između njih postoje minimalne razlike reda veličine 10^{-3} , te se može zaključiti da ih nije potrebno odrediti i u drugoj iteraciji. Ovim se postupak dodatno uprošćava.

Korekcioni faktori koji uračunavaju i efekte interferencije sa X zračenjem na energijama 63.29 keV i 92.59keV su dati u jednočinama 4.54 i 4.55

$$F_{fu81}'' = \frac{F_{u81}''}{K_f} = 0.928 \tag{4.54}$$

$$F_{fu82}'' = \frac{F_{u82}''}{K_f} = 1.024 \tag{4.55}$$

4.1.6 Određivanje aktivnosti ²³⁸U u drugoj iteraciji

Postupak određivanja aktivnosti u drugoj iteraciji je identičan onom iz prve iteracije. Korišćene su iste oznake kao i u prvoj iteraciji, stim da će uz neke veličine stajati dva apostrofa koji označavaju da se ta veličina promenila u odnosu na prvu iteraciju. Veličine koje nemaju apostrofe imaju iste vrednosti kao i tokom prve iteracije.

Određivanje aktivnosti pomoću pika energije 1001.03 keV

Aktivnost na energiji 1001.03 keV se dobija preko izraza 4.56:

$$A_{u83}'' = \frac{N_{u83}}{t_m \varepsilon_{u83}'' p_{u83} F_{u83}''} \tag{4.56}$$

Aktivnost ^{235}U u drugoj iteraciji se može odrediti pomoću izraza 3.28 pri čemu se za aktivnost ^{238}U uzima aktivnost A''_{u83} koja se dobije preko pika energije 1001.03 keV.

$$A_{u5u83}'' = \frac{0.007204\lambda_5}{0.992742\lambda_8} A_{u83}'' \tag{4.57}$$

gde su λ_5 i λ_8 redom konstante radiaktivnog raspada za ^{235}U i ^{238}U .

Neodređenost merenja aktivnosti preko pika na 1001.03 keV u drugoj iteraciji je data sa izrazom 4.58. Ovaj izraz je malo drugačiji od izraza za mernu nesigurnost 4.14 iz prve iteracije. U drugoj iteraciji uračunata je i merna nesigurnost usled geometrijske postavke eksperimenta i sastava uzorka (ug_{u83}) .

$$u(A_{u83}'') = \frac{A_{u83}''}{100} \sqrt{\left(100\frac{u(N_{u83})}{N_{u83}}\right)^2 + un_{u83}^2 + ug_{u83}^2}$$
(4.58)

Detaljan opis proračuna za ug_{u83} je dat u prilogu A.

Određivanje aktivnosti pomoću pika energije 92.59 keV

Aktivnost ^{238}U preko pika energije 92.59 keV se dobija iz izraza 4.59:

$$A_{u82}^{\prime\prime} = \frac{N_{u82} - N_{u82u5}^{\prime\prime}}{t_m \varepsilon_{u82}^{\prime\prime} p_{u82} F_{fu82}^{\prime\prime}}$$
(4.59)

pri čemu je korekcioni faktor za flourescentni efekat $K_f = 1.125$. Kao što je već rečeno u prvoj iteraciji doprinos odbroju vrha pune energije na energiji 92.59 keV daju prirodno radioaktivni nizovi ^{238}U i ^{235}U . Doprinos ^{235}U ovom piku je označen sa N''_{u82u5} , a doprinos ^{238}U je razlika ukupnog odbroja u spektru i doprinosa ^{235}U : $N_{u82} - N''_{u82u5}$. Doprinos radiaktivnog niza ^{235}U piku energije 92.59 keV je dat izrazom:

$$N_{u82u5}'' = A_{u5u83}'' t_m \varepsilon_{u82}'' \cdot (0.0035 + 0.00047)$$
(4.60)

Neodređenost merenja aktivnosti preko pika na 92.59 keV u drugoj iteraciji je data sa izrazom 4.61:

$$u(A_{u82}'') = \frac{A_{u82}''}{100} \sqrt{\left(100\frac{u(N_{u82})}{N_{u82}}\right)^2 + un_{u82}^2 + ug_{u82}^2}$$
(4.61)

Račun kojim je dobijena merna nesigurnost ug_{u82} je dat u prilogu A

Određivanje aktivnosti pomoću pika energije 63.29 keV

Aktivnost ^{238}U preko pika energije 63.29 keV se dobija iz izraza 4.62:

$$A_{u81}'' = \frac{N_{u81} - N_{u81u5}''}{t_m \varepsilon_{u81}'' p_{u81} F_{fu81}''}$$
(4.62)

pri čemu je korekcioni faktor za flourescentni efekat $K_f = 1.125$. Doprinos ${}^{235}U$ odbroju pika na energiji 63.29 keV je označen sa N''_{u81u5} i on potiče od raspada jezgra ${}^{231}Th$.

$$N_{u81u5}'' = A_{u5u83}'' t_m \varepsilon_{u81}'' \cdot 0.00023 \tag{4.63}$$

Neodređenost merenja aktivnosti preko pika na 92.59 keV je data sa izrazom 4.64

$$u(A_{u81}'') = \frac{A_{u81}''}{100} \sqrt{\left(100\frac{u(N_{u81})}{N_{u81}}\right)^2 + un_{u81}^2 + ug_{u81}^2}$$
(4.64)

Račun kojim je dobijena merna nesigurnost ug_{u81} je data u prilogu A

4.1.7 Određivanje otežane srednje aktivnosti ^{238}U i njegove mase u uzorku

Otežana srednja aktivnost ^{238}U u drugoj iteraciji se računa preko jednačine 4.65:

$$A_{u8}^{\prime\prime} = \frac{\frac{A_{u81}^{\prime\prime}}{u(A_{u81}^{\prime\prime})^2} + \frac{A_{u82}^{\prime\prime}}{u(A_{u82}^{\prime\prime})^2} + \frac{A_{u83}^{\prime\prime}}{u(A_{u83}^{\prime\prime})^2}}{\frac{1}{u(A_{u81}^{\prime\prime})^2} + \frac{1}{u(A_{u82}^{\prime\prime})^2} + \frac{1}{u(A_{u83}^{\prime\prime\prime})^2}}$$
(4.65)

Merna nesigurnost aktivnosti ^{238}U u drugoj iteraciji je izračunata u jednačini 4.66

$$u(A_{u8}'') = \sqrt{\frac{1}{\frac{1}{u(A_{u81}'')^2} + \frac{1}{u(A_{u82}'')^2} + \frac{1}{u(A_{u83}'')^2}}}$$
(4.66)

U tabeli 11 su date aktivnosti koje su izračunate za karakteristične energije radioaktivnog niza ^{238}U kao i otežana srednja aktivnost ^{238}U za uzorak u drugoj iteraciji. Može se videti da aktivnosti iz tabele 11 imaju bliske vrednosti, odnosno njihove razlike se nalaze u ospegu koji je predviđen sa mernom nesigurnosti. Pošto su se aktivnosti usaglasile nema potrebe za trećom iteracijom, te je zaključeno da aktivnost ^{238}U u uzorku 1 iznosi $7.44 \pm 0.16 \cdot 10^4$ Bq.

Tabela 11: Aktivnosti ²³⁸U izračunate preko karakterističnih energija i srednja aktivnost Radionuklid Energija [koV] Aktivnost [10⁴ Ra] Srednja aktivnost [10⁴ Ra]

Radionuklid	Energija [keV]	Aktivnost $[10^4 Bq]$	Srednja aktivnost $[10^4 Bq]$
	63.29	7.37	
^{238}U	92.59	7.56	7.44 ± 0.16
	1001.03	7.44	

Masa ^{238}U u uzorku 1 u drugoj iteraciji je određena preko jednačine 4.67 i ona iznosi 5.982 g.

$$m_{u8}'' = \frac{A_{u83}'' \cdot A_m(^{238}U)}{\lambda_8 \cdot N_A} = 5.982 \ g \tag{4.67}$$

4.1.8 Određivanje aktivnosti ^{235}U u drugoj iteraciji

Analogno odeljku 4.1.4 uvode se identične oznake koje se razlikuju samo po tome što neke oznake imaju dva apostrofa umesto jednog. Time je označeno da te veličine nose vrednosti iz druge iteracije.

Određivanje aktivnosti pomoću pika energije 143.76 keV

Aktivnost ²³⁵U preko pika energije 143.76 keV se dobija iz izraza 4.68. Doprinos odbroju vrha pune energije na energiji 143.76 keV daju prirodno radioaktivni nizovi ²³⁸U i ²³⁵U. Doprinos ²³⁸U ovom piku je označen sa N''_{u51u8} i on se računa pomoću izraza 4.69. Doprinos ²³⁵U je razlika ukupnog odbroja u spektru i doprinosa ²³⁸U: $N_{u51} - N''_{u51u8}$.

$$A_{u51}'' = \frac{N_{u51} - N_{u51u8}''}{t_m \varepsilon_{u51}'' p_{u51}}$$
(4.68)

$$N_{u51u8}'' = A_{u8}'' t_m \varepsilon_{u51}''(0.0016 \cdot 0.0033) \tag{4.69}$$

Neodređenost merenja aktivnosti preko pika na 143.76 keV je data sa izrazom 4.70

$$u(A_{u51}'') = \frac{A_{u51}''}{100} \sqrt{\left(100\frac{u(N_{u51})}{N_{u51}}\right)^2 + un_{u51}^2 + ug_{u51}^2} + ug_{u51}^2$$
(4.70)

Račun kojim je dobijena merna nesigurnost ug_{u51} je data u prilogu A.

Određivanje aktivnosti pomoću pika energije 163.33 keV

Aktivnost ²³⁵U preko pika energije 163.33 keV se dobija iz izraza 4.71. Doprinos odbroju vrha pune energije na energiji 163.33 keV daju prirodno radioaktivni nizovi ²³⁸U i ²³⁵U. Doprinos ²³⁸U ovom piku je označen sa N''_{u52u8} i on se računa pomoću izraza 4.72. Doprinos ²³⁵U je razlika ukupnog odbroja u spektru i doprinosa ²³⁸U: $N_{u52} - N''_{u52u8}$.

$$A_{u52}'' = \frac{N_{u52} - N_{u52u8}''}{t_m \varepsilon_{u52}'' p_{u52}}$$
(4.71)

$$N_{u52u8}'' = A_{u8}'' t_m \varepsilon_{u52}'' (0.0016 \cdot 0.00054)$$
(4.72)

Neodređenost merenja aktivnosti preko pika na 163.33 keV je data sa izrazom 4.73:

$$u(A_{u52}'') = \frac{A_{u52}''}{100} \sqrt{\left(100\frac{u(N_{u52})}{N_{u52}}\right)^2 + un_{u52}^2 + ug_{u52}^2}$$
(4.73)

gde je ug_{u52} izračunato u prilogu A.

Određivanje aktivnosti pomoću pika energije 185.72 keV

Aktivnost ²³⁵U preko pika energije 185.72 keV se dobija iz izraza 4.74. Doprinos odbroju vrha pune energije na energiji 185.72 keV daju prirodno radioaktivni nizovi ²³⁸U i ²³⁵U. Doprinos ²³⁸U ovom piku je označen sa N''_{u53u8} i on je izračunat u izrazu 4.75. Doprinos ²³⁵U je razlika ukupnog odbroja u spektru i doprinosa ²³⁸U: $N_{u53} - N''_{u53u8}$.

$$A_{u53}'' = \frac{N_{u53} - N_{u5304}''}{t_m \varepsilon_{u53}'' p_{u53}}$$
(4.74)

$$N_{u53u8}'' = A_{u8}'' t_m \varepsilon_{u53}''(0.0016 \cdot 0.0185) \tag{4.75}$$

Neodređenost merenja aktivnosti preko pika na 185.72 keV je data sa izrazom 4.76

$$u(A_{u53}'') = \frac{A_{u53}''}{100} \sqrt{\left(100\frac{u(N_{u53})}{N_{u53}}\right)^2 + un_{u53}^2 + ug_{u53}^2}$$
(4.76)

gde je ug_{u81} dato u prilogu A

Određivanje otežane srednje aktivnosti ^{235}U i njegove mase u uzorku

Otežana srednja aktivnost ^{235}U u prvoj iteraciji se računa preko jednačine 4.77:

$$A_{u5}'' = \frac{\frac{A_{u51}''}{u(A_{u51}'')^2} + \frac{A_{u52}''}{u(A_{u52}'')^2} + \frac{A_{u53}''}{u(A_{u53}'')^2}}{\frac{1}{u(A_{u51}'')^2} + \frac{1}{u(A_{u52}'')^2} + \frac{1}{u(A_{u53}'')^2}}$$
(4.77)

Merna nesigurnost aktivnosti ^{235}U je izračunata u jednačini 4.78

$$u(A_{u5}'') = \sqrt{\frac{1}{\frac{1}{u(A_{u51}'')^2} + \frac{1}{u(A_{u52}'')^2} + \frac{1}{u(A_{u53}'')^2}}}$$
(4.78)

U tabeli 12 su date aktivnosti izračunate za karakteristične energije ^{235}U kao i otežana srednja aktivnost za uzorak u drugoj iteraciji. Može se videti da su se aktivnosti koje su dobijene preko različitih pikova ujednačile i da njihove razlike ne prevazilaze opseg merne nesigurnosti. Iz navedenih rezultata zaključeno je da ne postoji potreba za trećom iteracijom Aktivnost ^{235}U koja je određena preko otežane srednje aktivnosti iznosi $3.43 \cdot 10^3$ Bq.

		-	
Radionuklid	Energija[keV]	Aktivnost $[10^3 Bq]$	Srednja aktivnost $[10^3 Bq]$
	143.76	3.40	
^{235}U	163.33	3.40	3.43 ± 0.10
	185.72	3.47	

Tabela 12: Aktivnosti $^{235}\!U$ izračunate preko karakterističnih energija i srednja aktivnost

Masa ^{235}U u uzorku je izračunata u jednačini 4.79

$$m_{u5}'' = \frac{A_{u5}'' \cdot A_m(^{235}U)}{\lambda_5 \cdot N_A} = 0.043 \ g \tag{4.79}$$

Stepen obogaćenja uranijuma predstavlja maseni ude
o ^{235}U u masi uranijuma u uzorku i on se računa kao:

$$\frac{m_{u5}''}{m_{u5}'' + m_{u8}''} \cdot 100\% = 0.713\% \tag{4.80}$$

4.2 Uzorak 2

Gustina i prečnik uzorka 2 su određeni jednačinama 3.4 i 3.5 iz postupka koji je opisan u paragrafu 3.1. Gustina crne zemlje iznosi $\rho = 2.25 \frac{g}{cm^3}$, a prečnik uzorka je d = 4.6454 cm. Tokom iterativnog postupka određivanja sastava uzorka i njegove aktivnosti gustina uzorka mora biti konstantna, a maseni udeli supstanci koje sačinjavaju uzorak će se menjati iz iteracije u iteraciju. Na osnovu gustine uzorka je zaključeno da se uranijum u uzorku nalazi u obliku žutog kolača U_3O_8 . Kao što je već pomenuto žuti kolač se proizvodi industrijski i u njemu su prisutna samo prva četiri radionuklida iz prirodnog radioaktivnog niza ²³⁸U. Međutim, za razliku od uzorka 1 u spektru su prisutne linije koje potiču od ostalih radionuklida iz prirodnog niza ²³⁸U, kao i linije koje nastaju usled raspada radionuklida iz prirodnog niza ²³²Th. To znači da se u uzorku pored žutog kolača nalazi i zemlja koja sadrži radionuklide u prirodnom obliku. U prvoj iteraciji pretpostaljeno je da se u uzorku nalazi samo žuti kolač, a tek u drugoj iteraciji su uzeti u obzir doprinosi prirodnih radionuklida. Dakle početna pretpostavka je da sastav uzorka 2 čine U_3O_8 i vlažna zemlja.

$$x\rho_{U_3O_8} + (1-x)\rho_{zemlje} = \rho_{uzorka} \tag{4.81}$$

gde su $\rho_{U_3O_8} = 8.3 \frac{g}{cm^3}, \rho_{zemlje} = 1.4 \frac{g}{cm^3}, \rho = 2.25 \frac{g}{cm^3}$ teorijske gustine U_3O_8 , obične vlažne zemlje i uzorka, a x predstavlja zapreminski udeo žutog kolača u uzorku. Rešavanjem jednačine dobija se x = 0.1233, što znači da U_3O_8 ispunjava 12.33% zapremine uzorka, a vlažna zemlja 87.66% zapremine uzorka. Pošto su gustine i zapremine poznate, korišćenjem jednačine 3.4 mogu se izračunati mase konstituenata uzorka ($m_{U_3O_8} = 22.548 \ g, m_{zemlje} = 27.043 \ g$). Pošto je zemlja vlažna može se pretpostaviti da se sastoji iz 70% suve zemlje i 30% vode. To znači da se u uzorku nalazi 18.930 g suve zemlje i 8.113 g vode. Deljenjem masa U_3O_8 , suve zemlje i vode sa masom uzorka dobijaju se njihovi maseni udeli koji redom iznose $\mu_{U_3O_8} = 45.47\%$, $\mu_{zemlja} = 38.17\%$ i $\mu_{voda} = 16.36\%$.

4.2.1 Kalibracija efikasnosti pomoću softvera LabSOCS

Kalibraciju efikasnosti za uzorak 2 se dobija pomoću softvera *LabSOCS* na identičan način kao što je opisano u poglavlju 3.2 uz sitne izmene. Potrebno je definisati uzorak 2 u bazi podataka. Uzorak se sastoji iz $45.47\% U_3O_8$, 38.17% zemlje i 16.36% vode. Nakon što je definisan uzorak, potrebno je odabrati odgovarajući šablon koji opisuje geometrijsku postavku eksperimenta koja je je prikazana na slici 22.

Ostatak procedure je već opisan u polgavlju 3.2. Nakon izvršene kalibracije softver će napraviti *ecc* fajl u kome se nalaze efikasnosti na različitim energijama. U tabeli 13. su date efikasnosti samo za karakteristične energije prirodnih radioaktivnih nizova ^{235}U i ^{238}U .

	=	
Energija [keV]	ε'	$\Delta \varepsilon [\%]$
63.29	$4.43 \cdot 10^{-3}$	10.0
92.59	$9.86 \cdot 10^{-3}$	10.0
143.76	$7.08\cdot10^{-3}$	9.0
163.33	$8.38\cdot 10^{-3}$	9.0
185.71	$9.49\cdot 10^{-3}$	9.0
1001.03	$5.02\cdot10^{-3}$	4.0

Tabela 13: efikasnosti i njihove relativne merne nesigurnosti na karakterističnim energijama za prirodne radioaktivne nizove ^{235}U i ^{238}U ; uzorak 2 u prvoj iteraciji

Polinom 3.6 kojim su fitovane relativne merne nesigurnosti za uzorak 1, isti je i za uzorak 2 pošto su iste i relativne merne nesigurnosti za efikasnost detektora.

Slika 22. Definisanje geometrijske postavke eksperimenta u softveru LabSOCS; uzorak 2 u prvoj iteraciji

4.2.2 Korekcioni faktori

Procedura za određivanje korekcionih faktora je opisana u poglavlju 3.4. Uzorak 2 je potrebno podeliti na šest zona jednake zapremine (slika 16.) i potrebno je korekcione faktore odrediti pomoću jednačine 3.12. Pošto su zone jednake zapremine, zapremine v_i koje odgovaraju pomenutim zonama i koje figuriču u jednačini 3.12 će se pokratiti. Efektivna rastojanja pojedinih zona se računaju preko izraza 3.10 iz odeljka 3.3.1. Prilikom računanja efektivnog rastojanja potrebno je obratiti pažnju na granice integracije koje zavise od dimenzija uzorka i detektora. Efektivna rastojanja pojedinih zona uzorka od detektora, kao i njihove granice integracije su date u tabeli 14. Aksijalno rastojanje zona od detektora zavisi od njihovih efektivnih rastojanja od detektora. Ova zavisnost je prikaza izrazom 3.24, postupak kojim je određena ova zavisnost je dat u prilogu 3.3.2.

zona	$r_1 [\mathrm{cm}]$	$r_2 [\mathrm{cm}]$	$z_1 [\mathrm{cm}]$	$z_2[cm]$	$R_0 [\mathrm{cm}]$	d [cm]
1	0	1.646	6.6	7.033	3.2	7.269
2	1.646	2.327	6.6	7.033	3.2	7.445
3	0	1.646	7.033	7.466	3.2	7.677
4	1.646	2.327	7.033	7.466	3.2	7.845
5	0	1.646	7.466	7.9	3.2	8.088
6	1.646	2.327	7.466	7.9	3.2	8.248

Tabela 14: efektivna rastojanja zona od detektora i granice integracije za uzorak 2

Descri	ption: Mezdrea blac	k earth 2.25	g/cm3 63.3	33% U308, 2	25.67	% earth, 11.02	K water)	0K	Descri	iption: Mezdrea blac	k earth 2.25	g/cm3 63.3	33% U308,	25.67	% earth, 11.0	% water)	OK
Comm	ent: Zone 1				_			Cancel	Comm	ent: Zone 12							Cancel
Units:	⊂mm ∙cm ⊂	m Cin	⊂ ft					Cancer	Units:	⊂mm ∙cm ⊂	m Cin	C ft					
No.	Description	d.1	d.2	Materi	al	Density	Rel.	Apply	No.	Description	d.1	d.2	Materi	al	Density	Rel.	Apply
1	Side Walls	0.065	3.2912	polyprop	-	0.91			1	Side Walls	0.065	4.6454	polyprop	•	0.91		
2	Bottom Wall	0		(none)	•	0		Help	2	Bottom Wall	0		(none)	•	0		Help
3	Sample	0.43333		mezd1	-	2.25	1.00		3	Sample	0.43333		mezd1	•	2.25	1.00	
4	Absorber 1	0.33		polyprop	•	0.91		View Drawing	4	Absorber 1	0.33		mezd1	•	2.25		View Drawing
5	Absorber 2	0		(none)	•	0			5	Absorber 2	0		(none)	•	0		
6	Source - Detector	6.665	0		Ŧ				6	Source - Detector	6.665	0		Ŧ			
Descri	ption: Mezdrea blac	k earth 2.25	g/cm3 63.3	33% U308, 2	25.67	% earth, 11.0°	% water)	OK	Descri	iption: Mezdrea blac	k earth 2.25	g/cm3 63.3	33% U308, 2	25.67	% earth, 11.0%	% water)	OK
Comm	ent: Zone 3								Comm	ent: Zone 34							Creat
Uniter	C	m C in	C P					Cancel	Units:	C mm @ cm C	m Cin	Cft					Cancel
No.	Description	d.1	d.2	Materi	al	Density	Rel.	Apply	No.	Description	d.1	d.2	Materi	al	Density	Rel.	Apply
1	Side Walls	0.065	3.2912	nokoron	-	0.91			1	Side Walls	0.065	4.6454	polyprop	-	0.91		
2	Bottom Wall	0		(none)	-	0		Help	2	Bottom Wall	0		(none)	-	0		Help
3	Sample	0.43333	, 	mezd1	-	2.25	1.00		3	Sample	0.43333		mezd1	•	2.25	1.00	
4	Absorber 1	0.43333	, 	mezd1	-	2.25		View Drawing	4	Absorber 1	0.43333		mezd1	•	2.25		View Drawing
5	Absorber 2	0.33		polyprop	•	0.91			5	Absorber 2	0.33		polyprop	•	0.91		
6	Source - Detector	7.0983	0		~				6	Source - Detector	7.0983	0		Ŧ			
Descri	tion: Mezdrea blac	k earth 2.25	n/cm3 63 3	3% 11308-2	5.67	% earth 11.0%	water	or 1	Descri	intion: Mazdraa blac	k earth 2.25	a/cm3.63.1	33% 11308	25.67	% earth 11 0	% wateri	
0			y					UK	Desci		K 60012.20	grano oo	55% 0 500, 1	20.07			OK
Comme	inc jzone s		C 4					Cancel	Lomm	ent: ∠one 56	-						Cancel
Units:	C mm (• cm (C	m Cin	<u> </u>					Apply	Units:	Cmm €cm C	m Cin	C ft					Applu
No.	Description	d.1	d.2	Materia	al	Density	Rel.		No.	Description	d.1	d.2	Materi	al	Density	Rel.	
1	Side Walls	0.065	3.2912	polyprop	-	0.91		Hala	1	Side Walls	0.065	4.6454	polyprop	•	0.91		
2	Bottom Wall	0		(none)	-	0		Неір	2	Bottom Wall	0		(none)	•	0		Help
3	Sample	0.43333		mezd1	-	2.25	1.00		3	Sample	0.43333		mezd1	•	2.25	1.00	
4	Absorber 1	0.86666		mezd1	-	2.25		View Drawing	4	Absorber 1	0.86666		mezd1	•	2.25		View Drawing
5	Absorber 2	0.33		polyprop	-	0.91			5	Absorber 2	0.33		polyprop	•	0.91		
6	Source - Detector	7.5317	0		Ÿ				6	Source - Detector	7.5317	0		Ŧ			

Slika 23. Geometrijska postavka za različite zone uzorka 2 u softveru LabSOCS

Da bi se odredila efikasnost detektora za svaku zonu na različitim energijama potrebno je svaku zonu definisati u softveru *LabSOCS* kao što je prikazano na slici 23. Treba voditi računa da se u softveru odabere prethodno definisan uzorak 2 i da se tačno unesu njegove dimenzije i gustina. Parametri koji se odnose na posudu su isti kao i za uzorak 1 jer su se uzorci nalazili u identičnim posudama tokom merenja. Rastojanja pojedinih zona će se razlikovati iz razloga što se dimenzije uzoraka razlikuju. Na osnovu iskustva iz određivanja korekcionih faktora za uzorak 1 odličeno je da se korekcioni faktori za uzorak 2 odrede samo u prvoj iteraciji. Korekcioni faktori su pokazali jaku zavisnost od rastojanja između uzorka i detektora. Promena sastava u različitim iteracijama ima mnogo manji uticaj na korekcioni faktor u odnosu na rastojanje između detektora i uzorka. Dakle nakon što su sve zone precizno definisane, softver je napravio ecc fajlove u kojima su prikazene efikasnosti detektora na određenim energijama za zone koje su numerisane sa 1, 3, 5 na slici 16. kao i za delove uzorka koji obuhvataju po dve zone (1 i 2, 3 i 4, 5 i 6). Efikasnosti zona 2, 4 i 6 se dobijaju iz jednačine 3.16. Efikasnosti detektora na energiji 92.59 keV za zone koje su numerisane od 1 do 6 su date u tabeli 15.

zona	ε_i
1	0.018
2	0.0170
3	0.0049
4	0.0045
5	0.0013
6	0.0012

Tabela 15: Efikasnosti zona u uzorku 2 na energiji 92.59 keV

Pošto su zone aproksimirane kao tačkasti izvori zračenja, njihovi korekcioni faktori za koincidentno sumiranje na energiji 92.59 keV se mogu izračunati preko izraza 4.82, gde indeks i numeriše zone.

$$f_{u82}(z_i) = 1.35473 - z_i \cdot (0.00467 + z_i \cdot 4.14789 \cdot 10^{-4}) \tag{4.82}$$

Ukupan korekcioni faktor za uzorak na energiji 92.59 keV je prikazan u jednačini 4.83:

$$F_{u82} = \frac{\sum_{i=1}^{6} \varepsilon_i}{\sum_{i=1}^{6} \frac{\varepsilon_i}{f_{u82}(z_i)}} = 1.2997$$
(4.83)

gde su $f_{u82}(z_i)$ korekcioni faktori zona na energiji 92.59 keV a ε_i efikasnosti iz tabele 15. Efektivno rastojanje uzorka od detektora se može izračunati rešavanjem sledeće jednačine :

$$F_{u82} = f_{u82}(z) \tag{4.84}$$

$$1.2997 = 1.35473 - z \cdot (0.00467 + z \cdot 4.14789 \cdot 10^{-4}) \tag{4.85}$$

Dobija se da efektivno rastojanje uzorka od detektora na energiji 92.59 keV iznosi $z_{eff} = 7.2$ cm. Ukoliko se ovaj postupak ponovi za preostale energije, dobiće se približno iste vrednosti za z_{eff} . Da bi se procedura pojednostavila uzima se da je efektivno $z_{eff} = 7.2$ cm univerzalno za uzorak 2. Korekcioni faktori za preostale energije se dobijaju iz izraza koji slede:

$$F_{u81} = f_{u81}(7.2) = 1.179 \tag{4.86}$$

$$F_{u83} = f_{u83}(7.2) = 1.049 \tag{4.87}$$

$$F_{u51} = f_{u51}(7.2) = 1 \tag{4.88}$$

$$F_{u52} = f_{u52}(7.2) = 1 \tag{4.89}$$

$$F_{u53} = f_{u53}(7.2) = 1 \tag{4.90}$$

Usled flourescentnih efekata na energijama 63.29 keV i 92.59 keV potrebno je korekcione faktore na tim energijama podeliti sa faktorom 1.125. pa korekcioni faktori na tim energijama iznose

$$F_{u81}^f = 1.048 \tag{4.91}$$

$$F_{u82}^f = 1.155 \tag{4.92}$$

4.2.3 Određivanje aktivnosti uzorka 2 u prvoj iteraciji

Postupak određivanja aktivnosti uranijuma u uzorku 2 veoma je sličan postupku koji određivanja aktivnosti prvog uzorka. Postupci su identični u prvoj iteraciji s obzirom na to da su u prvoj iteraciji kod uzorka 2 zanemareni pirodni radionuklidi čiji su pikovi detektovani u uzorku. Njihovi uticaji su detaljnije opisani u drugoj iteraciji i u prilogu. Oznake koje se ovde koriste su identične onim koje su korišćene u prvoj iteraciji uzorka 1. Iz tog razloga treba napomenuti da se one u ovom poglavlju odnose isključivo na uzorak 2. Oznake koje imaju apostrof će promeniti svoje vrednosti u drugoj iteraciji. Za razliku od korekcionog faktora prvog uzorka, korekcioni faktor za drugi uzorak se neće menjati iz iteracije u iteraciju te neće biti obležen sa apostrofima.

4.2.4 Određivanje aktivnosti ²³⁸U u prvoj iteraciji

Određivanje aktivnosti pomoću pika energije 1001.03 keV

Prvo se određuje aktivnost preko pika na energiji 1001.03 keV, iako ovaj pik ima mali prinos $p_{u83} = 0.00842$. Za razliku od drugih pikova karakterističnih za ^{238}U na ovoj energiji fluorescentni efekti ne postoje, a efekti inteferencije su zanemareni. Smatra se da je aktivnost ^{238}U koja se dobija preko ovog pika, pomoću izraza 4.93, najpouzdanija.

$$A'_{u83} = \frac{N_{u83}}{\varepsilon'_{u83} t_m p_{u83} F_{u83}} \tag{4.93}$$

 N_{u83} je odbroj iz tabele 1, ε'_{u83} je efikasnost iz tabele 13, a F_{u83} je dato u izrazu 4.87. Aktivnost ²³⁵U se može odrediti preko izraza 4.94.

$$A'_{u5u83} = \frac{0.007204\lambda_5}{0.992742\lambda_8} A'_{u83} \tag{4.94}$$

gde su λ_5 i λ_8 redom konstante radiaktivnog raspada za ^{235}U i ^{238}U . Neodređenost merenja aktivnosti preko pika na 1001.03 keV je data sa izrazom 4.95

$$u(A'_{u83}) = \frac{A'_{u83}}{100} \sqrt{\left(100\frac{u(N_{u83})}{N_{u83}}\right)^2 + un_{u83}^2}$$
(4.95)

gde je un_{u83} dato kao:

$$un_{u83} = \frac{2.5un(1001.03)}{un(661.657)} \tag{4.96}$$

Određivanje aktivnosti pomoću pika energije 92.59 keV

Aktivnost uzorka 2 preko energije na 92.59 keV u prvoj iteraciji se određuje na identičan način kao u poglavlju 4.1.3

$$A'_{u82} = \frac{N_{u82} - N'_{u82u5}}{t_m \varepsilon'_{u82} p_{u82} F^f_{u82}}$$
(4.97)

 N_{u82} je odbroj iz tabele 1, ε'_{u82} je efikasnost iz tabele 13 i F^f_{u82} je korekcioni faktor dat u izrazu 4.92, a doprinos ²³⁵U odbroju na energiji 92.59 keV N'_{u82u5} se računa kao:

$$N'_{u82u5} = A'_{u5u83} t_m \varepsilon'_{u82} \cdot (0.0035 + 0.00047) \tag{4.98}$$

Merna nesigurnost prilikom određivanja aktivnosti preko pika na 92.59 keV je data sa izrazom 4.99

$$u(A'_{u82}) = \frac{A'_{u82}}{100} \sqrt{\left(100\frac{u(N_{u82})}{N_{u82}}\right)^2 + un_{u82}^2}$$
(4.99)

gde je:

$$un_{u82} = \frac{2.5un(92.59)}{un(661.657)} \tag{4.100}$$

Određivanje aktivnosti pomoću pika energije 63.29 keV

Aktivnost uzorka 2 u prvoj iteraciji se određuje na identičan način kao u poglavlju 4.1.3, gde su prikazani različiti doprinosi piku na ovoj energiji koji potiču od raspada različitih radionuklida.

$$A'_{u81} = \frac{N_{u81} - N'_{u81u5}}{t_m \varepsilon'_{u81} p_{u81} F^f_{u81}}$$
(4.101)

 N_{u81} je odbroj iz tabele 1, ε'_{u81} je efikasnost iz tabele 13 i F^f_{u81} je određeno u jednačini 4.91. Doprinos ²³⁸U je u jednačini 4.101 označen sa N'_{u81u5} , a do njega se dolazi preko sledećeg izraza:

$$N'_{u81u5} = A'_{u5u83} t_m \varepsilon'_{u81} \cdot 0.00023 \tag{4.102}$$

Neodređenost merenja aktivnosti preko pika na 92.59 keV je data sa izrazom 4.103

$$u(A'_{u81}) = \frac{A'_{u81}}{100} \sqrt{\left(100\frac{u(N_{u81})}{N_{u81}}\right)^2 + un_{u81}^2}$$
(4.103)

gde je:

$$un_{u81} = \frac{2.5un(63.29)}{un(661.657)} \tag{4.104}$$

Određivanje otežane srednje aktivnosti $^{238}\!U$ i njegove mase u uzorku

Otežana srednja aktivnost ^{238}U se računa preko jednačine 4.105:

$$A'_{u8} = \frac{\frac{A'_{u81}}{u(A'_{u81})^2} + \frac{A'_{u82}}{u(A'_{u82})^2} + \frac{A'_{u83}}{u(A'_{u83})^2}}{\frac{1}{u(A'_{u81})^2} + \frac{1}{u(A'_{u82})^2} + \frac{1}{u(A'_{u83})^2}}$$
(4.105)

Merna nesigurnost aktivnosti ^{238}U je izračunata u jednačini 4.106

$$u(A'_{u8}) = \sqrt{\frac{1}{\frac{1}{u(A'_{u81})^2} + \frac{1}{u(A'_{u82})^2} + \frac{1}{u(A'_{u83})^2}}}$$
(4.106)

U tabeli 16. su date aktivnosti koje su izračunate za karakteristične energije radioaktivnog niza ^{238}U kao i otežana srednja aktivnost za uzorak u prvoj iteraciji. Mogu se videti razlike u dobijenim aktivnostima za pikove različitih energija, i one ne ulaze u opseg merne nesigurnosti. Iz toga se može zaključiti da početni sastav uzorka nije dovoljno dobro definisan te je potrebno izvršiti drugu iteraciju ovog postupka. Iz već navedenih razloga najpouzdaniji je rezultat koji je dobijen preko pika na energiji 1001.03 keV, te se novi sastav uzorka definiše tako što se uzima da je aktivnost ²³⁸U u uzorku jednaka sa A'_{u83} .

Tabela 16: Aktivnosti ^{238}U izračunate preko karakterističnih energija i srednja aktivnost

Radionuklid	Energija[keV]	Aktivnost $[10^5 Bq]$	Srednja aktivnost $[10^5 Bq]$
	63.29	2.44	
^{238}U	92.59	2.67	2.96 ± 0.05
	1001.03	3.29	

Masa ^{238}U u uzorku 2 se računa pomoću jednačine 4.107

$$m'_{u8} = \frac{A'_{u83} \cdot A_m(^{238}U)}{\lambda_8 \cdot N_A} = 26.47 \ g \tag{4.107}$$

gde je λ_8 konstanta radiaktivnog raspada ²³⁸U, a $A_m(^{238}U) = 238.03u$ je atomska masa ²³⁸U i $N_A = 6.022 \cdot 10^{23} mol$ je avogadrov broj. Atomska jedinica mase, $u = 1.660540 \cdot 10^{-27} kg$.

4.2.5 Određivanje aktivnosti ²³⁵U u prvoj iteraciji

Određivanje aktivnosti pomoću pika energije 143.76 keV

Aktivnost ^{235}U preko pika energije 143.76 keV se dobija iz izraza 4.108:

$$A'_{u51} = \frac{N_{u51} - N'_{u51u8}}{t_m \varepsilon'_{u51} p_{u51} F_{u51}}$$
(4.108)

 N_{u52} je odbroj iz tabele 1, ε'_{u52} je efikasnost iz tabele 13, a F_{u51} je dato u izrazu 4.88. Doprinos ²³⁸U piku na energiji 143.76 keV je dat jednačinom 4.109.

$$N'_{u51u8} = A'_{u8} t_m \varepsilon'_{u51} (0.0016 \cdot 0.0033) \tag{4.109}$$

Neodređenost merenja aktivnosti preko pika na 92.59 keV je data sa izrazom 4.110

$$u(A'_{u51}) = \frac{A'_{u51}}{100} \sqrt{\left(100\frac{u(N_{u51})}{N_{u51}}\right)^2 + un_{u51}^2}$$
(4.110)

gde je:

$$un_{u51} = \frac{2.5un(143.76)}{un(661.657)} \tag{4.111}$$

Određivanje aktivnosti pomoću pika energije 163.33 keV

Aktivnost ^{235}U koja je određena preko pika energije 163.33 keV se dobija iz izraza 4.112:

$$A'_{u52} = \frac{N_{u52} - N'_{u52u8}}{t_m \varepsilon'_{u52} p_{u52} F_{u52}}$$
(4.112)

gde se N_{u52} nalazi u tabeli 1, ε'_{u52} se nalazi u tabeli 13, a F_{u52} je dato u izrazu 4.89. Doprinos ²³⁸U piku na energiji 163.33 keV je dat jednačinom 4.113.

$$N'_{u52u8} = A'_{u8} t_m \varepsilon'_{u52} (0.0016 \cdot 0.00054) \tag{4.113}$$

Neodređenost merenja aktivnosti preko pika na 163.33 keV je data sa izrazom 4.114

$$u(A'_{u52}) = \frac{A'_{u52}}{100} \sqrt{\left(100\frac{u(N_{u52})}{N_{u52}}\right)^2 + un_{u52}^2}$$
(4.114)

gde je:

$$un_{u52} = \frac{2.5un(163.33)}{un(661.657)} \tag{4.115}$$

Određivanje aktivnosti pomoću pika energije 185.72 keV

Aktivnost ^{235}U preko pika energije 185.72 keV se dobija iz izraza 4.116:

$$A'_{u53} = \frac{N_{u53} - N'_{u53u8}}{t_m \varepsilon'_{u53} p_{u53} F_{u53}}$$
(4.116)

 N_{u53} je dato u tabeli 1, ε'_{u53} je dato u tabeli 13, a F_{u53} je dato u izrazu 4.90. Doprinos ²³⁸U piku na energiji 185.72 keV je dat jednačinom 4.117.

$$N'_{u53u8} = A'_{u8} t_m \varepsilon'_{u53} (0.0016 \cdot 0.0185) \tag{4.117}$$

Neodređenost merenja aktivnosti preko pika na 185.72 keV je data sa izrazom 4.118.

$$u(A'_{u53}) = \frac{A'_{u53}}{100} \sqrt{\left(100\frac{u(N_{u53})}{N_{u53}}\right)^2 + un_{u53}^2}$$
(4.118)

gde je:

$$un_{u53} = \frac{2.5un(185.72)}{un(661.657)} \tag{4.119}$$

Određivanje otežane srednje aktivnosti ^{235}U i njegove mase u uzorku

Otežana srednja aktivnost ^{235}U u prvoj iteraciji se računa preko jednačine 4.120:

$$A'_{u5} = \frac{\frac{A'_{u51}}{u(A'_{u51})^2} + \frac{A'_{u52}}{u(A'_{u52})^2} + \frac{A'_{u53}}{u(A'_{u53})^2}}{\frac{1}{u(A'_{u51})^2} + \frac{1}{u(A'_{u52})^2} + \frac{1}{u(A'_{u53})^2}}$$
(4.120)

Merna nesigurnost aktivnosti ^{235}U je izračunata u jednačini 4.121

$$u(A'_{u5}) = \sqrt{\frac{1}{\frac{1}{u(A'_{u51})^2} + \frac{1}{u(A'_{u52})^2} + \frac{1}{u(A'_{u53})^2}}}$$
(4.121)

U tabeli 17. su date aktivnosti izračunate za karakteristične energije radioaktivnog niza ^{235}U kao i otežana srednja aktivnost za uzorak u prvoj iteraciji. Može se videti da aktivnost koja je određena preko energije 185.72 keV odudara od aktivnosti koje su dobijene pomoću pikova energija 143.76 keV i 163.33 keV. Otežana srednja aktivnost iz tabele 17 iznosi $A'_{u5} = 1.30 \cdot 10^4$ Bq, a aktivnost koja je dobijena uz pomoć jednačine 4.94 iznosi $A'_{u5u83} = 1.52 \cdot 10^4$ Bq. Ova razlika je posledica nesaglasnosti u rezultatima iz tabele 17. Ovi rezultati ukazuju na to da je potrebno izvršiti drugu iteraciju. Prilikom odrećivanja mase uranijuma u uzorku za aktivnost ^{235}U se uzima A'_{u5u83} jer je ona određena uz pomoć pika na energiji 1001.03 keV. Kao što je već ranije rečeno na ovoj energiji su naželjeni efekti najmanje zastupljeni te je ovako dobijena aktivnost najpouzdanija.

Tabela 17: Aktivnosti ²³⁵U izračunate preko karakterističnih energija i srednja aktivnost Radionuklid Energija[keV] Aktivnost $[10^4Bq]$ Srednja aktivnost $[10^4Bq]$

Radionuklid	Energija[keV]	Aktivnost $[10^4 Bq]$	Srednja aktivnost $[10^4 Bq]$
	143.76	1.24	
^{235}U	163.33	1.21	1.30 ± 0.29
	185.72	1.48	

Masa ^{235}U u uzorku 1 se računa pomoću jednačine 4.122

$$m'_{u5} = \frac{A'_{u5u83} \cdot A_m(^{235}U)}{\lambda_5 \cdot N_A} = 0.19 \ g \tag{4.122}$$

gde je λ_5 konstanta radiaktivnog raspada ²³⁵U, a $A_m(^{235}U) = 235.044u$ je atomska masa ²³⁵U i N_A je Avogadrov broj. Udeo mase ²³⁵U je manji od 1%, te se u poređenju sa masom ²³⁸U može zanemariti. Masa žutog kolača U_3O_8 u uzorku u prvoj iteraciji se račačuna na sldeći način:

$$m'_{U_3O_8} = \frac{m'_{u8} \cdot (3 \cdot A_m(^{238}U) + 8 \cdot A_m(^{16}O))}{3 \cdot A_m(^{238}U)} = 31.21g$$
(4.123)

4.2.6 Druga iteracija u postupku određivanja sastava uzorka i njegove aktivnosti

U prvoj iteraciji je određena aktivnost ^{235}U i ^{238}U pomoću pikova različitih energija i softvera *LabSOCS*. Dobijene aktivnosti su se razlikovale i njihova međusobna odstupanja su prevazilazila okvire mernih nesigurnosti. Ovo je očekivan rezultat s obzirom da se radi o prvoj iteraciji postupka u kojoj je zanemaren uticaj prirodnih radionuklida. Pomoću najpouzdanijeg pika energije 1001.03 keV određena je masa žutog kolača koja iznosi 31.21 g i njegov maseni udeo u uzorku iznosi:

$$\frac{m'_{U_3O_8}}{m} = 0.63 \tag{4.124}$$

Sastav uzorka u drugoj iteraciji će iznositi 63.33% žutog kolača, 25.67% zemlje i 11% vode. Ovako definisan uzorak je potrebno uneti u bazu podataka u softveru *LabSOCS*. Nakon toga se ponovo vrši kalibracija efikasnosti kao u prvoj iteraciji stim što se koristi nova definicija uzorka. softver ponovo daje *ecc* fajl sa efikasnostima koje su prikazane u tabeli 18.

Tabela 18: efikasnosti i njihove relativne merne nesigurnosti na karakterističnim energijama za ^{235}U i ^{238}U ; uzorak 2 u drugoj iteraciji

Energija [keV]	ε''	$\Delta \varepsilon'' [\%]$
63.29	$3.30 \cdot 10^{-3}$	10.0
92.59	$7.87\cdot10^{-3}$	10.0
143.76	$5.46\cdot10^{-3}$	9.0
163.33	$6.67\cdot 10^{-3}$	9.0
185.71	$7.86 \cdot 10^{-3}$	9.0
1001.03	$5.01\cdot 10^{-3}$	4.0

4.2.7 Određivanje aktivnosti ²³⁸U u drugoj iteraciji

Postupak određivanja aktivnosti u drugoj iteraciji se razlikuje po tome što nisu zanemareni efekti interferencije koji potiču od zračenja koje se emitije raspadom radionuklida iz prirodnog radioaktivnog niza ²³⁸U i ²³²Th. Doprinos ²³²Th je zanemaren u prvoj iteraciji, ali se on u opštem slučaju ne sme zanemariti jer ukoliko se nalazi u većoj koncentraciji može imati značaj doprinos odbroju u spektru. U drugoj iteraciji će se koristiti korekcioni faktori koji su određeni u odeljku 4.2.2. Odbroji pikova na karakterističnim energijama N su dati u tabeli 1. i određeni su u softveru ANGENS za uzorak 2. Efikasnosti detektora na karakterističnim energijama ²³⁵U i ²³⁸U su odrećeni pomoću softvera LabSOCS i dati su u tabeli 18.

Određivanje aktivnosti pomoću pika energije 1001.03 keV

Prilikom raspada ^{234m}Pa , drugog potomka ^{238}U dolazi do emisije gama zračenja energije 1001.03 keV sa prinosom $p_{u83} = 0.00842$. Prilikom određivanja aktivnosti u drugoj iteraciji pomoću ovog pika uzet je u obzir i doprinos koji nastaje usled raspada ^{228}Ac . Prilikom raspada ^{228}Ac dolazi do emisije zračenja energije 1000.69 keV sa verovatnoćom 0.005% Ovaj doprinos je mali i u našem slučaju, kao i u većini drugih slučajeva se može zanemariti. Ovde to nije urađeno da bi se efekti interferencije što bolje i preciznije objasnili i da bi se ova metoda određivanja aktivnosti uranijuma generalizovala. Aktivnost koja je određena preko pika energije 1001.03 keV je data u izrazu 4.125.

$$A_{u83}'' = \frac{N_{u83} - N_{u83Th}}{t_m \varepsilon_{u83}'' p_{u83} F_{u83}}$$
(4.125)

gde je N_{u83Th} doprinos prirodnog radioaktivnog niza ^{232}Th piku na energiji 1001.03 keV koji nastaje usled raspada ^{228}Ac . Ovaj odbroj u spektru može se odrediti pomoću izraza

$$N_{u83Th} = A_{Th} t_m \varepsilon_{u83}'' \cdot 0.00005 \tag{4.126}$$

Na slici 24. su prikazani svi doprinosi piku energije 1001.03 keV. Neželjeni doprinos ^{228}Ac se odrećuje preko izraza 4.126 u kome je A_{Th} (aktivnost ^{232}Th) određena pomoću referentnih pikova ^{228}Ac . Postupak određivanja aktivnosti ^{232}Th je dat u prilogu B.

Slika 24. Određivanje doprinosa radioaktivnog niza ^{238}U piku energije 1001.03 keV

Neodređenost merenja aktivnosti preko pika na 1001.03 keV je data sa izrazom 4.127

$$u(A_{u83}'') = \frac{A_{u83}''}{100} \sqrt{\left(100\frac{u(N_{u83})}{N_{u83}}\right)^2 + un_{u83}^2 + ug_{u83}^2}$$
(4.127)

gde je ug_{u83} određeno u prilogu A. Aktivnost ²³⁵U se može odrediti preko aktivnosti ²³⁸U koju je određena pomoću pika na energiji 1001.03 keV u izrazu 4.128.

$$A_{u5u83}'' = \frac{0.007204\lambda_5}{0.992742\lambda_8} A_{u83}''$$
(4.128)

gde su λ_5 i λ_8 redom konstante radiaktivnog raspada za ^{235}U i ^{238}U .

Određivanje aktivnosti pomoću pika energije 92.59 keV

Doprinos odbroju vrha pune energije na energiji 92.59 keV daju prirodno radioaktivni nizovi ^{238}U , ^{235}U i ^{232}Th . Doprinos ^{235}U ovom piku je označen sa N''_{u82u5} , doprinos ^{232}Th je označen sa N_{u82Th} , a doprinos ^{238}U je razlika ukupnog odbroja u spektru i doprinosa ^{235}U i ^{232}Th : $N_{u82} - N''_{u82u5} - N_{u82Th}$.

Na slici 25. je grafički prikazan postupak određivanja doprinosa ^{238}U piku energije 92.59 keV. Doprinos radiaktivnog niza ^{235}U piku energije 92.59 keV nastaje raspadom ^{231}Th , pri čemu dolazi do emisije gama zračenja na energiji 93.02 keV sa verovatnoćom i 0.047%. Raspad torijuma je praćem i emisijom X zračenja energije 92.282 keV sa verovatnoćom 0.35%. Doprinos ^{231}Th piku energije 92.59 keV prikazan izrazom:

$$N_{u82u5}'' = A_{u5u83}'' t_m \varepsilon_{u82}'' \cdot (0.0035 + 0.00047)$$
(4.129)

Doprinos uranijuma ²³⁵U odbroju na energiji 92.59 keV je određen pomoću aktivnostu A''_{u5u83} koji je određen u izrazu 4.128. Prilikom određivanja te aktivnosti oduzet je doprinos iz raspada ²²⁸Ac, što se može i videti na slici 25. Doprinos ²³²Th je odrećen izrazom 4.130. On nastaje prilikom raspada ²²⁸Ac, pri čemu dolazi do emisije gama zračenja enerije 1000.69 keV sa verovatnoćom 3.1%. Aktivnost torijuma A_{th} je odrećena pomoću referentnih pikova ²²⁸Ac u prilogu B.

$$N_{u82Th} = A_{th} t_m \varepsilon_{u82}'' \cdot 0.031 \tag{4.130}$$

Aktivnost ^{238}U koja se dobija preko pika energije 92.59 keV u drugoj iteraciji je data izrazom 4.131:

$$A_{u82}'' = \frac{N_{u82} - N_{u82u5}'' - N_{u82Th}}{t_m \varepsilon_{u82}'' p_{u82} F_{u82}^f}$$
(4.131)

Neodređenost merenja aktivnosti koja je određena preko pika energije 92.59 keV je data izrazom 4.132

$$u(A_{u82}'') = \frac{A_{u82}''}{100} \sqrt{\left(100\frac{u(N_{u82})}{N_{u82}}\right)^2 + un_{u82}^2 + ug_{u82}^2}$$
(4.132)

gde je ug_{u82} određeno u prilogu A.

Određivanje aktivnosti pomoću pika energije 63.29 keV

Piku energije 63.29 keV doprinose raspadi radionuklida iz prirodnih radioaktivnih nizova ^{232}Th , ^{235}U i ^{238}U . Doprinos ^{235}U ovom piku je označen sa N''_{u81u5} , doprinos ^{232}Th je označen sa N''_{u81u5} , a doprinos ^{238}U je razlika ukupnog odbroja u spektru i doprinosa ^{235}U i ^{232}Th : $N_{u82} - N''_{u81u5} - N_{u81Th}$. Aktivnost ^{238}U preko pika energije 63.29 keV u drugoj iteraciji se određuje izrazom 4.133

$$A_{u81}'' = \frac{N_{u81} - N_{u81u5}'' - N_{u81Th}}{t_m \varepsilon_{u81}'' p_{u81} F_{u81}}$$
(4.133)

 N''_{u81u5} predstavlja doprinos prirodnog radiaktivnog niza ^{235}U piku na energiji 63.29 keV. Ovaj doprinos je određen u izrazu 4.134 uz pomoć referentnog pika na energiji 1001.03 keV. N_{u81Th} predstavlja doprinos prirodnog radiaktivnog niza ^{232}Th piku na energiji 63.29 keV i on je odrećen pomoću referentnih pikova ^{228}Ac u izrazu 4.135 i on nastaje prilikom radioaktivnog raspada ^{232}Th , usled kojeg dolazi do emisije gama zračenja energije 63.81 keV sa verovatnoćom 0.263%

$$N_{u81u5}'' = A_{u5u83}'' t_m \varepsilon_{u81}'' \cdot 0.00023 \tag{4.134}$$

$$N_{u81Th} = A_{th} t_m \varepsilon_{u81}'' \cdot 0.00263 \tag{4.135}$$

Na slici 26 su prikazani doprinosi piku energije 63.29 keV, takođe su prikazani i referentni pikovi iz kojih je određen i neželjeni doprinos radioaktivnog niza ^{235}U i ^{232}Th .Ovi doprinosi su oduzeti od izmerenog odbroja pika na energiji 63.29 keV.

Neodređenost merenja aktivnosti preko pika na 63.29 keV je data sa izrazom 4.136

$$u(A_{u81}'') = \frac{A_{u81}''}{100} \sqrt{\left(100\frac{u(N_{u81})}{N_{u81}}\right)^2 + un_{u81}^2 + ug_{u81}^2}$$
(4.136)

gde je ug_{u81} određeno u prilogu A.

N [63.29 keV ²³⁴Th + ²³⁴Pa + ^{234m}Pa]

Određivanje otežane srednje aktivnosti $^{238}\!U$ i njegove mase u uzorku

Otežana srednja aktivnost ^{238}U se računa preko jednačine 4.137:

$$A_{u8}^{\prime\prime} = \frac{\frac{A_{u81}^{\prime\prime}}{u(A_{u81}^{\prime\prime})^2} + \frac{A_{u82}^{\prime\prime}}{u(A_{u82}^{\prime\prime})^2} + \frac{A_{u83}^{\prime\prime}}{u(A_{u83}^{\prime\prime})^2}}{\frac{1}{u(A_{u81}^{\prime\prime})^2} + \frac{1}{u(A_{u82}^{\prime\prime})^2} + \frac{1}{u(A_{u83}^{\prime\prime})^2}}$$
(4.137)

Merna nesigurnost aktivnosti ^{238}U je izračunata u jednačini 4.138

$$u(A_{u8}'') = \sqrt{\frac{1}{\frac{1}{u(A_{u81}'')^2} + \frac{1}{u(A_{u82}'')^2} + \frac{1}{u(A_{u83}'')^2}}}$$
(4.138)

U tabeli 19. su date aktivnosti ^{238}U izračunate preko pikova na njegovim karakterističnim energijama. Takođe je prikazana i otežana srednja aktivnost za uzorak u drugoj iteraciji. Može da se vidi da su aktivnosti, koje su dobijene preko pikova karakterističnih energija, bliskih vrednosti i njihove razlike se nalaze u ospegu koji je predviđen sa mernom nesigurnosti. Pošto su se aktivnosti usaglasile nema potrebe za trećom iteracijom, te se može zaključiti da je aktivnost ^{238}U u uzorku 2 $3.30\pm0.06\cdot10^5$ Bq.

Tabela 19: Aktivnosti ^{238}U koje su izračunate preko njegovih karakterističnih energija i otežana srednja aktivnost

Radionuklid	Energija[keV]	Aktivnost $[10^5 Bq]$	Srednja aktivnost $[10^5 Bq]$
	63.29	3.28	
^{238}U	92.59	3.34	3.30 ± 0.06
	1001.03	3.30	

Masa ^{238}U u uzorku crne zemlje u drugoj iteraciji je određena preko jednačine 4.139 i iznosi 26.54 g.

$$m_{u8}'' = \frac{A_{u8}'' \cdot A_m(^{238}U)}{\lambda_8 \cdot N_A} = 26.54 \ g \tag{4.139}$$

4.2.8 Određivanje aktivnosti ^{235}U u drugoj iteraciji

Određivanje aktivnosti pomoću pika energije 143.76 keV

Aktivnost ^{235}U preko pika energije 143.76 keV se dobija iz izraza 4.140:

$$A_{u51}'' = \frac{N_{u51} - N_{u51u8}''}{t_m \varepsilon_{u51}' p_{u51}} \tag{4.140}$$

Doprinos odbroju vrha pune energije na energiji 143.76 keV daju prirodno radioaktivni nizovi ^{238}U i ^{235}U . Doprinos ^{238}U ovom piku je označen sa N''_{u51u8} , a doprinos ^{235}U je razlika ukupnog odbroja u spektru i doprinosa ^{238}U : $N_{u51} - N''_{u51u8}$. Postupak određivanja odbroja koji potiče isključivo od radioaktivnog niza ^{235}U je grafički prikazan na slici 27. Doprinos radiaktivnog niza ^{238}U piku energije 143.76 keV nastaje raspadom ^{234}Pa , pri čemu dolazi do emisije gama zračenja na energii 143.78 keV. Ovaj doprinos je prikazan izrazom 4.141.

$$N_{u51u8}'' = A_{u8}'' t_m \varepsilon_{u51}''(0.0016 \cdot 0.0033) \tag{4.141}$$

Neodređenost merenja aktivnosti preko pika na 143.76 keV je određena u izrazu 4.142

$$u(A_{u51}'') = \frac{A_{u51}''}{100} \sqrt{\left(100\frac{u(N_{u51})}{N_{u51}}\right)^2 + un_{u51}^2 + ug_{u51}^2}$$
(4.142)

gde je ug_{u51} određeno u prilogu A.

Slika 27. Određivanje doprinosa radioaktivnog niza ^{235}U piku energije 143.76 keV

Određivanje aktivnosti pomoću pika energije 163.33 keV

Doprinos odbroju pika na energiji 163.33 keV daju prirodni radioaktivni nizovi ²³⁸U i ²³⁵U. Doprinos ²³⁸U ovom piku je označen sa N''_{u52u8} i odrećen je u jednačini 4.143, a doprinos ²³⁵U je razlika ukupnog odbroja u spektru i doprinosa ²³⁸U: $N_{u52} - N''_{u52u8}$. Postupak određivanja odbroja koji potiče isključivo od radioaktivnog niza ²³⁵U je grafički prikazan na slici 28.

Doprinos radiaktivnog niza ^{238}U piku energije 163.356 keV nastaje raspadom jezgra ^{234}Pa na jezgro ^{234}U , pri čemu dolazi do emisije gama zračenja na energiji 164.94 keV.

$$N_{u52u8}'' = A_{u8}'' t_m \varepsilon_{u52}''(0.0016 \cdot 0.00054)$$
(4.143)

Aktivnost ^{235}U koja je određena preko pika energije 163.33 keV se dobija iz izraza 4.144:

$$A_{u52}'' = \frac{N_{u52} - N_{u52u8}''}{t_m \varepsilon_{u52}'' p_{u52}}$$
(4.144)

Neodređenost merenja aktivnosti preko pika na 163.33 keV je data sa izrazom 4.145

$$u(A_{u52}'') = \frac{A_{u52}''}{100} \sqrt{\left(100\frac{u(N_{u52})}{N_{u52}}\right)^2 + un_{u52}^2 + ug_{u52}^2}$$
(4.145)

gde je ug_{u52} određeno u prilogu A.

Slika 28. Određivanje doprinosa radioaktivnog niza ^{235}U piku energije 163.33 keV

Određivanje aktivnosti pomoću pika energije 185.72 keV

Doprinos odbroju vrha pune energije na energiji 185.72 keV daju prirodni radioaktivni nizovi ^{238}U , ^{235}U i ^{232}Th . Za razliku od uzorka 1 uzorak 2 se sastoji iz žutog kolača i zemlje u kojoj se nalaze radionuklidi u prirodnom obliku. To znači da će pik energije 185.72 keV imati dodatne doprinose prirodnih radio nuklida iz prirodnih radioaktivnoh nizova ^{238}U i ^{232}Th . Kao što je već rečeno u poglavlju 2.3.1 nakon obrade žuti kolač sadrži samo prva četiri člana niza ^{238}U i njihov doprinos piku energije 185.72 keV nastaje raspadom jezgra ^{234}Pa na jezgro ^{234}U , pri čemu dolazi do emisije gama zračenja na energiji 186.15 keV. Ovaj doprinos je označen sa N''_{u53u8} i izračunat je u jednačini 4.147. Doprinos ostalih članova prirodnog radioaktivnog niza ^{238}U kojih nema u žutom kolaču je označen sa N_{u53Ra} i on nastaje alfa raspadom ²²⁶Ra na ²²²Rn pri čemu dolazi do emisije gama zračenja energije 186.211 keV sa verovatnoćom 3.64%. Ovaj doprinos je određen u jednačini 4.148. Doprinos radioaktivnog niza ^{232}Th nastaje beta raspadom ^{228}Ac na ^{228}Th pri čemu dolazi do emisije gama zračenja energije 184.54 keV sa verovatnoćom 0.07%. Ovaj doprinos je označen sa N_{u53Th} i izračunat je u jednačini 4.146. Doprinos ²³⁵U je razlika ukupnog odbroja u spektru i doprinosa radionuklida iz prirodnih radioaktivnih nizova ^{238}U i ^{232}Th : $N_{u53} - N_{u53u8}' - N_{u53Ra} - N_{u53Th}$. Postupak kojim se određuje odbroj koji potiče isključivo od radioaktivnog niza ^{235}U je grafički prikazan na slici 29. Doprinos N''_{u53u8} je određen preko pikova na karakterističnim energijama radioaktivnog niza ^{238}U . Doprinos ^{226}Ra je određen pomoću referentnih pikova ^{214}Bi koji je sa njim u radioaktivnom ekvilibrijumu, a doprinos ^{228}Ac je određen iz njegovih referentnih pikova na energijama 338.32 keV, 911.23 keV i 969.97 keV.

$$N_{u53u8}'' = A_{u8}'' t_m \varepsilon_{u53}''(0.0016 \cdot 0.0185) \tag{4.146}$$

N [185.72 keV 235U]

Slika 29. Određivanje doprinosa radioaktivnog niza ^{235}U piku energije 185.72 keV

$$N_{u53Ra} = A_{Ra} t_m \varepsilon_{u53}'' \cdot 0.0364 \tag{4.147}$$

$$N_{u53Th} = A_{Th} t_m \varepsilon_{u53}'' \cdot 0.0007 \tag{4.148}$$

Aktivnost ^{235}U preko pika energije 185.72 keV se dobija iz izraza 4.149:

$$A_{u53}'' = \frac{N_{u53} - N_{u53u8}''}{t_m \varepsilon_{u53}'' p_{u53}}$$
(4.149)

Neodređenost merenja aktivnosti preko pika na 185.72 keV je data sa izrazom 4.150

$$u(A_{u53}'') = \frac{A_{u53}''}{100} \sqrt{\left(100\frac{u(N_{u53})}{N_{u53}}\right)^2 + un_{u53}^2 + ug_{u53}^2}$$
(4.150)

gde je ug_{u53} određeno u prilogu A.

Određivanje otežane srednje aktivnosti $^{235}\!U$ i njegove mase u uzorku

Otežana Srednja aktivnost ^{235}U u drugoj iteraciji se računa preko jednačine 4.151:

$$A_{u5}'' = \frac{\frac{A_{u51}''}{u(A_{u51}'')^2} + \frac{A_{u52}''}{u(A_{u52}'')^2} + \frac{A_{u53}''}{u(A_{u53}'')^2}}{\frac{1}{u(A_{u51}'')^2} + \frac{1}{u(A_{u52}'')^2} + \frac{1}{u(A_{u53}'')^2}}$$
(4.151)

Merna nesigurnost aktivnosti ^{235}U je izračunata u jednačini 4.152

$$u(A_{u5}'') = \sqrt{\frac{1}{\frac{1}{u(A_{u51}'')^2} + \frac{1}{u(A_{u52}'')^2} + \frac{1}{u(A_{u53}'')^2}}}$$
(4.152)

U tabeli 20 su date aktivnosti koje su izračunate za karakteristične energije radioaktivnog niza ^{235}U kao i njihova otežana srednja aktivnost. Aktivnosti koje su prikazane u tabeli 20 imaju ujednačene vrednsoti. Otežana srednja aktivnost za ^{235}U u drugoj iteraciji iznosi $1.56 \cdot 10^4$ Bq, a aktivnost koja je izračunata preko jednačine 4.128 iznosi $1.52 \cdot 10^4$ Bq. Zbog relativno malih razlika ovako izračunatih aktivnosti ^{235}U , zaključeno je da je aktivnost određena dovoljno precizno i da nema potrebe izvršiti i treću iteraciju.

Tabela 20: Aktivnosti ^{235}U izračunate preko karakterističnih energija i srednja aktivnost

Radionuklid	Energija[keV]	Aktivnost $[10^4 Bq]$	Srednja aktivnost $[10^4 Bq]$
	143.76	1.60	
^{235}U	163.33	1.52	1.56 ± 0.04
	185.72	1.57	

Masa ^{235}U u uzorku 2 se računa pomoću jednačine 4.153

$$m_{u5}'' = \frac{A_{u5}'' \cdot A_m(^{235}U)}{\lambda_5 \cdot N_A} = 0.195 \ g \tag{4.153}$$

Stepen obogaćenja uranijuma predstavlja maseni udeo ^{235}U u uzorku i on se računa kao:

$$\frac{m_{u5}''}{m_{u5}'' + m_{u8}''} \cdot 100\% = 0.731\% \tag{4.154}$$

Odnos aktivnosti uranijuma ^{238}U u prirodnom obliku i ^{238}U koji se nalazi u obliku žutog kolača je dat u izrazu:

$$\frac{A_{Ra}}{A_{u8}'' - A_{Ra}} = 0.0041 \tag{4.155}$$

gde je A_{u8}'' aktivnost ²³⁸U koja je određena u uzorku, a A_{Ra} je aktivnost ²²⁶Ra u uzorku.

4.2.9 Diskusija rezultata

U prvoj iteraciji određeno je da se prvi uzorak (narandžasta zemlja) sastoji iz žutog kolača koji predstavlja 35.6% mase i suve zemlje koja predstavlja 64.4% mase uzorka. Aktivnosti uzorka je doprineo samo industrijski dobijen U_3O_8 . Aktivnost uzorka koja je dobijena nakon prve iteracije, pomoću različitih pikova je pokazivala velika neslaganja kako za pikove ²³⁸U tako i za pikove ²³⁵U. Ovi rezultati su ukazali na potrebu da se uradi i sledeća iteracija ne bi li se dobili pouzdaniji rezultati. Na kraju druge iteracije aktivnosti koje su određene preko različitih pikova su bile približnih vrednosti i upadale su u opsege merne nesigurnosti. Određeno je da je aktivnost ²³⁸U: 7.44 · 10⁴ Bq sa relativnim odstupanjem 2.15% i da je aktivnost ²³⁵U: 3.43 · 10³ Bq sa relativnim odstupanjem od 2.9%. Stepen obogaćenja iznosi ²³⁵U/²³⁸U = 0.713% što odgovara njihovoj zastupljenosti u prirodi.

Prilikom analize drugog uzorka vlažne, crne zemlje bilo je poterbno izvršiti dve iteracije. Rezultati su pokazali da se uzorak 2 sastoji iz 63.33% žutog kolača, 25.67% zemlje i 11% vode. Uočeno je da se u ovom uzorku pored žutog kolača nalaze i radionuklidi iz prirodnog radioaktivnog niza ²³⁸U i ²³²Th. Određeno je da je aktivnost ²³⁸U: $3.30 \cdot 10^5$ Bq sa relativnim odstupanjem od 1.8% i aktivnost ²³⁵U je: $1.56 \cdot 10^4$ Bq sa relativnim odstupanjem od 2.56%. Stepen obogaćenja iznosi ²³⁵U/²³⁸U = 0.731% što odgovara njihovoj zastupljenosti u prirodi.

5 Zaključak

Uranijum igra važnu ulogu u proizvodnji nuklearne energije ali se može koristiti i u vojne svrhe. Kako iz energetskih tako i iz bezbednosnih razloga postoji velika potreba za merenjem aktivnosti uranijuma u različitim uzorcima. U praksi laboratorije, koje se bave gama spektrometrijom, mere velik broj uzoraka različitog sastava, oblika i veličine. Tačna merenja zahtevaju sertifikovane standarde različitog sastava radioizotopa i geometrije. Nabavka velikog broja standarda je veoma skupa i nepraktična. Pored toga gama spektrometrijska merenja aktivnosti uranijuma se susreću sa dodatnim komplikacijama u vidu efekata interferencije fotona bliskih energija i efekata koincidentnog sumiranja koji mogu značajno da utiču na tačnost merenja. Iz tih razloga javlja se potreba za metodom koja pouzdano, brzo i efikasno može da odredi aktivnost uranijuma u uzorcima nepoznatog sastava, a da pri tom ne zahteva veliku količinu uloženih resursa. U ovom radu je prikazana iterativna metoda za određivanje aktivnosti uranijuma u uzorku nepoznatog sastava, koja je razvijena u Sektoru za razvoj i primenu nuklearnih tehnologija u javnom preduzeću NOS. Korišćenjem softvera *LabSOCS* eleminisana je potreba za standardnim uzorcima i energetska kalibracija detektora je brza i efikasna.

Glavni doprinos ovog rada je iterativni postupak koji određuje aktivnost ^{238}U preko linija njegovih potomaka ^{234}Th i ^{234m}Pa . Određeni su i korekcioni faktori preko postupka prostornog usrednjavanja eksperimentalno dobijenih korekcionih faktora za linije iz radioaktivnog niza ^{238}U . ovo usrednjavanje urađeno koriščenjem vrednosti efikasnosti za diskretne zone u uzorku koje su dobijene korišćenjem softvera *LabSOCS* Na primeru dva uzorka, koji su uzeti sa lokacije zatvorenog rudnika Mazdreja, pokazano je da korišćeni iterativni postupak brzo konvergira dovodeći ne samo do rezultata za aktivnosti ^{235}U i ^{238}U već i do najverovatnijeg sastava ispitavanih uzoraka, što je posebno važno za oblast nuklearne forenzike. Najveća mana prilikom upotrebe *LabSOCS* je to što ovaj softver nije besplatan i potrebno je detektor poslati na fabrička podešavanja. To znači da je upotreba ove metode ograničena na detektore koji su prošli fabrička podešavanja i za koje je kupljen softver *LabSOCS*.

Reference

- Klaus Debertin and Richard G Helmer. Gamma-and X-ray spectrometry with semiconductor detectors. 1988.
- [2] IEEE Standard. Test procedures for germanium gamma-ray detectors. 1971.
- [3] IEEE Standard. Test Procedures for Germanium Gamma-Ray Detectors. 1986.
- [4] Glenn F Knoll. Radiation detection and measurement. John Wiley & Sons, 2010.
- [5] Gordon Gilmore. Practical Gamma-ray Spectrometry. 'John Wiley & Sons, Ltd', 2008.
- [6] RJ Gehrke. Revision of the ansi n42. 14 performance standard for ge gamma-ray spectrometry. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 299(1-3):302–307, 1990.
- [7] Doğan Bor and E Köse. Spectral interference corrections for the measurement of 238u in materials rich in thorium by a high resolution g-ray spectrometry. 2009.
- [8] James M Kaste, Benjamin C Bostick, and Arjun M Heimsath. Determining 234 th and 238 u in rocks, soils, and sediments via the doublet gamma at 92.5 kev. Analyst, 131(6):757–763, 2006.
- [9] I Adsley, A Nichols, and J Toole. Decay of th-234 and daughter pa-234m in secular equilibrium. resolution of observed anomalies. Technical report, Environment Agency, 2000.
- [10] M. Quiros G. Pina. Latest developments on radiochemical characterization processes of radioactive waste from dismantling nuclear power reactors. Technical report, IAEA LABONET Technical Meeting on Radioactive Waste Characterization - Practices and Trends, Brusseles Belgium, 2012.
- [11] M. Milošević, I. Maksimović, D. Cekerevac-Mirković. "Merenje aktivnosti uranijuma". Zbornik radova 58. Konferencije za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku ETRAN 2014, Vrnjačka Banja, 2 – 5. juna 2014.
- [12] Norman H Cutshall, Ingvar L Larsen, and Curtis R Olsen. Direct analysis of 210pb in sediment samples: self-absorption corrections. *Nuclear Instruments and Methods in Physics Research*, 206(1-2):309–312, 1983.
- [13] Haluk Yücel, MA Cetiner, and H Demirel. Use of the 1001 kev peak of 234mpa daughter of 238u in measurement of uranium concentration by hpge gamma-ray spectrometry. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 413(1):74–82, 1998.
- [14] I Bikit, Jelena Slivka, Lj Čonkić, Miodrag Krmar, M Vesković, N Žikić-Todorović, Ervin Varga, S Ćurčić, and D Mrdja. Radioactivity of the soil in vojvodina (northern province of serbia and montenegro). Journal of Environmental Radioactivity, 78(1):11–19, 2005.
- [15] I Bikit, Sofija Forkapić, Jovana Nikolov, N Todorović, and D Mrdja. Radioactivity of the agricultural soil in northern province of serbia, vojvodina. *International Journal of Environmental and Ecological Engineering*, 5(4):298–303, 2011.

- [16] A Murray, R Marten, A Johnston, and P Martin. Analysis for naturally occuring radionuclides at environmental concentrations by gamma spectrometry. *Journal of Radioanalytical* and Nuclear Chemistry, 115(2):263–288, 1987.
- [17] Farid El-Daoushy and Francisco Hernández. Gamma spectrometry of 234 th (238 u) in environmental samples. Analyst, 127(7):981–989, 2002.
- [18] Haluk Yücel, Emin Yeltepe, Alptuğ Özer Yüksel, and Hasan Dikmen. 235u isotopic characterization of natural and enriched uranium materials by using multigroup analysis (mga) method at a defined geometry using different absorbers and collimators. *Nukleonika*, 60(3):615–620, 2015.
- [19] Tiffany C Kaspar, Curt A Lavender, and Mark W Dibert. Evaluation of uranium-235 measurement techniques. Technical report, Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2017.
- [20] KJ Mathew, RM Essex, C Gradle, and U Narayanan. Uncertainties achievable for uranium isotope-amount ratios: estimates based on the precision and accuracy of recent characterization measurements. *Journal of Radioanalytical and Nuclear Chemistry*, 305(1):277–282, 2015.
- [21] Francis Albarede, Philippe Telouk, Janne Blichert-Toft, Maud Boyet, Arnaud Agranier, and Bruce Nelson. Precise and accurate isotopic measurements using multiple-collector icpms. *Geochimica et Cosmochimica Acta*, 68(12):2725–2744, 2004.
- [22] Andrew M Duffin, Garret L Hart, Richard C Hanlen, and Gregory C Eiden. Isotopic analysis of uranium in nist srm glass by femtosecond laser ablation mc-icpms. *Journal of Radioanalytical and Nuclear Chemistry*, 296(2):1031–1036, 2013.
- [23] Thomas E Sampson. Verification and validation of the fram isotopic analysis software. LA-14057, Los Alamos National Laboratory, 2003.
- [24] R Gunnink. Mga: A gamma-ray spectrum analysis code for determining plutonium isotopic abundances. volume 3, fortran listing of the ga code. Technical report, Lawrence Livermore National Lab., CA (United States), 1991.
- [25] Canbera Industries. Model nais-2x2 detector characterization report. Technical report, Canberra Industries, Inc., 2010.
- [26] Dušan Novković, Mirjana Đurašević, Aleksandar Kandić, Ivana Vukanac, Zoran Milošević, and Laslo Nađđerđ. Coincidence summing of x-and gamma rays of 133ba. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 582(2):592–602, 2007.
- [27] V Kolotov, V Atrashkevich, and S Gelsema. Estimation of true coincidence corrections for voluminous sources. *Journal of radioanalytical and nuclear chemistry*, 210(1):183–196, 1996.
- [28] V.P. Kolotov and M.J. Koskelo. Testing of different true coincidence correction approaches for gamma-ray spectrometry of voluminous sources. *Journal of radioanalytical and nuclear chemistry*, 233(1-2):95–100, 1998.

- [29] H Jäderström, WF Mueller, V Atrashkevich, and AS Adekola. True coincidence summing correction and mathematical efficiency modeling of a well detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 784:264–268, 2015.
- [30] Tim Vidmar and Andrej Likar. Calculation of total efficiencies of extended samples for hpge detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 555(1-2):251-254, 2005.
- [31] Goran Stanić. Diplomski rad: Kalibracija efikasnosti HPGe detektora pomoću softvera Angle i LabSOCS. Prirodno-matematički fakultet, Univerzitet u Novom Sadu, 2019.
- [32] Z. Mijatović S.Durović. Osnovi elektronike i digitalne elektronike. Prirodno-matematički fakultet, Univerzitet u Novom Sadu, 2000.
- [33] Tomas Nemeš. Diplomski rad: Uticaj efekta pravog koincidentnog sumiranja na efikasnost poluprovodničkih gama spektrometara. Prirodno-matematički fakultet, Univerzitet u Novom Sadu, 2008.
- [34] Octavian Sima and Dirk Arnold. Accurate computation of coincidence summing corrections in low level gamma-ray spectrometry. Applied Radiation and Isotopes, 53(1-2):51–56, 2000.
- [35] Thomas M Semkow, Ghazala Mehmood, Pravin P Parekh, and Mark Virgil. Coincidence summing in gamma-ray spectroscopy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 290(2-3):437– 444, 1990.
- [36] Canbera Industries. Genie[™] 2000 spectroscopy software, costumization tools. 2004.
- [37] L. Marinkov. Osnovi nuklearne fizike. 2010.
- [38] M. Krmar. Uvod u nuklearnu fiziku. 2013.
- [39] Sofija Forkapić. Doktorska disertacija: Istrašivanje gasovitih radioaktivnih produkatauranijuma i torijuma . Prirodno-matematički fakultet, Univerzitet u Novom Sadu, 2013.
- [40] European comission. Radiation protection 122. Recommendations of the Group of Experts established under the terms of Article 31 of the Euratom Treaty, 2010.
- [41] Encyclopaedia Britannica: Uranium.
- [42] Wikidata. Weapons of mass destruction: Uranium isotopes.
- [43] Building blocks: An A to Z guide to the elements.
- [44] U.S. Nuclear Regulatory Commission. Yellowcake. 2014.
- [45] European Nuclear Society nuclear glossary. Yellowcake. 2017.
- [46] S Abousahl, A Michiels, M Bickel, R Gunnink, and J Verplancke. Applicability and limits of the mgau code for the determination of the enrichment of uranium samples. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 368(2):443–448, 1996.
- [47] R. Gunnink. A guide to using MGAU. 2004.

- [48] MGAU: A brief review of the methods and some results.
- [49] Inc. Canberra Industries. "Germaninum Detector" user's manual. 'Canbera Industries', 2001.
- [50] B. Vidolov P. Misliev. Anges, ver. 1.0, a specialized software utilities for gamma ray spectrometry, user's manual. 1991.
- [51] Judith F Briesmeister et al. Mcnptm-a general monte carlo n-particle transport code. Version 4C, LA-13709-M, Los Alamos National Laboratory, 2, 2000.
- [52] National Nuclear Data Center. Nuclear data sheets, nudat2.6. Brookhaven National Laboratory, Upton NY, 2012.
- [53] L.P. Ekström S.Y.F. Chu and R.B. Firestone. The lund/lbnl nuclear data search version 2.0. Scout Report, 1998.

Prilog

Sadržaj priloga je numerisan i u njemu se nalaze sve one stavke na koje se pozivalo u pređašnjem tekstu, a za koje je bilo pogodnije da budu prikazane odvojeno od centralnog dela rada bilo zbog preglednosti bilo zbog suvišnosti ("pogledati u Prilogu...").

A Određivanje greške usled definisanja geometrijske postavke eksperimenta i sastava uzorka

Greška usled definisanja geometrijske postavke eksperimenta i sastava uzorka je označena sa ug i računa se samo u drugoj iteraciji tako što se pored geometrijske postavke eksperimenta koja je prikazana u glavnom delu rada u softveru *LabSOCS* definišu po još dve postavke. Prilikom odrećivanja ove greške geometriske postavke za uzorak 2 i uzorak 1 su iste kao što je redom prikazano na slikama 20 i 22 uz manje izmene. Prilikom određivanja greške ug za uzorak 1 u polju u kojem se unosi materijal od kojeg je sačinjen uzorak u drugoj iteraciji i potrebno je uneti dve različite visine uzorka od 1.4 cm i 1.6 cm za prvu i drugu postavku respektivno. Pokretanjem softvera za ovako definisane postavke dobijaju se dva *ecc* fajla u kojima se nalaze efikasnosti na različitim energijama. Ista procedura je i za određivanje greške ug za uzrak 2, s tim da se za materijal, od kojeg se sastoji uzorak, unosi uzorak 2 koji je definisan u drugoj iteraciji, a visine uzorka su 1.2 cm i 1.4 cm. Greška ug se računa po formuli A.1

$$ug = \frac{\varepsilon''(h_2) - \varepsilon''(h_1)}{2 \cdot \varepsilon''(h)} \cdot 100 \tag{A.1}$$

ge su $\varepsilon''(h_1)$, $\varepsilon''(h_2)$ i $\varepsilon''(h)$ efikasnosti detektora u drugoj iteraciji za različite eksperimentalne postavke. Ove efikasnosti su date u tabelama 21 i 22 i njihovim uvrštavanjem u izraz A.1 dobija se greška ug na karakterističnim energijama ${}^{235}U$ i ${}^{238}U$ za oba uzorka.

Tabela 21: Efikasnosti detektora na karakterističnim energijama ^{235}U i ^{238}U u različitim postavkama eksperimenta za uzorak1

energija [keV]	$h_1 [\mathrm{cm}]$	$h_2[\mathrm{cm}]$	$h [\mathrm{cm}]$	$\varepsilon''(h_1)$	$\varepsilon''(h_2)$	$\varepsilon''(h)$
63.29	1.4	1.6	1.5	$1.07 \cdot 10^{-2}$	$1.19 \cdot 10^{-2}$	$1.13 \cdot 10^{-2}$
92.59	1.4	1.6	1.5	$1.73 \cdot 10^{-2}$	$1.19\cdot 10^{-2}$	$1.79 \cdot 10^{-2}$
1001.23	1.4	1.6	1.5	$5.17\cdot 10^{-3}$	$5.29\cdot10^{-3}$	$5.23\cdot10^{-3}$
143.76	1.4	1.6	1.5	$1.37 \cdot 10^{-2}$	$1.48 \cdot 10^{-2}$	$1.43 \cdot 10^{-2}$
163.33	1.4	1.6	1.5	$1.45 \cdot 10^{-2}$	$1.55 \cdot 10^{-2}$	$1.50 \cdot 10^{-2}$
185.71	1.4	1.6	1.5	$1.48 \cdot 10^{-2}$	$1.56\cdot 10^{-2}$	$1.52 \cdot 10^{-2}$

Tabela 22: Efikasnosti detektora na karakterističnim energijama ^{235}U i ^{238}U u različitim postavkama eksperimenta za uzorak2

energija [keV]	$h_1 [\mathrm{cm}]$	$h_2[\mathrm{cm}]$	$h [\mathrm{cm}]$	$\varepsilon''(h_1)$	$\varepsilon''(h_2)$	$\varepsilon''(h)$
63.29	1.2	1.4	1.3	$3.30 \cdot 10^{-3}$	$3.31 \cdot 10^{-3}$	$3.30 \cdot 10^{-3}$
92.59	1.2	1.4	1.3	$7.89\cdot10^{-3}$	$7.86 \cdot 10^{-3}$	$7.87 \cdot 10^{-3}$
1001.23	1.2	1.4	1.3	$5.06 \cdot 10^{-3}$	$4.97\cdot 10^{-3}$	$5.01 \cdot 10^{-3}$
143.76	1.2	1.4	1.3	$5.46\cdot10^{-3}$	$5.46\cdot10^{-3}$	$5.46\cdot10^{-3}$
163.33	1.2	1.4	1.3	$6.69 \cdot 10^{-3}$	$6.66\cdot10^{-3}$	$6.67\cdot 10^{-3}$
185.71	1.2	1.4	1.3	$7.88\cdot10^{-3}$	$7.84\cdot10^{-3}$	$7.86 \cdot 10^{-3}$

B Određivanje aktivnosti torijuma u uzorku 2

Najstabilniji izotop torijuma je ^{232}Th čiji period poluraspada iznosi $1.405 \cdot 10^10 godina$ što je približno jednako starosti univerzuma. On je i rodonačelnik prirodnog radioaktivnog niza torijuma koji se završava sa stabilnim izotopom olova ^{208}Pb . U referenci [40] su prikazani svi potomci ovo radioaktivnog niza i njihovi faktori grananja. U većini slučajeva oni su jednaki jedinici što znači da je ^{232}Th u sekularnom ekvilibrijumu sa većinom svojih potomaka i njihove aktivnosti su iste. To znači da ukoliko odredimo aktivnost jednog njegovog potomka, na primer ^{228}Ac sa kojim je u radiaktivnom ekvilibrijumu, mi svo tada odredili i aktivnost ^{232}Th . Aktivnost ^{228}Ac se određuje preko tri pika energija 338.32 keV, 911.23 keV i 969.97 keV. Prilikom raspada ^{228}Ac dolazi do emisije gama zračenja ovih energija sa verovatnoćama 11.27%, 25.8% i 15.8% respektivno. [52] Odbroji ovih pikova u spektru su određeni pomoću softvera ANGENS i oni su dati u tabeli 23.

Tabela 23: efikasnosti korekcioni faktori za koincident
no sumiranje na karakterističnim energijama za ^{228}Ac ; uz
orak 2 u drugoj iteraciji

Energija [keV]	ε	F	N
338.32	$9.29 \cdot 10^{-3}$	0.993	4071
911.23	$5.43\cdot10^{-3}$	0.996	5273
969.97	$5.15\cdot10^{-3}$	0.996	3253

Korekcioni faktori za koincidentno sumiranje su određeni uz pomoć softvera *EFFTRAN*. Ovaj softver ne zahteva prethodnu kalibraciju detektora, ali je potrebno precizno definisati sastav uzorka, parametre detektora i geometrijsku postavku eksperimenta. softver daje korekcione faktore za energije od interesa i one su takođe prikazane u tabeli 23.

Aktivnost ^{228}Ac preko pika energije 338.32 keV je određen izrazom

$$A_1 = \frac{N_1}{t_m p_1 \varepsilon_1 F_1} \tag{B.1}$$

gde je A_1 aktivnost, $t_m = 3600 \ s$ vreme merenja, N_1 odbroj u spektru na energiji 338.32 keV, p_1 verovatnoća emisije gama zraka energije 338.32 keV prilikom raspada i F_1 koreckioni faktor za koincidentno sumiranje na energiji 338.32 keV . Merna nesigurnost se računa kao:

$$u_1 = \sqrt{uef(338.32)^2 + \left(\frac{100u(N_1)}{N_1}\right)^2}$$
(B.2)

gde je $u(N_1)$ merna nesigurnost prilikom određivanja odbroja u spektru, a uef(338.32) je dato izrazom

$$uef(338.32) = \frac{2.5un(338.32)}{un(661.657)} \tag{B.3}$$

gde je un(338.32) relativna merna nesigurnost u funkciji od energije, koja je data polinomom 3.6.

Aktivnost ^{228}Ac preko pika energije 911.23 keV je određen izrazom

$$A_2 = \frac{N_2}{t_m p_2 \varepsilon_2 F_2} \tag{B.4}$$

gde je A_2 aktivnost, $t_m = 3600 \ s$ vreme merenja, N_2 odbroj u spektru na energiji 911.23 keV, p_2 verovatnoća emisije gama zraka energije 911.23 keV prilikom raspada i F_2 koreckioni faktor za koincidentno sumiranje na energiji 911.23 keV . Merna nesigurnost se računa kao:

$$u_2 = \sqrt{uef(911.23)^2 + \left(\frac{100u(N_2)}{N_2}\right)^2}$$
(B.5)

gde je $u(N_2)$ merna nesigurnost prilikom određivanja odbroja u spektru, a uef(911.23) je dato izrazom

$$uef(911.23) = \frac{2.5un(911.23)}{un(661.657)} \tag{B.6}$$

gde je un(911.23) relativna merna nesigurnost u funkciji od energije, koja je data polinomom 3.6.

Aktivnost ^{228}Ac preko pika energije 969.97 keV je određen izrazom

$$A_3 = \frac{N_3}{t_m p_3 \varepsilon_3 F_3} \tag{B.7}$$

gde je A_3 aktivnost, $t_m = 3600 \ s$ vreme merenja, N_3 odbroj u spektru na energiji 969.97 keV, p_3 verovatnoća emisije gama zraka energije 969.97 keV prilikom raspada i F_3 koreckioni faktor za koincidentno sumiranje na energiji 969.97 keV . Merna nesigurnost se računa kao:

$$u_3 = \sqrt{uef(969.97)^2 + \left(\frac{100u(N_3)}{N_3}\right)^2}$$
(B.8)

gde je $u(N_3)$ merna nesigurnost prilikom određivanja odbroja u spektru, a uef(969.97) je dato izrazom

$$uef(969.97) = \frac{2.5un(969.97)}{un(661.657)} \tag{B.9}$$

gde je un(969.97) relativna merna nesigurnost u funkciji od energije, koja je data polinomom 3.6. Otežana srednja aktivnost ²²⁸Ac se računa pomoću izraza

$$A = \frac{\frac{A_1}{u_1^2} + \frac{A_2}{u_2^2} + \frac{A_3}{u_3^2}}{\frac{1}{u_1^2} + \frac{1}{u_2^2} + \frac{1}{u_3^2}}$$
(B.10)

a njena graška se računa kao:

$$u(A) = \frac{1}{\sqrt{\frac{1}{u_1^2} + \frac{1}{u_2^2} + \frac{1}{u_3^2}}} \cdot 0.01A$$
(B.11)

Aktivnost ${}^{228}Ac$ koja je određena ovom metodom iznosi $1079 \pm 20Bq$. Ovo je ujedno i aktivnost ${}^{232}Th$ pošto su torijum i aktinijum u sekularnom radioaktivnom ekvilibrijumu.

C Određivanje aktivnosti radijuma u uzorku 2

Prirodni radioaktivni niz uranijuma započinje ^{238}U , a završava se stabilnim ^{206}Pb . U uzorku 2 se pored veštački dobijenog žutog kolača nalaze i potomci ^{238}U u prirodnom obliku. Da bi se precizno odredila aktivnost u uzorku potrebno je odrediti i njihovu kativnost. Olakšavajuća okolnost u ovom procesu je to što su svi članovi niza od ^{226}Ra do ^{214}Po u sekularnom radioaktivnom ekvilibrijumu, odnosno njihove aktivnosti su jednake i dovljno je odrediti aktivnost samo jednog od njih da bi se znala aktivnost ostalih. [40] Dakle u ovom odeljku je određena aktivnost pomenutih radionuklida pomoću ^{214}Bi . Aktivnost ^{214}Bi je određena preko pikova energije 609.32 keV, 1120.294 keV i 1764.491 keV. Odbroji pikova na ovim energijama su određeni pomoću softvera ANGENS, a efikasnosti preko softvera LabSOCS (tabela 24).

Tabela 24: efikasnosti korekcioni faktori za koincident
no sumiranje na karakterističnim energijama za ^{226}Ra ; uz
orak 2 u drugoj iteraciji

Energija [keV]	ε	F	N
609.32	$6.76 \cdot 10^{-3}$	0.979	13860
1120.294	$4.60 \cdot 10^{-3}$	0.978	3158
1764.491	$3.34\cdot10^{-3}$	1	2644

Korekcioni faktori za koincidentno sumiranje su određeni uz pomoć softvera *EFFTRAN*. Ovaj softver ne zahteva prethodnu kalibraciju detektora, ali je potrebno precizno definisati sastav uzorka, parametre detektora i geometrijsku postavku eksperimenta. softver daje korekcione faktore za energije od interesa i one su takođe prikazane u tabeli 24.

Aktivnost ^{214}Bi preko pika energije 609.32 keV je određen izrazom

$$A_1 = \frac{N_1}{t_m p_1 \varepsilon_1 F_1} \tag{C.1}$$

gde je A_1 aktivnost, $t_m = 3600\ s$ vreme merenja, N_1 odbroj u spektru na energiji 609.32 keV, p_1 verovatnoća emisije gama zraka energije 609.32 keV prilikom raspada i F_1 koreckioni faktor za koincidentno sumiranje na energiji 609.32 keV . Merna nesigurnost se računa kao:

$$u_1 = \sqrt{uef(609.32)^2 + \left(\frac{100u(N_1)}{N_1}\right)^2}$$
(C.2)

gde je $u(N_1)$ merna nesigurnost prilikom određivanja odbroja u spektru, auef(609.32) je dato izrazom

$$uef(609.32) = \frac{2.5un(609.32)}{un(661.657)}$$
(C.3)

gde je un(609.32) relativna merna nesigurnost u funkciji od energije, koja je data polinomom 3.6.

Aktivnost ^{214}Bi preko pika energije 1120.294 keV je određen izrazom

$$A_2 = \frac{N_2}{t_m p_2 \varepsilon_2 F_2} \tag{C.4}$$

gde je A_2 aktivnost, $t_m = 3600 \ s$ vreme merenja, N_2 odbroj u spektru na energiji 1120.294 keV, p_2 verovatnoća emisije gama zraka energije 1120.294 keV prilikom raspada i F_2 koreckioni faktor

za koincidentno sumiranje na energiji 1120.294 keV . Merna nesigurnost se računa kao:

$$u_2 = \sqrt{uef(1120.294)^2 + \left(\frac{100u(N_2)}{N_2}\right)^2}$$
(C.5)

gde je $u(N_2)$ merna nesigurnost prilikom određivanja odbroja u spektru, auef(1120.294) je dato izrazom

$$uef(1120.294) = \frac{2.5un(1120.294)}{un(661.657)}$$
(C.6)

gde je un(1120.294) relativna merna nesigurnost u funkciji od energije, koja je data polinomom 3.6.

Aktivnost ^{228}Ac preko pika energije 1764.491 keV je određen izrazom

$$A_3 = \frac{N_3}{t_m p_3 \varepsilon_3 F_3} \tag{C.7}$$

gde je A_3 aktivnost, $t_m=3600\ s$ vreme merenja, N_3 odbroj u spektru na energiji 1764.491 keV, p_3 verovatnoća emisije gama zraka energije 1764.491 keV prilikom raspada i F_3 koreckioni faktor za koincidentno sumiranje na energiji 1764.491 keV . Merna nesigurnost se računa kao:

$$u_3 = \sqrt{uef(1764.4917)^2 + \left(\frac{100u(N_3)}{N_3}\right)^2}$$
(C.8)

gde je $u(N_3)$ merna nesigurnost prilikom određivanja odbroja u spektru, auef(1764.491) je dato izrazom

$$uef(1764.491) = \frac{2.5un(1764.491)}{un(661.657)}$$
(C.9)

gde je un(1764.491) relativna merna nesigurnost u funkciji od energije, koja je data polinomom 3.6. Otežana srednja aktivnost ²¹⁴Bi se računa pomoću izraza

$$A = \frac{\frac{A_1}{u_1^2} + \frac{A_2}{u_2^2} + \frac{A_3}{u_3^2}}{\frac{1}{u_1^2} + \frac{1}{u_2^2} + \frac{1}{u_3^2}}$$
(C.10)

a njena graška se računa kao:

$$u(A) = \frac{1}{\sqrt{\frac{1}{u_1^2} + \frac{1}{u_2^2} + \frac{1}{u_3^2}}} \cdot 0.01A$$
(C.11)

Aktivnost ²¹⁴Bi koju se dobije ovom metodom iznosi 1345 \pm 22Bq. Ovo je ujedno i aktivnost ²²⁶Ra jer su bizmut i radijum u sekularnom radioaktivnom ekvilibrijumu.

Biografija

Aleksandar Rikalo je rođen 15.10.1994 u Novom Sadu. Završio je osnovnu školu "Prva vojvođanska brigada" i Gimnaziju "Jovan Jovanović Zmaj" u Novom Sadu. Tokom osnovne i srednje škole se takmičio na takmičenjima iz matematike i fizike i osvajao je nagrade na opštinskim, okružnim i državnim takmičenjima. Osnovne akademske studije fizike smer fizičar-istraživač upisuje 2013. godine na Prirodno-matematičkom fakultetu, Univerziteta u Novom Sadu i završava ih 2019 sa zvanjem diplomirani fizičar. Tokom studija često je posećivao letnje škole i naučne konferencije. Trenutno je student master akademskih studija na Prirodno-matematičkom fakultetu, Univerziteta u Novom Sadu. Jedno vreme je radio u Gimnaziji "Svetozar Marković" kao profesor fizike. Trenutno živi u

Novom Sadu i radi na "Fakultetu tehničkih nauka" kao saradnik u nastavi.

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET KLJUČNA DOKUMENTACIJSKA INFORMACIJA

Redni broj: RBR	
Identifikacioni broj:	
IBR	
<i>Tip dokumentacije</i> : TD	Monografska dokumentacija
Tip zapisa: TZ	Tekstualni štampani materijal
Vreta rada:	Master rad
VB	
Autor	Aleksandar Bikalo
	Aleksalidar Tükalo
AU M (
Mentori:	dr Đorđe Lazarević
MN	
Naslov rada:	Merenje aktivnosti uranijuma uuzorcima nepoznatog sastava
NR	
Jezik publikacije:	srpski (latinica)
JP	
Jezik izvoda:	srpski/engleski
JI	silisin' englesin
Zemlia nublikovanja:	Bepublika Srbija
ZP	Topublika bibija
Uže geografsko područje:	Vojvodina
UGP	
Godina:	2020
GO	
Izdavač:	Autorski reprint
IZ	
Mesto i adresa:	Prirodno-matematički fakultet,
	Trg Dositeja Obradovića 4, Novi Sad
MA	
Fizički opis rada:	5 poglavlja/ 86 strana/ 53 literaturna citata/ 24 tabele/ 29 slika
FO	
Naučna oblast	Fiziko
NO	T 121Ka
Naučna disciplina:	Nuklearna fizika
ND	
Predmetna odrednica/ ključne reči:	Nuklearna forenzika, Aktivnost, Uranijum Iterativni postupak, Koincidentno sumiranje
PO	
UDK	
$\check{C}uva \ se:$	Biblioteka Departmana za fiziku, PMF-a u Novom Sadu
CU	
Važna napomena: Nema	

VN	
Izvod:	U radu je određena aktivnost uranijuma u uzorcima nepoznatog sastava pomoću iterativnog postupka.
IZ	
Datum prihvatanja teme:	27.8.2020
DP	
Datum odbrane:	21.9.2020.
DO	
Članovi komisije:	
KO	
Predsednik:	prof. dr Nataša Todorović, redovni profesor
	Prirodno-matematičkog fakulteta u Novom Sadu
$\check{C}lan$:	dr Stevan Armaković, docent
	Prirodno-matematičkog fakulteta u Novom Sadu
$\check{C}lan$:	prof. dr Selena Samardžić, vanredni profesor
	Fakulteta tehničkih nauka u Novom Sadu
Mentor:	dr Đorđe Lazarević, Zamenik rukovodioca Sektora za razvoj
	i primenu nuklearnih tehnologija Javnog preduzeća
	Nuklearni objekti Srbije u Beogradu
Mentor:	prof. dr Jovana Nikolov, vanredni profesor
	Prirodno-matematičkog fakulteta u Novom Sadu

UNIVERSITY OF NOVI SAD FACULTY OF SCIENCES KEY WORDS DOCUMENTATION

Accession number: ANO Identification number: INO Document type: \mathbf{DT} Type of record: \mathbf{TR} Content code: $\mathbf{C}\mathbf{C}$ Author: AU Mentor: Mentor: \mathbf{MN} Title:

\mathbf{TI}

Language of text: \mathbf{LT} Language of abstract: $\mathbf{L}\mathbf{A}$ Country of publication: \mathbf{CP} Locality of publication: \mathbf{LP} Publication year: $\mathbf{P}\mathbf{Y}$ Publisher: \mathbf{PU} Publication place: \mathbf{PP} Physical description: PDScientific field: \mathbf{SF} Scientific discipline: SDSubject/ Key words:

SKW Holding data:

HD

Note: \mathbf{N}

Monograph publication
Textual printed material
Final paper
Aleksandar Rikalo
Jovana Nikolov, PhD, associate professor Đorđe Lazarević, PhD
Uranium activity measurement in samples of unknown composition
Serbian (Latin)
English
Republic of Serbia
Vojvodina
2020
Author's reprint
Faculty of Sciences, Trg Dositeja Obradovica 4, Novi Sad

5/86/53/24/29

Physics

Nuclear Physics

Nuclear forensics, Radiactivity, Uranium Iterative procedure, Coincidence summing

Library of Department of Physics, Trg Dositeja Obradovića 4, Novi Sad

None

Abstract:	Aim of this master thesis was development
	of iterative procedure which can determine activity of
	Uranuim in samples of unknown structure.
	AB
Accepted by the Scientific Board:	27.8.2020
ASB	
Defended on:	21.9.2020.
DE	
Thesis defend board:	
President:	Nataša Todorović PhD, Full professor,
	Faculty of Sciences, Novi Sad
Member:	Stevan Armaković PhD, docent,
	Faculty of Sciences, Novi Sad
Member:	Selena Samardžić PhD, Associate professor,
	Faculty of Technical Sciences, Novi Sad
Mentor:	Jovana Nikolov PhD, Associate Professor,
	Faculty of Sciences, Novi Sad
Mentor:	Đorđe Lazarević PhD, Deputy head of Sector of development
	and application of nuclear technology in public company
	Nuclear objects of Serbia, Belgrade
DB	